GENERATION OF ACYL AMINO ACIDS
This application is a continuation of U.S. application Ser. No. 15/978,634 filed May 14, 2018, now U.S. Pat. No. 10,640,799, which is a continuation of U.S. application Ser. No. 14/776,805, filed Sep. 15, 2015, now U.S. Pat. No. 9,970,035, which is a U.S. national stage application under 35 U.S.C. § 371 of International Patent Application No. PCT/US2014/029150, filed Mar. 14, 2014, which claims the benefit of U.S. Provisional Application No. 61/788,346, filed Mar. 15, 2013, the contents of each of which are hereby incorporated herein in their entirety. The present specification makes reference to a Sequence Listing (submitted electrionally as a .txt file named “SequenceListing.txt” on Mar. 18, 2020). The .txt file was generated on Mar. 18, 2020, and is 199 kilobytes in size. The entire contents of the Sequence Listing are hereby incorporated by reference. Acyl amino acids are commercially important compounds. Many have advantageous characteristics and are sold as surfactants, antibiotics, anti-insect agents and as a variety of other important agents. Traditionally, acyl amino acids have been manufactured chemically. Such chemical manufacturing methods are hampered by a variety of shortcomings including the ease of obtaining and storing the starting materials, the necessity of using harsh and sometimes dangerous chemical reagents in the manufacturing process, the difficulty and efficiency of the synthesis itself, the fiscal and environmental cost of disposing of chemical by-products, etc. Thus, new compositions and methods for the efficient and cost-effective synthesis of acyl amino acids and manufacture on a commercial scale would be beneficial. Recently, important technologies have been developed that permit production of acyl amino acids by engineered peptide synthetase polypeptides (See U.S. Pat. No. 7,981,685, issued Jul. 19, 2011 and incorporated herein by reference in its entirety). Improvements and/or supplements to such technologies would be desirable and beneficial. In certain embodiments, the present invention comprises compositions and methods useful in the generation of acyl amino acids. In certain embodiments, the present invention provides an engineered polypeptide comprising a peptide synthetase domain; in some such embodiments, the engineered polypeptide comprises only a single peptide synthetase domain. In some embodiments, the present invention provides an engineered peptide synthetase that is substantially free of a thioesterase domain, and/or a reductase domain. In certain embodiments, the present invention provides an acyl amino acid composition comprising a plurality of different forms of an acyl amino acid. In some such compositions, substantially all of the acyl amino acids within the composition contain the same amino acid moiety and differ with respect to acyl moiety. We also described populations where the fatty acid si for example 95% one length (C14, myristic). In some embodiments, the present invention provides a method of making an acyl amino acid composition by contacting an engineered peptide synthetase with an amino acid substrate and an acyl entity substrate for the engineered peptide synthetase, under conditions and for a time sufficient for an acyl amino acid composition to be made. In some embodiments, the method comprises providing a cell engineered to express the engineered peptide synthetase. In some embodiments, the engineered peptide synthetase does not include a thioesterase domain; in some embodiments, the engineered peptide synthestase does not include a reductase domain; in some embodiments, the engineered peptide synthetase includes neither a thioesterase domain not a reductase domain. In some embodiments, an amino acid substrate is or comprises an amino acid as set forth herein. In some embodiments, an acyl entity substrate is or comprises a fatty acid moiety. In some embodiments, an acyl entity substrate is or comprises a fatty acid. The present invention provides cells engineered to express at least one engineered peptide synthetase that synthesizes an acyl amino acid. In some embodiments, the present invention comprises an an acyl amino acid composition produced by an engineered peptide synthetase. The present invention provides methods of preparing a product comprising: providing or obtaining an acyl amino acid composition prepared in an engineered host (e.g., microbial) cell; optionally enriching the acyl amino acid composition for a particular acyl amino acid; and, in some embodiments, combining the enriched acyl amino acid composition with at least one other component to produce a product. In some embodiments, the invention provides a method comprising steps of: contacting an engineered peptide synthetase polypeptide that comprises a single peptide synthetase domain and lacks either of a thioesterase domain, and/or a reductase domain with (i) an amino acid substate of the peptide synthetase polypeptide; and (ii) an acyl moiety substrate of the peptide synthetase polypeptide, the contacting being performed under conditions and for a time sufficient that the engineered peptide synthetase polypeptide covalently links the acyl moiety from the acyl moiety substrate to the amino acid so that an acyl amino acid is generated. Acyl amino acid: The term “acyl amino acid” as used herein refers to an amino acid that is covalently linked to a fatty acid moiety. In some embodiments, the amino acid and fatty acid are covalently linked via an amide bond formed between a carboxylic acid group of a fatty acid and an amino group of an amino acid. In some embodiments, a fatty acid moiety or entity utilized or included in an acyl amino acid includes a β-hydroxyl group; in some embodiments, a fatty acid moiety or entity utilized or included in an acyl amino acid does not include a β-hydroxyl group. In some embodiments, a fatty acid moiety utilized or included in an acyl amino acid includes a β-amino group; in some embodiments, a fatty acid moiety or entity utilized or included in an acyl amino acid does not include a β-aminno group. In some embodiments, a fatty acid moiety utilized or included in an acyl amino acid is unmodified at the β-position. Amino acid: As used herein, the term “amino acid,” in its broadest sense, refers to any compound and/or substance that can be utilized in peptide synthesis (e.g., ribosomal or non-ribosomal synthesis). In some embodiments, an amino acid is any compound and/or substance that can be incorporated into a polypeptide chain, e.g., through formation of one or more peptide bonds. In some embodiments, an amino acid is any compound and/or substance that is a substrate for a peptide synthetase; in some such embodiments, an amino acid is any compound and/or substance onto which a peptide synthetase can link an acyl entity, for example through formation of an amide bond. In some embodiments, an amino acid has the general structure H2N—C(H)(R)—COOH. In some embodiments, an amino acid is a naturally-occurring amino acid. In some embodiments, an amino acid is a synthetic amino acid; in some embodiments, an amino acid is a D-amino acid; in some embodiments, an amino acid is an L-amino acid. “Standard amino acid” refers to any of the twenty standard L-amino acids commonly found in naturally occurring peptides. “Nonstandard amino acid” refers to any amino acid, other than the standard amino acids, regardless of whether it is prepared synthetically or obtained from a natural source. In some embodiments, an amino acid, including a carboxy- and/or amino-terminal amino acid in a polypeptide, can contain a structural modification as compared with the general structure above. For example, in some embodiments, an amino acid may be modified by methylation, amidation, acetylation, and/or substitution as compared with the general structure. In some embodiments, such modification may, for example, alter the circulating half life of a polypeptide containing the modified amino acid as compared with one containing an otherwise identical unmodified amino acid. In some embodiments, such modification does not significantly alter a relevant activity of a polypeptide containing the modified amino acid, as compared with one containing an otherwise identical unmodified amino acid. As will be clear from context, in some embodiments, the term “amino acid” is used to refer to a free amino acid; in some embodiments it is used to refer to an amino acid residue of a polypeptide. In some embodiments, a “naturally occurring” amino acid is one of the standard group of twenty amino acids that are the building blocks of polypeptides of most organisms, including alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine. In certain embodiments a “naturally occurring” amino acid may be one of those amino acids that are used less frequently and are typically not included in this standard group of twenty but are nevertheless still used by one or more organisms and incorporated into certain polypeptides. For example, the codons UAG and UGA normally encode stop codons in most organisms. However, in some organisms the codons UAG and UGA encode the amino acids selenocysteine and pyrrolysine. Thus, in certain embodiments, selenocysteine and pyrrolysine are naturally occurring amino acids. Associated with: Two events or entities are “associated” with one another, as that term is used herein, if the presence, level and/or form of one is correlated with that of the other. For example, a particular entity (e.g., polypeptide) is considered to be associated with a particular disease, disorder, or condition, if its presence, level and/or form correlates with incidence of and/or susceptibility of the disease, disorder, or condition (e.g., across a relevant population). In some embodiments, two or more entities are physically “associated” with one another if they interact, directly or indirectly, so that they are and remain in physical proximity with one another. In some embodiments, two or more entities that are physically associated with one another are covalently linked to one another; in some embodiments, two or more entities that are physically associated with one another are not covalently linked to one another but are non-covalently associated, for example by means of hydrogen bonds, van der Waals interaction, hydrophobic interactions, magnetism, and combinations thereof. Beta-hydroxy fatty acid linkage domain: The term “beta-hydroxy fatty acid linkage domain” as used herein refers to a polypeptide domain that covalently links a beta-hydroxy fatty acid to an amino acid to form an acyl amino acid. A variety of beta-hydroxy fatty acid linkage domains are known to those skilled in the art. However, different beta-hydroxy fatty acid linkage domains often exhibit specificity for one or more beta-hydroxy fatty acids. As one non-limiting example, the beta-hydroxy fatty acid linkage domain from surfactin synthetase is specific for the beta-hydroxy myristic acid, which contains 13 to 15 carbons in the fatty acid chain. Thus, the beta-hydroxy fatty acid linkage domain from surfactin synthetase can be used in accordance with the present invention to construct an engineered polypeptide useful in the generation of an acyl amino acid that comprises the fatty acid beta-hydroxy myristic acid. Beta-hydroxy fatty acid: The term “beta-hydroxy fatty acid” as used herein refers to a fatty acid chain comprising a hydroxy group at the beta position of the fatty acid chain. As is understood by those skilled in the art, the beta position corresponds to the third carbon of the fatty acid chain, the first carbon being the carbon of the carboxylate group. Thus, when used in reference to an acyl amino acid of the present invention, where the carboxylate moiety of the fatty acid has been covalently attached to the nitrogen of the amino acid, the beta position corresponds to the carbon two carbons removed from the carbon having the ester group. A beta-hydroxy fatty acid to be used in accordance with the present invention may contain any number of carbon atoms in the fatty acid chain. As non-limiting examples, a beta-hydroxy fatty acid may contain 3, 4, 5, 6, 7, 8,9, 10, 11, 12, 3, 14, 15, 15, 16, 17, 18, 19, 20 or more carbon atoms. Beta-hydroxy fatty acids to be used in accordance with the present invention may contain linear carbon chains, in which each carbon of the chain, with the exception of the terminal carbon atom and the carbon attached to the nitrogen of the amino acid, is directly covalently linked to two other carbon atoms. Additionally or alternatively, beta-hydroxy fatty acids to be used in accordance with the present invention may contain branched carbon chains, in which at least one carbon of the chain is directly covalently linked to three or more other carbon atoms. Beta-hydroxy fatty acids to be used in accordance with the present invention may contain one or more double bonds between adjacent carbon atoms. Alternatively, beta-hydroxy fatty acids to be used in accordance with the present invention may contain only single-bonds between adjacent carbon atoms. A non-limiting exemplary beta-hydroxy fatty acid that may be used in accordance with the present invention is or comprises a beta-hydroxy, acid which contains 13 to 15 carbons in the fatty acid chain; in some embodiments, an exemplary beta-hydroxy fatty acid that may be used in accordance with the present invention is or comprises myristic acid myrisitc is usually used to mean 14 carbons Those of ordinary skill in the art will be aware of various beta-hydroxy fatty acids that can be used in accordance with the present invention. Different beta-hydroxy fatty acid linkage domains that exhibit specificity for other beta-hydroxy fatty acids (e.g., naturally or non-naturally occurring beta-hydroxy fatty acids) may be used in accordance with the present invention to generate any acyl amino acid of the practitioner's choosing. Characteristic sequence element: As used herein, the phrase “characteristic sequence element” refers to a sequence element found in a polymer (e.g., in a polypeptide or nucleic acid) that represents a characteristic portion of that polymer. In some embodiments, presence of a characteristic sequence element correlates with presence or level of a particular activity or property of the polymer. In some embodiments, presence (or absence) of a characteristic sequence element defines a particular polymer as a member (or not a member) of a particular family or group of such polymers. A characteristic sequence element typically comprises at least two monomers (e.g., amino acids or nucleotides). In some embodiments, a characteristic sequence element includes at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, or more monomers (e.g., contiguously linked monomers). In some embodiments, a characteristic sequence element includes at least first and second stretches of continguous monomers spaced apart by one or more spacer regions whose length may or may not vary across polymers that share the sequence element. Combination therapy: As used herein, the term “combination therapy” refers to those situations in which a subject is simultaneously exposed to two or more therapeutic agents. In some embodiments, such agents are administered simultaneously; in some embodiments, such agents are administered sequentially; in some embodiments, such agents are administered in overlapping regimens. Comparable: The term “comparable”, as used herein, refers to two or more agents, entities, situations, sets of conditions, etc that may not be identical to one another but that are sufficiently similar to permit comparison therebetween so that conclusions may reasonably be drawn based on differences or similarities observed. Those of ordinary skill in the art will understand, in context, what degree of identity is required in any given circumstance for two or more such agents, entities, situations, sets of conditions, etc to be considered comparable. Corresponding to: As used herein, the term “corresponding to” is often used to designate the position/identity of a residue in a polymer, such as an amino acid residue in a polypeptide or a nucleotide residue in a nucleic acid. Those of ordinary skill will appreciate that, for purposes of simplicity, residues in such a polymer are often designated using a canonical numbering system based on a reference related polymer, so that a residue in a first polymer “corresponding to” a residue at position 190 in the reference polymer, for example, need not actually be the 190thresidue in the first polymer but rather corresponds to the residue found at the 190thposition in the reference polymer; those of ordinary skill in the art readily appreciate how to identify “corresponding” amino acids, including through use of one or more commercially-available algorithms specifically designed for polymer sequence comparisons. Domain, Polypeptide domain: The terms “domain” and “polypeptide domain” as used herein generally refer to polypeptide moieties that display a particular activity, even when isolated (e.g., cleaved) from other polypeptides or polypeptide domains. In some embodiments, a polypeptide domain folds into a particular discrete structure in three-dimensional space. In some embodiments, a polypeptide domain within a longer polypeptide is separated from one or more other polypeptide domains within the longer polypeptide by virture of a linker element, for example, that may comprise a substantially unstructured stretch of amino acids. In some embodiments, the terms refer to domains that naturally occur in longer polypeptides; in some embodiments, the term refers to engineered polypeptide moieties that correspond and/or show significant homology and/or identity to such naturally occurring polypeptide moieties, or to other reference polypeptide moieties (e.g., historical engineered moieties). In some embodiments, an engineered domain that corresponds and/or shows significant homology and/or identity to a naturally occurring or other reference moiety shares a characteristic structure (e.g., primary structure such as the amino acid sequence of the domain, and/or secondary, tertiary, quaternary, etc. structures); alternatively or additionally, such an engineered domain may exhibit one or more distinct functions that it shares with its reference polypeptide moieties. As will be understood by those skilled in the art, in many cases polypeptides are modular and are comprised of one or more polypeptide domains; in some such embodiments, each domain exhibits one or more distinct functions that contribute to the overall function of the polypeptide. In some embodiments, the structure and/or function of many such domains are known to those skilled in the art. Engineered: The term “engineered” as used herein refers to a non-naturally occurring moiety that has been created by the hand of man. For example, in reference to a polypeptide, an “engineered polypeptide” refers to a polypeptide that has been designed and/or produced by the hand of man. In some embodiments, an engineered polypeptide has an amino acid sequence that includes one or more sequence elements that do(es) not occur in nature. In some embodiments, an engineered polypeptide has an amino acid sequence that includes one or more sequence elements that does occur in nature, but that is present in the engineered polypeptide in a different sequence context (e.g., separated from at least one sequence to which it is linked in nature and/or linked with at least one sequence element to which it is not linked in nature) from that in which it occurs in nature. In some embodiments, an engineered polypeptide is one in which naturally-occurring sequence element(s) is/are separated from at least one sequence with which they/it is associated (e.g., linked) in nature and/or is otherwise manipulated to comprise a polypeptide that does not exist in nature. In various embodiments, an engineered polypeptide comprises two or more covalently linked polypeptide domains. Typically such domains will be linked via peptide bonds, although the present invention is not limited to engineered polypeptides comprising polypeptide domains linked via peptide bonds, and encompasses other covalent linkages known to those skilled in the art. One or more covalently linked polypeptide domains of engineered polypeptides may be naturally occurring. Thus, in certain embodiments, engineered polypeptides of the present invention comprise two or more covalently linked domains, at least one of which is naturally occurring. In certain embodiments, two or more naturally occurring polypeptide domains are covalently linked to generate an engineered polypeptide. For example, naturally occurring polypeptide domains from two or more different polypeptides may be covalently linked to generate an engineered polypeptide. In certain embodiments, naturally occurring polypeptide domains of an engineered polypeptide are covalently linked in nature, but are covalently linked in the engineered polypeptide in a way that is different from the way the domains are linked nature. For example, two polypeptide