QUARTZ CRYSTAL RESONATOR AND QUARTZ CRYSTAL RESONATOR UNIT
The present application is a continuation of International application No. PCT/JP2017/019063, filed May 22, 2017, which claims priority to Japanese Patent Application No. 2016-124624, filed Jun. 23, 2016, the entire contents of each of which are incorporated herein by reference. The present invention relates to a quartz crystal resonator and a quartz crystal resonator unit, and, in particular, to a quartz crystal resonator and a quartz crystal resonator unit having a structure in which both main surfaces of a quartz crystal plate are sandwiched between a pair of excitation electrodes. A quartz crystal device described in Patent Document 1 is known as an example of existing inventions related to a quartz crystal resonator. The quartz crystal device 500 includes a package body 501, a quartz crystal resonator 502, and a base 504. The quartz crystal resonator 502 is mounted on an upper surface of the base 504 at a front end thereof. The base 504 is mounted on an upper surface of a bottom portion of the package body 501 at a back end thereof. Thus, a joint between the quartz crystal resonator 502 and the base 504 and a joint between the package body 501 and the base 504 are separated from each other. Therefore, even when a strain occurs at the back end of the base 504 due to a difference in linear expansion coefficient between the package body 501 and the base 504, the strain is not likely to be transferred through the base 504 to reach the joint between the quartz crystal resonator 502 and the base 504. Thus, the negative effect of the difference in thermal expansion coefficient is avoided. Patent Document 1: Japanese Unexamined Patent Application Publication No. 2010-135890 Patent Document 2: Japanese Unexamined Patent Application Publication No. 2012-134824 However, the quartz crystal device 500 described in Patent Document 1 has a problem in that the excitation frequency varies when an impact is applied from the outside of the quartz crystal device 500. To be more specific, when an impact is applied to the quartz crystal device 500, the impact is transmitted from the base 504 to the quartz crystal resonator 502 via the joint between the quartz crystal resonator 502 and the base 504. In the quartz crystal device 500, as illustrated in A resonator described in Patent Document 2 also has a line-symmetric structure similar to that of the quartz crystal resonator 502. Therefore, the resonator described in Patent Document 2 also has a problem in that the excitation frequency varies when an impact or a thermal shock is applied from the outside, as with the quartz crystal device 500. An object of the present invention is to provide a quartz crystal resonator and a quartz crystal resonator unit that can suppress variation of the excitation frequency. According to an embodiment of the present invention, a quartz crystal resonator includes a substrate having a first main surface and a second main surface, the substrate including a vibration portion that is a quartz crystal plate, a frame portion that is separated from the vibration portion and surrounds the vibration portion when viewed in a normal direction that is normal to the first main surface, and first to fourth coupling portions that couple the vibration portion and the frame portion to each other; a first excitation electrode on the first main surface in the vibration portion; and a second excitation electrode on the second main surface in the vibration portion. The first main surface of the vibration portion has a rectangular shape having a first edge, a second edge, a third edge, and a fourth edge, the third and fourth edges being perpendicular to the first and second edges when viewed in the normal direction. An intersecting point of diagonal lines of the first main surface of the vibration portion when viewed in the normal direction is defined as an origin. A straight line that passes through the origin, that is parallel to the first edge, and that has a positive side on which the third edge is located is defined as a z axis. A straight line that passes through the origin, that is parallel to the third edge, and that has a positive side on which the second edge is located is defined as an x axis. The first coupling portion couples the vibration portion and the frame portion in a region on the positive side of the z axis and the negative side of the x axis when viewed in the normal direction. The second coupling portion couples the vibration portion and the frame portion in a region on the positive side of the z axis and the positive side of the x axis when viewed in the normal direction. The third coupling portion couples the vibration portion and the frame portion in a region on the negative side of the z axis and the positive side of the x axis when viewed in the normal direction. The fourth coupling portion couples the vibration portion and the frame portion in a region on the negative side of the z axis and the negative side of the x axis when viewed in the normal direction. Portions where the first to fourth coupling portions are respectively connected to the vibration portion are defined as first to fourth connection portions. An intersecting point of diagonal lines of a quadrangle formed by the first to fourth connection portions is located on the positive side or the negative side of the z axis relative to the x axis when viewed in the normal direction, or, the intersecting point of the diagonal lines of the quadrangle formed by the first to fourth connection portions is located on the positive side or the negative side of the x axis relative to the z axis when viewed in the normal direction. According to an embodiment of the present invention, a