NOISE-CANCELLING LEARNING DEVICE AND VEHICLE PROVIDED WITH SAME
The present invention relates to a noise-canceling learning device and a vehicle including the noise-canceling learning device, and more particularly, to a noise-canceling learning device capable of performing control so as to prevent performing processing such as useless deceleration at the same place, and a vehicle including the noise-canceling learning device. For example, in self driving on a highway, it is necessary to detect an on-road fallen object 200 m away. In the case of recognition by an on board camera, detecting an on-road fallen object 200 m away is likely to erroneously recognize a scratch or a repair mark on the road surface as shown in On the other hand, also when a millimeter wave radar is used, since the radio wave reflection intensity differs depending on the material, for example, the metal portion of a joint of a bridge as shown in At driving automation level 3 or higher, since the driving authority is on the vehicle side, when a suspicious object is detected, it is necessary to perform deceleration and avoidance for safety, so that there is a problem that high-speed traveling is difficult even on a highway in a place where there are many objects and road surface patterns that can be noise. As an example of a system for detecting information on the above-described on-road obstacle, for example, PTL 1 discloses a road communication system capable of safely and quickly notifying other vehicles of information on an obstacle present on the road, a mobile entity device, and an information processing method for the mobile entity device. For example, the road communication system described in PTL 1 includes: a mobile entity device mounted on the vehicle; a roadside device located on or near a road; and a central management device for managing the roadside device. The mobile entity device includes: an imaging means for capturing an image including the road; an analyzing means for analyzing an image captured by the imaging means and for detecting an object on the road; a determining means for determining whether the object detected by the analyzing means is an obstacle; and a storage means for storing information on the obstacle when the determining means determines that the object is an obstacle. The roadside device includes: an acquiring means for acquiring information on an obstacle stored in the storage means of the mobile entity device; and a transmitting means for transmitting information on the obstacle acquired by the acquiring means to the central management device. The central management unit includes: a receiving means for receiving information on the obstacle transmitted by the transmitting means of the roadside device; and a presenting means for presenting information on the obstacle received by the receiving means or information related thereto. PTL 1: JP 2007-323117 A In the conventional technology described in PTL 1, since information captured by sensors is shared through a central management device, it is possible to share information (the situation) more quickly than updating information manually, but only the true information on currently existing objects is shared. Therefore, as described above, when a scratch, a repair mark, or the like on the road surface is erroneously perceived as a control target object such as an on-road fallen object, the information is shared as true information, and when the same place is traveled next time, processing such as useless deceleration may occur. The present invention has been made in view of the circumstances described above, and an object of the present invention is to provide a noise-canceling learning device capable of performing control so as to prevent performing processing such as useless deceleration at the same place in self driving, for example, on a highway, and a vehicle including the noise-canceling learning device. In order to solve the above problem, a noise-canceling learning device according to the present invention includes: an own vehicle position estimating unit configured to estimate a position of an own vehicle; a sensor recognition perceiving unit configured to perceive a target object existing around the own vehicle as a perceived target object; a detection determination processing unit configured to determine whether the perceived target object perceived by the sensor recognition perceiving unit is correct; and an information storage unit for storing a position of the own vehicle estimated by the own vehicle position estimating unit. The detection determination processing unit causes the information storage unit to store the perceived target object as a determination target object in association with positions of the perceived target object and the own vehicle, determines whether the perceived target object perceived by the sensor recognition perceiving unit and the determination target object stored in the information storage unit match based on a position of the own vehicle estimated by the own vehicle position estimating unit, and determines whether the perceived target object perceived by the sensor recognition perceiving unit is correct. In addition, a vehicle according to the present invention includes: the noise-canceling learning device; a map distribution unit configured to distribute map information; a position information receiving device configured to receive position information; a sensor mounted on the own vehicle, the sensor configured to recognize surroundings of the own vehicle; and a vehicle control device configured to control a traveling state of the own vehicle