domains that naturally occur in the same polypeptide but which are separated by one or more intervening amino acid residues may be directly covalently linked (e.g., by removing the intervening amino acid residues) to generate an engineered polypeptide of the present invention. Additionally or alternatively, two polypeptide domains that naturally occur in the same polypeptide which are directly covalently linked together (e.g., not separated by one or more intervening amino acid residues) may be indirectly covalently linked (e.g., by inserting one or more intervening amino acid residues) to generate an engineered polypeptide of the present invention. In certain embodiments, one or more covalently linked polypeptide domains of an engineered polypeptide may not exist naturally. For example, such polypeptide domains may be engineered themselves. Fatty acid linkage domain: The term “fatty acid linkage domain” as used herein refers to a polypeptide domain that covalently links a fatty acid to an amino acid to form an acyl amino acid. In some embodiments, a fatty acid linkage domain is a condensation domain; in some embodiments such a fatty acid linkage domain is part of a single polypeptide or a polypeptide complex with at least or only an adenylkation domain, a thiolation domain, or both. A variety of fatty acid linkage domains are known in the art, such as for example, fatty acid linkage domains present in various peptide synthetase complexes that produce lipopeptides. In certain embodiments, a fatty acid linkage domain links a beta-hydroxy fatty acid to an amino acid; in some embodiments, a fatty acid linkage domain links a beta-amino fatty acid to an amino acid; in some embodiments, a fatty acid linkage domain links a fatty acid that is unmodified at the beta position to an amino acid. In some embodiments, a fatty acid linkage domain catalyzes condensation of a fatty acid and an amino acid so that an amide both is formed, for example between a carboxylic acid moiety on a fatty acid and an amino moiety on an amino acid. Homology: As used herein, the term “homology” refers to the overall relatedness between polymeric molecules, e.g., between nucleic acid molecules (e.g., DNA molecules and/or RNA molecules) and/or between polypeptide molecules. In some embodiments, polymeric molecules are considered to be “homologous” to one another if their sequences are at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identical. In some embodiments, polymeric molecules are considered to be “homologous” to one another if their sequences are at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% similar (e.g., containing residues with related chemical properties at corresponding positions). For example, as is well known by those of ordinary skill in the art, certain amino acids are typically classified as similar to one another as “hydrophobic” or “hydrophilic”amino acids, and/or as having “polar” or “non-polar” side chains. Substitution of one amino acid for another of the same type may often be considered a “homologous” substitution. Typical amino acid categorizations are summarized below: Identity: As used herein, the term “identity” refers to the overall relatedness between polymeric molecules, e.g., between nucleic acid molecules (e.g., DNA molecules and/or RNA molecules) and/or between polypeptide molecules. In some embodiments, polymeric molecules are considered to be “substantially identical” to one another if their sequences are at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identical. As will be understood by those skilled in the art, a variety of algorithms are available that permit comparison of sequences in order to determine their degree of homology, including by permitting gaps of designated length in one sequence relative to another when considering which residues “correspond” to one another in different sequences. Calculation of the percent identity between two nucleic acid sequences, for example, can be performed by aligning the two sequences for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second nucleic acid sequences for optimal alignment and non-corresponding sequences can be disregarded for comparison purposes). In certain embodiments, the length of a sequence aligned for comparison purposes is at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or substantially 100% of the length of the reference sequence. The nucleotides at corresponding nucleotide positions are then compared. When a position in the first sequence is occupied by the same nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which needs to be introduced for optimal alignment of the two sequences. Representative algorithms and computer programs useful in determinng the percent identity between two nucleotide sequences include, for example, the algorithm of Meyers and Miller (CABIOS, 1989, 4: 11-17), which has been incorporated into the ALIGN program (version 2.0) using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. The percent identity between two nucleotide sequences can, alternatively, be determined for example using the GAP program in the GCG software package using an NWSgapdna.CMP matrix. Isolated: As used herein, the term “isolated” refers to a substance and/or entity that has been (1) separated from at least some of the components with which it was associated when initially produced (whether in nature and/or in an experimental setting), and/or (2) designed, produced, prepared, and/or manufactured by the hand of man. Isolated substances and/or entities may be separated from about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or more than about 99% of the other components with which they were initially associated. In some embodiments, isolated agents are about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or more than about 99% pure. As used herein, a substance is “pure” if it is substantially free of other components. In some embodiments, as will be understood by those skilled in the art, a substance may still be considered “isolated” or even “pure”, after having been combined with certain other components such as, for example, one or more carriers or excipients (e.g., buffer, solvent, water, etc.); in such embodiments, percent isolation or purity of the substance is calculated without including such carriers or excipients. In some embodiments, isolation involves or requires disruption of covalent bonds (e.g., to isolate a polypeptide domain from a longer polypeptide and/or to isolate a nucleotide sequence element from a longer oligonucleotide or nucleic acid). Naturally occurring: The term “naturally occurring”, as used herein, refers to an agent or entity that is known to exist in nature. Nucleic acid: As used herein, the term “nucleic acid,” in its broadest sense, refers to any compound and/or substance that is or can be incorporated into an oligonucleotide chain. In some embodiments, a nucleic acid is a compound and/or substance that is or can be incorporated into an oligonucleotide chain via a phosphodiester linkage. As will be clear from context, in some embodiments, “nucleic acid” refers to individual nucleic acid residues (e.g., nucleotides and/or nucleosides); in some embodiments, “nucleic acid” refers to an oligonucleotide chain comprising individual nucleic acid residues. In some embodiments, a “nucleic acid” is or comprises RNA; in some embodiments, a “nucleic acid” is or comprises DNA. In some embodiments, a nucleic acid is, comprises, or consists of one or more natural nucleic acid residues. In some embodiments, a nucleic acid is, comprises, or consists of one or more nucleic acid analogs. In some embodiments, a nuclic acid analog differs from a nucleic acid in that it does not utilize a phosphodiester backbone. For example, in some embodiments, a nucleic acid is, comprises, or consists of one or more “peptide nucleic acids”, which are known in the art and have peptide bonds instead of phosphodiester bonds in the backbone, are considered within the scope of the present invention. Alternatively or additionally, in some embodiments, a nucleic acid has one or more phosphorothioate and/or 5′-N-phosphoramidite linkages rather than phosphodiester bonds. In some embodiments, a nucleic acid is, comprises, or consists of one or more natural nucleosides (e.g., adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosine, and deoxycytidine). In some embodiments, a nucleic acid is, comprises, or consists of one or more nucleoside analogs (e.g., 2-aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, 5-methylcytidine, C-5 propynyl-cytidine, C-5 propynyl-uridine, 2-aminoadenosine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-propynyl-uridine, C5-propynyl-cytidine, C5-methylcytidine, 2-aminoadenosine, 7-deazaadenosine, 7-deazaguanosine, 8-oxoadenosine, 8-oxoguanosine, O(6)-methylguanine, 2-thiocytidine, methylated bases, intercalated bases, and combinations thereof). In some embodiments, a nucleic acid comprises one or more modified sugars (e.g., 2′-fluororibose, ribose, 2′-deoxyribose, arabinose, and hexose) as compared with those in natural nucleic acids. In some embodiments, a nucleic acid has a nucleotide sequence that encodes a functional gene product such as an RNA or protein. In some embodiments, a nucleic acid includes one or more introns. In some embodiments, nucleic acids are prepared by one or more of isolation from a natural source, enzymatic synthesis by polymerization based on a complementary template (in vivo or in vitro), reproduction in a recombinant cell or system, and chemical synthesis. In some embodiments, a nucleic acid is at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 20, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000 or more residues long. Peptide synthetase complex: The term “peptide synthetase complex” as used herein refers to an enzyme that catalyzes the non-ribosomal production of peptides. As will be appreciated by those of ordinary skill in the art, peptide synthetase complexes are modular, and are comprised of individual peptide synthetase modules that perform different steps in the synthesis of the ultimate peptide; typically, each module performs one step (e.g., adds a single amino acid). A peptide synthetase complex may comprise a single enzymatic subunit (e.g., a single polypeptide), or may comprise two or more enzymatic subunits (e.g., two or more polypeptides). A peptide synthetase complex typically comprises at least one peptide synthetase domain, and may further comprise one or more additional domains such as for example, a fatty acid linkage domain, a thioesterase domain, a reductase domain, etc. Peptide synthetase domains of a peptide synthetase complex may comprise two or more enzymatic subunits, with two or more peptide synthetase domains present in a given enzymatic subunit. For example the surfactin peptide synthetase complex (also referred to herein simply as “surfactin synthetase complex”) comprises three distinct polypeptide enzymatic subunits: the first two subunits comprise three peptide synthetase domains, while the third subunit comprises a single peptide synthetase domain. Peptide synthetase domain: The term “peptide synthetase domain” as used herein refers to a polypeptide domain that minimally comprises three domains: an adenylation (A) domain, responsible for selectively recognizing and activating a specific amino acid, a thiolation (T) domain, which tethers the activated amino acid to a cofactor via thioester linkage, and a condensation (C) domain, which links amino acids joined to successive units of the peptide synthetase by the formation of amide bonds. A peptide synthetase domain typically recognizes and activates a single, specific amino acid, and in the situation where the peptide synthetase domain is not the first domain in the pathway, links the specific amino acid to the growing peptide chain. Polypeptide: The term “polypeptide” as used herein refers to a series of amino acids joined together in peptide linkages. In some embodiments, a “polypeptide” has a structure as achieve through synthesis by ribosomal machinery in naturally occurring organisms. In some embodiments a “polpeptide” has a structure as achieved through chemical synthesis (e.g., in vitro). In some embodiments, a “polypeptide” has a structure as achieved through joining of a series of amino acids joined together by non-ribosomal machinery, such as by way of non-limiting example, polypeptides synthesized by peptide synthetases. Such non-ribosomally produced polypeptides exhibit a greater diversity in covalent linkages than polypeptides synthesized by ribosomes (although those skilled in the art will understand that the amino acids of ribosomally-produced polypeptides may also be linked by covalent bonds that are not peptide bonds, such as the linkage of cystines via di-sulfide bonds). In some embodiments, the term is used to refer to specific functional classes of polypeptides, such as, for example, autoantigen polypeptides, nicotinic acetylcholine receptor polypeptides, alloantigen polypeptides, etc. For each such class, the present specification provides several examples of amino acid sequences of known exemplary polypeptides within the class; in some embodiments, such known polypeptides are reference polypeptides for the class. In such embodiments, the term “polypeptide” refers to any member of the class that shows significant sequence homology or identity with a relevant reference polypeptide. In many embodiments, such member also shares significant activity with the reference polypeptide. For example, in some embodiments, a member polypeptide shows an overall degree of sequence homology or identity with a reference polypeptide that is at least about 30-40%, and is often greater than about 50%, 60%, 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more and/or includes at least one region (i.e., a conserved region, often including a characteristic sequence element) that shows very high sequence identity, often greater than 90% or even 95%, 96%, 97%, 98%, or 99%. Such a conserved region usually encompasses at least 3-4 and often up to 20 or more amino acids; in some embodiments, a conserved region encompasses at least one stretch of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more contiguous amino acids. Polypeptides can be two or more amino acids in length, although most polypeptides produced by ribosomes and peptide synthetases are longer than two amino acids. For example, in some embodiments, polypeptides may be 2, 3, 4, 5, 6, 7, 8,9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10,000 or more amino acids in length. Reductase Domain: The term “reductase domain” as used herein refers to a polypeptide domain that catalyzes release of an acyl amino acid produced by a peptide synthetase complex from the peptide synthetase complex. In certain embodiments, a reductase domain is covalently linked to a peptide synthetase domain and a fatty acid linkage domain such as a beta-hydroxy fatty acid linkage domain to generate an engineered polypeptide useful in the synthesis of an acyl amino acid. A variety of reductase domains are found in nature in nonribosomal peptide synthetase complexes from a variety of species. A non-limiting example of a reductase domain that may be used in accordance with the present invention includes the reductase domain from linear gramicidin (ATCC8185). However, any reductase domain that releases an acyl amino acid produced by a peptide synthetase complex from the peptide synthetase complex may be used in accordance with the present invention. In some embodiments, reductase domains are characterized by the presence of the consensus sequence:-x(9)-{P}-x(2)-Y-[PSTAGNCV]-[STAGNQCIVM]-[STAGC]-K-{PC}-[SAGFYR]-[LIVMSTAGD]-x-{K}-[LIVMFYW]-{D}-x-{YR}-[LIVMFYWGAPTHQ]-[GSACQRHM] (SEQ ID NO: 1), where square brackets (“[]”) indicate amino acids that are typically present at that position, squiggly brackets (“{}”) indicate amino acids that amino acids that are typically not present at that position, and “x” denotes any amino acid or a gap. X(9) for example denotes any amino acids or gaps for nine consecutive positions. Those skilled in the art will be aware of methods to determine whether a give polypeptide domain is a reductase domain. Small molecule: As used herein, the term “small molecule” means a low molecular weight organic compound that may serve as an enzyme substrate or regulator of biological processes. In general, a “small molecule” is a molecule that is less than about 5 kilodaltons (kD) in size. In some embodiments, provided nanoparticles further include one or more small molecules. In some embodiments, the small molecule is less than about 4 kD, 3 kD, about 2 kD, or about 1 kD. In some embodiments, the small molecule is less than about 800 daltons (D), about 600 D, about 500 D, about 400 D, about 300 D, about 200 D, or about 100 D. In some embodiments, a small molecule is less than about 2000 g/mol, less than about 1500 g/mol, less than about 1000 g/mol, less than about 800 g/mol, or less than about 500 g/mol. In some embodiments, one or more small molecules are encapsulated within the nanoparticle. In some embodiments, small molecules are non-polymeric. In some embodiments, in accordance with the present invention, small molecules are not proteins, polypeptides, oligopeptides, peptides, polynucleotides, oligonucleotides, polysaccharides, glycoproteins, proteoglycans, etc. In some embodiments, a small molecule is a therapeutic. In some embodiments, a small molecule is an adjuvant. In some embodiments, a small molecule is a drug. Surfactin: Surfactin is cyclic lipopeptide that is naturally produced by certain bacteria, including the Gram-positive endospore-forming bacteria Surfactin is a lipopeptide synthesized by the surfactin synthetase complex. Surfactin comprises seven amino acids, which are initially joined by peptide bonds, as well as a beta-hydroxy fatty acid covalently linked to the first amino acid, glutamate. However, upon addition the final amino acid (leucine), the polypeptide is released and the thioesterase domain of the SRFC protein catalyzes the release of the product via a nucleophilic attack of the beta-hydroxy of the fatty acid on the carbonyl of the C-terminal Leu of the peptide, cyclizing the molecule via formation of an ester, resulting in the C-terminus carboxyl group of leucine attached via a lactone bond to the b-hydroxyl group of the fatty acid. Thioesterase domain: The term “thioesterase domain” as used herein refers to a polypeptide domain that catalyzes release of an acyl amino acid produced by a peptide synthetase complex from the peptide synthetase complex. A variety of thioesterase domains are found in nature in nonribosomal peptide synthetase complexes from a variety of species. A non-limiting example of a thioesterase domain that may be used in accordance with the present invention includes the thioesterase domain from the The present invention provides compositions and methods for the generation of acyl amino acids. In certain embodiments, compositions of the present invention comprise engineered polypeptides that are useful in the production of acyl amino acids. In certain embodiments, engineered polypeptides of the present invention comprise a peptide synthetase domain. In one aspect, the present invention encompasses the recognition that a single peptide synthetase domain, not associated (e.g., not associated covalently and/or not otherwise associated) with, for example, another domain typically found in a peptide synthetase complex (e.g., a fatty acid linkage domain, a thioesterase domain, a reductase domain, etc. and/or a combination thereof), can be sufficient to produce an acyl amino acid as described herein. In accordance with many embodiments of the present invention, peptide synthetase domains useful for the production of acyl amino acids as described herein, correspond and/or show significant homology and/or identity to a first peptide synthetase domain found in a naturally-occurring peptide synthetase complex. That is, as is known in the art, some peptide synthetase domains (i.e., some polypeptides comprising adenylation (A), thiolation (T), and condensation (C) domains) catalyze condensation of a fatty acid with an amino acid, and some catalyze condensation of two amino acids with one another. In accordance with the some embodiments of the present invention, peptide synthetase domains useful for the production of acyl amino acids as described herein are those that catalyze condensation of an amino acid with a fatty acid; such peptide synthetase domains are typically utilized herein in a form (e.g., as part of a polypeptide) that is separated from and/or does not include another peptide synthetase domain. Many naturally-occurring peptide synthetase domains are found in nature within peptide synthetase complexes that synthesize lipopeptides. Such peptide synthetase complexes are multienzymatic complexes found in both prokaryotes and eukaryotes, and comprising one or more enzymatic subunits that catalyze the non-ribosomal production of a variety of peptides (see, for example, Kleinkauf et al., Annu. Rev. Microbiol. 