quartz crystal resonator unit includes the quartz crystal resonator, a mount substrate that has a third main surface and a fourth main surface and on which the quartz crystal resonator is mounted so that the second main surface and the third main surface face each other, and a cap that covers the third main surface. With the present invention, variation of the excitation frequency can be suppressed. Hereinafter, a quartz crystal resonator unit 10 including a quartz crystal resonator 13 according to an embodiment will be described with reference to the drawings. Hereinafter, a normal direction that is normal to an upper surface of a quartz crystal blank 14 of the quartz crystal resonator 13 is defined as the up-down direction. When viewed from above, the direction parallel to the long edges of the quartz crystal blank 14 is defined as the front-back direction, and the direction parallel to the short edges of the quartz crystal blank 14 is defined as the left-right direction. However, the up-down direction, the front-back direction, and the left-right direction are examples and need not coincide with the up-down direction, the front-back direction, and the left-right direction when the quartz crystal resonator unit 10 is actually used. As illustrated in The quartz crystal blank 14 (an example of a substrate) is a quartz crystal plate having an upper surface (an example of a first main surface) and a lower surface (an example of a second main surface). When viewed from above, the upper surface of the quartz crystal blank 14 has a rectangular shape having long edges extending in the front-back direction. The quartz crystal blank 14 is, for example, an AT-cut quartz crystal blank that is cut from a rough quartz crystal at a predetermined angle. When the crystal axes of a synthetic quartz crystal are referred to as the X, Y, and Z axes, the Y′ axis and the Z′ axis are defined as axes that are obtained by rotating the Y axis and the Z axis by 35 degrees 15 minutes±1 minute 30 seconds around the X axis in the direction from the Y axis toward the Z axis. The AT-cut quartz crystal blank 14 is cut so that a surface (XZ′ surface) parallel to a plane specified by the X axis and the Z′ axis is a main surface thereof. In the present embodiment, regarding the AT-cut rectangular quartz crystal blank 14, the direction of the X axis (an example of an x axis) is defined as the front-back direction, the direction of the Z′ axis (an example of a z axis) is defined as the left-right direction, and the direction of the Y axis is defined as the up-down direction. When viewed from above, the origin O of the X axis and the Z′ axis is the intersecting point of the diagonal lines of a vibration portion 14 The quartz crystal blank 14 includes the vibration portion 14 When viewed from above, the frame portion 14 The coupling portions 14 When viewed from above, the coupling portion 14 When viewed from above, the coupling portion 14 When viewed from above, the coupling portion 14 In the quartz crystal resonator 13, preferably W1≠W4 and W2≠W3, and, most preferably, W1>W4 and W2>W3. However, at least one of W1≠W4 and W2≠W3 is most preferred. When viewed from above, the distance between the center of the connection portion 15 As described above, because D1<D2 is satisfied, the intersecting point P of the diagonal lines of a quadrangle that is formed by the centers of the connection portions 15 The excitation electrode 20 (an example of a first excitation electrode) is a conductor layer disposed on the upper surface of the vibration portion 14 The outer electrode 27 (an example of a first outer electrode) is disposed on the upper surface, the back surface, and the lower surface of the quartz crystal blank (to be more precise, the frame portion 14 The outer electrode 28 (an example of a second outer electrode) is disposed on the upper surface, the back surface, and the lower surface of the quartz crystal blank (to be more precise, the frame portion 14 The extension electrode 24 (an example of a first extension electrode) is a linear conductor layer that is disposed on the upper surface of the quartz crystal blank 14 and that has a front end (an example of a first end portion) and a back end (an example of second end portion). The extension electrode 24 passes through one of the coupling portions 14 The extension electrode 26 (an example of a second extension electrode) is a linear conductor layer that is disposed on the lower surface of the quartz crystal blank 14 and that has a front end (an example of a third end portion) and a back end (an example of fourth end portion). The extension electrode 26 passes through one of the coupling portions 14 As illustrated in The mount electrode 29 is a rectangular conductor that is disposed on the upper surface of the substrate body 17 near the right-back corner of the upper surface when viewed from above. The mount electrode 30 is a rectangular conductor that is disposed on the upper surface of the substrate body 17 near the left-back corner of the upper surface when viewed from above. The outer electrode 32 is a rectangular conductor that is disposed on the lower surface of the substrate body 17 so as to be adjacent to the right-back corner of the substrate body 17 when viewed from below. The outer electrode 34 is a rectangular conductor that is disposed on the lower surface of the substrate body 17 so as to be adjacent to the left-back corner of the substrate body 17 when viewed from below. The outer electrode 36 is a rectangular conductor that is disposed on the lower surface of the substrate body 17 so as to be adjacent to the right-front corner of the substrate body 17 when viewed from below. The outer electrode 38 is a rectangular conductor that is disposed on