Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 887. Отображено 100.
08-11-2012 дата публикации

Nanoparticles having reduced ligand spheres

Номер: US20120283462A1
Принадлежит: Bayer Intellectual Property GmbH

The invention relates to the technical field of nanoparticles. The subject matter of the invention is a method for treating nanoparticles for the reduction of ligand spheres.

Подробнее
07-03-2013 дата публикации

Metal Oxide Semiconductor Films, Structures, and Methods

Номер: US20130056691A1
Принадлежит: Moxtronics Inc

Materials and structures for improving the performance of semiconductor devices include ZnBeO alloy materials, ZnCdOSe alloy materials, ZnBeO alloy materials that may contain Mg for lattice matching purposes, and BeO material. The atomic fraction x of Be in the ZnBeO alloy system, namely, Zn 1-x Be x O, can be varied to increase the energy band gap of ZnO to values larger than that of ZnO. The atomic fraction y of Cd and the atomic fraction z of Se in the ZnCdOSe alloy system, namely, Zn 1-y Cd y O 1-z Se z , can be varied to decrease the energy band gap of ZnO to values smaller than that of ZnO. Each alloy formed can be undoped, or p-type or n-type doped, by use of selected dopant elements.

Подробнее
12-09-2013 дата публикации

BROAD-EMISSION NANOCRYSTALS AND METHODS OF MAKING AND USING SAME

Номер: US20130236388A1
Принадлежит:

In one aspect, the invention relates to an inorganic nanoparticle or nanocrystal, also referred to as a quantum dot, capable of emitting white light. In a further aspect, the invention relates to an inorganic nanoparticle capable of absorbing energy from a first electromagnetic region and capable of emitting light in a second electromagnetic region, wherein the second electromagnetic region comprises an at least about 50 nm wide band of wavelengths and to methods for the preparation thereof. In further aspects, the invention relates to a frequency converter, a light emitting diode device, a modified fluorescent light source, an electroluminescent device, and an energy cascade system comprising the nanoparticle of the invention. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention. 1. A method of preparing an inorganic nanoparticle comprising the steps of:{'sub': 8', '20, 'a) heating a reaction mixture comprising a Cto Calkyl- or arylphosphonic acid and a source of cadmium or zinc to a temperature of greater than about 300° C.;'}{'sub': 2', '10, 'b) adding to the reaction mixture an injection mixture comprising a Cto Ctrialkyl- or triarylphosphine and a source of selenium, sulfur, or tellurium; and'}c) decreasing the temperature of the reaction mixture to less than about 300° C.2. The method of claim 1 , wherein the reaction mixture further comprises at least one of a Cto Ctrialkyl- or triarylphosphine oxide claim 1 , or a Cto Calkylamine or arylamine claim 1 , or a mixture thereof.3. The method of claim 1 , wherein the injection mixture further comprises a Cto Chydrocarbon.4. The method of claim 1 , further comprising the step of adding a solvent to the reaction mixture so as to decrease the temperature of the reaction mixture to less than about 250° C.5. The method of claim 1 , wherein the source of cadmium or zinc comprises cadmium oxide.6. The method of claim 1 , ...

Подробнее
16-01-2014 дата публикации

Hydrogen sulphide sampling method

Номер: US20140017144A1
Принадлежит: TOTAL SE

A method for sampling a sulphur-containing solid product including supplying a gas flow comprising hydrogen sulphide, bringing the gas flow into contact with a solid reagent and reacting the solid reagent with the hydrogen sulphide contained in the gas flow, the reaction fixing the sulphur of the hydrogen sulphide by forming a sulphur-containing solid product which is different in colour from the solid reagent, and recovering the sulphur-containing solid product. The invention also relates to a device suitable for the implementation of this method.