41:259-289, 1987; see also U.S. Pat. No. 5,652,116 and U.S. Pat. No. 5,795,738). Non-ribosomal synthesis is also known as thiotemplate synthesis (see e.g., Kleinkauf et al.). Peptide synthetase complexes typically include one or more peptide synthetase domains that recognize specific amino acids and are responsible for catalyzing addition of the amino acid to the polypeptide chain. The catalytic steps in the addition of amino acids typically include: recognition of an amino acid by the peptide synthetase domain, activation of the amino acid (formation of an amino-acyladenylate), binding of the activated amino acid to the enzyme via a thioester bond between the carboxylic group of the amino acid and an SH group of an enzymatic co-factor, which cofactor is itself bound to the enzyme inside each peptide synthetase domain, and formation of the peptide bonds among the amino acids. A peptide synthetase domain comprises subdomains that carry out specific roles in these steps to form the peptide product. One subdomain, the adenylation (A) domain, is responsible for selectively recognizing and activating the amino acid that is to be incorporated by a particular unit of the peptide synthetase. The activated amino acid is joined to the peptide synthetase through the enzymatic action of another subdomain, the thiolation (T) domain, that is generally located adjacent to the A domain. Amino acids joined to successive units of the peptide synthetase are subsequently linked together by the formation of amide bonds catalyzed by another subdomain, the condensation (C) domain. Peptide synthetase domains that catalyze the addition of D-amino acids often also have the ability to catalyze the recemization of L-amino acids to D-amino acids. Peptide synthetase complexes also typically include a conserved thioesterase domain that terminates the growing amino acid chain and releases the product. The genes that encode peptide synthetase complexes have a modular structure that parallels the functional domain structure of the complexes (see, for example, Cosmina et al., Mol. Microbiol. 8:821, 1993; Kratzxchmar et al., J. Bacteriol. 171:5422, 1989; Weckermann et al., Nuc. Acids res. 16:11841, 1988; Smith et al., EMBO J. 9:741, 1990; Smith et al., EMBO J. 9:2743, 1990; MacCabe et al., J. Biol. Chem. 266:12646, 1991; Coque et al., Mol. Microbiol. 5:1125, 1991; Diez et al., J. Biol. Chem. 265:16358, 1990). Hundreds of peptides are known to be produced by peptide synthetase complexes. Such nonribosomally-produced peptides often have non-linear structures, including cyclic structures exemplified by the peptides surfactin, cyclosporin, tyrocidin, and mycobacillin, or branched cyclic structures exemplified by the peptides polymyxin and bacitracin. Moreover, such nonribosomally-produced peptides may contain amino acids not usually present in ribosomally-produced polypeptides such as for example norleucine, beta-alanine and/or ornithine, as well as D-amino acids. Additionally or alternatively, such nonribosomally-produced peptides may comprise one or more non-peptide moieties that are covalently linked to the peptide. As one non-limiting example, surfactin is a cyclic lipopeptide that comprises a beta-hydroxy fatty acid covalently linked to the first glutamate of the lipopeptide. Other non-peptide moieties that are covalently linked to peptides produced by peptide synthetase complexes are known to those skilled in the art, including for example sugars, chlorine or other halogen groups, N-methyl and N-formyl groups, glycosyl groups, acetyl groups, etc. Typically, each amino acid of the non ribosomally-produced peptide is specified by a distinct peptide synthetase domain. For example, the surfactin synthetase complex which catalyzes the polymerization of the lipopeptide surfactin consists of three enzymatic subunits. The first two subunits each comprise three peptide synthetase domains, whereas the third has only one. These seven peptide synthetase domains are responsible for the recognition, activation, binding and polymerization of L-Glu, L-Leu, D-Leu, L-Val, L-Asp, D-Leu and L-Leu, the amino acids present in surfactin. A similar organization in discrete, repeated peptide synthetase domains occurs in various peptide synthetase genes in a variety of species, including bacteria and fungi, for example srfA (Cosmina et al., Mol. Microbiol. 8, 821-831, 1993), grsA and grsB (Kratzxchmar et al., J. Bacterial. 171, 5422-5429, 1989) tycA and tycB (Weckermann et al., Nucl. Acid. Res. 16, 11841-11843, 1988) and ACV from various fungal species (Smith et al., EMBO J. 9, 741-747, 1990; Smith et al., EMBO J. 9, 2743-2750, 1990; MacCabe et al., J. Biol. Chem. 266, 12646-12654, 1991; Coque et al., Mol. Microbiol. 5, 1125-1133, 1991; Diez et al., J. Biol. Chem. 265, 16358-16365, 1990). The peptide synthetase domains of even distant species contain sequence regions with high homology, some of which are conserved and specific for all the peptide synthetases. Additionally, certain sequence regions within peptide synthetase domains are even more highly conserved among peptide synthetase domains which recognize the same amino acid (Cosmina et al., Mol. Microbiol. 8, 821-831, 1992). Exemplary lipopeptides synthesized by peptide synthetase complexes in nature are listed below in Table 1 (See also the NORINE database, which provides access to information on peptides and lipopeptides that are known to be, or in some cases believed to be, produced by peptide synthetase enzymes; still further, see Segolene et al. (Ref 4)). The present invention appreciates that, typically, in peptide synthetase complexes that synthesize lipopeptides, the first active peptide synthetase domain is the one that links a fatty acid to an amino acid; subsequent peptide synthetase domains typically add additional amino acids. In accordance with certain embodiments of the present invention, an acyl amino acid is prepared through use of an engineered peptide synthetase that comprises a first peptide synthetase domain found in a peptide synthetase complex that synthesizes a lipopeptide, and is engineered in that it is separated from at least some other domains found in the peptide synthetase complex. Fatty acids utilized by naturally-occurring peptide synthetases can be β-hydroxy fatty acids (e.g., as found in surfactin and other β-hydroxy lipo-peptides described in Table 1). In other cases, utilized fatty acids are a β-amino fatty acid (for example, Iturin; see Table 1). In certain instances, utilized fatty acids are unmodified at the β-position (e.g., as in daptomycin and certain other lipo-peptides described in Table 1). As described herein, the present invention encompasses the appreciation that, for all three types of fatty acids utilized by peptide synthetases that synthesize lipopeptides, the the first protein domain of the first module of the relevant peptide synthetase complex typically plays a critical role in lipo-initiation. However, the precise mechanism of lipo-initiation differs for each of the three types of fatty acid. In general terms, the first modules of a peptide synthetase enzyme, which naturally creates a lipo-peptide, has a particular organization. Each module begins with a condensation domain that is required for the lipo-initiation reaction. The condensation domain is followed by an adenylation domain, which is followed by a thiolation domain (also known as a peptidyl carrier protein (PCP) domain). The adenylation domain selects the 1st amino acid that will be incorporated into the lipo-peptide and creates an amino acid adenylate. Subsequent to adenylation, the amino acid becomes tethered to the enzyme via linkage to a phosphopantethione moiety, which is attached to the thiolation domain. The chemical reaction that results in tethering of the amino acid releases AMP as a byproduct. For synthetases that attach a β-hydroxy fatty acid to the bound amino acid, the condensation domain of the first module utilizes β-hydroxy fatty acid CoA as a substrate, and transfers the fatty acid to the N-terminus of the amino acid substrate, which is tethered to the thiolation domain. No enzyme activity, other than the activity of the C-domain itself, is required for this particular reaction, although it has been reported that the srfD protein stimulates the lipo-initiation reaction (see Steller et al., which was cited in 7,981,685) (Ref 5). For synthetases that attach a β-amino group to the fatty acid, the condensation domain has several sub-domains, each of which has a particular function (see For synthetases that attach fatty acids that are unmodified at the β-position, the condensation domain of the 1st module catalyzes the transfer of the fatty acid to the N-terminus of the amino acid substrate, which is tethered to the thiolation domain. Considering the daptomycin synthetase as an example, two additional proteins are involved: an acyl-CoA ligase (DptE) (sequence listing GenBank: AAX31555.1) and an acyl carrier protein (DptF) (sequence listing GenBank: AAX31556.1). DptE activates the fatty acid substrate by linking it to CoA, and the activated fatty acid is then transferred to DptF, and subsequently transferred to the enzyme-bound amino acid substrate (see Wittmann et al.) (Ref 9). Note that studies conducted in vitro have confirmed that DptE transfers the fatty acid to DptF, but experiments aimed at demonstrating the involvement of the condensation domain in subsequent transfer of the fatty acid from DptF to the amino acid substrate appears not to have been reported in the literature. Phylogenetic analysis of peptide synthetase condensation domains is described in Roongsawang et al. (Ref 3), and in Rausch et al. (Ref 3). Those of ordinary skill in the art, guided by the present disclosure, and optionally in consultation with such references, can readily identify, select, and/or engineer appropriate peptide synthetase condensation domains for use in designing, constructing, producing, and/or otherwise providing engineered peptide synthetases for production of acyl amino acids in accordance with the present invention. Non-limiting examples of peptide synthetase complexes that may contain peptide synthetase domains useful in the identification, selection, design, and/or production of engineered peptide synthetases as described herein include, for example, surfactin synthetase, fengycin synthetase, arthrofactin synthetase, lichenysin synthetase, syringomycin synthetase, syringopeptin synthetase, saframycin synthetase, gramicidin synthetase, cyclosporin synthetase, tyrocidin synthetase, mycobacillin synthetase, polymyxin synthetase, bacitracin synthetase, and combinations thereof. Thus, the present invention provides engineered peptide synthetases, which in some embodiments comprise or consist of isolated peptide synthetase domains from reference peptide synthetase complexes that synthesize lipopeptides. In some embodiments, such reference peptide synthetase complexes are known peptide synthetase complexes. In some embodiments, such reference peptide synthetase complexes are naturally occurring peptide synthetase complexes. In some embodiments, provided engineered peptide synthetases comprise or consist of a single peptide synthetase domain. In some embodiments, provided engineered peptide synthetases comprises or consist of a first peptide synthetase domain from a peptide synthetase complex that synthesizes a lipopeptide. In some embodiments, an engineered peptide synthetase, peptide synthetase domain, or component thereof (e.g., adenylation (A) domain, thiolation (T) domain, and/or condensation (C) domain) may contain one or more sequence modifications as compared with a reference peptide synthetase, domain, or component. Typically, however, an engineered peptide synthetase, peptide synthetase domain, or component thereof shows a high overall degree of sequence identitiy and/or homology with its reference peptide synthetase, domain, or component. In some embodiments, an engineered peptide synthetase, peptide synthetase domain, or component thereof contains insertions, deletions, substitutions or inversions of 1, 2, 3, 4, 5, 6,7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or more amino acids as compared to its relevant reference. In certain embodiments, such amino acid substitutions result in an engineered polypeptide that comprises an amino acid whose side chain contains a structurally similar side chain as compared to the corresponding amino acid in the relevant reference. For example, amino acids with aliphatic side chains, including glycine, alanine, valine, leucine, and isoleucine, may be substituted for each other; amino acids having aliphatic-hydroxyl side chains, including serine and threonine, may be substituted for each other; amino acids having amide-containing side chains, including asparagine and glutamine, may be substituted for each other; amino acids having aromatic side chains, including phenylalanine, tyrosine, and tryptophan, may be substituted for each other; amino acids having basic side chains, including lysine, arginine, and histidine, may be substituted for each other; and amino acids having sulfur-containing side chains, including cysteine and methionine, may be substituted for each other. In certain embodiments, amino acid substitutions result in an engineered polypeptide that comprises an amino acid whose side chain exhibits similar chemical properties to a corresponding amino acid present in a relevant reference. For example, in certain embodiments, amino acids that comprise hydrophobic side chains may be substituted for each other. In some embodiments, amino acids may be substituted for each other if their side chains are of similar molecular weight or bulk. For example, an amino acid in an engineered domain may be substituted for an amino acid present in the relevant reference if its side chains exhibits a minimum/maximum molecular weight or takes up a minimum/maximum amount of space. In certain embodiments, an engineered polypeptide shows at least about 50, 55, 60, 65, 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% homology or identity with a relevant reference (e.g., over a portion that spans at least 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 or more amino acids). In certain embodiments, engineered polypeptides of the present invention comprise two or more polypeptide domains that occur in one or more naturally occurring or other known reference polypeptides, but that are i) separated from one or more sequence elements with which they are associated in the reference polypeptide; ii) associated with one or more sequence elements with which they are not associated in the reference polypeptide(s); and/or iii) associated in a different way (e.g., in a different order or via a different linkage) with one or more sequence elements with which they are associated in the reference polypeptide. As a non-limiting example, two naturally occurring polypeptide domains that are directly covalently linked in nature may be separated in an engineered polypeptide by one or more intervening amino acid residues. Additionally or alternatively, two naturally occurring polypeptide domains that are indirectly covalently linked in nature may be directly covalently linked in an engineered polypeptide, e.g. by removing one or more intervening amino acid residues. In certain embodiments, two naturally occurring peptide domains that are from different peptide synthetases are covalently joined to generate an engineered polypeptide of the present invention. In some embodiments, engineered peptide synthetases provided by and/or for use in accordance with the present invention do not include thioesterase and/or reductase domains. Such domains are known to function in the release of peptides and lipopeptides from the nonribosomal peptide synthetase complexes that produce them. In one aspect, the present invention provides the surprising finding that, notwithstanding their central role in release of lipopeptides from peptide synthetase complexes, such domains are often not required for release of acyl amino acids from engineered peptide synthetases as described herein. This thioesterase and/or reductase domains may optionally be included in some embodiments of the present invention, but are specifically excluded in some embodiments. In certain embodiments, compositions and methods of the present invention are useful in large-scale production of acyl amino acids. In certain embodiments, acyl amino acids are produced in commercially viable quantities using compositions and methods of the present invention. For example, engineered polypeptides of the present invention may be used to produce acyl amino acids to a level of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000 mg/L or higher. As will be appreciated by those skilled in the art, biological production of acyl amino acids using engineered polypeptides of the present invention achieves certain advantages over other methods of producing acyl amino acids. For example, as compared to chemical production methods, production of acyl amino acids using compositions and methods of the present invention utilizes more readily available and starting materials that are easier to store, reduces the necessity of using harsh and sometimes dangerous chemical reagents in the manufacturing process, reduces the difficulty and efficiency of the synthesis itself by utilizing host cells as bioreactors, and reduces the fiscal and environmental cost of disposing of chemical by-products. Other advantages will be clear to practitioners who utilize compositions and methods of the present invention. The present invention provides compositions comprising acyl amino acids produced by engineered peptide synthetases as described herein. In some embodiments, such compositions comprise a collection of individual acyl amino acid molecules, that are related to one another in that they are each synthesized by the same engineered peptide synthetase and together represent a distribution of chemical entities, varied in precise chemical structure (e.g., due to varying length and/or composition of acyl chains, linkages within such acyl chains and/or between an acyl chain and the amino acid, etc), that are synthesized by the relevant engineered peptide synthetase, under the conditions of synthesis (e.g., in vivo or in vitro). In some embodiments, a provided composition includes straight-chain acyl moieties, branched acyl moieties, and/or combinations thereof. That is, it will be appreciated by those skilled in the art that, in some embodiments, one feature of engineered production of acyl amino acids is that engineered peptide synthetases may not generate pure populations of single chemical entities, particularly when acting in vivo. Thus, as noted above, the present invention provides acyl amino acid compositions comprising distributions of chemical entities. In some embodiments, the present invention provides acyl amino acid compositions in which substantially all acyl amino acids comprise the same amino acid moiety, but the composition includes a distribution of acyl moieties. As described herein, the present invention provides a wide variety of acyl amino acids and compositions. In some embodiments, the present invention provides acyl amino acids and compositions in which the amino acid moiety is or comprises one found in an amino acid selected from the group consisting of alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and/or valine. Alternatively or additionally, in some embodiments, the present invention provides acyl amino acids and compositions in which the amino acid moiety is or comprises one found in an amino acid selected from the group consisting of selenocysteine and/or pyrrolysine. In some embodiments, the present invention provides acyl amino acids and compositions in which the amino acid moiety is or comprises one found in an amino acid selected from the group consisting of norleucine, beta-alanine and/or ornithine. In some embodiments, the present invention provides acyl amino acids and compositions in which the amino acid moiety is or comprises one found in an amino acid selected from the group consisting of L-amino acids. In some embodiments, the present invention provides acyl amino acids and compositions in which the amino acid moiety is or comprises one found in an amino acid selected from the group consisting of D-amino acids. In some embodiments, the present invention provides acyl amino acids and compositions in which the amino acid moiety is or comprises or comprises one found in an amino acid D-glu or D-diaminopropionic acid. Those skilled in the art will be aware of appropriate amino acid substrates, usable by peptide synthetases as described herein (and particularly by engineered peptide synthetases as described herein) to generate acyl amino acids containing such amino acid moieties. In some embodiments, the amino acid substrate is or comprises the recited amino acid. In some embodiments, the present invention provides acyl amino acids and