the lower surface of the substrate body 17 so as to be adjacent to the left-front corner of the substrate body 17 when viewed from below. For example, each of the mount electrodes 29 and 30 and the outer electrodes 32, 34, 36, and 38 has a structure such that an Au layer is formed on a Cr underlying layer by plating. The mount electrode 29 and the outer electrode 32 are connected to each other via a via-hole conductor (not shown). The mount electrode 30 and the outer electrode 34 are connected to each other via a via-hole conductor (not shown). The quartz crystal resonator 13 is mounted on the mount substrate 16 so that the lower surface of the quartz crystal resonator 13 and the upper surface of the substrate body 17 face each other. To be specific, the outer electrodes 27 and 28 are respectively connected to the mount electrodes 29 and 30 by soldering or the like. The cap 12 is a rectangular box-shaped (that is, hollow) housing. When viewed from above, the shape of the cap 12 substantially coincides with the shape of the upper surface of the mount substrate 16. The lower side of the cap 12 is open. The cap 12 is fixed to the upper surface of the quartz crystal blank 14 by joining the outer edge of the opening of the cap 12 to a joining member (not shown). Thus, the upper surface of the mount substrate 16 and the quartz crystal resonator 13 are covered by the cap 12. For example, the cap has a structure such that an Au layer is formed, by plating, on a body made of Cu. (Operational Effects) With the quartz crystal resonator 13 structured as described above, variation of the excitation frequency can be suppressed. To be more specific, the quartz crystal device described in Patent Document 1 has, when viewed from above, the quartz crystal resonator 502, and the outer electrodes and the excitation electrodes, which are disposed on the quartz crystal resonator 502, each have a structure that is line-symmetric with respect to the straight line L500. Therefore, the quartz crystal resonator 502 is joined to the base 504 at a position such that the quartz crystal resonator 502 is line-symmetric with respect to the straight line L500. Accordingly, a stress due to an impact is large on the straight line L500, which is at the middle of the joint. The center of each excitation electrode is located on the straight line L500, and a large stress is applied to the center of the excitation electrode. As a result, the excitation frequency of the quartz crystal device 500 varies. In the quartz crystal resonator 13, the intersecting point P of the diagonal lines of a quadrangle formed by the connection portions 15 Moreover, with the quartz crystal resonator 13, variation of the excitation frequency can be suppressed also for the following reason. To be more specific, the intersecting point P is located on the negative side (back side) of the X axis relative to the Z′ axis and is displaced from the Z′ axis. Accordingly, generation of a large stress on the Z′ axis is suppressed, and generation of a large stress at the origin O is suppressed. As a result, generation of a large stress at the intersecting point of the diagonal lines of each of the excitation electrodes 20 and 22 is suppressed, and variation of the excitation frequency is suppressed. (First Modification) Hereinafter, a quartz crystal resonator 13 The quartz crystal resonator 13 With the quartz crystal resonator 13 (Second Modification) Hereinafter, a quartz crystal resonator 13 The quartz crystal resonator 13 With the quartz crystal resonator 13 (Third Modification) Hereinafter, a quartz crystal resonator 13 The quartz crystal resonator 13 With the quartz crystal resonator 13 A quartz crystal resonator and a quartz crystal resonator unit according to the present invention are not limited to the quartz crystal resonators 13 and 13 The structures of the quartz crystal resonators 13 and 13 The quartz crystal blank 14, which is an AT-cut quartz crystal blank in the above description, may be a BT-cut quartz crystal blank that vibrates in a thickness shear mode in a similar way. The quartz crystal blank 14 need not be a single quartz crystal plate. To be more specific, as long as the vibration portion 14 The vibration portion 14 The intersecting point P may be located on the positive side of the X axis relative to the Z′ axis. The intersecting point P may be located on the negative side of the Z′ axis relative to the X axis. The intersecting point P may be located on the X axis and located on the positive side or the negative side of the X axis relative to the Z′ axis. The intersecting point P may be located on the Z′ axis and located on the positive side or the negative side of the Z′ axis relative to the X axis. When viewed from above, the connection portions 15 As described above, the present invention is applicable to a quartz crystal resonator and a quartz crystal resonator unit, and, in particular, has an advantage in that variation of the excitation frequency can be suppressed. A quartz crystal resonator that includes a substrate including a vibration portion, a frame portion that surrounds the vibration portion, and first to fourth coupling portions that couple the vibration portion and the frame portion to each other; and first and second excitation electrodes. An intersecting point of diagonal lines of a quadrangle formed by first to fourth connection portions is located on the positive side of the z axis relative to the x axis. 1. A quartz crystal resonator comprising:
a substrate that is a quartz crystal plate having a first main surface and a second main surface, the substrate including a vibration portion, a frame portion that is separated from the vibration portion and surrounds the vibration portion when viewed in a direction normal to the first main surface, and first to fourth coupling portions that couple the vibration portion and the frame portion to each other; a first excitation electrode on the first main surface in the vibration portion; and a second excitation electrode on the second main surface in the vibration portion, wherein the vibration portion has a rectangular shape having a first edge, a second edge, a third edge, and a fourth edge, the third and fourth edges being perpendicular to the first and second edges when viewed in the normal direction, wherein, when an intersecting point of diagonal lines of the vibration portion when viewed in the normal direction is defined as an origin, a first straight line that passes through the origin, that is parallel to the first edge, and that has a positive side on which the third edge is located is defined as a z axis, and a second straight line that passes through the origin, that is parallel to the third edge, and that has a positive side on which the second edge is located is defined as an x axis, the first coupling portion couples the vibration portion and the frame portion in a first region on the positive side of the z axis and the negative side of the x axis when viewed in the normal direction, the second coupling portion couples the vibration portion and the frame portion in a second region on the positive side of the z axis and the positive side of the x axis when viewed in the normal direction, the third coupling portion couples the vibration portion and the frame portion in a third region on the negative side of the z axis and the positive side of the x axis when viewed in the normal direction, the fourth coupling portion couples the vibration portion and the frame portion in a fourth region on the negative side of the z axis and the negative side of the x axis when viewed in the normal direction, wherein where the first to fourth coupling portions are respectively connected to the vibration portion are defined as first to fourth connection portions, and wherein an intersecting point of diagonal lines of a quadrangle formed by the first to fourth connection portions is located on the positive side or the negative side of the z axis relative to the x axis when viewed in the normal direction, or, the intersecting point of the diagonal lines of the quadrangle formed by the first to fourth connection portions is located on the positive side or the negative side of the x axis relative to the z axis when viewed in the normal direction. 2. The quartz crystal resonator according to 3. The quartz crystal resonator according to 4. The quartz crystal resonator according to 5. The quartz crystal resonator according to wherein W1≠W4 and/or W2≠W3, where W1 is a distance between the first connection portion and the x axis, W2 is a distance between the second connection portion and the x axis, W3 is a distance between the third connection portion and the x axis, and W4 is a distance between the fourth connection portion and the x axis. 6. The quartz crystal resonator according to 7. The quartz crystal resonator according to 8. The quartz crystal resonator according to wherein D1≠D2, where D1 is a distance between the first connection portion and the fourth connection portion, and D2 is a distance between the second connection portion and the third connection portion. 9. The quartz crystal resonator according to 10. The quartz crystal resonator according to 11. The quartz crystal resonator according to wherein D1≠D2, where D1 is a distance between the first connection portion and the fourth connection portion, and D2 is a distance between the second connection portion and the third connection portion. 12. The quartz crystal resonator according to 13. The quartz crystal resonator according to 14. The quartz crystal resonator according to wherein D1=D2, where D1 is a distance between the first connection portion and the fourth connection portion, and D2 is a distance between the second connection portion and the third connection portion. 15. The quartz crystal resonator according to wherein D1=D2, where D1 is a distance between the first connection portion and the fourth connection portion, and D2 is a distance between the second connection portion and the third connection portion. 16. The quartz crystal resonator according to 17. The quartz crystal resonator according to 18. The quartz crystal resonator according to 19. The quartz crystal resonator according to a first outer electrode on the second main surface in the frame portion; a second outer electrode on the second main surface in the frame portion; a first extension electrode on the first main surface of the substrate and having a first end portion and a second end portion, the first extension electrode passing through one of the first to fourth coupling portions and electrically connected to the first excitation electrode at the first end portion and electrically connected to the first outer electrode at the second end portion; and a second extension electrode on the second main surface of the substrate and having a third end portion and a fourth end portion, the second extension electrode passing through one of the first to fourth coupling portions and electrically connected to the second excitation electrode at the third end portion and electrically connected to the second outer electrode at the fourth end portion. 20. A quartz crystal resonator unit comprising:
a mount substrate that has a third main surface and a fourth main surface; the quartz crystal resonator according to a cap that covers the third main surface.CROSS REFERENCE TO RELATED APPLICATIONS
FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Embodiment
OTHER EMBODIMENTS
REFERENCE SIGNS LIST