based on vehicle control information generated by the noise-canceling learning device. According to the present invention, the detection determination processing unit of the noise-canceling learning device causes the information storage unit to store the perceived target object as a determination target object in association with positions of the perceived target object and the own vehicle, determines whether the perceived target object perceived by the sensor recognition perceiving unit and the determination target object stored in the information storage unit match based on the position of the own vehicle estimated by the own vehicle position estimating unit, and determines whether the perceived target object perceived by the sensor recognition perceiving unit is correct. That is, the target object erroneously perceived as a control target object such as an on-road fallen object (a scratch, a repair mark, or the like on the road surface) is stored in the vehicle together with its position information, and when the same place is traveled next time, traveling control can be performed using the stored information, so that the vehicle can be controlled so as not to perform processing of useless deceleration and the like at the same place next time. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments. Hereinafter, embodiments of the present invention will be described with reference to the drawings. The vehicle 1 of the illustrated embodiment mounts a sensor a111, a sensor a212, a sensor an13, a noise-canceling learning device 14, a map distribution unit 15, a position information receiving device 16, a vehicle control device 17, and a GPS antenna 2. The noise-canceling learning device 14 includes a sensor recognition perceiving unit 141, an own vehicle position estimating unit 142, a detection determination processing unit 143, and an information storage unit 144. The sensor a111, the sensor a212, and the sensor an13 include, for example, a camera, a radar, or the like capable of detecting 200 m or more ahead of the vehicle (own vehicle) 1. The sensor a111, the sensor a212, and the sensor an13 recognize the surroundings of the vehicle 1, and transmit the recognition results to the sensor recognition perceiving unit 141 of the noise-canceling learning device 14 at a predetermined period. From the results of recognition by the respective sensors a111, sensor a212, and sensor an13, the sensor recognition perceiving unit 141 perceives an object as a target object existing around the own vehicle 1 (pedestrian, bicycle, motorcycle, vehicle, or the like), and the distance to the object (hereinafter, the perceived object and distance to the object may be collectively referred to as object information or perceived information). More specifically, the sensor recognition perceiving unit 141 checks the recognition results recognized by the respective sensor a111, sensor a212, and sensor an13 against a recognition pattern, perceives an object (target object) that matches the recognition pattern as a perceived object (perceived target object), and perceives the distance to the perceived object (perceived target object). On the other hand, the map distribution unit 15 is for distributing map information, and the position information receiving device 16 is for receiving position information on GPS and the like. The own vehicle position estimating unit 142 of the noise-canceling learning device 14 estimates an own vehicle position from the map information stored in the map distribution unit 15 and the position information on the vehicle 1 received at a predetermined period by the position information receiving device 16 through the GPS antenna 2. The detection determination processing unit 143 of the noise-canceling learning device 14 reads the data table (detailed below) stored in the information storage unit 144 of the noise-canceling learning device 14, and determines whether information matching the own vehicle position information estimated by the own vehicle position estimating unit 142 is stored. If there is no matching information (data), the detection determination processing unit 143 generates vehicle control information to be used for traveling control of the own vehicle 1 based on the object information perceived by the sensor recognition perceiving unit 141, and outputs the vehicle control information to the vehicle control device 17. Thereafter, the detection determination processing unit 143 stores the own vehicle position information estimated by the own vehicle position estimating unit 142, and the object (perceived object), the distance to the object, and the like, perceived by the sensor recognition perceiving unit 141 in (a data table of) the information storage unit 144. On the other hand, if there is matching information (data), the detection determination processing unit 143 compares the distance to the object, and the recognition pattern at that time, stored in the data table read from the information storage unit 144 with the distance to the object, and the recognition pattern of the object, perceived by the sensor recognition perceiving unit 141. If the comparison results do not match, based on the object information perceived by the sensor recognition perceiving unit 141, vehicle control information to be used for traveling control of the own vehicle 1 is generated and output to the vehicle control device 17. Thereafter, the detection determination processing unit 143 stores the own vehicle position information estimated by the own vehicle position estimating unit 142, and the object (perceived object), the distance to the