compositions in which the acyl group is found in a saturated fatty acid such as butryic acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic arachidic acid, behenic acid, and/or lignoceric acid. the present invention provides acyl amino acids and compositions in which the acyl group is found in an unsaturated fatty acids such as, without limitation, myristoleic acid, palmitoleic acid, oliec acid, linoleic acid, alpha-linolenic acid, arachidonic acid, eicosapentaenoic acid, erucic acid, and/or docosahexaenoic acid. Other saturated and unsaturated fatty acids whose acyl moieties may be used in accordance with the present invention will be known to those of ordinary skill in the art. In certain embodiments, acyl amino acids and compositions provided by present invention comprise beta-hydroxy fatty acids as the fatty acid moiety. As is understood by those of ordinary skill in the art, beta-hydroxy fatty acids comprise a hydroxy group attached to the third carbon of the fatty acid chain, the first carbon being the carbon of the carboxylate group. In some embodiments, the present invention provides acyl amino acids and compositions in which the acyl group comprises or consists of fatty acid chains with a length within a range bounded by a shorter length selected from the group consisting of C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20, C21, C22, C23, C24, C25, C26, C27, C28, C29, C30, and an upper length selected from the group consisting of C30, C29, C28, C27, C26, C25, C24, C23, C22, C21, C20, C19, C18, C17, C16, C15, C14, C13, C12, C11, C10, C9, C8, C7, C6, C5, C4, C3, C2, and C1, wherein the upper length is the same as or larger than the lower length. In some particular embodiments, the present invention provides acyl amino acids and compositions in which the acyl group comprises or consists of C10-C14 fatty acid chains, C13-16 fatty acid chains, C13-15 fatty acid chains, C16-24 fatty acid chains, C18-22 fatty acid chains, C18-24 fatty acid chains, C8-C16 fatty acid chains. In some embodiments, the present invention provides acyl amino acids and compositions in which the acyl group comprises, consists predominantly of, or consists of C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, and/or C20 fatty acid chains. In some embodiments, the present invention provides acyl amino acids and compositions in which the acyl group comprises, consists predominantly of, or consists of comprises, consists predominantly of, or consists of C8, C9, C10, C11, C12, C13, C14, C15, and/or C16 fatty acid chains. In some embodiments, the present invention provides acyl amino acids and compositions in which the acyl group comprises, consists predominantly of, or consists of comprises, consists predominantly of, or consists of C12, C13, C14, C15, and/or C16 fatty acid chains. In some embodiments, the present invention provides acyl amino acid compositions in which all acyl amino acids comprise the same amino acid moiety (or comprise an amino acid moiety from the same amino acid. In some embodiments, the present invention provides acyl amino acid compositions in which different acyl amino acids within the composition have different acyl moieties (e.g., acyl moieties that differ, in composition, structure, branching, and/or length (of one or more chains). In some embodiments, such compositions predominantly include acyl moieties of a length (or within a range of lengths) as set forth above. In some such embodiments, such predominant acyl moieties are present in the composition at a level of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%<98%, or 99%. The Figures and Examples herein depict and/or describe certain particular acyl amino acids and/or acyl amino acid compositions that are provided by and can be prepared in accordance with certain embodiments of the present invention. To give but a few particular examples, the present invention specifically exemplifies and/or otherwise provides certain acyl amino acids and/or acyl amino acid compositions comprising, consisting predominantly of, or consisting of 2,4 diaminobutyric acid, (2S)-2,3-diaminobutyric acid, 2, 3-diaminoproprionic acid, β-hydroxy myristoyl glutamate, β-hydroxy myristoyl diaminopropionic acid, betaines, cocyl glycinate, gycine laureate, glutamine laureate, etc. For example, in some particular embodiments, the present invention provides acyl amino acid compositions in which the amino acid moiety within acyl amino acids in the composition is from glycine or glutamate, and the fatty acid moiety is predominantly a C12 fatty acid (i.e.g, is from lauric acid).; in some such embodiments, all acyl amino acids in the composition have the same amino acid moiety. Engineered polypeptides of the present invention may be introduced in any of a variety of host cells for the production of acyl amino acids. As will be understood by those skilled in the art, engineered polypeptides will typically be introduced into a host cell in an expression vector. So long as a host cell is capable of receiving and propagating such an expression vector, and is capable of expressing the engineered polypeptide, such a host cell is encompassed by the present invention. An engineered polypeptide of the present invention may be transiently or stably introduced into a host cell of interest. For example, an engineered polypeptide of the present invention may be stably introduced by integrating the engineered polypeptide into the chromosome of the host cell. Additionally or alternatively, an engineered polypeptide of the present invention may be transiently introduced by introducing a vector comprising the engineered polypeptide into a host cell, which vector is not integrated into the genome of the host cell, but is nevertheless propagated by the host cell. In certain embodiments, a host cell is a bacterium. Non-limiting examples of bacteria that are useful as host cells of the present invention include bacteria of the genera Bacterial host cells of the present invention may be wild type. Alternatively, bacterial host cells of the present invention may comprise one or more genetic changes as compared to wild type species. In certain embodiments, such genetic changes are beneficial to the production of acyl amino acids in the bacterial host. For example, such genetic changes may result in increased yield or purity of the acyl amino acid, and/or may endow the bacterial host cell with various advantages useful in the production of acyl amino acids (e.g., increased viability, ability to utilize alternative energy sources, etc.). In certain embodiments, the host cell is a plant cell. Those skilled in the art are aware of standard techniques for introducing an engineered polypeptide of the present invention into a plant cell of interest such as, without limitation, gold bombardment and agrobacterium transformation. In certain embodiments, the present invention provides a transgenic plant that comprises an engineered polypeptide that produces an acyl amino acid of interest. Any of a variety of plants species may be made transgenic by introduction of an engineered polypeptide of the present invention, such that the engineered polypeptide is expressed in the plant and produces an acyl amino acid of interest. The engineered polypeptide of transgenic plants of the present invention may be expressed systemically (e.g. in each tissue at all times) or only in localized tissues and/or during certain periods of time. Those skilled in the art will be aware of various promoters, enhancers, etc. that may be employed to control when and where an engineered polypeptide is expressed. Insects, including insects that are threats to agriculture crops, produce acyl amino acids that are likely to be important or essential for insect physiology. For example, an enzyme related to peptide synthetases produces the product of the Drosophila Ebony genes, which product is important for proper pigmentation of the fly, but is also important for proper function of the nervous system (see e.g., Richardt et al., Ebony, a novel nonribosomal peptide synthetase for beta-alanine conjugation with biogenic amines in Drosophila, J. Biol. Chem., 278(42):41160-6, 2003). Acyl amino acids are also produced by certain Lepidoptera species that are a threat to crops. Thus, compositions and methods of the present invention may be used to produce transgenic plants that produce an acyl amino acid of interest that kills such insects or otherwise disrupts their adverse effects on crops. For example, an engineered polypeptide that produces an acyl amino acid that is toxic to a given insect species may be introduced into a plant such that insects that infest such a plant are killed. Additionally or alternatively, an engineered polypeptide that produces an acyl amino acid that disrupts an essential activity of the insect (e.g., feeding, mating, etc.) may be introduced into a plant such that the commercially adverse effects of insect infestation are minimized or eliminated. In certain embodiments, an acyl amino acid of the present invention that mitigates an insect's adverse effects on a plant is an acyl amino acid that is naturally produced by such an insect. In certain embodiments, an acyl amino acid of the present invention that mitigates an insect's adverse effects on a plant is a structural analog of an acyl amino acid that is naturally produced by such an insect. Compositions and methods of the present invention are extremely powerful in allowing the construction of engineered polypeptides that produce any of a variety of acyl amino acids, which acyl amino acids can be used in controlling or eliminating harmful insect infestation of one or more plant species. Acyl amino acids and compositions may be produced by engineered peptide synthetases as described herein. In some embodiments, acyl amino acids are produced in vitro. In some embodiments, acyl amino acids are produced in vivo, for example in host cells engineered to express an engineered peptide synthetase or component or domain thereof. In some embodiments, acyl amino acids are produced in association with one or more components of a cell and/or with an engineered peptide synthetase. In some embodiments, acyl amino acid compositions are subjected to one or more isolation procedures, for example as is known in the art, e.g., to separate produced acyl amino acid compounds from one or more components of their production system (e.g., from an engineered peptide synthetase or component or domain thereof, and/or from one or more components of a cell such as an engineered cell. In some embodiments of the present invention, an engineered peptide synthetase that produces an acyl amino acid is designed and/or produced by isolating and/or otherwise engineering a known peptide synthetase domain (e.g., by separating a first peptide synthetase domain that is found in a peptide synthetase complex that synthesizes a lipopeptide from other elements, domains, or components of the lipopeptide-synthesizing complex) to produce the acyl amino acid. For example, an acyl amino acid with a β-hydroxy fatty acid can be created by expressing Module 1 of a synthetase, such as the srf (surfactin) synthetase in an appropriate host organism. Since Module 1 of the srfAA (sequence listing srfAA module 1) is glutamate-specific, the expression of Module 1 in an appropriate host leads to the production of β-hydroxyl myristoyl glutamate. The same approach can be used to link fatty acids to a variety of different amino acids since there are known (sequenced) “Module 1 DNA segments”, which can be cloned from various natural systems, with adenylation domains specific for four distinct amino acids (Leu, Glu, Ser or Dhb; see Table). In addition, a variety of naturally occurring β-hydroxy lipo-peptides (which are believed to be produced by peptide synthetase enzymes) have been reported, for which the gene cluster encoding the synthetase responsible for their production has not been sequenced. A new β-hydroxy acyl amino acid can be produced by using standard molecule biology techniques to specifically identify “Module 1” of one of those synthetases (which belongs to the set “Module 1's” that have not yet been sequenced) and expressing that Module 1 in an appropriate host. This approach would lead to the generation of additional new β-hydroxy acyl amino acids, including β-hydroxy acyl : Phe, D-Ala, 2,3-dehydro-2-aminobutyric acid, NMe-Ile, Gly, Thr and D-allo-threonine. The Table below summarizes various attributes of known lipopeptides and the peptide synthetases that synthesize them in nature, including the amino acid acyl group and amino acid specificity of the relevant Module 1. As is specifically described in Examples herein, additional new β-hydroxy acyl amino acids can be produced by operationally linking a condensation domain, which specifies the addition of a β-hydroxy fatty acid, to an adenylation domain which specifies a particular desired amino acid. In Example XXX, a condensation domain is operationally linked to an adenylation domain that is specific for glycine and, upon expression of the chimera in an appropriate host, β-hydroxy myristyl glycine is produced. One who is skilled in the art will appreciate that this approach can be used to create any desired β-hydroxy acyl amino acid, as long as an adenylation domain is available that is specific for the desired amino acid. Naturally occurring peptide synthetase modules are available that specify the use of each of the standard 20 amino acids, and in addition adenylation domains are available that are specific for about 300 additional amino acids, or amino acid-like molecules (Kleinkauf et al) (Ref 10). This approach can be used to link a β-hydroxy fatty acid to any of these amino acids, or amino acid-like molecules. Strategies analogous to those described above can be used to link a β-amino fatty acid to any desired amino acid. One approach is to identify a naturally occurring “Module 1” (such as MycA of the mycosubtilin synthetase, see Duitman et. al.) (Ref 6 ) and to express the module in an appropriate host. In this specific example, the FenF gene is desirably also be expressed in the host (sequence listing AAF08794.1). In general, a particular β-amino fatty acid can be produced in an appropriate host by expressing a module known to specify the joining of a β-amino fatty acid to a particular amino acid, along with any gene or genes that encode critical additional functions that are not naturally found in the host organism (such as for example FenF). Additional new β-amino acyl amino acids can be produced by operationally linking a condensation domain, which specifies the addition of a β-amino fatty acid, to an adenylation domain which specifies a particular desired amino acid. Again, and genes that encode additional required factors (such as homologs of FenF) can also be expressed in the host. This approach can be used to link a β-amino fatty acid to any amino acid, as long as an adenylation domain is available that is specific for the desired amino acid. Strategies analogous to those described above can be used to link a fatty acid (which is unmodified at the β-position) to any desired amino acid. One approach is to identify a naturally occurring “Module 1” (such as the Trp1 module of the daptomycin synthetase, see Miao et. al.) (Ref 11) and to express the module in an appropriate host (Sequence listing: dptA1 module 1 of daptomycin synthetase). In addition, in this specific example, the DptE and DptF genes should also be express in the host. In general, a particular acyl amino acid (unmodified at the β-position) can be produced in an appropriate host by expressing a module known to specify the joining of a fatty acid to a particular amino acid, along with any gene or genes that encode critical additional functions that are not naturally found in the host organism (such as for example DptE and DptF). Additional new acyl amino acids can be produced by operationally linking a condensation domain, which specifies the addition of a fatty acid, to an adenylation domain which specifies a particular desired amino acid. For example, fatty acid that is unmodified at the beta position can be attached to glycine using a chimeric synthetase composed of the condensation domain of dptA1 module 1 linked to that adenylation and thiolation domains of dptA1 module 5 (which is specific for glycine) (sequence listing dptA1 Module 5) For the Calcium-Dependent Antibiotic (CDA) system, it is believed that specific locus-associated fatty acid synthases produce the hexanoic acid, which is joined to the first amino acid of CDA; in particular, the ACP (SC03249), FabH4 (SC03246), FabF3 (SC03248) gene products are believed to be important for production of the hexanoic acid, which is then joined to the amino acid substrate, in this case Ser (Ref 12). In some embodiments, the distribution of fatty acids produced by a typical engineered strain that utilizes an engineered peptide synthetase to synthesisze FA-Glu is composed of fatty acids that all have a β-hydroxyl but that have varying chain lengths. In some particular embodiments, the chain lengths vary in the following manner: C12, 1.6%; C13, 16.2%; C14, 55%; C15, 25.9%; C16, 1.2% and C17, 0.01%. In some embodiments, some of the even numbered fatty acids are branched and some are straight chain. In some embodiments, none of the odd numbered fatty acids are straight chain (i.e, they are all branched). Odd numbered chains can be either iso or anteiso; in some embodiments, the present invention provides different compositions with different relative amounts (e.g., ratios) of these forms. Branching nomenclature is well presented in In some embodiments, for an engineered strain that produces FA-Glu with an engineered peptide synthetase, the fatty acid chain distribution changes when particular keto acids are fed to the strain (see Table 1 below). Dramatic changes in fatty acid chain distribution can be generated when the enzyme that synthesizes the keto acids used to initiate fatty acid synthesis in In some embodiments, compositions are provided containing FA-Glu with 95% C14 fatty acid by feeding 20 mM isobutyric to the mutant. In some embodiments, feeding of low levels of keto acids that can only be used to produce branched fatty acids with odd number chains, is utilized to produce a population of fatty acids with about 80% (100 uM 2-methylbutyric or 100 uM isovaleric) surfactant with C14 length fatty acid. Significantly, since the mutant cannot synthesize its own keto acid starters for even numbered branched chain fatty acid synthesis, feeding of low concentrations of either of these ketos acids (100 uM 2-methylbutyric or 100 uM isovaleric) allows the production of a population of surfactant that is predominantly even numbered and straight chain. Thus, the present invention surprising provides methods and compositions for generating, and compositions comprising mostly straight chain (rather than branched) fatty acid, produced by The present Example describes use of engineered peptide synthetases (in engineered host cells) to produce amphoteric surfactants with one region or regions that harbor a negative charge and another region or regions that harbor a positive charge. Examples of amino acids that can be used to produce such surfactants are shown below. The amino acids all have two amino groups and include: 2,4-diaminobutyric acid, (2S)-2,3-diaminobutyric acid, 2,3-diaminopropionic acid, ornithine and lysine. One particular example of a surfactant of this sort is shown in This surfactant will be zwitterionic at physiological pH given that the pKa of the beta amine of 2,3 diaminoprionic acid is 9.57 and the pKa of an alpha carboxyl is about 2.2. To generate this surfactant, a condensation domain capable of directing the linkage of β-hydroxyl fatty acid to an amino acid (such as the condensation domain of SRFAA module 1) (sequence listing srfAA Module 1) is linked to the adenylation and thiolation domain of a module that is specific for 2,3-diaminopropionic acid (DAP). Felnagle et al., described a peptide synthetase that incorporates DAP. The synthetase is found in Homologues of the sbnA and sbnB genes can be used instead of, or in addition to, sbnA and sbnB. For example, The charge of the primary amine of the surfactant shown in This can be done in vitro using a method described by Simon and Shokat. (see reference in reference list). 