Подробнее
18-02-2021 дата публикации

CORE-SHELL QUANTUM DOT, PREPARATION METHOD THEREOF, AND ELECTROLUMINESCENT LIGHT-EMITTING DEVICE CONTAINING THE SAME

Номер: US20210047562A1
Принадлежит:

This present disclosure provides a core-shell quantum dot, a preparation method thereof, and a light-emitting device containing the same. The core of the core-shell quantum dot is CdSeS, and the quantum dot shells include a first shell and a second shell, the first shell being selected from one or more of ZnSe, ZnSeSand CdZnS, the second shell covering the first shell being one of CdZnS and ZnS, the maximum emission peak of the core-shell quantum dot is less than or equal to 480 nm, 0 Подробнее

03-03-2022 дата публикации

Systems and Methods for Quantum Dot on Nanoplatelet Heterostructures with Tunable Emission in the Shortwave Infrared

Номер: US20220064531A1

Many embodiments implement quantum confined nanoplatelets (NPLs) that can be induced to emit bright and tunable infrared emission from attached quantum dot (QD). Some embodiments provide mesoscale NPLs with a largest dimension of greater than 1 micron. Certain embodiments provide methods for growing mesoscale NPLs and QD on mesoscale NPLs heterostructures. Several embodiments provide near unity energy transfer from NPLs to QDs, which can quench NPL emission and emit with high quantum yield through the shortwave infrared. The QD defect emission can be kinetically tunable, enabling controlled mid-gap emission from NPLs.

Подробнее
25-02-2021 дата публикации

II-II-VI ALLOY QUANTUM DOT, PREPARATION METHOD THEREFOR AND APPLICATION THEREOF

Номер: US20210054274A1
Автор: ZHOU Jianhai
Принадлежит:

The disclosure provides a II-II-VI alloy quantum dot, a preparation method and application thereof. The preparation method includes: step S1: reacting a precursor containing a second Group II element and a precursor containing a first Group VI element to form a II-VI semiconductor nanocluster; step S2: mixing the II-VI semiconductor nanocluster with a precursor containing a first Group II element, and performing cation exchange and in-situ growth to obtain a first system containing the II-II-VI alloy quantum dot 1. A preparation method of II-II-VI alloy quantum dot , wherein comprising step S1: reacting a precursor containing a second Group II element and a precursor containing a first Group VI element to form a II-VI semiconductor nanocluster;step S2: mixing said II-VI semiconductor nanocluster with a precursor containing a first Group II element, and performing cation exchange and in-situ growth to obtain a first system containing the II-II-VI alloy quantum dot2. The preparation method in accordance with claim 1 , wherein a size of said II-VI semiconductor nanocluster is 1 nm or less.3. The preparation method in accordance with claim 1 , wherein said II-VI semiconductor nanocluster is one of ZnSe nanocluster claim 1 , ZnS nanocluster claim 1 , CdSe nanocluster and CdS nanocluster.4. The preparation method in accordance with claim 1 , wherein a reaction temperature range of said step S1 is 150˜310° C.5. The preparation method in accordance with claim 1 , wherein a precursor of said first Group VI element is a selenium precursor.6. The preparation method in accordance with claim 1 , wherein a precursor of said second Group II element is a carboxylate claim 1 , and preferably claim 1 , a carboxylate group of said precursor of said second Group II element is a carboxylate group having a carbon chain length of 8 to 22.7. The preparation method in accordance with claim 1 , wherein a precursor of said first Group II element is a carboxylate claim 1 , and preferably claim ...

Подробнее
13-02-2020 дата публикации

A PROCESS FOR THE SYNTHESIS OF AIR STABLE METAL SULPHIDE QUANTUM DOTS

Номер: US20200048543A1
Принадлежит:

The present invention discloses a process for the preparation of metal sulphide quantum dots by using a very low cost sulphur precursor as a sulphur source. The metal sulphide quantum dots finds application in optical devices selected from photovoltaic cells, photodetectors and light-emission devices. 1. A process for the preparation of metal sulphide QDs comprising the steps of:a) reacting a metal salt with a ligand in a solvent followed by heating at a temperature ranging from 90 to 95° C. under a vacuum for a period ranging from 1 to 2 h to afford a metal oleate or a metal amine solution;b) preparing a dithiocarbamic acid solution by mixing octyl dithiocarbamic acid with a ligand and a solvent to form a mixture followed by injecting said mixture to the metal oleate or metal amine solution of step (a) to obtain a dithiocarbamic solution;c) injecting acetone to the dithiocarbamic solution of step (b) as an anti-solvent to obtain a precipitate, followed by collecting particles of precipitate by centrifugation to obtain metal sulfide QDs; andd) dispersing said metal sulfide QDs in a non-polar solvent to obtain colloidal quantum dots.2. The process as claimed in claim 1 , wherein said metal is selected from the group consisting of Lead (Pb) claim 1 , Cadmium (Cd) claim 1 , Manganese (Mn) claim 1 , Zinc (Zn) claim 1 , Copper (Cu) and Tin (Sn).3. The process as claimed in claim 1 , wherein said salt of the metal is selected from the group consisting of an oxide salt claim 1 , an acetate salt and a halide salts.4. The process as claimed in claim 1 , wherein said ligand is selected from the group consisting of oleic acid and oleyl amine.5. The process as claimed in claim 1 , wherein said solvent of step (a) and (b) is 1-octadecene.6. The process as claimed in claim 1 , wherein said non-polar solvent of step (d) is selected from tie group consisting of toluene claim 1 , chloroform claim 1 , hexane or octane.7. The process as claimed in claim 1 , wherein said metal sulfides ...

Подробнее
13-02-2020 дата публикации

Process for leaching metal sulfides with reagents having thiocarbonyl functional groups

Номер: US20200048736A1

This application pertains to methods of recovering metals from metal sulfides that involve contacting the metal sulfide with an acidic sulfate solution containing ferric sulfate and a reagent that has a thiocarbonyl functional group, wherein the concentration of reagent in the acidic sulfate solution is sufficient to increase the rate of metal ion extraction relative to an acidic sulfate solution that does not contain the reagent, to produce a pregnant solution containing the metal ions.

Подробнее
21-02-2019 дата публикации

NANOCRYSTAL PREPARATION METHOD, NANOCRYSTALS, AND APPARATUS FOR PREPARING AND STORING DISSOLVED GAS

Номер: US20190055126A1
Автор: Wang Junzuo, Wang Yunjun
Принадлежит: Suzhou Xingshou Nanotech Co., Ltd.

A nanocrystal preparation method comprises the following steps: dissolving, in a first selected solvent, a first precursor which is in a gaseous state under normal temperature and normal pressure, to form a first precursor solution; dissolving a second precursor in a second selected solvent to form a second precursor solution, wherein the second precursor is a precursor of a metal element of Group I, Group II, Group III or Group IV; and in an inert gas atmosphere, adding the first precursor solution into a reaction vessel which contains the second precursor solution, wherein the first precursor chemically reacts with the second precursor to generate a nanocrystal. The present invention further discloses a nanocrystal prepared by the above method and an apparatus for preparing and storing a gas-dissolved solution. With the preparation method according to the invention, the amount of the first precursor in a gaseous state can be accurately controlled, the reaction is more uniform and more controllable, and the obtained nanocrystal has uniform volume distribution and a higher luminescent quantum yield. 1. A method for preparing nanocrystals , comprising the following steps:dissolving, in a first selected solvent, a first precursor which is in a gaseous state under normal temperature and normal pressure, to form a first precursor solution;dissolving a second precursor in a second selected solvent to form a second precursor solution, wherein the second precursor is a precursor of a metal element of Group I, Group II, Group III, or Group IV; andadding, in an inert gas atmosphere, the first precursor solution into a reaction vessel which contains the second precursor solution, wherein the first precursor chemically reacts with the second precursor to generate a nanocrystal.2. The method according to claim 1 , wherein dissolving the first precursor in the first selected solvent is a physical change.3. The method according to claim 1 , wherein the first precursor solution is ...