object, and the like, perceived by the sensor recognition perceiving unit 141 in (a data table of) the information storage unit 144. In addition, if the comparison results match, based on the determination object (detailed below) stored in the data table, vehicle control information to be used for traveling control of the own vehicle 1 is generated, and the vehicle control information is output to the vehicle control device 17. Thereafter, the detection determination processing unit 143 stores the own vehicle position information estimated by the own vehicle position estimating unit 142, and the object (perceived object), the distance to the object, and the like, perceived by the sensor recognition perceiving unit 141 in (a data table of) the information storage unit 144. When it is necessary to avoid the perceived and detected object (for example, when the object is a pedestrian, bicycle, motorcycle, vehicle, on-road fallen object, or the like), the vehicle control information described above is output to the vehicle control device 17 as steering, accelerator, and brake control information for achieving a trajectory that avoids objects including lane changes, and when it is possible to travel without avoiding the perceived and detected object (for example, when the object is a scratch or repair mark on the road surface, a metal portion of a bridge joint, or the like), the vehicle control information described above is output to the vehicle control device 17 as information for controlling the steering, accelerator, and brake for maintaining the previous control. Based on the vehicle control information transmitted from the detection determination processing unit 143 of the noise-canceling learning device 14, the vehicle control device 17 controls the steering, accelerator, brake, and the like of the vehicle 1 to (automatically) control the traveling state (deceleration, avoidance, or the like) of the vehicle 1. Next, creation and update of the data table stored in the information storage unit 144 by the detection determination processing unit 143 will be described with reference to As shown in In step S102, the sensor recognition perceiving unit 141 perceives an object (pedestrian, bicycle, motorcycle, vehicle, or the like) as a target object existing around the own vehicle 1 and the distance to the object from the results recognized by the respective sensors a111, a212, and an13 (sensor recognition results). In step S103, the detection determination processing unit 143 reads the data table (in other words, past storage information) illustrated in In step S104, the detection determination processing unit 143 compares the own vehicle position information estimated by the own vehicle position estimating unit 142 with the position information indicating the latitude and longitude in the data table shown in In step S105, the recognition pattern and the distance to the object in the position information matched in step S104 in the data table described in In step S106, the detection determination processing unit 143 compares the perceived object perceived by the sensor recognition perceiving unit 141 with the determination object (detailed below) in the data table illustrated in In step S107, the detection determination processing unit 143 generates vehicle control information (that is, a control signal) based on the object information (perceived information) perceived by the sensor recognition perceiving unit 141, and outputs the vehicle control information to the vehicle control device 17. In addition, in step S108, the detection determination processing unit 143 stores the own vehicle position information estimated by the own vehicle position estimating unit 142, the object perceived by the sensor recognition perceiving unit 141 (perceived object), the recognition pattern of the object at that time, and the distance to the object (these may be collectively referred to as perceived information by the sensor recognition perceiving unit 141) in (a data table of) the information storage unit 144. In addition, those similar to the perceived objects are stored in another area of the data table as determination objects (particularly, see No. 4 or after in In step S109, the detection determination processing unit 143 refers to the tracking information in the data table illustrated in In step S110, the detection determination processing unit 143 compares the perceived object in the immediately preceding tracking information on the tracking information in the data table illustrated in In step S112, the detection determination processing unit 143 traces back the tracking information in the data table illustrated in In step S106, if the perceived object and the determination object do not match, in step S111, the detection determination processing unit 143 generates vehicle control information (that is, control signals) based on the determination object (determination information) in the data table illustrated in Thus, in the present embodiment, the detection determination processing unit 143 of the noise-canceling learning device 14 causes the perceived object to be stored in (a data table of) the information storage unit 144 as a determination object in association with the perceived object and the own vehicle position information, determines whether the perceived object perceived by the sensor recognition perceiving unit 141 and the determination object stored in (a data table of) the information storage unit 144 match based on the position of the own vehicle 1 estimated by the own vehicle position estimating unit 142, and determines whether the perceived