100 mg of (2-bromoethyl) trimethylammonium bromide are added to a microfuge tube. 1 mL of a solution of the fatty Acid-DAP (FA-DAP) surfactant is added to the tube. The mixture is shaken at 50° C. until the solid dissolves. Reaction proceeds for about 5 hours. To consume the remaining alkylating agent, the reaction is quenched with 50 μl 20mercaptoethanol and incubated at room temperature for 30 minutes. Alternatively or additionally, methylation can be accomplished in vivo using a methyltransferase. One of the symbols did not translate it's shown as a boxBacterial □-N-methyltrasferases have been described by Zhang, et al. As example, genes encoding methyltrasnferases can be obtained from Naturally occurring fatty acids produced by living organisms typically have two sorts of modifications that affect the melting temperature of the fatty acids and their derivatives. These modifications are branching and desaturation (i.e., the presence of particular double bonds), and both modifications lower the melting point of the fatty acid. Certain organisms, including particular gram positive and gram negative bacteria, as well as typical eukaryotes such as yeast, control the fluidity of membranes by desaturation of fatty acids. The ability to introduce desaturated fatty acids into membranes is important with regard to maintenance of membrane fluidity as temperature decreases. Certain bacteria, such as Given the general need of organisms to control membrane fluidity, biologically produced oils typically contain branches, double bonds, or both. From the perspective of commercial production of fatty acids and their derivatives, there is a need to control these branching and desaturation reactions in order to produce fatty acids with particular characteristics that provide specific benefits to customers. Methods for controlling branching and desaturation are described below. As background information, we will consider Initiation of fatty acid synthesis in Initiation of fatty acid synthesis with a branched starter unit leads to the syntheses of a terminally branched fatty acid. The precise chemical composition of the branched starter impacts the length and specific branching of the synthesized fatty acid. For example,initiation with isobutyrate in The enzymatic activity responsible for conversion of particular amino acids (L-valine, L-isoleucine and L-leucine) to their respective keto acids is α-keto acid dehydrogenase. Mutant Feeding of 2-methyl butyrate leads to the production of a15:0, 51% and a17:0, 39%, with some straight chain even numbered fatty acid still produced via utilization of de novo produced acetate (14:0, 2%; 16:0, 8%) (Ref 17). Feeding of isovalerate leads to the following pattern: i15:0, 56%; a15:0, 7%; i17:0, 12%; a17:0, 2%; 14:0, 3% and 16:0, 16%). The presence of anteiso fatty acids is unexpected and suggests that the isovalerate used in the study was contaminated with a keto acid such as 2-methyl butyrate. The straight chain even numbered fatty acids are produced utilizing de novo produced acetate (these data are taken from Ref 17). There is a commercial need to produce fatty acids and fatty acid derivatives with precise lengths and branching. In Examples herein, we describe methods for producing particular populations of fatty acids and fatty acid derivatives, such as acyl amino acid surfactants. In addition to specifically controlling the branching of fatty acids in organisms such as Methods such as gas-liquid-chromatography can be used to determine whether an organism synthesizes straight chain fatty acids, or instead synthesizes a mixture of straight chain and branched fatty acids. For example, Kaneda (Ref 16) used gas-liquid-chromatography to characterize the fatty acids of sixteen species of Once an organism has been identified that exclusively synthesizes straight chain fatty acids, assuming the genome of the organism has been sequenced, comparative sequence analysis can be used to determine whether the organism encodes a protein similar to In certain instances, an organism that exclusively or predominantly synthesizes straight chain fatty acids will encode an enzyme that is functionally equivalent to In order to convert a strain that produces branched fatty acids (such as Once the heterologousβ-ketoacyl-ACP synthase III enzyme is being expressed in When engineered strains are developed with lower levels of branched fatty acids, it is advantageous to express a desaturase enzyme in Alternatively or additionally, genetic changes can be made that result in the constitutive expression of the endogenous An alternative strategy to produce acyl amino acid surfactants with straight chain fatty acids is to express the peptide synthetase enzyme that produces the acyl amino acid in a strain that does not produce branched fatty acids, such as An acyl amino acid with a straight chain fatty acid can be produced by cloning a gene that encodes a peptide synthetase enzyme capable of directing the synthesis of an acyl amino acid (such as Module 1 of srfAA) into an Once a strain is generated that produces a desired acyl amino acid, the strain can be further modified to increase the yield of the acyl amino acid. One strategy for increasing yield is to inactivate (e.g., delete) genes that limit production of the acyl amino acid. Once genes are identified that, when deleted, increase yield of an acyl amino acid, a strain harboring multiple such deletions can be generated. In addition, genes that either do not affect surfactant yield, or that negatively affect surfactant yield, can be replaced with genes that stimulate acyl amino acid production. Examples herein describe genes that, when deleted, increase yield of an acyl glutamate surfactant referred to as FA-Glu. As described in U.S. Pat. No. 7,981,685, Modular Genetics, Inc. (Modular) has shown that an engineered peptide synthetase enzyme can be used to produce an acyl amino acid (β-hydroxy myristoyl glutamate). This approach has been expanded to produce β-hydroxy myristoyl glycinate. Here is the detailed information on production of β-hydroxy myristoyl glycinate. Engineering of a FA-GLY-TE Construct Using a Fusion Between DNA encoding the condensation domain of srfAA module 1 and DNA encoding the adenylation domain of Module 2 of Linear Gramicidin. In this Example, we amplified the genomic DNA from OKB1054Δ(upp)SpectRFA-GLU-TE-MG that encodes for the genes responsible for FA-GLU production, and this region was amplified using primers 35664-C4:5′-TTGTACTGAGAGTGCACCATAtATCGACAAAAATGTCATGAAAGAATCG-3′ (SEQ ID NO: 3) and 35664-D4:5′-ACGCCAAGCTTGCATGCCtTTATGAAACCGTTACGGTTTGTGTATT-3′ (SEQ ID NO: 4). This fragment was annealed to the PCR product obtained from the template pUC19 and primers 35664-B4:5′-AGGCATGCAAGCTTGGCGtAATCATGGTCATAGCTGTTTCCTGTG-3′ (SEQ ID NO: 5) and 35664-A4:5′-ATATGGTGCACTCTCAGTACAaTCTGCTCTGATGCCGCATAGTT-3′ (SEQ ID NO: 6). The annealed mixture was transformed into SURE cells to produce the plasmid Psrf-Glu-TE-pUC19. Psrf-Glu-TE-pUC19 was used as a template to engineer a variant of this plasmid that contained a fusion of the condensation domain of srfAA module 1 to the adenylation domain of Module 2 of Linear Gramicidin (which adenylation domain is specific for the amino acid glycine), followed by the TE. The DNA sequence corresponding to Module 2 of Linear Gramicidin was amplified from genomic DNA of strain This fragment was annealed to the PCR product obtained from the template Psrf-Glu-TE-pUC19 using primers 35664-C7:5′-GATTTCTTTGCGCTCGGAgGGCATTCCTTGAAGGCCATGA-3′ (SEQ ID NO: 11) and 35664-E7:5′-CTCCGCATCAGAAATCAGTgTTAATTCATCAATTGTATGTTCTGGATGC-3′ (SEQ ID NO: 12). The annealed mixture was transformed into SURE cells to produce the plasmid Psrf-Gly-lgr_m2-F3-TE-pUC19. This plasmid was used to transform 23844-d1 OKB105Δ(upp)SpectR(Δ mod(2-7))upp+KanR. The resulting strain was named OKB105Δ(upp)SpectRFA-GLY-TE. One strain derived from this strategy, which had the correct sequence to produce FA-GLY, was named 37237-d3. Analysis of the production of FA-GLY by strain OKB105Δ(upp)SpectRFA-GLY-TE shows that the strain was able to produce detectable amounts of FA-GLY. Data was obtained using LC-MS analysis. MS-MS analysis of the material derived from OKB105Δ(upp)SpectRFA-GLY-TE revealed that the product was indeed FA-GLY. (sequence listing Psrf-Gly-lgr_m2-F3-TE-pUC19). See See The As is shown in Table A for the control strain (which retains α-keto acid dehydrogenase activity), the surfactant is composed of a population of molecules with fatty acid tails that vary in length from C12 to C17, with C14 predominant (55%). When the mutant strain (which lacks α-keto acid dehydrogenase activity) is fed 20 mM isobutyrate the fatty acid composition of the surfactant population narrows to about 95% C14. Surfactants with a fatty acid tail length of C14 are particularly useful for certain applications, such as use in personal care products such as shampoos, body washes and other products. The population of surfactant fatty acid tail lengths can be specifically modified by feeding the mutant strain a starter keto acid that results in production of odd numbered branched fatty acids. Specifically, a population of surfactant molecules with a fatty acid tail composition of C13:0,27%;C15:0,65% was produced upon feeding the mutant 20 mM 2-methylbutyric acid. Thus, the strain produced surfactant with over 90% odd numbered branched fatty acid tails (presumably anteiso). A population of surfactant molecules with a fatty acid tail composition of C12:0,3.71%;C14:0,76.04%;C16:0,2.20% was produced upon feeding the mutant 100 μM 2-methylbutyric acid. Thus, the strain produced surfactant with over 80% even numbered fatty acid tails. Given that the mutant strain is incapable of producing branched fatty acids with even numbered chain lengths, and was fed a keto acid that can only be used to produce odd numbered branched fatty acids this population of even numbered fatty acid molecules is comprised of straight chain (unbranched) fatty acids. Feeding of 20 mM isovaleric produced surfactant with over 90% odd numbered branched fatty acid tails (presumably iso). Feeding of 100 μM isovaleric produced surfactant with over 80% even numbered (straight chain) fatty acid tails. We have demonstrated previously that acylases can be used to specifically cleave an acyl amino acid surfactant to generate a free fatty acid and an amino acid. This approach can be used with the surfactant populations described above to produce particular purified populations of fatty acids, for example a population composed of over 90% C14 fatty acid or a population composed of over 90% anteiso C13 and C15 or over 90% iso C13 and C15, or over 80% straight chain (even numbered fatty acids). In this example, we amplified the genomic region of The upstream fragment was amplified using primers 47020:5′-GTGTAAATCATTTAATGAAAAAAGGAAAAATTGACGTG-3′ (SEQ ID NO: 15) and 47023:5′-ATCATTAAGCCTTCCTGGCAGTCAGCCCTAGTGCTTGATGTCGGTTTG-3′ (SEQ ID NO: 16). The downstream fragment was amplified using primers 47026:5′-AATTAAAAGCCATTGAGGCAGACGTAAGGGAGGATACAATCATGGCAATT-3′ (SEQ ID NO: 17) and 47021:5′-GGTATTCTTGCTGACAACGGTACATTCATATG-3′ (SEQ ID NO: 18). The genes encoding for UPP/Kan were amplified from the template pUC19-UPP-KAN using primers 47024:5′-ACACGATATAGCCAGGAAGGCGGGTTTTTTGACGATGTTCTTGAAACTC-3′ (SEQ ID NO: 19) and 47025:5′-AATTAAAAGCCACAAAGGCCTAGGTACTAAAACAATTCATCCAGTAA-3′ (SEQ ID NO: 20). The upstream, downstream and UPP/Kan fragments were all digested to completion with restriction endonuclease BglI. All 3 fragments were subsequently ligated together with T4 DNA ligase. The ligated DNA mix was transformed into FA-Glu producing strain 43074-B2 and transformants were selected for ability to grow on LB agar supplemented with Kanamycin (30 ug/mL) and Isobutyric, Isovaleric and 2-methylbutyric acids (100 uM). One strain derived from this strategy, which had the correct sequence to replace bkdAA and bkdAB with UPP/Kan, was named 47392-A6 and was used in subsequent experiments. 47392-A6 was grown alongside 43074-B2 in S7(Phos7.5) (minimal media containing 100 mM Potassium Phosphate Buffer pH7.5, 10 mM Ammonium Sulfate, 20 mM Monosodium Glutamate, 2% Glucose and trace metals) supplemented with 0, 100 uM, 1 mM, 5 mM or 20 mM 2-methylbutyric, Isovaleric, Isobutyric acids (all neutralized to pH7.5) in 10 mM cultures for 4 days at 37C. The following genes were deleted by replacing the coding sequence of each gene with a upp/kan cassette. The effect on FA-Glu yield is shown in Table #: Maf, Abh, RocG, degU, RapC, eps, yngF, yhaR, mmgB. spxA. An additional copy of each of the following gene was introduced into 30. Wang, et al., “The primary structure of branched-chain a-oxo acid dehydrogenase from bacillus subtilis and its similarity to other a-oxo acid dehydrogenases,” In certain embodiments, the present invention comprises compositions and methods useful in the generation of acyl amino acids. In certain embodiments, the present invention provides an engineered polypeptide comprising a peptide synthetase domain; in some such embodiments, the engineered polypeptide comprises only a single peptide synthetase domain. In some embodiments, the present invention provides an engineered peptide synthetase that is substantially free of a thioesterase domain, and/or a reductase domain. In certain embodiments, the present invention provides an acyl amino acid composition comprising a plurality of different forms of an acyl amino acid. In some such compositions, substantially all of the acyl amino acids within the composition contain the same amino acid moiety and differ with respect to acyl moiety. We also described populations where the fatty acid si for example 95% one length (C14, myristic). 1. A method of making an acyl amino acid composition by contacting an engineered peptide synthetase with an amino acid substrate and an acyl entity substrate for the engineered peptide synthetase, under conditions and for a time sufficient for an acyl amino acid composition to be made. 2. The method of 3. The method of 4. The method of 5. The method of 6. The method of 7. The method of 8. (canceled) 9. (canceled) 10. (canceled) 11. (canceled) 12. A method of preparing a product comprising:
providing or obtaining an acyl amino acid composition prepared in an engineered microbial cell; enriching the acyl amino acid composition for a particular acyl amino acid; combining the enriched acyl amino acid composition with at least one other component to produce a product. 13. A method comprising steps of:
contacting an engineered peptide synthetase polypeptide that comprises a single peptide synthetase domain and lacks a thioesterase domain, and/or a reductase domain with:
an amino acid substate of the peptide synthetase polypeptide; and an acyl moiety substrate of the peptide synthetase polypeptide, the contacting being performed under conditions and for a time sufficient that the engineered peptide synthetase polypeptide covalently links the acyl moiety from the acyl moiety substrate to the amino acid so that an acyl amino acid is generated. 14. The method of 15. The method of 16. The method of 17. The method of 18. The method of 19. The method of CROSS-REFERENCE TO RELATED APPLICATIONS
SEQUENCE LISTING
BACKGROUND
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DESCRIPTION OF CERTAIN EMBODIMENTS
Definitions
Alanine Ala A nonpolar neutral 1.8 Arginine Arg R polar positive −4.5 Asparagine Asn N polar neutral −3.5 Aspartic acid Asp D polar negative −3.5 Cysteine Cys C nonpolar neutral 2.5 Glutamic acid Glu E polar negative −3.5 Glutamine Gln Q polar neutral −3.5 Glycine Gly G nonpolar neutral −0.4 Histidine His H polar positive −3.2 Isoleucine Ile I nonpolar neutral 4.5 Leucine Leu L nonpolar neutral 3.8 Lysine Lys K polar positive −3.9 Methionine Met M nonpolar neutral 1.9 Phenylalanine Phe F nonpolar neutral 2.8 Proline Pro P nonpolar neutral −1.6 Serine Ser S polar neutral −0.8 Threonine Thr T polar neutral −0.7 Tryptophan Trp W nonpolar neutral −0.9 Tyrosine Tyr Y polar neutral −1.3 Valine Val V nonpolar neutral 4.2 Asparagine or aspartic acid Asx B Glutamine or glutamic acid Glx Z Leucine or Isoleucine Xle J Unspecified or unknown amino acid Xaa X
As will be understood by those skilled in the art, a variety of algorithms are available that permit comparison of sequences in order to determine their degree of homology, including by permitting gaps of designated length in one sequence relative to another when considering which residues “correspond” to one another in different sequences. Calculation of the percent homology between two nucleic acid sequences, for example, can be performed by aligning the two sequences for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second nucleic acid sequences for optimal alignment and non-corresponding sequences can be disregarded for comparison purposes). In certain embodiments, the length of a sequence aligned for comparison purposes is at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or substantially 100% of the length of the reference sequence. The nucleotides at corresponding nucleotide positions are then compared. When a position in the first sequence is occupied by the same nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position; when a position in the first sequence is occupied by a similar nucleotide as the corresponding position in the second sequence, then the molecules are similar at that position. The percent homology between the two sequences is a function of the number of identical and similar positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which needs to be introduced for optimal alignment of the two sequences. Representative algorithms and computer programs useful in determining the percent homology between two nucleotide sequences include, for example, the algorithm of Meyers and Miller (CABIOS, 1989, 4: 11-17), which has been incorporated into the ALIGN program (version 2.0) using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. The percent homology between two nucleotide sequences can, alternatively, be determined for example using the GAP program in the GCG software package using an NWSgapdna.CMP matrix.
Engineered Polypeptides Useful in the Generation of Acyl Amino Acids
Exemplary Lipopeptides Synthesized by Peptide Synthetases Lipopeptide Name Fatty Acid Component Fatty Acid Component name [Ala4]surfactin aC15 aC15:0-OH(3) 3-hydroxy-12-methyl-tetradecanoic acid [Ala4]surfactin iC14 iC14:0-OH(3) 3-hydroxy-12-methyl-tridecanoic acid [Ala4]surfactin iC15 iC15:0-OH(3) 3-hydroxy-13-methyl-tetradecanoic acid [Ala4]surfactin nC14 C14:0-OH(3) 3-hydroxy-tetradecanoic acid [Ala4]surfactin nC15 C15:0-OH(3) 3-hydroxy-pentadecanoic acid [Gln1]surfactin C15:0-OH(3) 3-hydroxy-pentadecanoic acid [Gln1]surfactin aC15 aC15:0-OH(3) 3-hydroxy-12-methyl-tetradecanoic acid [Gln1]surfactin iC15 iC15:0-OH(3) 3-hydroxy-13-methyl-tetradecanoic acid [Ile2.4.7]surfactin aC15:0-OH(3) 3-hydroxy-12-methyl-tetradecanoic acid [Ile4.7]surfactin aC15:0-OH(3) 3-hydroxy-12-methyl-tetradecanoic acid [Ile4]surfactin aC15:0-OH(3) 3-hydroxy-12-methyl-tetradecanoic acid [Ile7]surfactin aC15:0-OH(3) 3-hydroxy-12-methyl-tetradecanoic acid [Leu4]surfactin aC15:0-OH(3) 3-hydroxy-12-methyl-tetradecanoic acid [Phe25]syringopeptin 25A C10:0-OH(3) 3-hydroxy-decanoic acid [Val7]surfactin aC15:0-OH(3) 3-hydroxy-12-methyl-tetradecanoic acid A21978C1 aC11:0 8-methyldecanoic acid A21978C2 iC12:0 10-methylundecanoic acid A21978C3 aC13:0 10-methyldodecanoic acid A54145 A iC10:0 decanoic acid A54145 A1 C10:0 decanoic acid A54145 B C10:0 decanoic acid A54145 B1 iC10:0 decanoic acid A54145 C aC11:0 8-methyldecanoic acid A54145 D aC11:0 8-methyldecanoic acid A54145 E aC11:0 8-methyldecanoic acid A54145 F iC10:0 decanoic acid amphibactin B C14:0-OH(3) 3-hydroxy-tetradecanoic acid amphibactin C C16:1(9)-OH(3) 3-hydroxy-9-hexadecenoic acid amphibactin D C14:0 tetradecanoic acid amphibactin E C16:1(9) 9-hexadecenoic acid amphibactin F C16:0-OH(3) 3-hydroxy-hexadecanoic acid amphibactin G C18:1(9)-OH(3) 3-hydroxy-9-octadecenoic acid amphibactin H C16:0 hexadecanoic acid amphibactin I C18:1(9) 9-octadecenoic acid amphisin C10:0-OH(3) 3-hydroxy-decanoic acid amphomycin A1437 A iC13:1(3) 11-methyl-3-dodecenoic acid amphomycin A1437 B iC14:1(3) 12-methyl-3-tridecenoic acid amphomycin A1437 D aC15:1(3) 12-methyl-3-tetradecenoic acid amphomycin A1437 E aC13:1(3) 10-methyl-3-dodecenoic acid apramide A C8:0:1(7)-Me(2) 2-methylact-7-ynoic acid apramide B C8:0:1(7) oct-7-ynoic acid apramide C C9:1(8)-Me(2) 2-methyl-8-noneic acid apramide D C8:0:1(7)-Me(2) 2-methylact-7-ynoic acid apramide E C8:0:1(7) oct-7-ynoic acid apramide F C9:1(8)-Me(2) 2-methyl-8-noneic acid apramide G C8:0:1(7)-Me(2) 2-methylact-7-ynoic acid aquachelin A C12:1(5) 2-methyl-5-dodecenoic acid aquachelin B C12:0 dodecanoic acid aquachelin C C14:1(7) 7-tetradecenoic acid aquachelin D C14:0 tetradecanoic acid arthrofactin C10:0-OH(3) 3-hydroxy-decanoic acid arylomycin A1 iC11:0 9-methyldecanoic acid arylomycin A2 iC12:0 10-methylundecanoic acid arylomycin A3 C12:0 dodecanoic acid arylomycin A4 aC13:0 10-methyldodecanoic acid arylomycin A5 iC14:0 12-methyl-tridecanoic acid arylomycin B1 iC11:0 9-methyldecanoic acid arylomycin B2 iC12:0 10-methylundecanoic acid arylomycin B3 C12:0 dodecanoic acid arylomycin B4 aC13:0 10-methyldodecanoic acid arylomycin B5 iC13:0 11-methyldodecanoic acid arylomycin B6 iC14:0 12-methyl-tridecanoic acid arylomycin B7 aC15:0 12-methyltetradecanoic acid bacillomycin D-1 C14:0-NH2(3) 3-amino-tetradecanoic acid bacillomycin D-2 iC15:0-NH2(3) 3-amino-13-methyl-tetradecanoic acid bacillomycin D-3 aC15:0-NH2(3) 3-amino-12-methyl-tetradecanoic acid bacillomycin D-4 C16:0-NH2(3) 3-amino-hexadecanoic acid bacillomycin D-5 iC16:0-NH2(3) 3-amino-14-methyl-pentadecanoic acid bacillomycin F-1 iC15:0-NH2(3) 3-amino-13-methyl-tetradecanoic acid bacillomycin F-2 aC15:0-NH2(3) 3-amino-12-methyl-tetradecanoic acid bacillomycin F-3 iC16:0-NH2(3) 3-amino-14-methyl-pentadecanoic acid bacillomycin F-4 C16:0-NH2(3) 3-amino-hexadecanoic acid bacillomycin F-5 iC17:0-NH2(3) 3-amino-15-methyl-hexadecanoic acid bacillomycin F-6 aC17:0-NH2(3) 3-amino-14-methyl-hexadecanoic acid bacillomycin L-1 C14:0-NH2(3) 3-amino-tetradecanoic acid bacillomycin L-2 iC15:0-NH2(3) 3-amino-13-methyl-tetradecanoic acid bacillomycin L-3 aC15:0-NH2(3) 3-amino-12-methyl-tetradecanoic acid bacillomycin L-4 C16:0-NH2(3) 3-amino-hexadecanoic acid bacillomycin L-5 iC16:0-NH2(3) 3-amino-14-methyl-pentadecanoic acid beauverolide A C10:0-Me(4)-OH(3) 3-hydroxy-4-methyl-decanoic acid beauverolide B C10:0-Me(4)-OH(3) 3-hydroxy-4-methyl-decanoic acid beauverolide Ba C10:0-Me(4)-OH(3) 3-hydroxy-4-methyl-decanoic acid beauverolide C C10:0-Me(4)-OH(3) 3-hydroxy-4-methyl-decanoic acid beauverolide Ca C10:0-Me(4)-OH(3) 3-hydroxy-4-methyl-decanoic acid beauverolide D C8:0-Me(4)-OH(3) 4-methyl-3-hydroxy-octanoic acid beauverolide E C8:0-Me(4)-OH(3) 4-methyl-3-hydroxy-octanoic acid beauverolide Ea C8:0-Me(4)-OH(3) 4-methyl-3-hydroxy-octanoic acid beauverolide F C8:0-Me(4)-OH(3) 4-methyl-3-hydroxy-octanoic acid beauverolide Fa C8:0-Me(4)-OH(3) 4-methyl-3-hydroxy-octanoic acid beauverolide H C9:0-OH(3) 3-hydroxy-nonanoic acid beauverolide I C8:0-Me(4)-OH(3) 4-methyl-3-hydroxy-octanoic acid beauverolide II C10:0-Me(4)-OH(3) 3-hydroxy-4-methyl-decanoic acid beauverolide III C8:0-Me(4)-OH(3) 4-methyl-3-hydroxy-octanoic acid beauverolide IV C8:0-Me(4)-OH(3) 4-methyl-3-hydroxy-octanoic acid beauverolide Ja C8:0-Me(4)-OH(3) 4-methyl-3-hydroxy-octanoic acid beauverolide Ka C10:0-Me(4)-OH(3) 3-hydroxy-4-methyl-decanoic acid beauverolide L C10:0-Me(4)-OH(3) 3-hydroxy-4-methyl-decanoic acid beauverolide La C10:0-Me(4)-OH(3) 3-hydroxy-4-methyl-decanoic acid beauverolide M C8:0-Me(4)-OH(3) 4-methyl-3-hydroxy-octanoic acid beauverolide N C8:0-Me(4)-OH(3) 4-methyl-3-hydroxy-octanoic acid beauverolide V C8:0-Me(4)-OH(3) 4-methyl-3-hydroxy-octanoic acid beauverolide VI C8:0-Me(4)-OH(3) 4-methyl-3-hydroxy-octanoic acid beauverolide VII C8:0-Me(4)-OH(3) 4-methyl-3-hydroxy-octanoic acid beauverolide VIII C10:0-Me(4)-OH(3) 3-hydroxy-4-methyl-decanoic acid callipeltin A iC8:0-Me(2.4)-OH(3) 2,4,6-trimethyl-3-hydroxy-heptanoic acid callipeltin C iC8:0-Me(2.4)-OH(3) 2,4,6-trimethyl-3-hydroxy-heptanoic acid callipeltin D iC8:0-Me(2.4)-OH(3) 2,4,6-trimethyl-3-hydroxy-heptanoic acid callipeltin F iC8:0-Me(2.4)-OH(3) 2,4,6-trimethyl-3-hydroxy-heptanoic acid callipeltin G iC8:0-Me(2.4)-OH(3) 2,4,6-trimethyl-3-hydroxy-heptanoic acid callipeltin H iC8:0-Me(2.4)-OH(3) 2,4,6-trimethyl-3-hydroxy-heptanoic acid callipeltin I iC8:0-Me(2.4)-OH(3) 2,4,6-trimethyl-3-hydroxy-heptanoic acid callipeltin J iC8:0-Me(2.4)-OH(3) 2,4,6-trimethyl-3-hydroxy-heptanoic acid callipeltin K iC8:0-Me(2.4)-OH(3) 2,4,6-trimethyl-3-hydroxy-heptanoic acid callipeltin L iC8:0-Me(2.4)-OH(3) 2,4,6-trimethyl-3-hydroxy-heptanoic acid carmabin A C10:0:1 (9)-Me(2.4) 2,4-dimethyl-dec-9-ynoic acid carmabin B C10:0-Me(2.4)-oxo(9) 9-oxo-2,4-dimethyldecanoic acid CDA1b C6:0-Ep(2) 2-epoxy-hexanoic acid CDA2a C6:0-Ep(2) 2-epoxy-hexanoic acid CDA2b C6:0-Ep(2) 2-epoxy-hexanoic acid CDA2d C6:0-Ep(2) 2-epoxy-hexanoic acid CDA2fa C6:0-Ep(2) 2-epoxy-hexanoic acid CDA2fb C6:0-Ep(2) 2-epoxy-hexanoic acid CDA3a C6:0-Ep(2) 2-epoxy-hexanoic acid CDA3b C6:0-Ep(2) 2-epoxy-hexanoic acid CDA4a C6:0-Ep(2) 2-epoxy-hexanoic acid CDA4b C6:0-Ep(2) 2-epoxy-hexanoic acid cormycin A C16:0-OH(3.4) 3,4-dihydroxy-hexadecanoic acid corpeptin A C10:0-OH(3) 3-hydroxy-decanoic acid corpeptin B C12:1(5)-OH(3) 3-hydroxy-5-dodecenoic acid corrugatin C8:0 octanoic acid daptomycin C10:0 decanoic acid enduracidin A iC12:2(2.t4) 10-methyl-2,trans4-undecanoic acid enduracidin B aC13:2(2.t4) 10-methyl-2,trans4-dodecenoic acid fengycin A C16:0-OH(3) 3-hydroxy-hexadecanoic acid fengycin B C16:0-OH(3) 3-hydroxy-hexadecanoic acid friulimicin A iC13:1(3) 11-methyl-3-dodecenoic acid friulimicin B iC14:1(3) 12-methyl-3-tridecenoic acid friulimicin C aC13:1(3) 10-methyl-3-dodecenoic acid friulimicin D aC15:1(3) 12-methyl-3-tetradecenoic acid fuscopeptin A C8:0-OH(3) 3-hydroxy-octanoic acid fuscopeptin B C10:0-OH(3) 3-hydroxy-decanoic acid Ile-polymyxin B1 aC9:0 6-methyloctanoic acid Ile-polymyxin E1 aC9:0 6-methyloctanoic acid lle-polymyxin E2 iC8:0 6-methylheptanoic acid lle-polymyxin E8 aC10:0 8-methyldecanoic acid iturin A-1 C13:0-NH2(3) 3-amino-tridecanoic acid iturin A-2 C14:0-NH2(3) 3-amino-tetradecanoic acid iturin A-3 aC15:0-NH2(3) 3-amino-12-methyl-tetradecanoic acid iturin A-4 iC15:0-NH2(3) 3-amino-13-methyl-tetradecanoic acid iturin A-5 C15:0-NH2(3) 3-amino-pentadecanoic acid iturin A-6 iC16:0-NH2(3) 3-amino-14-methyl-pentadecanoic acid iturin A-7 C16:0-NH2(3) 3-amino-hexadecanoic acid iturin A-8 aC17:0-NH2(3) 3-amino-14-methyl-hexadecanoic acid iturin C-1 iC14:0-NH2(3) 3-amino-12-methyl-tridecanoic acid iturin C-2 aC15:0-NH2(3) 3-amino-12-methyl-tetradecanoic acid iturin C-3 iC16:0-NH2(3) 3-amino-14-methyl-pentadecanoic acid iturin C-4 aC17:0-NH2(3) 3-amino-14-methyl-hexadecanoic acid kulomo opunalide 1 C8:0:1(7)-Me(2)-OH(3) 2-methyl-3-hydroxy-7-octynoic acid kulomo opunalide 2 C8:0:1(7)-Me(2)-OH(3) 2-methyl-3-hydroxy-7-octynoic acid lichenysin A aC13 aC13:0-OH(3) 3-hydroxy-10-methyl-dodecanoic acid lichenysin A aC15 aC15:0-OH(3) 3-hydroxy-12-methyl-tetradecanoic acid lichenysin A aC17 aC17:0-OH(3) 3-hydroxy-14-methyl-hexadecanoic acid lichenysin A iC12 iC12:0-OH(3) 3-hydroxy-10-methyl-undecanoic acid lichenysin A iC13 iC13:0-OH(3) 3-hydroxy-11-methyl-dodecanoic acid lichenysin A iC14 iC14:0-OH(3) 3-hydroxy-12-methyl-tridecanoic acid lichenysin A iC15 iC15:0-OH(3) 3-hydroxy-13-methyl-tetradecanoic acid lichenysin A iC16 iC16:0-OH(3) 3-hydroxy-14-methyl-pentadecanoic acid lichenysin A iC17 iC17:0-OH(3) 3-hydroxy-15-methyl-hexadecanoic acid lichenysin A nC12 C12:0-OH(3) 3-hydroxy-dodecanoic acid lichenysin A nC13 C13:0-OH(3) 3-hydroxy-tridecanoic acid lichenysin A nC14 C14:0-OH(3) 3-hydroxy-tetradecanoic acid lichenysin A nC15 C15:0-OH(3) 3-hydroxy-pentadecanoic acid lichenysin A nC16 C16:0-OH(3) 3-hydroxy-hexadecanoic acid lokisin C10:0-OH(3) 3-hydroxy-decanoic acid marinobactin A C12:0 dodecanoic acid marinobactin B C14:1(7) 7-tetradecenoic acid marinobactin C C14:0 tetradecanoic acid marinobactin D1 C16:1(9) 9-hexadecenoic acid marinobactin D2 C16:1(7) 7-hexadecenoic acid marinobactin E C16:0 hexadecanoic acid massetolide A C10:0-OH(3) 3-hydroxy-decanoic acid massetolide B C11:0-OH(3) 3-hydroxy-undecanoic acid massetolide C C12:0-OH(3) 3-hydroxy-dodecanoic acid massetolide D C10:0-OH(3) 3-hydroxy-decanoic acid massetolide E C10:0-OH(3) 3-hydroxy-decanoic acid massetolide F C10:0-OH(3) 3-hydroxy-decanoic acid massetolide G C11:0-OH(3) 3-hydroxy-undecanoic acid massetolide H C12:0-OH(3) 3-hydroxy-dodecanoic acid massetolide L C10:0-OH(3) 3-hydroxy-decanoic acid mycosubtilin 1 C16:0-NH2(3) 3-amino-hexadecanoic acid mycosubtilin 2 iC16:0-NH2(3) 3-amino-14-methyl-pentadecanoic acid mycosubtilin 3 iC17:0-NH2(3) 3-amino-15-methyl-hexadecanoic acid mycosubtilin 4 aC17:0-NH2(3) 3-amino-14-methyl-hexadecanoic acid neamphamide A iC8:0-Me(2.4)-OH(3) 2,4,6-trimethyl-3-hydroxy-heptanoic acid Nva-polymyxin E1 aC9:0 6-methyloctanoic acid papuamide A aC11:2(4.6)-Me(2.6)-OH(2.3) 2,3-dihydroxy-2,6,8-trimethyldeca-(4 Z,6E)-dienoic acid papuamide B aC11:2(4.6)-Me(2.6)-OH(2.3) 2,3-dihydroxy-2,6,8-trimethyldeca-(4 Z,6E)-dienoic acid papuamide C aC11:2(4.6)-Me(2.6)-OH(2.3) 2,3-dihydroxy-2,6,8-trimethyldeca-(4 Z,6E)-dienoic acid papuamide D aC11:2(4.6)-Me(2.6)-OH(2.3) 2,3-dihydroxy-2,6,8-trimethyldeca-(4 Z,6E)-dienoic acid pholipeptin C10:0-OH(3) 3-hydroxy-decanoic acid plusbacin A1 C14:0-OH(3) 3-hydroxy-tetradecanoic acid plusbacin A2 iC15:0-OH(3) 3-hydroxy-13-methyl-tetradecanoic acid plusbacin A3 iC16:0-OH(3) 3-hydroxy-14-methyl-pentadecanoic acid plusbacin A4 C16:0-OH(3) 3-hydroxy-hexadecanoic acid plusbacin B1 C14:0-OH(3) 3-hydroxy-tetradecanoic acid plusbacin B2 iC15:0-OH(3) 3-hydroxy-13-methyl-tetradecanoic acid plusbacin B3 iC16:0-OH(3) 3-hydroxy-14-methyl-pentadecanoic acid plusbacin B4 C16:0-OH(3) 3-hydroxy-hexadecanoic acid polymyxin B1 aC9:0 6-methyloctanoic acid polymyxin B2 iC8:0 6-methylheptanoic acid polymyxin B3 C8:0 octanoic acid polymyxin B4 C7:0 heptanoic acid polymyxin B5 C9:0 nonanoic acid polymyxin B6 aC9:0-OH(3) 3-hydroxy-6-methyloctanoic acid polymyxin E1 aC9:0 6-methyloctanoic acid polymyxin E2 iC8:0 6-methylheptanoic acid polymyxin E3 C8:0 octanoic acid polymyxin E4 C7:0 heptanoic acid polymyxin E7 iC9:0 7-methyloctanoic acid polymyxin M aC9:0 6-methyloctanoic acid pseudomycin A C14:0-OH(3.4) 3,4-dihydroxy-tetradecanoic acid pseudomycin B C14:0-OH(3) 3-hydroxy-tetradecanoic acid pseudomycin C C16:0-OH(3.4) 3,4-dihydroxy-hexadecanoic acid pseudomycin C2 C16:0-OH(3) 3-hydroxy-hexadecanoic acid pseudophomin A C10:0-OH(3) 3-hydroxy-decanoic acid pseudophomin B C12:0-OH(3) 3-hydroxy-dodecanoic acid putisolvin I C6:0 hexanoic acid putisolvin II C6:0 hexanoic acid putisolvin III C6:0 hexanoic acid ramoplanin A1 C8:2(2.t4) 2,trans4-octenoic acid ramoplanin A2 iC9:2(2.t4) 2,trans4-7-methyl-octenoic acid ramoplanin A3 iC10:2(2.t4) 2,trans4-8-methyl-noneoic acid serrawettin W1 C10:0-OH(3) 3-hydroxy-decanoic acid serrawettin W2 C10:0-OH(3) 3-hydroxy-decanoic acid surfactin aC13 aC13:0-OH(3) 3-hydroxy-10-methyl-dodecanoic acid surfactin aC15 aC15:0-OH(3) 3-hydroxy-12-methyl-tetradecanoic acid surfactin iC12 iC12:0-OH(3) 3-hydroxy-10-methyl-undecanoic acid surfactin iC14 iC14:0-OH(3) 3-hydroxy-12-methyl-tridecanoic acid surfactin iC15 iC15:0-OH(3) 3-hydroxy-13-methyl-tetradecanoic acid surfactin iC16 iC16:0-OH(3) 3-hydroxy-14-methyl-pentadecanoic acid surfactin nC13 C13:0-OH(3) 3-hydroxy-tridecanoic acid surfactin nC14 C14:0-OH(3) 3-hydroxy-tetradecanoic acid surfactin nC15 C15:0-OH(3) 3-hydroxy-pentadecanoic acid syringafactin A C10:0-OH(3) 3-hydroxy-decanoic acid syringafactin B C10:0-OH(3) 3-hydroxy-decanoic acid syringafactin C C10:0-OH(3) 3-hydroxy-decanoic acid syringafactin D C12:0-OH(3) 3-hydroxy-dodecanoic acid syringafactin E C12:0-OH(3) 3-hydroxy-dodecanoic acid syringafactin F C12:0-OH(3) 3-hydroxy-dodecanoic acid syringomycin A1 C10:0-OH(3) 3-hydroxy-decanoic acid syringomycin E C12:0-OH(3) 3-hydroxy-dodecanoic acid syringomycin G C14:0-OH(3) 3-hydroxy-tetradecanoic acid syringopeptin 22 PhvA C10:0-OH(3) 3-hydroxy-decanoic acid syringopeptin 22 PhvB C12:0-OH(3) 3-hydroxy-dodecanoic acid syringopeptin 22A C10:0-OH(3) 3-hydroxy-decanoic acid syringopeptin 22B C12:0-OH(3) 3-hydroxy-dodecanoic acid syringopeptin 25A C10:0-OH(3) 3-hydroxy-decanoic acid syringopeptin 25B C12:0-OH(3) 3-hydroxy-dodecanoic acid syringopeptin 508A C12:0-OH(3) 3-hydroxy-dodecanoic acid syringopeptin 508B C14:0-OH(3) 3-hydroxy-tetradecanoic acid syringopeptin SC 1 C10:0-OH(3) 3-hydroxy-decanoic acid syringopeptin SC 2 C12:0-OH(3) 3-hydroxy-dodecanoic acid syringostatin A C14:0-OH(3) 3-hydroxy-tetradecanoic acid syringostatin B C14:0-OH(3.4) 3,4-dihydroxy-tetradecanoic acid syringotoxin B C14:0-OH(3) 3-hydroxy-tetradecanoic acid tensin C10:0-OH(3) 3-hydroxy-decanoic acid tolaasin A Pda pentanedioic acid tolaasin B C8:0-OH(3) 3-hydroxy-octanoic acid tolaasin C C8:0-OH(3) 3-hydroxy-octanoic acid tolaasin D C8:0-OH(3) 3-hydroxy-octanoic acid tolaasin E C8:0-OH(3) 3-hydroxy-octanoic acid tolaasin I C8:0-OH(3) 3-hydroxy-octanoic acid tolaasin II C8:0-OH(3) 3-hydroxy-octanoic acid tripropeptin A iC13:0-OH(3) 3-hydroxy-11-methyl-dodecanoic acid tripropeptin B iC14:0-OH(3) 3-hydroxy-12-methyl-tridecanoic acid tripropeptin C iC15:0-OH(3) 3-hydroxy-13-methyl-tetradecanoic acid tripropeptin D iC16:0-OH(3) 3-hydroxy-14-methyl-pentadecanoic acid tripropeptin E iC17:0-OH(3) 3-hydroxy-15-methyl-hexadecanoic acid tripropeptin Z iC12:0-OH(3) 3-hydroxy-10-methyl-undecanoic acid Val-polymyxin E1 aC9:0 6-methyloctanoic acid Val-polymyxin E2 iC8:0 6-methylheptanoic acid viscosin C10:0-OH(3) 3-hydroxy-decanoic acid viscosinamide C10:0-OH(3) 3-hydroxy-decanoic acid White Line Inducing Principle C10:0-OH(3) 3-hydroxy-decanoic acid Acyl Amino Acids and Compositions
Host Cells
Producing Acyl Amino Acids and Compositions
EXEMPLIFICATION
Example 1
Engineering Peptide Synthetases to Produce Acyl Amino Acids with β-Hydroxy Amino Acids
The “fatty acid adding” domain of these 18 synthetases adds β-hydroxy fatty acids to the amino acid 1 amphisin C-10 A New arfA Cloning and Leu N/A N/A N/A (one form is Lipopeptide module1 Characterization of the arthrofactin) Biosurfactant Gene Cluster Encoding Produced by Arthrofactin Synthetase from Strain MIS38 (database 692) sp. MIS38 (database 691) 2 beauverolide C8 to Extraribosomal ND synthetase genes have Phe N/A N/A N/A C-10 cyclic not been identified tetradepsipeptides beauverolides: profiling and modeling the fragmentation pathways (citation from PubMed) 3 callipeltin C-8 Isolation of ND synthetase genes have D-Ala N/A N/A N/A callipeltins A-C and not been identified of two new open-chain derivatives of callipeltin A from the marine sponge revision of the stereostructure of callipeltins (ref from Norine database) 4 corpeptin C-10 to Zampella A, Randazzo A, ND synthetase genes have 2,3-dehydro-2- N/A N/A N/A C-12 Borbone N, Luciani S, not been identified aminobutyric acid Trevisi L, Debitus C, D Auria MV, 43 (35), pp. 6163-6166 5 fengycin C-14 to Application of fenC1 Functional and Glu N/A N/A N/A C-18 electrospray Transcriptional ionization mass Analyses of a spectrometry in Fengycin Synthetase rapid typing of Gene, fenC, fengycin homologues from produced by 6 fuscopeptin C-8 to Structure of ND synthetase genes have 2,3-dehydro-2- N/A N/A N/A C-10 fuscopeptins, not been identified aminobutyric acid phytotoxic metabolites of 7 kulomo 2-hydroxyis More Peptides ND synthetase genes have NMe-Ile N/A N/A N/A opunalide ovaleric and and Other Diverse not been identified C8:01 Constituents of (7)-Me(2)—OH(3) the Marine and 2-hydroxyis Mollusk ovaleric 8 lichenysin C-15 Structural and licA Molecular and Glu N/A N/A N/A Immunological module Biochemical Characterization 1 Characterization of a Biosurfactant of the Protein Produced by Template Controlling Biosynthesis of the Lipopeptide Lichenysin 9 papuamdie C-11 Papuamides A-D, ND synthetase genes have Gly N/A N/A N/A HIV-inhibitory and not been identified cytotoxic depsipeptides from the sponges in Papua New Guinea, 10 plusbacin C-14 to Structures of new ND synthetase genes have Thr N/A N/A N/A C-16 peptide not been identified antibiotics, plusbacins A1-A4 and B1-B4, 11 serrawettin C-10 A Novel D-Leu N/A N/A N/A Extracellular Cyclic Lipopeptide gene required Which Promotes for surfactant Flagellum-Dependent serrawettin W1 and -Independent production encodes Spreading putative aminolipid Growth synthetase of belonging to nonribosomal peptide synthetase family 12 surfactin C13 to Separation and srfA Sequence and Glu N/A N/A N/A C15 Characterization module analysis of the of Surfactin 1 genetic locus Isoforms responsible for Produced by surfactin synthesis in OKB 105 I do not have a copy of this paper. It is not in the database. 13 syringafactin C-10 to Identification of a SyfA Identification of Leu N/A N/A N/A C-12 biosynthetic gene module a biosynthetic cluster and the six 1 gene cluster and associated the six lipopeptides associated involved in lipopeptides swarming motility involved in swarming of motility of tomato DC3000. tomato DC3000. 14 syringomycin C12 to The SyrE1 Characterization Ser N/A N/A N/A C14 structure of of the Syringomycin syringomycins Synthetase A1, E and G Gene Cluster 15 syringopeptin C10 to Novel Cyclic SypA-M1 the sypa sypb Dhb N/A N/A N/A C14 Lipodepsipeptide sypc synthetase from genes encod twenty-two modules invovled lachrymans Strain nonribosomal peptide 508 and synthesis syringopeptin Syringopeptin Antimicrobial Activities 16 tolaasin C8 and tolaasins A-E, five synthetase 2,3-dehydro-2- N/A N/A N/A glutaric new genes aminobutyric acid (dhb) (pentadecanoic) lipodepsipeptides have not produced by been identified 17 tripropeptin C12 to tripropeptins, synthetase D-allo- N/A N/A N/A C17 novel genes threonine antimicrobial have not agents been produced by identified 18 Viscosin C10 to Massetolides A-H, Massatolide A L-leu N/A N/A N/A C12 antimycobacterial biosynthesis in cyclic depsipeptides produced by two pseudomonads isolated from marine habitats The “fatty acid adding” domain of these 14 synthetases adds fatty acids to the amino acid (no β-hydroxy) 19 A54145 C10 to A54145, a new the lipopeptide Trp IptEF not N/A C11 lipopeptide antibiotic identified antibiotic complex: A54145 isolation and biosynthetic characteriztion gene cluster from 20 apramide C8 to Apramides A-G synthetase genes have Nme-Ala not not N/A C9 novel lipopeptides not been identified identified identified from the marine cyanobacterium 21 aquachelin C12 to Structure and synthetase genes have D-OH-Asp not not N/A C14 membrane affinity not been identified identified identified of a suite of amphiphilic siderophores produced by a marine bacterium 22 arylomycin C11 to Arylomycins A and synthetase genes have D-Nme-Ser not not N/A C15 B, new not been identified identified identified biaryl-lipopeptide antibiotics produced by Tu 6075. II Structure elucidation 23 CDA1b 2-epoxy- Structure Structure Ser ACS SC03249 N/A through hexanoic acid biosynthetic origin biosynthetic (acyl-CoA CDA4B and enggineered origin and synthetase) biosynthesis of enggineered calcium-dependent biosynthesis of antibiotics from calcium-dependent antibiotics from 24 carmabin C10 Carmabins A and synthetase genes have NMe-Phe not not N/A B new not been identified identified identified lipopeptides from the Caribean cyanobacterium 25 corrugatin C8 Corrugatin A synthetase genes have OH-His not not N/A lipopeptide not been identified identified identified siderophore from 26 daptomycin C10 to A21978C a Daptomycin Trp DptE DptF N/A C13 complex of new biosynthesis in acidic peptide antibiotics: isolation, cloning and chemistry, and analysis of the mass spectral gene cluster and structure revision of peptide elucidation stereochemistry 27 enduracidin C12 to The enduracidin Asp Orf45 Orf35 N/A C13 biosynthetic gene cluster from 28 friulimicin C13 to Friulimicins: novel Sequencing and Asp or LipA LipD N/A C15 lipopeptide analysis of the Asn antibiotics with biosynthetic peptidoglycan gene cluster of synthesis the lipopeptide inhibiting activity antibiotic from Friulimicin in II. Isolation and structural characterization 29 marinobactin C12 to Membrane affinity synthetase genes have D-OH-Asp not not N/A C16 of the amphiphilic not been identified identified identified marinobactin siderophores 30 polymyxin C7 to CONTRIBUTION Identification of 2,4 not not N/A C9 TO THE a Polymyxin diamino- identified identified ELUCIDATION Synthetase butyric acid OF THE Gene Cluster of STRUCTURE OF POLYMYXIN B1 Heterologous Expression of the Gene in 31 putisolvin C6 Characterization Genetic and Leu not not N/A of two functional identified identified characterization of the gene biosurfactants, cluster directing putisolvin I and the biosynthesis II, which inhibit of putisolvin I biofilm formation and II in and breakdown existing biofilms PCL1445 32 ramoplanin C8 to Studies on the Chemistry and Asn Ramo 26 Ramo 11 N/A C10 biosynthesis of the biology of the lipodepsipeptide ramoplanin antibiotic family of peptide Ramoplanin A2 antibiotics The “fatty acid adding” domain of this synthetase adds both β-hydroxy and “normal” (not β-hydroxy) fatty acids to the amino acid 33 Amphibactin C14 to Structure and synthetase genes have N-acetyl- not not N/A C18 membrane affinity not been identified Hydroxy- identified identified of a suite of Ornithine amphiphilic siderophores produced by a marine bacterium The “fatty acid adding” domain of this synthetase adds β-amine fatty acids to the amino acid 34 iturin C14 to Revised structure MycA Cloning, sequencing, and Asn N/A N/A fenF C17 of mycosubtilin, characterization a peptidolipid antibiotic of the iturin A operon from Example 2
Engineered Peptide Synthetases Comprising or Consisting of Mycosubtilin Module 1 (MycA)
Example 3
Engineered Peptide Synthetases Comprising or Consisting of Daptomycin Synthetase Module 1
Example 4
Additional Genes Useful or Necessary for Some Embodiments
Example 5
FA-Glu Compositions
Example 6
Production of Amphoteric Surfactants
Example 7
Production of Fatty Acids And Fatty Acid Derivatives With Particular Fatty Acid Branching Patterns
Example 8
Production of β-Hydroxy Myristoyl Glycinate by Fermentation
Example 9
Experimental Details:
Control No Acid 1.60% 16.29% 54.78% 26.02% 1.19% 0.12% 439.2 100 uM 1.76% 18.27% 52.08% 26.68% 1.09% 0.12% 397.1 2-methylbutyric 1 mM 1.25% 23.84% 34.54% 39.28% 0.74% 0.35% 443.8 2-methylbutyric 5 mM 0.99% 26.91% 22.05% 49.22% 0.38% 0.46% 409.6 2-methylbutyric 20 mM 0.57% 26.79% 16.49% 55.19% 0.30% 0.65% 333.6 2-methylbutyric 100 uM Isovaleric 1.66% 17.42% 53.04% 26.70% 1.05% 0.12% 451.4 1 mM Isovaleric 1.15% 24.84% 39.84% 33.28% 0.75% 0.15% 437.6 5 mM Isovaleric 0.64% 34.26% 19.87% 44.67% 0.33% 0.22% 434.4 20 mM Isovaleric 0.53% 34.06% 8.55% 56.54% 0.14% 0.19% 338.5 100 uM Isobutyric 1.72% 15.64% 58.19% 23.08% 1.23% 0.13% 457.1 1 mM Isobutyric 1.53% 11.44% 63.98% 21.51% 1.45% 0.10% 470.1 5 mM Isobutyric 1.55% 9.43% 69.63% 17.76% 1.53% 0.09% 433.2 20 mM Isobutyric 1.33% 9.09% 69.83% 17.86% 1.82% 0.07% 434.5 Mutant No Acid no growth observed 100 uM 3.71% 10.41% 76.04% 7.56% 2.20% 0.07% 401.4 2-methylbutyric 1 mM 2.38% 25.73% 32.49% 38.46% 0.57% 0.36% 441.4 2-methylbutyric 5 mM 1.00% 31.76% 10.00% 56.32% 0.21% 0.71% 415.2 2-methylbutyric 20 mM 0.68% 27.28% 6.37% 64.77% 0.17% 0.73% 307.2 2-methylbutyric 100 uM Isovaleric 3.53% 8.30% 78.33% 7.89% 1.93% 0.02% 417.9 1 mM Isovaleric 1.28% 22.86% 36.65% 38.72% 0.43% 0.06% 370.8 5 mM Isovaleric 0.48% 38.41% 11.76% 49.02% 0.20% 0.13% 425.8 20 mM Isovaleric 0.31% 36.41% 4.14% 58.89% 0.09% 0.16% 334.9 100 uM 2.88% 5.96% 84.74% 4.67% 1.72% 0.03% 250.1 Isobutyric 1 mM Isobutyric 2.34% 3.37% 90.10% 2.08% 2.08% 0.02% 420.3 1 mM Isobutyric 1.82% 0.66% 94.03% 1.01% 2.48% 0.01% 433.0 20 mM Isobutyric 1.68% 0.30% 94.50% 0.81% 2.69% 0.02% 390.7 BKD up-U/K-down sequence using restriction sites (SEQ ID NO: 21): AATATCGTATTGAATAGACAGACAGGAGTGAGTCACCAT GGCAACTGAGTATGACGTAGTCATTCTGGGCGGCGGTACCGGCGGTTATG TTGCGGCCATCAGAGCCGCTCAGCTCGGCTTAAAAACAGCCGTTGTGGAA AAGGAAAAACTCGGGGGAACATGTCTGCATAAAGGCTGTATCCCGAGTAA AGCGCTGCTTAGAAGCGCAGAGGTATACCGGACAGCTCGTGAAGCCGATC AATTCGGAGTGGAAACGGCTGGCGTGTCCCTCAACTTTGAAAAAGTGCAG CAGCGTAAGCAAGCCGTTGTTGATAAGCTTGCAGCGGGTGTAAATCATTT AATGAAAAAAGGAAAAATTGACGTGTACACCGGATATGGACGTATCCTTG GACCGTCAATCTTCTCTCCGCTGCCGGGAACAATTTCTGTTGAGCGGGGA AATGGCGAAGAAAATGACATGCTGATCCCGAAACAAGTGATCATTGCAAC AGGATCAAGACCGAGAATGCTTCCGGGTCTTGAAGTGGACGGTAAGTCTG TACTGACTTCAGATGAGGCGCTCCAAATGGAGGAGCTGCCACAGTCAATC ATCATTGTCGGCGGAGGGGTTATCGGTATCGAATGGGCGTCTATGCTTCA TGATTTTGGCGTTAAGGTAACGGTTATTGAATACGCGGATCGCATATTGC CGACTGAAGATCTAGAGATTTCAAAAGAAATGGAAAGTCTTCTTAAGAAA AAAGGCATCCAGTTCATAACAGGGGCAAAAGTGCTGCCTGACACAATGAC AAAAACATCAGACGATATCAGCATACAAGCGGAAAAAGACGGAGAAACCG TTACCTATTCTGCTGAGAAAATGCTTGTTTCCATCGGCAGACAGGCAAAT ATCGAAGGCATCGGCCTAGAGAACACCGATATTGTTACTGAAAATGGCAT GATTTCAGTCAATGAAAGCTGCCAAACGAAGGAATCTCATATTTATGCAA TCGGAGACGTAATCGGTGGCCTGCAGTTAGCTCACGTTGCTTCACATGAG GGAATTATTGCTGTTGAGCATTTTGCAGGTCTCAATCCGCATCCGCTTGA TCCGACGCTTGTGCCGAAGTGCATTTACTCAAGCCCTGAAGCTGCCAGTG TCGGCTTAACCGAAGACGAAGCAAAGGCGAACGGGCATAATGTCAAAATC GGCAAGTTCCCATTTATGGCGATTGGAAAAGCGCTTGTATACGGTGAAAG CGACGGTTTTGTCAAAATCGTGGCTGACCGAGATACAGATGATATTCTCG GCGTTCATATGATTGGCCCGCATGTCACCGACATGATTTCTGAAGCGGGT CTTGCCAAAGTGCTGGACGCAACACCGTGGGAGGTCGGGCAAACGATTCA CCCGCATCCAACGCTTTCTGAAGCAATTGGAGAAGCTGCGCTTGCCGCAG ATGGCAAAGCCATTCATTTTTAAAAGCATAAAGGAGGGGCTTGAATGAGT ACAAACCGACATCAAGCACTAGGGCTGACTGCCAGGAAGGC GGGTTTTTTGACG 1200 1201 ATGTTCTTGAAACTCAATGTCTTTTTTTGTAGAATCAATAGAAGTGTGTA 1250 1251 ATTGTTGATGGGACAATAAAAAAGGAGCTGAAACACAGTATGGGAAAGGT 1300 1301 TTATGTATTTGATCATCCTTTAATTCAGCACAAGCTGACATATATACGGA 1350 1351 ATGAAAATACAGGTACGAAGGATTTTAGAGAGTTAGTAGATGAAGTGGCT 1400 1401 ACACTCATGGCATTTGAAATTACCCGCGATCTTCCTCTGGAAGAAGTGGA 1450 1451 TATCAATACACCGGTTCAGGCTGCGAAATCGAAAGTCATCTCAGGGAAAA 1500 1501 AACTCGGAGTGGTTCCTATCCTCAGAGCAGGATTGGGAATGGTTGACGGC 1550 1551 ATTTTAAAGCTGATTCCTGCGGCAAAAGTGGGACATGTCGGCCTTTACCG 1600 1601 TGATCCAGAAACCTTAAAACCCGTGGAATACTATGTCAAGCTTCCTTCTG 1650 1651 ATGTGGAAGAGCGTGAATTCATCGTGGTTGACCCGATGCTCGCTACAGGC 1700 1701 GGTTCCGCAGTTGAAGCCATTCACAGCCTTAAAAAACGCGGTGCGAAAAA 1750 1751 TATCCGTTTCATGTGTCTTGTAGCAGCGCCGGAGGGTGTGGAAGAATTGC 1800 1801 AGAAGCATCATTCGGACGTTGATATTTACATTGCGGCGCTAGATGAAAAA 1850 1851 TTAAATGAAAAAGGATATATTGTTCCAGGTCTCGGAGATGCGGGTGACCG 1900 1901 CATGTTTGGAACAAAATAAAAAATGAAATCCCCAAAAGGGGGTTTCATTT 1950 1951 TTTTATCCAGTTTTTTGCTATTCGGTGAATCTGTATACAATTATAGGTGA 2000 2001 AAATGTGAACATTCTGGGATCCGATAAACCCAGCGAACCATTTGAGGTGA 2050 2051 TAGGTAAGATTATACCGAGGTATGAAAACGAGAATTGGACCTTTACAGAA 2100 2101 TTACTCTATGAAGCGCCATATTTAAAAAGCTACCAAGACGAAGAGGATGA 2150 2151 AGAGGATGAGGAGGCAGATTGCCTTGAATATATTGACAATACTGATAAGA 2200 2201 TAATATATCTTTTATATAGAAGATATCGCCGTATGTAAGGATTTCAGGGG 2250 2251 GCAAGGCATAGGCAGCGCGCTTATCAATATATCTATAGAATGGGCAAAGC 2300 2301 ATAAAAACTTGCATGGACTAATGCTTGAAACCCAGGACAATAACCTTATA 2350 2351 GCTTGTAAATTCTATCATAATTGTGGTTTCAAAATCGGCTCCGTCGATAC 2400 2401 TATGTTATACGCCAACTTTCAAAACAACTTTGAAAAAGCTGTTTTCTGGT 2450 2451 ATTTAAGGTTTTAGAATGCAAGGAACAGTGAATTGGAGTTCGTCTTGTTA 2500 2501 TAATTAGCTTCTTGGGGTATCTTTAAATACTGTAGAAAAGAGGAAGGAAA 2550 2551 TAATAAATGGCTAAAATGAGAATATCACCGGAATTGAAAAAACTGATCGA 2600 2601 AAAATACCGCTGCGTAAAAGATACGGAAGGAATGTCTCCTGCTAAGGTAT 2650 2651 ATAAGCTGGTGGGAGAAAATGAAAACCTATATTTAAAAATGACGGACAGC 2700 2701 CGGTATAAAGGGACCACCTATGATGTGGAACGGGAAAAGGACATGATGCT 2750 2751 ATGGCTGGAAGGAAAGCTGCCTGTTCCAAAGGTCCTGCACTTTGAACGGC 2800 2801 ATGATGGCTGGAGCAATCTGCTCATGAGTGAGGCCGATGGCGTCCTTTGC 2850 2851 TCGGAAGAGTATGAAGATGAACAAAGCCCTGAAAAGATTATCGAGCTGTA 2900 2901 TGCGGAGTGCATCAGGCTCTTTCACTCCATCGACATATCGGATTGTCCCT 2950 2951 ATACGAATAGCTTAGACAGCCGCTTAGCCGAATTGGATTACTTACTGAAT 3000 3001 AACGATCTGGCCGATGTGGATTGCGAAAACTGGGAAGAAGACACTCCATT 3050 3051 TAAAGATCCGCGCGAGCTGTATGATTTTTTAAAGACGGAAAAGCCCGAAG 3100 3101 AGGAACTTGTCTTTTCCCACGGCGACCTGGGAGACAGCAACATCTTTGTG 3150 3151 AAAGATGGCAAAGTAAGTGGCTTTATTGATCTTGGGAGAAGCGGCAGGGC 3200 3201 GGACAAGTGGTATGACATTGCCTTCTGCGTCCGGTCGATCAGGGAGGATA 3250 3251 TCGGGGAAGAACAGTATGTCGAGCTATTTTTTGACTTACTGGGGATCAAG 3300 3301 CCTGATTGGGAGAAAATAAAATATTATATTTTACTGGATGAATTGTTTTA 3350 3351 GTACCTAGGCCTTTG AGGCAGACGTAAGGGAGGAT ACAATCATGGCAATTGAACAAATGACGATGCCGCAGCTTGGAGAAAGCGT AACAGAGGGGACGATCAGCAAATGGCTTGTCGCCCCCGGTGATAAAGTGA ACAAATACGATCCGATCGCGGAAGTCATGACAGATAAGGTAAATGCAGAG GTTCCGTCTTCTTTTACTGGTACGATAACAGAGCTTGTGGGAGAAGAAGG CCAAACCCTGCAAGTCGGAGAAATGATTTGCAAAATTGAAACAGAAGGCG CGAATCCGGCTGAACAAAAACAAGAACAGCCAGCAGCATCAGAAGCCGCT GAGAACCCTGTTGCAAAAAGTGCTGGAGCAGCCGATCAGCCCAATAAAAA GCGCTACTCGCCAGCTGTTCTCCGTTTGGCCGGAGAGCACGGCATTGACC TCGATCAAGTGACAGGAACTGGTGCCGGCGGGCGCATCACACGAAAAGAT ATTCAGCGCTTAATTGAAACAGGCGGCGTGCAAGAACAGAATCCTGAGGA GCTGAAAACAGCAGCTCCTGCACCGAAGTCTGCATCAAAACCTGAGCCAA AAGAAGAGACGTCATATCCTGCGTCTGCAGCCGGTGATAAAGAAATCCCT GTCACAGGTGTAAGAAAAGCAATTGCTTCCAATATGAAGCGAAGCAAAAC AGAAATTCCGCATGCTTGGACGATGATGGAAGTCGACGTCACAAATATGG TTGCATATCGCAACAGTATAAAAGATTCTTTTAAGAAGACAGAAGGCTTT AATTTAACGTTCTTCGCCTTTTTTGTAAAAGCGGTCGCTCAGGCGTTAAA AGAATTCCCGCAAATGAATAGCATGTGGGCGGGGGACAAAATTATTCAGA AAAAGGATATCAATATTTCAATTGCAGTTGCCACAGAGGATTCTTTATTT GTTCCGGTGATTAAAAACGCTGATGAAAAAACAATTAAAGGCATTGCGAA AGACATTACCGGCCTAGCTAAAAAAGTAAGAGACGGAAAACTCACTGCAG ATGACATGCAGGGAGGCACGTTTACCGTCAACAACACAGGTTCGTTCGGG TCTGTTCAGTCGATGGGCATTATCAACTACCCTCAGGCTGCGATTCTTCA AGTAGAATCCATCGTCAAACGCCCGGTTGTCATGGACAATGGCATGATTG CTGTCAGAGACATGGTTAATCTGTGCCTGTCATTAGATCACAGAGTGCTT GACGGTCTCGTGTGCGGACGATTCCTCGGACGAGTGAAACAAATTTTAGA ATCGATTGACGAGAAGACATCTGTTTACTAAATAAGCAAAAAGAGCATTT TTTGAAGTTTTGTTTCAAAAAATGCTCTTTTTCTATGCTTTATTATTCAG CGATCCGTATTTTCATTTCGACTCGATATTCTTCTTGTTTTTTCGGGGAG TAATGAATCGGTATGATTAACTCGTATACATCACTGACAACTGTTAATTG GCGGTCCGCGATATATTTGATAAGCTTCTGTAAGTTGAGAAAATAATGTT CAGGCGAAAAATTATACGCGATACACGCATACCTCCCTTTAGGGATCGTT GTGATTTCCATATCCGGCGTAATTGATGAAATCTGTTTATTCGTCAATAC AGGTGTGAAAATATGACGGTAAGTCATTTCATCAATGCTGGTGTAGGGCT GAAAAGAGAAAGTAGCGCCGTAGCTATTGTTCGTAAATCCATCTGCTGAC TCGATAAATTTTTTTAATTTGCTGTAGGAGGCGTTGAGCACGTTTTCAGG CCCGATTCCTTCTGCCTCTGTCTGAATGATCCGTATTTCTTCTTCATCTA AAACAAACACCTCACCGAGCGCGGGATATTCCATCTGCCGTTTCATCCGC TTTTTCACCAATGAAATGGTTTGCTCCAGGGCTGATAAAAAGTCTAATTT CTCCCTGATTTGCCTCTCCTGCTCTGTATAAAAAGCAAACAGTTCTTCCA TCTCTAAGTCCTGTGCTTTTTTCATCTCTTCTAAAGGTGTGCCGATATAT TTCAATGATTTGATCAAATCCAGATGAATGAGCTGAGAATCTGTATAATA GCGGTAGCTGGTATCCGGGTCGACGTAGGCTGGTTTAAATAAATCAATTT TATCGTAATAACGGAGCGCTTTTATCGACACGTTTGCCAGTTTTGATACT TCCCCAATTGAGTAATACGATTCCTTCATGCCATCACTCCTTCTATCATC AGTATAAAGAAGAAGCGCATTCTTTGCAGTACACAAAGAATGCGCTTCTT ATCACGTGCTGGCTTTAAGATGTGCAGGCGCTTTCCAAGCAATGGTCAGT GCAATCCCTATGGCTAAGGTGACCGTTGCAAAGTAGAAAGGATAGTTTAC ATCTATATCGAACAGCATTCCGCCGATAATAGGCCCGAATACATTGCCGA TACTTGTAAACATTGAATTCATACCGCCGGCAAACCCCTGTTCATTTCCC GCAATCTTTGACAGGTAAGTCGTTACCGCAGGCCGCATGAGATCAAATCC GACAAATACGGTGACTGTCACCAGCAGAATCGCAACATATGAATGTACCG TTGTCAGCAAGAATACCAGACTCGTCGAGAGAATTAAGCTGTACCGAATT AAATGAATTTCGCCAAACCATCTTGTGAAGCGGTCGAATAAGACGACTTG CGTAATGGCGCCAACAATCGCTCCTCCTGTAATCATAATGGCAATGTCGC TGGCCGTAAATCCGAATTTATGATCCACGAATAATGCAAATAAAGAT (SEQ ID NO: 21): Example 10
RapC 34.1% 25.9% 17.6% plip 21.2% 21.2% yqxM 19.7% 19.7% eps 19.1% 19.1% degU 13.3% 18.0% 22.8% yngF 14.5% 14.5% RocG 12.0% 12.0% yhaR 13.3% 11.5% 9.6% mmgB 11.4% 11.4% abh 6.2% 9.7% 16.0% 6.9% maf 15.6% 8.0% 0.5% spoIIAC 7.8% 7.8% fapR 3.3% 4.8% 6.3% spxA 2.7% 2.7% Knockin FA-Glu Increase relative to parental strain eps−>pGroEL-lcfA 11.5% amyE−>Pspac-srfD 12.7% amyE->PgroEL-sfp-srfD 44.3% phe+ 79.2% NOTE: All Single knockouts are in the 43074-B2 background that contains 1) plip KO, 2) phe+, 3)amyE−>PgroEL-sfp-srfD and 4) spoIIAC KO REFERENCES
Proteins for synthesis of 2,3-diaminopropionic acid sbnA >sp|Q7A1Z6|SBNA_STAAW Probable siderophore biosynthesis protein SbnA OS = MIEKSQACHDSLLDSVGQIPMVQLHQLFPKHEVFAKLEYMNPGGSMKDRPAKYIIEHGIK HGLITENTHLIESTSGNLGIALAMIAKIKGLKLICVVDPKISPINLKIIKSYGANVEMVE EPDAHGGYLMTRIAKVQELLATIDDAYWINQYANELNWQSHYHGAGTEIVETIKQPIDYF VAPVSTIGSIMGMSRKIKEVHPNAQIVAVDAKGSVIFGDKPINRELPGIGASRVPEILNR SEINQVIHVDDYQSALGCRKLIDYEGIFAGGSTGSIIAAIEQLITSIEEGATIVTILPDR GDRYLDLVYSDTWLEKMKSRQGVKSE (SEQ ID NO: 22) sbnB >tr|Q6X7U6|Q6X7U6_STAAU SbnB OS = MNREMLYLNRSDIEQAGGNHSQVYVDALTEALTAHAHNDFVQPLKPYLRQDPENGHIADR IIAMPSHIGGEHAISGIKWIGSKHDNPSKRNMERASGVIILNDPETNYPIAVMEASLISS MRTAAVSVIAAKHLAKKGFKDLTIIGCGLIGDKQLQSMLEQFDHIERVFVYDQFSEACAR FVDRWQQQRPEINFIATENAKEAVSNGEVVITCTVIDQPYIEYDWLQKGAFISNISIMDV HKEVFIKADKVVVDDWSQCNREKKTINQLVLEGKFSKEALHAELGQLVTGDIPGREDDDE IILLNPMGMAIEDISSAYFIYQQAQQQNIGTTLNLY (SEQ ID NO: 23) ZmaU >gi|223047493|gb|ACM79820.1| ZmaU [ MSFRYKFYLKYIRKNIYTYLSLIIFLDFNQERKQIMLKKLESLERVIGNIPMIKLEHEKINLYAKLEYYN LMNSVKVRAAYHILKSAINRGEVNENSTIIESSSGNFAVALATLCRYIGLKFIPVIDPNINDSYENFLRA TSYQVANVDERDEIGGYLLTRLNKVKELLNTIPNAYWINQYNNADNFEAHYQGIGGEISNDFKQLDYAFI GVSIGGTIAGVSTRLKEKFPNIKIIAVDSQGSIIFGDKPRKRYIPGIGASMIPGMVKKALIDDVMIVPEV HTVAGCYELFNKHAIFAGGSSGTSYYAIQKYFENRDVQNTPNVVFLCPDNGQAYISTIYNVEWVEWLNIQ KSVEDQLVSL (SEQ ID NO: 24) ZmaV >gi|223047494|gb|ACM79821.1| ZmaV [ MMYLNIKHENEMGVNWEETINVISKAVKSLDSEDFSQPIKPYLRFDDPANRIIAMPAYIGGEFKVSGIKW IASFPKNIEKGIQRAHSVTILNDAMIGKPFATLNTAMVSVIRTASVTGLMIREFAKLRDLNNVKVGIIGF GPIGQMHLKMVTALLGDKIEGVYLYDINGIKDELIPEEIYSKTQKVNAYEEAYNDADIFITCTVSAEGYI DKKPKDGALLLNVSLRDFKPDILEYTKSLVVDNWEEVCREKTDVERMHLERGLQKEDIVSIADVVIRGAL QNFPYDKAILFNPMGMAIFDVAIAAYYYQRARENEMGVLLED (SEQ ID NO: 25) Methyltrasferases >gnl|BSUB|BSU25450-MONOMER ribosomal protein L11 methyltransferase (complement(2624760..2623825)) MKWSELSIHT THEAVEPISN ILHEAGASGV VIEDPLDLIK ERENVYGEIY QLDPNDYPDE GVIVKAYLPV NSFLGETVDG IKETINNLLL YNIDLGRNHI TISEVNEEEW ATAWKKYYHP VKISEKFTIV PTWEEYTPVH TDELIIEMDP GMAFGTGTHP TIVLCIQALE RFVQKGDKVI DVGTGSGILS IAAAMLEAES VHAYDLDPVA VESARLNLKL NKVSDIAQVK QNNLLDGIEG EHDVIVANIL AEVILRFTSQ AYSLLKEGGH FITSGIIGHK KQEVKEALEQ AGFTIVEILS MEDWVSIIAK K (SEQ ID NO: 26) >gnl|ECOLI|EG11497-MONOMER methyltransferase for 50S ribosomal subunit protein L11 3407092..3407973 MPWIQLKLNT TGANAEDLSD ALMEAGAVSI TFQDTHDTPV FEPLPGETRL WGDTDVIGLF DAETDMNDVV AILENHPLLG AGFAHKIEQL EDKDWEREWM DNFHPMRFGE RLWICPSWRD VPDENAVNVM LDPGLAFGTG THPTTSLCLQ WLDSLDLTGK TVIDFGCGSG ILAIAALKLG AAKAIGIDID PQAIQASRDN AERNGVSDRL ELYLPKDQPE EMKADVVVAN ILAGPLRELA PLISVLPVSG GLLGLSGILA SQAESVCEAY ADSFALDPVV EKEEWCRITG RKN (SEQ ID NO: 27) cypemycin methyltrasferase >sp|E5KIC0|CYPM_STRSQ Cypemycin methyltransferase OS = PE = 1 SV = 1 MSDPSVYDETAIEAYDLVSSMLSPGAGLVAWVSSHRPLDGRTVLDLGCGTGVSSFALAEA GARVVAVDASRPSLDMLEKKRLDRDVEAVEGDFRDLTFDSTFDVVTMSRNTFFLAQEQEE KIALLRGIARHLKPGGAAFLDCTDPAEFQRAGGDARSVTYPLGRDRMVTVTQTADRAGQQ ILSIFLVQGATTLTAFHEQATWATLAEIRLMARIAGLEVTGVDGSYAGEPYTARSREMLV VLERQ (SEQ ID NO: 28) >gi|182440155|ref|YP_001827874.1| methyltransferase [ subsp. MSEPTVYDAAAIDAYDLISSMLSPGAGLAAWVSSHRPLAGRTVLDLGAGTGVSSFALADAGAQVVAVDAS RPSLDLLESRRGERKVDTVEADFRDLRLDSAFDVVTMSKNTFFLAQSHDEKIELLRAIGRHLKPGGAVFL DCTDPVEYLRADGAAHTVTYPLGREQMVTITQNADRATQAIMSIFMVQSASTLTSFHEMATWASLPEIRL LARAAGLEVTAVDGSYAGDAYTARSREMLVVLEAK (SEQ ID NO: 29) Proteins for initiation of straight chain fatty acid synthesis fadH family members for initiation of straight chain fatty acid synthesis M77744 >M77744_1(M77744|pid:none) synthase III (fabH) gene, complete cds. MYTKIIGTGSYLPEQVRTNADLEKMVDTSDEWIVTRTGIRERHIAAPNETVSTMGFEAAT RAIEMAGIEKDQIGLIVVATTSATHAFPSAACQIQSMLGIKGCPAFDVAAACAGFTYALS VADQYVKSGAVKYALVVGSDVLARTCDPTDRGTIIIFGDGAGAAVLAASEEPGIISTHLH ADGSYGELLTLPNADRVNPENSIHLTMAGNEVEKVAVTELAHIVDETLAANNLDRSQLDW LVPHQANLRIISATAKKLGMSMDNVVVTLDRHGNTSAASVPCALDEAVRDGRIKPGQLVL LEAFGGGFTWGSALVRF (SEQ ID NO: 30) AF384041 >sp|P0A3C5|FABH_STRPN 3-oxoacyl-[acyl-carrier-protein] synthase 3 OS = PE = 3 SV = 1 MAFAKISQVAHYVPEQVVINHDLAQIMDINDEWISSRTGIRQRHISRTESTSDLATEVAK KLMAKAGITGEELDFIILATITPDSMMPSTAARVQANIGANKAFAFDLTAACSGFVFALS TAEKFIASGRFQKGLVIGSETLSKAVDWSDRSTAVLFGDGAGGVLLEASEQEHFLAESLN SDGSRSECLTYGHSGLHSPFSDQESADSFLKMDGRIVFDFAIRDVAKSIKQTIDESPIEV IDLDYLLLHQANDRILDKMARKIGVDRAKLPANMMEYGNISAASIPILLSECVEQGLIPL DGSQTVLLSGFGGGLIWGILILTI (SEQ ID NO: 31) fadY family members for initiation of straight chain fatty acid synthesis PA5174 >tr|Q9HU15|Q9HU15_PSEAE Probable beta-ketoacyl synthase OS = SV = 1 MSRLPVIVGFGGYNAAGRSSFHHGFRRMVIESMDPQARQETLAGLAVMMKLVKAEGGRYL AEDGTPLSPEDIERRYAERIFASTLVRRIEPQYLDPDAVHWHKVLELSPAEGQALTFKAS PKQLPEPLPANWSIAPAEDGEVLVSIHERCEFKVDSYRALTVKSAGQLPTGFEPGELYNS RFHPRGLQMSVVAATDAIRSTGIDWKTIVDNVQPDEIAVFSGSIMSQLDDNGFGGLMQSR LKGHRVSAKQLPLGENSMPTDFINAYVLGSVGMTGSITGACATFLYNLQKGIDVITSGQA RVVIVGNSEAPILPECIEGYSAMGALATEEGLRLIEGRDDVDFRRASRPFGENCGFTLAE SSQYVVLMDDELALRLGADIHGAVTDVFINADGFKKSISAPGPGNYLIVAKAVASAVQIV GLDTVRHASFVHAHGSSTPANRVIESEILDRVASAFGIDGWPVTAVKAYVGHSLATASAD QLISALGTFKYGILPGIKTIDKVADDVHQQRLSISNRDMRQDKPLEVCFINSKGFGGNNA SGVVLSPRIAEKMLRKRHGQAAFAAYVEKREQTRAAARAYDQRALQGDLEIIYNFGQDLI DEHAIEVSAEQVTVPGFSQPLVYKKDARFSDMLD (SEQ ID NO: 32) Pmen_0396 >pmy:Pmen 0396 pyrC; dihydroorotase (EC:3.5.2.3); K01465 dihydroorotase [EC:3.5.2.3] (A) MRTAILGARVIDPASGLDQVTDLYIDGTKLVAFGQAPAGFTADKTLNAQGLIAAPGLVDL SVALREPGYSRKGSIATETLAAAAGGVTSLCCPPLTKPVLDTPAVAELILDRAREAGHTK VFPIGALSKGLAGEQLAELVALRDAGCVAFGNGLDNFRSARTLRRALEYAATFDLQVIFH SQDFDLAEGGLAHEGPTASFLGLAGIPETAETVALARDLLLVEQSGVRAHFSQITSARGA ELIANAQARGLPVTADVALYQLILTDEALIDFSSLYHVQPPLRSRADRDGLREAVKAGVI SAIASHHQPHERDAKLAPFAATEPGISSVQLQLPLAMSLVQDGLLDLPTLLARLSSGPAA ALRLPAGTLSVGGAADIVLFDAQASTVAGEQWYSKGSNCPFIGHCLPGAVRYTLVDGHIS YQS (SEQ ID NO: 33) MDS_0454 >pmk:MDS_0454 beta-ketoacyl synthase (A) MSRLPVIVGFGGYNAAGRSSFHHGFRRTVQESLEPQARQETLAGLAQMMKLVRVVDGQYQ DQDGQPLSLADIESRYAKQILAGTLVRRIEKQHLDPDAAHWQKSIGVTPADGTSLSFLTQ RKQLPEPLPANWSIEELEGNEVRVTLHDSCEFKVDSYRPLAVKSAGQLPTGFEPSELYNA RFHPRGLAMTVVGVTDALRSVGIDWQRIVQHVAPDEIAVFASCIMSQLDENGFGGMMQSR LKGGRVTAKQLALGLNTMPADFINAYVLGSVGTTGSITGACATFLYNLQKGIEQIASGKA RVVIVGSSEAPINQECIEGYGAMGALATEEGLRQIEGKSEVDFRRASRPFGDNCGFTLAE ACQFVVLMDDELALELGADIHGAVPDVFINADGFKKSISAPGPGNYLTVAKAVASAVQLL GLDAVRNRSFVHAHGSSTPANRVTESEILDRVAAAFGIEQWPVTAVKAFVGHSLATASGD QVIGALGAFKYGIVPGIKTIDAVAGDVHQHHLSLSTEDRKVGDQALDVAFINSKGFGGNN ASALVLAPHVTERMLRKRHGQAAFDAYLARREGTRAAAAAYDQQALQGKLDIIYNFGNDM IDDQAISITTEEVKVPGFDQPLVFRKDARYSDMLD (SEQ ID NO: 34) Psefu_4068 >tr|F6AJT1|F6AJT1_PSEF1 Beta-ketoacyl synthase OS = 12-X) GN = Psefu_4068 PE = 3 SV = 1 MKSRLPVIVGFGGYNAAGRSSFHHGFRRIVIESLDEQARQETLIGLAVMTKLVRVVDGRY QSQDGEALSPADIERRYGAQILASTLVRRIEKQHLDPDAAHWHKSIAVGGEAGSLIFVSS RKQLPEPLPANWTVEELGGNDVRVILHDSCEEKVDSYRALPVKSAGQLPTGFEPGELYNS RFHPRGLQMAVVGVIDALRATGVPWQTIVDHVAPDEIAVFAGSIMSQLDENGFGGLMQSR LKGHRVSSKQLALGLNIMPADFINAYVLGSVGITGSVTGACATFLYNLQKGIEQINAGKA RVVIVGNSEAPINAECIEGYGAMGALATEDGLRLIEGKDDVDFRRASRPFGENCGFILSE ACQFVVLMDDELALQLGADIHGAATDVFINADGFKKSISAPGPGNYLIVAKAVAAATQLV GIDAVRRRSFVHAHGSSTPANRVIESELLDRVAAAFAIDSWPVAAVKAFVGHSLATASGD QVISALGTFKYGIIPGIKTIDEVAADVHQQHLSISNVDRHDQRMDVCFINSKGFGGNNAS AVVLAPHVVERMLRKRHGEAAFSAYQQRREQTRANAQAYDEQATKGQLEIIYNFGNDLID DTEIAIDDAQIKVPGFAQPLLYKQDDRYSDMLD (SEQ ID NO: 35) Avin_05510 >avn:Avin_05510 beta-ketoacyl synthase (A) MSRLPVIVGFGGYNSAGRSSFHHGFRRTVIESLTPQARQETLAGLAVMMKLVSVVDGQYR DSDGSTLTPAEIERRHGERILAATLIRRIERQYFDVDATHWHKSLTLSGEDQPLHFTTSA KQLPEPLPANWSVEPLEEHQVRVTIHGSCEFKVDSYREMPVKSAGQLPTGFEPGELYNSR FHPRGLQLSVVAATDALRSTGIDWQTILDHVQPDEVAVFSGSIMSQLDENGYGGLLQSRL KGHRVSSKQLPLGFNSMPTDFINAYVLGSVGSTGSITGACATFLYNLQKGIDVITSGQAR VVVAGNAEAPITPEIVEGYAAMGALATEEGLRHIEGRDQVDFRRASRPFGANCGFTLAEA AQYVVLMDDSLALELGADIHGAVPDVFVNADGFKKSISAPGPGNYLTVAKAVASAMQLVG EDGVRQRSFIHAHGSSTPANRVTESELLDRVAGAFGIADWPVAAVKAYVGHSLATASGDQ LISALGTFKYGLLPGIKTVDRFADDVHDQHLRLSMRDVRRDDLDVCFINSKGFGGNNATG VLLSPRVTEKMLRKRHGEAAFADYRSRREATREAARRYDEQVLQGRFDILYNFGQDMIDE HAIEVNEEGVKVPGFKQAIRFRKDERFGDMLD (SEQ ID NO: 36) PSPA7_5914 >pap:PSPA7_5914 putative beta-ketoacyl synthase (A) MSRLPVIVGFGGYNAAGRSSFHHGFRRMVIESMDPQARQETLAGLAVMMKLVKAEGGRYL AEDGTPLSPEDIERRYAERIFASTLVRRIEPQYLDPDAVHWHKVLEATPAEGQALTFKAS PKQLPEPLPGNWSVTPAADGEVLVSIHERCEFKVDSYRPLTVKSAGQLPTGFEPGELYNS RFHPRGLQMSVVAATDAIRSTGIDWQTIVDNVQPDEIAVFSGSIMSQLDDNGFGGLMQSR LKGHRVSAKQLPLGFNSMPTDFINAYVLGSVGMTGSITGACATFLYNLQKGIDVITSGQA RVVIVGNSEAPILPECIEGYSAMGALATEEGLRLIEGRDEVDFRRASRPFGENCGFTLAE SSQYVVLMDDELALRLGADIHGAVTDVFINADGFKKSISAPGPGNYLTVAKAVASAVQIV GLDTVRHASFVHAHGSSTPANRVTESEILDRVASAFGIDGWPVTAVKAYVGHSLATASAD QLISALGTFKYGILPGIKTIDKVADDVHQQRLSISNRDVRQDKPLEVCFINSKGFGGNNA SGVVLSPRIAEKMLRRRHGEAAFAAYVEKREQTRGAARAYDQRALQGDLEIIYNFGQDLI DEQAIEVSAEQVTVPGFSQPLVYKKDARFSDMLD (SEQ ID NO: 37) PLES_55661 >pag:PLES_55661 putative beta-ketoacyl synthase (A) MYRLPVIVGFGGYNAAGRSSFHHGFRRMVIESMDPQARQETLAGLAVMMKLVKAEGGRYL AEDGTPLSPEDIERRYAERIFASTLVRRIEPQYLDPDAVHWHKVLELSPAEGQALTFKAS PKQLPEPLPANWTIAPAEDGEVLVSIHERCEFKVDSYRALTVKSAGQLPTGFEPGELYNS RFHPRGLQMSVVAATDAIRSTGIDWKTIVDNVQPDEIAVFSGSIMSQLDDNGFGGLMQSR LKGHRVSAKQLPLGFNSMPTDFINAYVLGSVGMTGSITGACATFLYNLQKGIDVITSGQA RVVIVGNSEAPILPECIEGYSAMGALATEEGLRLIEGRDDVDFRRASRPFGENCGFTLAE SSQYVVLMDDELALRLGADIHGAVTDVFINADGFKKSISAPGPGNYLTVAKAVASAVQIV GLDTVRHASFVHAHGSSTPANRVTESEILDRVASAFGIDGWPVTAVKAYVGHSLATASAD QLISALGTFKYGILPGIKTIDKVADDVHQQRLSISNRDMRQDKPLEVCFINSKGFGGNNA SGVVLSPRIAEKMLRKRHGQAAFAAYVEKREQTRAAARAYDQRALQGDLEIIYNFGQDLI DEHAIEVSAEQVTVPGFSQPLVYKKDARFSDMLD (SEQ ID NO: 38) PA14_68360 >tr|Q02EJ1|Q02EJ1_PSEAB Putative beta-ketoacyl synthase OS = MSRLPVIVGFGGYNAAGRSSFHHGFRRMVIESMDPQARQETLAGLAVMMKLVKAEGGRYL AEDGTPLSPEDIERRYAERIFASTLVRRIEPRYLDPDAVHWHKVLELSPAEGQALTFKAS PKQLPEPLPANWSIAPAEDGEVLVSIHERCEFKVDSYRALTVKSAGQLPTGFEPGELYNS RFHPRGLQMSVVAATDAIRSTGIDWKTIVDNVQPDEIAVFSGSIMSQLDDNGFGGLMQSR LKGHRVSAKQLPLGENSMPTDFINAYVLGSVGMTGSITGACATFLYNLQKGIDVITSGQA RVVIVGNSEAPILPECIEGYSAMGALATEEGLRLIEGRDDVDFRRASRPFGENCGFTLAE SSQYVVLMDDELALRLGADIHGAVTDVFINADGFKKSISAPGPGNYLIVAKAVASAVQIV GLDTVRHASFVHAHGSSTPANRVIESEILDRVASAFGIDGWPVTAVKAYVGHSLATASAD QLISALGTFKYGILPGIKTIDKVADDVHQQRLSISNRDMRQDKPLEVCFINSKGFGGNNA SGVVLSPRIAEKMLRKRHGQAAFAAYVEKREQTRAAARAYDQRALRGDLEIIYNFGQDLI DEHAIEVSAEQVTVPGFSQPLVYKKDARFSDMLD (SEQ ID NO: 39) fabHA promoter ACGCCTCCTTTCCATATACCATACTCTATGAGTAAGATGAACTGATAGTTTAGACGAATATATTGCCATGTGAAAAA AAATAGGATAGAATTAGTACCTGATACTAATAATTGATCACAACCTGATTGATCTTCTAAATTTAAGATATAAAGGA GTCTTCCCTA (SEQ ID NO: 40) Proteins that prefer to initiation fatty acid synthesis using short straight chain starters fabHA >gnl|BSUB|BSU11330-MONOMER beta-ketoacyl-acyl carrier protein synthase III 1208222..1209160 MKAGILGVGR YIPEKVLTNH DLEKMVETSD EWIRTRTGIE ERRIAADDVF SSHMAVAAAK NALEQAEVAA EDLDMILVAT VTPDQSFPTV SCMIQEQLGA KKACAMDISA ACAGFMYGVV TGKQFIESGT YKHVLVVGVE KLSSITDWED RNTAVLFGDG AGAAVVGPVS DDRGILSFEL GADGTGGQHL YLNEKRHTIM NGREVFKFAV RQMGESCVNV IEKAGLSKED VDFLIPHQAN IRIMEAARER LELPVEKMSK TVHKYGNTSA ASIPISLVEE LEAGKIKDGD VVVMVGFGGG LTWGAIAIRW GR (SEQ ID NO: 41) fabHB >gnl|BSUB|BSU10170-MONOMER beta-ketoacyl-acyl carrier protein synthase III (complement(1093747..1092770)) MSKAKITAIG TYAPSRRLTN ADLEKIVDTS DEWIVQRTGM RERRIADEHQ FTSDLCIEAV KNLKSRYKGT LDDVDMILVA TTTSDYAFPS TACRVQEYFG WESTGALDIN ATCAGLTYGL HLANGLITSG LHQKILVIAG ETLSKVTDYT DRTTCVLFGD AAGALLVERD EETPGFLASV QGTSGNGGDI LYRAGLRNEI NGVQLVGSGK MVQNGREVYK WAARTVPGEF ERLLHKAGLS SDDLDWFVPH SANLRMIESI CEKTPFPIEK TLTSVEHYGN TSSVSIVLAL DLAVKAGKLK KDQIVLLFGF GGGLTYTGLL IKWGM (SEQ ID NO: 42) Desaturase enzymes EF617339 >gi|148791377|gb|ABR12480.1| D9-fatty acid desaturase [ MIAKTAMGLPLKGLRLAIKSSDILIQTAGTQALRLKTWYEEGKANEAASEQPTATSNVNELSPANDDTSI NTKTSASTSDNNKTLSTEKPIDIRELEFKKAPINWIPATILITTPIAAAVITPWYLFTHQVSAPVWGVFG AFMVWTGISITAGYHRLLAHRAYKAHPIVKNFLLLGSTLAVQGSAFDWVSGHRSHHRHVDDRMDDPYSAK RGFFFSHIGWMLKNYPSGKFDYKNIPDLTKDRTLQIQHKYYGLWVLAANVGLVAAIGWLIGDVWGTLVLA GLLRLVLTHHFTFFINSLCHMFGSRPYTDTNTARDNFFLALFTWGEGYHNYHHFFQYDYRNGVKWWQYDP TKWLIAGLSKVGLTTELRTIDDTTIKHAEVQMQFKKAQQQIDTVNAGGLDIPHAMKTFQDRIKFEFEAFT QTVEEWQALKAKAIEMKKTEFADRLHEVDDKLKHEYANIEQKIHEHNDNLKVAFRSIGHNSKAA (SEQ ID NO: 43) AB015611 >tr|O94747|O94747_MORAP Delta-9 fatty acid desaturase OS = PE = 2 SV = 1 MATPLPPSFVVPATQTETRRDPLQHEELPPLEPEKITIYNIWRYLDYKHVVGLGLTPLIA LYGLLTTEIQTKTLIWSITYYYATGLGITAGYHRLWAHRAYNAGPAMSFVLALLGAGAVE GSIKWWSRGHRAHHRWTDTEKDPYSAHRGLFFSHIGWMLIKRPGWKIGHADVDDLNKSKL VQWQHKNYLPLVLIMGVVEPTLVAGLGWGDWRGGYFYAAILRLVFVHHATFCVNSLAHWL GDGPFDDRHSPRDHFITAFVTLGEGYHNFHHQFPQDYRNAIRFYQYDPTKWVIALCAFFG LASHLKTFPENEVRKGQLQMIEKRVLEKKTKLQWGTPIADLPILSFEDYQHACKNDNKKW ILLEGVVYDVADFMSEHPGGEKYIKMGVGKDMTAAFNGGMYDHSNAARNLLSLMRVAVVE