object perceived by the sensor recognition perceiving unit 141 is correct. That is, a target object (a scratch, a repair mark, or the like on the road surface) erroneously perceived as a control target object such as an on-road fallen object is stored in (a data table of) the information storage unit 144 of the vehicle 1 together with its position information. More specifically, the own vehicle position information obtained by perceiving the erroneously perceived object, the distance to the object, and the like are stored in (a data table of) the information storage unit 144 and correct perceived information is stored in another area of the data table as determination information, and when the same place is traveled next time, traveling control can be performed using the stored information, so that the vehicle 1 can be controlled so as not to perform processing of useless deceleration and the like at the same place next time. In addition, in the present embodiment, the perceived information and the determination information are both stored. However, storing only the determination information makes it possible to achieve reduction in the memory capacity. <Another Example of Data Table (Part 1)> Next, another configuration of the data table stored in the information storage unit 144 will be described with reference to In Thus, for example, it is possible to achieve noise-canceling processing when erroneous perception does not occur at normal times but erroneous perception occurs due to the influence of sunlight at sunrise, sunset, or the like. (During the day or during the night, no erroneous perception occurs even at the same place) <Another Example of Data Table (Part 2)> Next, another configuration of the data table stored in the information storage unit 144 will be described with reference to In Thus, for example, it is possible to achieve noise-canceling processing when erroneous perception occurs due to the influence of sunlight during the daytime on a sunny day. (On cloudy and rainy days, no erroneous perception occurs even at the same time) It should be noted that in <Another Example of Data Table (Part 3)> Next, another configuration of the data table stored in the information storage unit 144 will be described with reference to In In step S112 in Thus, it is possible to achieve reduction in the memory capacity, and to perform processing such as not controlling the vehicle 1 where the erroneous detection flag is set. <Another Example of Data Table (Part 4)> Next, another configuration of the data table stored in the information storage unit 144 will be described with reference to <Another Example of Data Table (Part 5)> Next, another configuration of the data table stored in the information storage unit 144 will be described with reference to In contrast to Thus, it is possible to continue processing even on instantaneous non-perception. However, if the non-perception period continues for a certain predetermined period, it is determined that the object has really disappeared (equivalent to erroneous perception determination such as crossing) and corresponding control is performed. Next, another embodiment of the present invention will be described with reference to In the present second embodiment, the reference numeral 145 is a data transmitting/receiving unit provided in the noise-canceling learning device 14, the reference numeral 3 is a data transmitting/receiving antenna provided in the vehicle 1, the reference numeral 4 is a network provided outside the vehicle 1, the reference numeral 5 is a data center laid outside the vehicle 1, and the reference numeral 6 is another vehicle. In the present second embodiment, similarly to the first embodiment, the sensor a111, the sensor a212, and the sensor an13 recognize the surroundings of the vehicle (own vehicle) 1, and the recognition results are transmitted to the sensor recognition perceiving unit 141 of the noise-canceling learning device 14 at a predetermined period. The sensor recognition perceiving unit 141 perceives an object (pedestrian, bicycle, motorcycle, vehicle, or the like) as a target object existing around the own vehicle 1 and the distance to the object from the results recognized by the respective sensors a111, a212, and an13. On the other hand, the own vehicle position estimating unit 142 of the noise-canceling learning device 14 estimates an own vehicle position from the map information stored in the map distribution unit 15 and the position information on the vehicle 1 received at a predetermined period by the position information receiving device 16 through the GPS antenna 2. The detection determination processing unit 143 of the noise-canceling learning device 14 reads the data table stored in the information storage unit 144 of the noise-canceling learning device 14, and determines whether information matching the own vehicle position information estimated by the own vehicle position estimating unit 142 is stored. If there is no matching information (data), the detection determination processing unit 143 generates vehicle control information to be used for traveling control of the own vehicle 1 based on the object information perceived by the sensor recognition perceiving unit 141, and outputs the vehicle control information to the vehicle control device 17. Thereafter, the detection determination processing unit 143 stores the own vehicle position information estimated by the own vehicle position estimating unit 142, and the object (perceived object), the distance to the object, and the like, perceived by the sensor recognition perceiving unit 141 in (a data table