YGGEVEAQKKNPSMPIYGTDHAKAE (SEQ ID NO: 44) AF037430 >sp|O34653|DES_BACSU Fatty acid desaturase OS = GN = des PE = 2 SV = 1 MTEQTIAHKQKQLTKQVAAFAQPETKNSLIQLLNTFIPFFGLWFLAYLSLDVSYLLTLAL TVIAAGFLTRIFIIFHDCCHQSFFKQKRYNHILGFLTGVLTLFPYLQWQHSHSIHHATSS NLDKRGTGDIWMLTVNEYKAASRRTKLAYRLYRNPFIMFILGPIYVFLITNRENKKGARR KERVNTYLTNLAIVALAAACCLIFGWQSFLLVQGPIFLISGSIGVWLFYVQHTFEDSYFE ADENWSYVQAAVEGSSFYKLPKLLQWLTGNIGYHHVHHLSPKVPNYKLEVAHEHHEPLKN VPTITLKTSLQSLAFRLWDEDNKQFVSFRAIKHIPVSLPPDSPEKQKLRKNA (SEQ ID NO: 45) Regulatory factors DesK >gnl|BSUB|BSU19190-MONOMER DesK two-component sensory histidine kinase 2090574..2091686 MIKNHFTFQK LNGITPYIWT IFFILPFYFI WKSSSTFVII VGIILTLLFF SVYRFAFVSK GWTIYLWGFL LIGISTASIT LFSYIYFAFF IAYFIGNIKE RVPFHILYYV HLISAAVAAN FSLVLKKEFF LTQIPFVVIT LISAILLPFS IKSRKERERL EEKLEDANER IAELVKLEER QRIARDLHDT LGQKLSLIGL KSDLARKLIY KDPEQAAREL KSVQQTARTS LNEVRKIVSS MKGIRLKDEL INIKQILEAA DIMFIYEEEK WPENISLLNE NILSMCLKEA VTNVVKHSQA KTCRVDIQQL WKEVVITVSD DGTFKGEENS FSKGHGLLGM RERLEFANGS LHIDTENGTK LTMAIPNNSK (SEQ ID NO: 46) Peptide synthetase modules srfAA module 1 (condensation domain, adenylation domain, thiolation domain, it is glutamate specific) MEITFYPLIDAQKRIWYTEKFYPHISISNLAGIGKLVSADAIDYVLVEQAIQEFIRRNDA MRLRLRLDENGEPVQYISEYRPVDIKHIDTTEDPNAIEFISQWSREETKKPLPLYDCDLF RFSLFTIKENEVWFYANVHHVISDGISMNILGNAIMHIYLELASGSETKEGISHSFIDHV LSEQEYAQSKRFEKDKAFWNKQFESVPELVSLKRNASAGGSLDAERFSKDVPEALHQQIL SECEANKVSVLSVFQSLLAAYLYRVSGQNDVVIGTFMGNRINAKEKQMLGMFVSTVPLRT NIDGGQAFSEFVKDRMKDLMKTLRHQKYPYNLLINDLRETKSSLIKLFTVSLEYQVMQWQ KEEDLAFLTEPIFSGSGLNDVSIHVKDRWDIGKLTIDFDYRIDLFSREEINMICERMITM LENALTHPEHTIDELTLISDAEKEKLLARAGGKSVSYRKDMTIPELFQEKAELLSDHPAV VFEDRILSYRILHEQSARIANVLKQKGVGPDSPVAVLIERSERMITAIMGILKAGGAYVP IDPGFPAERIQYILEDCGADFILTESKVAAPEADAELIDLDQAIEEGAEESLNADVNARN LAYIIYISGTTGRPKGVMIEHRQVHHLVESLQQTIYQSGSQTLRMALLAPFHFDASVKQI FASLLLGQTLYIVPKKTVINGAALTAYYRKNSIEATDGIPAHLQMLAAAGDFEGLKLKHM LIGGEGLSSVVADKLLKLFKEAGTAPRLINVYGPTETCVDASVHPVIPENAVQSAYVPIG KALGNNRLYILDQKGRLQPEGVAGELYIAGDGVGRGYLHLPELTEEKFLQDPFVPGDRMY RTGDVVRWLPDGTIEYLGREDDQVKVRGYRIELGEIEAVIQQAPDVAKAVVLARPDEQGN LEVCAYVVQKPGSEFAPAGLREHAARQLPDYMVPAYFTEVTEIPLIPSGKVDRRKLFALE VKAVSGTAYTAPRNETEKAIAAIWQDVLNVEKAGIFDNFFEIGGHSLKAMILLTKIHKET GIEIPLQFLFEHPTITALAEEADHRESKAFAVIEPAEKQEHYPL (SEQ ID NO: 47) dptA1 module 1 of daptomycin synthetase MDMQSQRLGVTAAQQSVWLAGQLADDHRLYHCAAYLSLIGSIDPRILGTAVRRILDETEALRTRFVPQDG ELLQILEPGAGQLLLEADFSGDPDPERAAHDWMHAALAAPVRLDRAGTATHALLTLGPSRHLLYFGYHHI ALDGYGALLHLRRLAHVYTALSNGDDPGPCPFGPLAGVLTEEAAYRDSDNHRRDGEFWTRSLAGADEAPG LSEREAGALAVPLRRIVELSGERTEKLAASAAATGARWSSLLVAATAAFVRRHAAADDIVIGLPVTARLT GPALRIPCMLANDVPLRLDARLDAPFAALLADTTRAVGILARHQRFRGEELHRNLGGVGRTAGLARVIVN VLAYVDNIRFGDCRAVVHELSSGPVRDFHINSYGTPGTPDGVQLVFSGNPALYTATDLADHQERFLRFLD AVTADPDLPTGRHRLLSPGTRARLLDDSRGTERPVPRATLPELFAEQARRTPDAPAVQHDGTVLTYRDLH RSVERAAGRLAGLGLRTEDVVALALPKSAESVAILLGIQRAGAAYVPLDPTHPAERLARVLDDTRPRYLV TTGHIDGLSHPTPQLAAADLLREGGPEPAPGRPAPGNAAYIIQTSGSTGRPKGVVVTHEGLATLAADQIR RYRTGPDARVLQFISPGFDVFVSELSMTLLSGGCLVIPPDGLTGRHLADFLAAEAVTTTSLTPGALATMP ATDLPHLRTLIVGGEVCPPEIFDQWGRGRDIVNAYGPTETTVEATAWHRDGATHGPVPLGRPTLNRRGYV LDPALEPVPDGTTGELYLAGEGLARGYVAAPGPTAERFVADPFGPPGSRMYRTGDLVRRRSGGMLEFVGR ADGQVKLRGFRIELGEVQAALTALPGVRQAGVLIREDRPGDPRLVGYIVPAPGAEPDAGELRAALARTLP PHMVPWALVPLPALPLTSNGKLDRAALPVPAARAGGSGQRPVTPQEKTLCALFADVLGVTEVATDDVFFE LGGHSLNGTRLLARIRTEFGTDLTLRDLFAFPTVAGLLPLLDDNGRQHTTPPLPPRPERLPLS (SEQ ID NO: 48) dptA1 module 5 IDRRPERLPLSFAQRRLWFL SKLEGPSATYNIPVAVRLTGALDVPALRAALGDVTARHESLRTVFPDDGGEPRQLVLPHAEPPFLTHEVT VGEVAEQAASATGYAFDITSDTPLRATLLRVSPEEHVLVVVIHHIAGDGWSMGPLVRDLVTAYRARTRGD APEYTPLPVQYADYALWQHAVAGDEDAPDGRTARRLGYWREMLAGLPEEHTLPADRPRPVRSSHRGGRVR FELPAGVHRSLLAVARDRRATLFMVVQAALAGLLSRLGAGDDIPIGTPVAGRGDEALDDVVGFFVNTLVL RTNLAGDPSFADLVDRVRTADLDAFAHQDVPFERLVEALAPRRSLARHPLFQIWYTLTNADQDITGQALN ALPGLTGDEYPLGASAAKFDLSFTFTEHRTPDGDAAGLSVLLDYSSDLYDHGTAAALGHRLTGFFAALAA DPTAPLGTVPLLTDDERDRILGDWGSGTHTPLPPRSVAEQIVRRAALDPDAVAVITAEEELSYRELERLS GETARLLADRGIGRESLVAVALPRTAGLVTTLLGVLRTGAAYLPLDTGYPAERLAHVLSDARPDLVLTHA GLAGRLPAGLAPTVLVDEPQPPAAAAPAVPTSPSGDHLAYVIHTSGSTGRPKGVAIAESSLRAFLADAVR RHDLTPHDRLLAVTTVGFDIAGLELFAPLLAGAAIVLADEDAVRDPASITSLCARHHVTVVQATPSWWRA MLDGAPADAAARLEHVRILVGGEPLPADLARVLTATGAAVTNVYGPTEATIWATAAPLTAGDDRTPGIGT PLDNWRVHILDAALGPVPPGVPGEIHTAGSGLARGYLRRPDLTAERFVANPFAPGERMYRTGDLGRFRPD GTLEHLGRVDDQVKVRGFRIELGDVEAALARHPDVGRAAAAVRPDHRGQGRLVAYVVPRPGTRGPDAGEL RETVRELLPDYMVPSAQVTLTTLPHTPNGKLDRAALPAPVFGTPAGRAPATREEKILAGLFADILGLPDV GADSGFFDLGGDSVLSIQLVSRARREGLHITVRDVFEHGTVGALAAAALPAPADDADDTVPGTDVLPSIS DDEFEEFELELGLEGEEEQW (SEQ ID NO: 49) Module 2 of CmnA (Sequence listing CmaA, A2) PSPEPVAEVSRAEQR IWLLSRLGGHPAEYAIPVALRLAGPLDVAKLKNAVDAVVRRHEGLRHVFPEVDGSPTRAVLDPGSITVAE EANRSVREVLAEGVAALDPATGPLARFTLVNQGPQDHVLAIVLHHLIADGWSVDVLLRDIAAHYTGAPTA TPGRYADYLALERAEEQDGALGRALEHFVTALDGVPDEVSFPPDHPRPAQRTGRGDVVRHRIDAAPVTAL AERLRTTPFAVLLAAVGVLLHRVGGHRDVVVGTAVARRPDAGLDHLVGLCLNTLALRWPVQPHDTLGEVV RAVTDRLADGLQHDAASFDRVVDKLAPARDSGRTPVFQVMALYEEPYETALALPDVTTTDVTVHCGSAQA DAAFGFVPREGGIDLTLQFSTDVFTRATASRWARRLATLLAGARADTRVADLPLLPEDESQDLERWSGTT GEAPTTTLHALAHEIAQRHPDRPAIHFGQNSLTYGEFDARSAQLAHELRARGVRAETPVVVCLERSPEAL IAVYGVLKAGGAYVPVETSNPDLRIAELIADSGAALVLTQRRLADRLAALGAEVVVVDEPLPRHPTTDPE PLTGPDHLAYVIYTSGSTGRPKGVMVQHGSVLNFLDALDRRFDLTPDDRLLHKSPLAFDVSVREVFWALT RGASVVVAEPGRHADPGHLVDLVERERVTVAHFVPSSLAVFLEGLPGPGRCPTLRHVLTSGETLPVTTAR AARDLLGARLRNMYGPTETTVEMTDHDVVDDTVDRLPIGHPFEGAVVRVLDADLRPVPPGSTGELCVGGL PVARGYLGRPALTAERFVPDPLGPAGARLYRTGDLARLLPDGQLDFLGRNDFQVKVRGHRIEPGEVEAVL GALPGVHGALVTAHDDRLIGYAVTDRDGEELRTALAERLPEHLVPSVVLTLDRFPLTGNGKLDRAALPTP TGRHTGDSRPLTATEAALAAIWRDLLDVPEVRADDHFFALGGHSLLAARVAARAGAALGVALPLPTVLRF PRLADLATAVDGTRADREPVRPRPDRRRRAPLSSAQRRLWIEENLRPGTATYTVAEAFRLRGELDEEAFA AAVDDVLRRHDALRAHVESVEDGEPELVVAPEPRTALRVGDLPADRVRDALAAESARVFDPAGPLVATSL HRLAPDEWLFQFTAHHLVVDGWSLDVLWRDLAACYHDRRAGRAPRPRDGLTFTDYTWWERDVRSRDLEPH LAFWRGELAGLRPQPPADAHGPGAVLDFALGAALSDELRATAAGLGVSPFVLGLTAFALALGEDSPGAIG VEVANRASAETADLVGLEVNHVPVRVAPRGTGRAAVAAVDEARRRVLPHEHVPFDLVVDLLGPGRAPTSV AFSHLDVRGHSPRLDGVTATRLTPPHNGTAKFDLLLEVLDTEHGLTGAFEYRPERFTAARVAQVRNHWEA ALLTLLADPDLPVDARRPDFA (SEQ ID NO: 50) /gene = ″mycA″ /coded_by = ″AF184956.1:3161-15076″ /transl_table = 11 ORIGIN 1 mytsqfqtlv dvirnrsnis drgirfiesd kietfvsyrq lfdeaqgflg ylqhigiqpk 61 qeivfqiqen ksfvvafwac llggmipvpv sigedndhkl kvwriwniln npfllasetv 121 ldkmkkfaad hdlqdfhhql ieksdiiqdr iydhpasqye peadelafiq fssgstgdpk 181 gvmlthhnli hntcairnal aidlkdtlls wmplthdmgl iachlvpala ginqnlmpte 241 lfirrpilwm kkahehkasi lsspnfgyny flkflkdnks ydwdlshirv iangaepilp 301 elcdefltrc aafnmkrsai lnvyglaeas vgatfsnige rfvpvylhrd hlnlgerave 361 vskedqncas fvevgkpidy cqiricnean egledgfigh iqikgenvtq gyynnpestn 421 raltpdgwvk tgdlgfirkg nlvvtgrekd iifvngknvy phdiervaie ledidlgrva 481 acgvydqetr sreivlfavy kksadrfapl vkdikkhlyq rggwsikeil pirklpktts 541 gkvkryelae qyesgkfale stkikefleg hstepvqtpi heietallsi fsevmdgkki 601 hlndhyfdmg atslqlsqia erieqkfgce ltvadlftyp siadlaaflv enhseikqtd 661 takpsrsssk diaiigmsln vpgasnksdf whllengehg ireypaprvk daidylrsik 721 sernekqfvr ggyldeidrf dysffglapk takfmdpnqr lflqsawhai edagyagdti 781 sgsqlgvyvg yskvgydyer llsanypeel hhyivgnlps vlasriayfl nlkgpavtvd 841 tacssslvav hmackalltg dcemalaggi rtsllpmrig ldmessdglt ktfskdsdgt 901 gsgegvaavl lkplqaaird gdhiygvikg sainqdgttv gitapspaaq teviemawkd 961 agiapetlsf ieahgtgtkl gdpvefnglc kafekvtekk qfcaigsvka nighlfeaag 1021 ivgliksalm lnhkkippla hfnkpnplip fhsspfyvnq evmdftpedr plrggissfg 1081 fsgtnahvvl eeytpeseya pedgndphlf vlsahteasl yelthqyrqy isddsqsslr 1141 sicytastgr ahldyclami vssnqelidk ltsliqgern lpqvhfgykn ikemqpaekd 1201 nlskqisdlm qhrpctkder itwlnriael yvqravidwr avysnevvqk tplplypfer 1261 nrcwveavye sakerkekge valdinhtkt hiesflktvi snasgirade idsnahfigf 1321 gldsimltqv kkaiadefnv dipmerffdt mnniesvvdy laenvpsaas tppqesvtaq 1381 eelvisgaqp elehqehmld kiiasqnqli qqtlqaqlds fnllrnnshf vskeseisqd 1441 ktslspksvt akknsaqeak pyipfqrqtl neqvnytpqq rqylesfiek yvdktkgskq 1501 ytdetrfaha nnrnlssfrs ywkemvypii aersdgsrmw didgneyidi tmgfgvnlfg 1561 hhpsfitqtv vdsthsalpp lgpmsnvage vadriractg vervafynsg teavmvalrl 1621 araatgrtkv vvfagsyhgt fdgvlgvant kggaepanpl apgipqsfmn dliilhynhp 1681 dsldvirnlg nelaavlvep vqsrrpdlqp esflkelrai tqqsgtalim deiitgfrig 1741 lggaqewfdi qadlvtygki igggqplgiv agkaefmnti dggtwqygdd syptdeakrt 1801 fvagtfnthp ltmrmslavl rylqaegetl yerlnqktty lvdqlnsyfe qsqvpirmvq 1861 fgslfrfvss vdndlffyhl nykgvyvweg rncflstaht sddiayiiqa vqetvkdlrr 1921 ggfipegpds pndgghkepe tyelspeqkq lavvsqygnd asaalnqsim lkvkgavqht 1981 llkqavrniv krhdalrtvi hvddevqqvq arinveipii dftgypneqr esevqkwlte 2041 dakrpfhfhe qkplfrvhvl tskqdehliv ltfhhiiadg wsiavfvqel estyaaivqg 2101 splpshevvs frqyldwqqa qienghyeeg irywrqylse pipqailtsm sssryphgye 2161 gdrytvtldr plskaiksls irmknsvfat ilgafhlflq qltkqaglvi giptagqlhm 2221 kqpmlvgncv nmvpvkntas sestladylg hmkenmdqvm rhqdvpmtlv asqlphdqmp 2281 dmriifnldr pfrklhfgqm eaeliaypik cisydlflnv tefdqeyvld fdfntsviss 2341 eimnkwgtgf vnllkkmveg dsasldslkm fskedqhdll elyadhqlri sstldhkgvr 2401 avyeepenet elqiaqiwae llglekvgrs dhflslggns lkatlmlski qqtfnqkvsi 2461 gqffshqtvk elanfirgek nvkyppmkpv eqkafyrtsp aqqrvyflhq mepnqvsqnm 2521 fgqisiigky dekaliaslq qvmqrheafr tsfhiidgei vqqiageldf nvrvhsmdre 2581 efeayadgyv kpfrleqapl vraelikvdn eqaellidmh hiisdgysms iltnelfaly 2641 hgnplpeipf eykdfaewqn qlligevmeq qeeywleqfk qevpilqlpa dgsramewss 2701 egqrvtcslq sslirslqem aqqkgttlym vllaaynvll hkytgqediv vgtpvsgrnq 2761 pniesmigif iqtmgirtkp qankrftdyl devkrqtlda fenqdypfdw lvekvnvqre 2821 ttgkslfntm fvyqniefqe ihqdgctfrv kernpgvsly dlmltiedae kqldihfdfn 2881 pnqfeqetie qiirhytsll dslvkepeks lssvpmlsdi erhqllmgcn dtetpfphnd 2941 tvcqwfetqa eqrpddeavi fgnerctygq lnervnqlar tlrtkgvqad qfvaiicphr 3001 ielivgilav lkaggayvpi dpeypedriq ymlkdseaki vlaqldlhkh ltfdadvvll 3061 deessyhedr snleptcgan dlaymiytsg stgnpkgvli ehrglanyie wakevyvnde 3121 ktnfplyssi sfdltvtsif tplvtgntii vfdgedksav lstimqdpri diikltpahl 3181 hvlkemkiad gttirkmivg genlstrlaq syseqfkgql difneygpte avvgcmiyry 3241 dtkrdrrefv pigspaants iyvldasmnl vpvgvpgemy iggagvargy wnrpdltaek 3301 fvhnpfapgt imyktgdlak rlrdgnliyl grideqvkir ghrielgeve aamhkveavq 3361 kavvlareee dglqqlcayy vsnkpitiae ireqlslelp dymvpshyiq leqlpltsng 3421 kinrkalpap evsleqiaey vppgnevesk lavlwqemlg ihrvgikhnf fdlggnsira 3481 talaarihke ldvnlsvkdi fkfptieqla nmalrmekir yvsipsaqki syypvssaqk 3541 rmyllshteg geltynmtga msvegaidle rltaafqkli erhevlrtsf elyegepaqr 3601 ihpsieftie qiqareeeve dhvldfiksf dlakpplmrv glieltpekh vllvdmhhii 3661 sdgvsmnilm kdlnqfykgi epdplpiqyk dyavwqqtea qrqnikkqea ywlnrfhdei 3721 pvldmptdye rpairdyege sfeflipiel kqrlsqmeea tgttlymilm aaytillsky 3781 sgqedivvgt pvsgrshmdv esvvgmfvnt lvirnhpagr kifedylnev kenmlnayqn 3841 qdypleeliq hvhllkdssr nplfdtmfvl qnldqvelnl dslrftpykl hhtvakfdlt 3901 lsiqtdqdkh hglfeyskkl fkksrieals kdylhilsvi sqqpsiqieh ielsgstaed 3961 dnlihsieln f (SEQ ID NO: 51) Psrf-Gly-lgr_m2-F3-TE-pUC19 1 TCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCG 50 51 GAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCG 100 101 TCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATG 150 151 CGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATATCGACAAAAATG 200 201 TCATGAAAGAATCGTTGTAAGACGCTCTTCGCAAGGGTGTCTTTTTTTGC 250 251 CTTTTTTTCGGTTTTTGCGCGGTACACATAGTCATGTAAAGATTGTAAAT 300 301 TGCATTCAGCAATAAAAAAAGATTGAACGCAGCAGTTTGGTTTAAAAATT 350 351 TTTATTTTTCTGTAAATAATGTTTAGTGGAAATGATTGCGGCATCCCGCA 400 401 AAAAATATTGCTGTAAATAAACTGGAATCTTTCGGCATCCCGCATGAAAC 450 451 TTTTCACCCATTTTTCGGTGATAAAAACATTTTTTTCATTTAAACTGAAC 500 501 GGTAGAAAGATAAAAAATATTGAAAACAATGAATAAATAGCCAAAATTGG 550 551 TTTCTTATTAGGGTGGGGTCTTGCGGTCTTTATCCGCTTATGTTAAACGC 600 601 CGCAATGCTGACTGACGGCAGCCTGCTTTAATAGCGGCCATCTGTTTTTT 650 651 GATTGGAAGCACTGCTTTTTAAGTGTAGTACTTTGGGCTATTTCGGCTGT 700 701 TAGTTCATAAGAATTAAAAGCTGATATGGATAAGAAAGAGAAAATGCGTT 750 751 GCACATGTTCACTGCTTATAAAGATTAGGGGAGGTATGACAATATGGAAA 800 801 TAACTTTTTACCCTTTAACGGATGCACAAAAACGAATTTGGTACACAGAA 850 851 AAATTTTATCCTCACACGAGCATTTCAAATCTTGCGGGGATTGGTAAGCT 900 901 GGTTTCAGCTGATGCGATTGATTATGTGCTTGTTGAGCAGGCGATTCAAG 950 951 AGTTTATTCGCAGAAATGACGCCATGCGCCTTCGGTTGCGGCTAGATGAA 1000 1001 AACGGGGAGCCTGTTCAATATATTAGCGAGTATCGGCCTGTTGATATAAA 1050 1051 ACATACTGACACTACTGAAGATCCGAATGCGATAGAGTTTATTTCACAAT 1100 1101 GGAGCCGGGAGGAAACGAAGAAACCTTTGCCGCTATACGATTGTGATTTG 1150 1151 TTCCGTTTTTCCTTGTTCACCATAAAGGAAAATGAAGTGTGGTTTTACGC 1200 1201 AAATGTTCATCACGTGATTTCTGATGGTATGTCCATGAATATTGTCGGGA 1250 1251 ATGCGATCATGCACATTTATTTAGAATTAGCCAGCGGCTCAGAGACAAAA 1300 1301 GAAGGAATCTCGCATTCATTTATCGATCATGTTTTATCTGAACAGGAATA 1350 1351 TGCTCAATCGAAGCGGTTTGAAAAGGACAAGGCGTTTTGGAACAAACAAT 1400 1401 TTGAATCGGTGCCTGAACTTGTTTCCTTGAAACGGAATGCATCCGCAGGG 1450 1451 GGAAGTTTAGATGCTGAGAGGTTCTCTAAAGATGTGCCTGAAGCGCTTCA 1500 1501 TCAGCAGATTCTGTCGTTTTGTGAGGCGAATAAAGTCAGTGTTCTTTCGG 1550 1551 TATTTCAATCGCTGCTCGCCGCCTATTTGTACAGGGTCAGCGGCCAGAAT 1600 1601 GATGTTGTGACGGGAACATTTATGGGCAACCGGCAAAATGCGAAAGAGAA 1650 1651 GCAGATGCTTGGCATGTTTGTTTCTACGGTTCCGCTTCGGACAAACATTG 1700 1701 ACGGCGGGCAGGCGTTTTCAGAATTTGTCAAAGACCGGATGAAGGATCTG 1750 1751 ATGAAGACACTTCGCCACCAAAAGTATCCGTATAATCTCCTAATCAACGA 1800 1801 TTTGCGTGAAACAAAGAGCTCTCTGACCAAGCTGTTCACGGTTTCTCTTG 1850 1851 AATATCAAGTGATGCAGTGGCAGAAAGAAGAGGATCTTGCCTTTTTGACT 1900 1901 GAGCCGATTTTCAGCGGCAGCGGATTAAATGATGTCTCAATTCATGTAAA 1950 1951 GGATCGATGGGATACTGGGAAACTCACCATAGATTTTGATTACCGCACTG 2000 2001 ATTTATTTTCACGTGAAGAAATCAACATGATTTGTGAGCGCATGATTACC 2050 2051 ATGCTGGAGAACGCGTTAACGCATCCAGAACATACAATTGATGAATTAAC 2100 2101 ACTGATTTCTGATGCGGAGAAACGCGATTTGTTTTTGCGGGTGAACGATA 2150 2151 CAGCCAAGGCGTATCCGAACAAGCTGATCATGTCGATGCTGGAGGATTGG 2200 2201 GCGGCGGCTACCCCTGACAAAACAGCGCTAGTCTTCCGCGAACAACGCGT 2250 2251 GACGTATCGCGAGCTGAACGAGCGGGTCAACCAGTTGGCACACACTTTGC 2300 2301 GCGAAAAAGGGGTGCAACCTGACGATCTCGTGATGCTGATGGCAGAGCGG 2350 2351 TCGGTCGAGATGATGGTGGCGATTTTCGCTGTGTTGAAAGCGGGCGGAGC 2400 2401 GTACTTGCCCATCGACCCGCACAGTCCGGCGGAGCGAATCGCCTACATTT 2450 2451 TCGCAGACAGCGGAGCCAAGCTGGTGCTGGCACAGTCGCCGTTTGTGGAA 2500 2501 AAGGCAAGCATGGCGGAAGTGGTCCTTGATCTGAACAGTGCGAGCAGCTA 2550 2551 TGCGGCGGATACGAGCAACCCGCCACTGGTCAACCAGCCAGGCGATCTGG 2600 2601 TGTATGTCATGTACACTTCCGGCTCAACGGGAAAACCAAAAGGCGTGATG 2650 2651 ATCGAGCACGGAGCGCTGCTCAATGTGCTTCACGGAATGCAGGACGAGTA 2700 2701 CCCGCTTTTGCAGGACGATGCCTTCTTGCTCAAGACAACCTACATATTCG 2750 2751 ATATTTCAGTCGCGGAAATTTTCGGGTGGGTTCCGGGTCGTGGCAAACTG 2800 2801 GTGATTTTGGAACCGGAGGCGGAAAAGAACCCGAAGGCTATTTGGCAGGC 2850 2851 GGTAGTCGGAGCGGGAATTACCCACATCAACTTCGTGCCCTCCATGCTGA 2900 2901 TCCCGTTTGTCGAGTATTTGGAAGGGCGAACAGAAGCAAATCGCTTGCGG 2950 2951 TACATCTTGGCTTGCGGCGAAGCGATGCCGGATGAACTCGTGCCAAAAGT 3000 3001 GTACGAAGTATTGCCAGAGGTGAAGCTGGAAAACATCTACGGCCCGACAG 3050 3051 AAGCGACGATTTACGCTTCCCGTTACTCGCTCGCGAAAGGCTCGCAGGAA 3100 3101 AGTCCTGTTCCAATCGGAAAGCCGCTGCCCAACTATCGCATGTATATCAT 3150 3151 CAATCGGCATGGACAACTGCAACCAATCGGCGTACCAGGAGAGCTATGCA 3200 3201 TCGCAGGAGCAAGTCTGGCGAGAGGGTATTTGAACAATCCAGCGCTGACA 3250 3251 GAAGAAAAATTCACTCCTCATCCGCTGGAGAAAGGCGAGCGGATTTATCG 3300 3301 CACGGGTGATCTCGCCCGTTATCGCGAGGATGGCAACATCGAATACCTCG 3350 3351 GACGGATGGACCATCAGGTGAAAATTCGCGGATACCGGATCGAACTGGAC 3400 3401 GAAATCCGCAGCAAGCTGATTCAGGAGGAAACGATTCAGGACGCGGTGGT 3450 3451 CGTAGCCCGAAACGATCAAAACGGCCAAGCGTACTTGTGCGCCTACCTGC 3500 3501 TGTCCGAACAGGAGTGGACAGTCGGTCAACTGCGCGAGTTGCTTCGCCGT 3550 3551 GAACTGCCTGAATACATGATTCCGGCCCATTTCGTTTTGCTGAAACAGTT 3600 3601 CCCGCTCACAGCCAATGGCAAGCTCGATCGCAAGGCTTTGCCAGAACCGG 3650 3651 ACGGCAGTGTGAAAGCGGAAGCGGAATATGCAGCGCCGCGCACGGAACTG 3700 3701 GAAGCGACTTTGGCGCACATTTGGGGCGAAGTGCTCGGAATCGAACGGAT 3750 3751 CGGGATTCGCGACGATTTCTTTGCGCTCGGAGGGCATTCCTTGAAGGCCA 3800 3801 TGACCGCCGTCCCGCATCAACAAGAGCTCGGGATTGATCTTCCAGTGAAG 3850 3851 CTTTTGTTTGAAGCGCCGACGATCGCCGGCATTTCAGCGTATTTGAAAAA 3900 3901 CGGGGGCTCTGATGGCTTGCAGGATGTAACGATAATGAATCAGGATCAGG 3950 3951 AGCAGATCATTTTCGCATTTCCGCCGGTTCTGGGCTATGGCCTTATGTAC 4000 4001 CAAAATCTGTCCAGCCGCTTGCCGTCATACAAGCTATGCGCCTTTGATTT 4050 4051 TATTGAGGAGGAAGACCGGCTTGACCGCTATGCGGATTTGATCCAGAAGC 4100 4101 TGCAGCCGGAAGGGCCTTTAACATTGTTTGGATATTCAGCGGGATGCAGC 4150 4151 CTGGCGTTTGAAGCTGCGAAAAAGCTTGAGGAACAAGGCCGTATTGTTCA 4200 4201 GCGGATCATCATGGTGGATTCCTATAAAAAACAAGGTGTCAGTGATCTGG 4250 4251 ACGGACGCACGGTTGAAAGTGATGTCGAAGCGTTGATGAATGTCAATCGG 4300 4301 GACAATGAAGCGCTCAACAGCGAAGCCGTCAAACACGGCCTCAAGCAAAA 4350 4351 AACACATGCCTTTTACTCATACTACGTCAACCTGATCAGCACAGGCCAGG 4400 4401 TGAAAGCAGATATTGATCTGTTGACTTCCGGCGCTGATTTTGACATGCCG 4450 4451 GAATGGCTTGCATCATGGGAAGAAGCTACAACAGGTGTTTACCGTGTGAA 4500 4501 AAGAGGCTTCGGAACACACGCAGAAATGCTGCAGGGCGAAACGCTAGATA 4550 4551 GGAATGCGGAGATTTTGCTCGAATTTCTTAATACACAAACCGTAACGGTT 4600 4601 TCATAAAGGCATGCAAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGT 4650 4651 GTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCA 4700 4701 TAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATT 4750 4751 GCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCT 4800 4801 GCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGC 4850 4851 GCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTG 4900 4901 CGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGA 4950 4951 ATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGG 5000 5001 CCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGC 5050 5051 CCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAA 5100 5101 CCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCG 5150 5151 TGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTT 5200 5201 CTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCT 5250 5251 CAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCC 5300 5301 CCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCC 5350 5351 AACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAG 5400 5401 GATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGT 5450 5451 GGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTG 5500 5501 CTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAA 5550 5551 ACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTA 5600 5601 CGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGG 5650 5651 TCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAG 5700 5701 ATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTT 5750 5751 TTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAA 5800 5801 TGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATC 5850 5851 CATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCT 5900 5901 TACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCG 5950 5951 GCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAG 6000 6001 AAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCC 6050 6051 GGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTT 6100 6101 GCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTC 6150 6151 ATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGT 6200 6201 TGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGT 6250 6251 AAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTC 6300 6301 TCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACT 6350 6351 CAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGC 6400 6401 CCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGT 6450 6451 GCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTAC 6500 6501 CGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCT 6550 6551 TCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAG 6600 6601 GCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATAC 6650 6651 TCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGT 6700 6701 CTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGG 6750 6751 GGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCA 6800 6801 TTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTT 6850 6851 CGTC 6854 (SEQ ID NO: 52) CoA Ligases GenBank: AAX31555.1 acyl-CoA ligase [ GenPept Graphics >gi|60650930|gb|AAX31555.1| acyl-CoA ligase [ MSESRCAGQGLVGALRTWARTRARETAVVLVRDTGTTDDTASVDYGQLDEWARSIAVTLRQQ LAPGGRAL LLLPSGPEFTAAYLGCLYAGLAAVPAPLPGGRHFERRRVAAIAADSGAGVVLIVAGETASVH DWLTETTA PATRVVAVDDRAALGDPAQWDDPGVAPDDVALIQYTSGSTGNPKGVVVTHANLLANARNLAE ACELTAAT PMGGWLPMYHDMGLLGTLTPALYLGTTCVLMSSTAFIKRPHLWLRTIDRFGLVWSSAPDFAY DMC LKRVT DEQIAGLDLSRWRWAGNGAEPIRAATVRAFGERFARYGLRPEALTAGYGLAEATLFVSRSQG LHTARVAT AALERHEFRLAVPGEAAREIVSCGPVGHFRARIVEPGGHRVLPPGQVGELVLQGAAVCAGYW QAKEETEQ TFGLTLDGEDGHWLRTGDLAALHEGNLHITGRCKEALVIRGRNLYPQDIEHELRLQHPELES VGAAFTVP AAPGTPGLMVVHEVRTPVPADDHPALVSALRGTINREFGLDAQGIALVSRGTVLRTTSGKVR RGAMRDLC LRGELNIVHADKGWHAIAGTAGEDIAPTDHAPHPHPA (SEQ ID NO: 53) Acyl Carrier proteins GenBank: AAX31556.1 probable acyl carrier protein [ GenPept Graphics >gi|60650931|gb|AAX31556.1| probable acyl carrier protein [ MNPPEAVSTPSEVTAWITGQIAEFVNETPDRIAGDAPLTDHGLDSVSGVALCAQVEDRYGIE VDPELLWS VPTLNEFVQALMPQLADRT (SEQ ID NO: 54) malonyl-CoA transacylase /protein_id = ″AAF08794.1″ /gene = ″fenF″ /note = ″malonyl-CoA transacylase″ /codon_start = 1 /transl_table = 11 /product = ″FenF″ /db_xref = ″GI:6449054″ /translation = ″MNNLAFLFPGQGSQFVGMGKSFWNDFVLAKRLFEEASDAISMDV KKLCFDGDMTELTRTMNAQPAILTVSVIAYQVYMQEIGIKPHFLAGHSLGEYSALVCA GVLSFQEAVKLIRQRGILMQNADPEQLGTMAAITQVYIQPLQDLCTEISTEDFPVGVA CMNSDQQHVISGHRQAVEFVIKKAERMGANHTYLNVSAPFHSSMMRSASEQFQTALNQ YSFRDAEWPIISNVTAIPYNNGHSVREHLQTHMTMPVRWAESMHYLLLHGVTEVIEMG PKNVLVGLLKKITNHIAAYPLGQTSDLHLLSDSAERNENIVNLRKKQLNKMMIQSIIA RNYNKDAKTYSNLTTPLFPQIQLLKERVERKEVELSAEELEHSIHLCQLICEAKQLPT WEQLRILK″ (SEQ ID NO: 55)