of) the information storage unit 144. On the other hand, if there is matching information (data), the detection determination processing unit 143 compares the distance to the object, and the recognition pattern at that time, stored in the data table read from the information storage unit 144 with the distance to the object, and the recognition pattern of the object, perceived by the sensor recognition perceiving unit 141. If the comparison results do not match, based on the object information perceived by the sensor recognition perceiving unit 141, vehicle control information to be used for traveling control of the own vehicle 1 is generated and output to the vehicle control device 17. Thereafter, the detection determination processing unit 143 stores the own vehicle position information estimated by the own vehicle position estimating unit 142, and the object (perceived object), the distance to the object, and the like, perceived by the sensor recognition perceiving unit 141 in (a data table of) the information storage unit 144. In addition, if the comparison results match, based on the determination object stored in the data table, vehicle control information to be used for traveling control of the own vehicle 1 is generated, and the vehicle control information is output to the vehicle control device 17. Thereafter, the detection determination processing unit 143 stores the own vehicle position information estimated by the own vehicle position estimating unit 142, and the object (perceived object), the distance to the object, and the like, perceived by the sensor recognition perceiving unit 141 in (a data table of) the information storage unit 144. In addition to the above configuration, in the present second embodiment, the data transmitting/receiving unit 145 of the noise-canceling learning device 14 outputs/transmits the data table (the data table including the erroneous recognition information as described above), and the vehicle information on the vehicle 1, stored in the information storage unit 144 to the outside through a data transmitting/receiving antenna 3 at a predetermined period. The data center 5 holds the data table and the vehicle information transmitted from the (data transmitting/receiving unit 145 of) vehicle 1 via the network 4, and transmits the data table to another vehicle 6 having the same type of sensor configuration or the like as that of the vehicle 1 based on the vehicle information transmitted from the vehicle 1 at a predetermined period. It should be noted that also from the other vehicle 6 having the same type of sensor configuration or the like as that of the vehicle 1, a data table including information related to the data table is output/transmitted to the data center 5. (The data transmitting/receiving unit 145 of) the vehicle 1 receives the data table from the data center 5 through the data transmitting/receiving antenna 3 at a predetermined period. Based on these data tables received via the data center 5 and the network 4, the vehicle 1 or the other vehicle 6 cancels unnecessary perceived information based on the erroneous recognition information included in the data table even in places and areas where itself has never traveled, and it becomes possible to appropriately control the vehicle 1 or the other vehicle 6. Thus, in the present second embodiment, the same type of vehicles having the same type of sensor configuration and the like share information with each other, whereby it is possible to increase the number of places where vehicles can travel properly at first sight. It should be noted that in the present embodiment, a configuration in which the sensor configuration and the like transmit data to the other vehicle 6 of the same type as the vehicle 1 at a predetermined period has been described. The same effect can be obtained also by the methods of, based on position information, transmitting the data table to a vehicle that enters the area, transmitting the data table in response to a request from the other vehicle 6, and transmitting the data table and the vehicle information all at once and determining the availability by the receiving vehicle side. In addition, in the present embodiment, as the other vehicle 6, a vehicle having the sensor configuration (configuration of the sensor a111, the sensor a212, the sensor an13) of the same type as the vehicle 1 is illustrated, but a vehicle having the same type of vehicle color, paint type, size, or category (SU vehicle, compact vehicle, or the like) as the vehicle 1 may be used, for example. In addition, naturally, the number of other vehicles is not limited to one, and may be any number. It should be noted that the present invention is not limited to the embodiments described above, and includes various modified embodiments. For example, the above-described embodiments are described in detail for easy understanding of the present invention, and are not necessarily limited to those including all the configurations described. In addition, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. In addition, it is possible to add, delete, and replace another configuration with respect to a part of the configuration of each of the embodiments. In addition, each of the above-described configurations, functions, processing units, processing means, and the like may be partially or entirely achieved by hardware by, for example, designing with integrated circuits. In addition, each of the above-described configurations, functions, and the like may be achieved by software by interpreting and executing a program that achieves each function by the processor. Information such as a program, a table, and a file for achieving each function can be placed in a storage device such as a memory, a hard disk, or a solid state drive (SSD), or a recording medium such as an IC card, an SD card, or a DVD. In addition, the control lines and the information lines indicate those which are considered necessary for the description, and do not necessarily indicate all the control lines and the information lines on the product. Actually, it can be considered that almost all components are connected to each other. Provided is a noise-canceling learning device capable of performing control so as to prevent performing processing such as useless deceleration at the same place in self driving, for example, on a highway, and a vehicle including the noise-canceling learning device. The detection determination processing unit 143 of the noise-canceling learning device 14 causes the perceived object to be stored in (a data table of) the information storage unit 144 as a determination object in association with the perceived object and the own vehicle position information, determines whether the perceived object perceived by the sensor recognition perceiving unit 141 and the determination object stored in (a data table of) the information storage unit 144 match based on the position of the own vehicle 1 estimated by the own vehicle position estimating unit 142, and determines whether the perceived object perceived by the sensor recognition perceiving unit 141 is correct. 1. A noise-canceling learning device comprising:
an own vehicle position estimating unit configured to estimate a position of an own vehicle; a sensor recognition perceiving unit configured to perceive a target object existing around the own vehicle as a perceived target object; a detection determination processing unit configured to determine whether the perceived target object perceived by the sensor recognition perceiving unit is correct; and an information storage unit for storing a position of the own vehicle estimated by the own vehicle position estimating unit, wherein the detection determination processing unit causes the information storage unit to store the perceived target object as a determination target object in association with positions of the perceived target object and the own vehicle, determines whether the perceived target object perceived by the sensor recognition perceiving unit and the determination target object stored in the information storage unit match based on a position of the own vehicle estimated by the own vehicle position estimating unit, and determines whether the perceived target object perceived by the sensor recognition perceiving unit is correct. 2. The noise-canceling learning device according to wherein if a position of the own vehicle estimated by the own vehicle position estimating unit and a position of the own vehicle stored in the information storage unit do not match, if the perceived target object perceived by the sensor recognition perceiving unit and the perceived target object stored in the information storage unit do not match, or if the perceived target object perceived by the sensor recognition perceiving unit and the determination target object stored in the information storage unit in association with positions of the perceived target object and the own vehicle match, based on the perceived target object perceived by the sensor recognition perceiving unit, the detection determination processing unit generates vehicle control information used for traveling control of the own vehicle, and causes the information storage unit to store the perceived target object perceived by the sensor recognition perceiving unit as the determination target object, and wherein if a position of the own vehicle estimated by the own vehicle position estimating unit and a position of the own vehicle stored in the information storage unit match, if the perceived target object perceived by the sensor recognition perceiving unit and the perceived target object stored in the information storage unit match, and if the perceived target object perceived by the sensor recognition perceiving unit and the determination target object stored in the information storage unit in association with positions of the perceived target object and the own vehicle do not match, based on the determination target object stored in the information storage unit, the detection determination processing unit generates vehicle control information used for traveling control of the own vehicle. 3. The noise-canceling learning device according to 4. The noise-canceling learning device according to 5. The noise-canceling learning device according to 6. The noise-canceling learning device according to 7. The noise-canceling learning device according to 8. The noise-canceling learning device according to 9. A vehicle comprising:
a noise-canceling learning device according to a map distribution unit configured to distribute map information; a position information receiving device configured to receive position information; a sensor mounted on the own vehicle, the sensor configured to recognize surroundings of the own vehicle; and a vehicle control device configured to control a traveling state of the own vehicle based on vehicle control information generated by the noise-canceling learning device.TECHNICAL FIELD
BACKGROUND ART
CITATION LIST
Patent Literature
SUMMARY OF INVENTION
Technical Problem
Solution to Problem
Advantageous Effects of Invention
BRIEF DESCRIPTION OF DRAWINGS
DESCRIPTION OF EMBODIMENTS
First Embodiment
Second Embodiment
REFERENCE SIGNS LIST