Подробнее
04-03-2021 дата публикации

METHOD FOR PREVENTING OR REDUCING GROWTH OF A MICROORGANISM ON A SURFACE

Номер: US20210061670A1
Принадлежит: Imam Abdulrahman Bin Faisal University

Methods of synthesizing BiS—CdS particles in the form of spheres as well as properties of these BiS—CdS particles are described. Methods of photocatalytic degradation of organic pollutants employing these BiS—CdS particles and methods of preventing or reducing microbial growth on a surface by applying these BiS—CdS particles in the form of a solution or an antimicrobial product onto the surface are also specified. 17-. (canceled)8. A method for preventing or reducing growth of a microorganism on a surface , the method comprising:{'sub': 2', '3, 'applying BiS—CdS particles onto the surface;'} [{'sub': 2', '3, 'the BiS—CdS particles comprise bismuth(III) sulfide and cadmium(II) sulfide;'}, {'sub': 2', '3, 'the BiS—CdS particles are in the form of spheres; and'}, {'sub': 2', '3, 'the BiS—CdS particles are in contact with the surface for 1-24 hours.'}], 'wherein9. The method of claim 8 , wherein an atomic ratio of bismuth to cadmium in the BiS—CdS particles is in a range of 0.5:1 to 4:1 claim 8 , and an atomic ratio of sulfur to bismuth in the BiS—CdS particles is in a range of 3:2 to 8:1.10. The method of claim 8 , wherein the BiS—CdS particles have a BET surface area of 5-25 m/g claim 8 , a pore size of 10-50 nm claim 8 , and a pore volume of 0.02-0.2 cm/g.11. The method of claim 8 , wherein the BiS—CdS particles are applied onto the surface as a solution comprising a solvent and 1 μg/mL to 50 mg/mL of the BiS—CdS particles relative to a total volume of the solution.12. The method of claim 11 , wherein the solvent comprises dimethyl sulfoxide and water.13. The method of claim 8 , wherein the BiS—CdS particles are applied onto the skin of a subject as an antimicrobial cream comprising 0.01 wt %-50 wt % of the BiS—CdS particles relative to a total weight of the antimicrobial cream.14Acinetobacter baumannii, Enterobacter aerogenes, Escherchia coli, Klebsiella oxytocaKlebsiella pneumoniae.. The method of claim 8 , wherein the microorganism is at least one gram-negative ...

Подробнее
17-03-2022 дата публикации

QLED AND MANUFACTURING METHOD THEREOF

Номер: US20220081313A1
Автор: XIANG Chaoyu, Zhang Jie
Принадлежит:

The present application discloses a QLED manufacturing method, which includes following steps of: providing a substrate provided with a bottom electrode, and preparing a quantum dot light emitting layer on the substrate; illuminating after depositing a first compound solution on a surface of the quantum dot light emitting layer, here a first compound is a compound capable of being photodegraded into ions after the illumination. 1. A QLED manufacturing method , comprising following steps of:providing a substrate provided with a bottom electrode, and preparing a quantum dot light emitting layer on the substrate provided with the bottom electrode;illuminating after depositing a first compound solution on a surface of the quantum dot light emitting layer, wherein a first compound in the first compound solution is a compound capable of being photodegraded into ions after the illumination.2. The QLED manufacturing method according to claim 1 , wherein the first compound is selected from one or more of a diphenyliodonium compound and an 1 claim 1 ,2 claim 1 ,3 claim 1 ,4-thiatriazole-5-sulfhydryl compound.3. The QLED manufacturing method according to claim 2 , wherein the diphenyliodonium compound is selected from at least one of (Ph2I)4Sn2S6 claim 2 , (Ph202CdCl4 and (Ph2I)2MoO4; and the 1 claim 2 ,2 claim 2 ,3 claim 2 ,4-thiatriazole-5-sulfhydryl compound is selected from at least one of NHCSN claim 2 , NaCSNand LiCSN.4. (canceled)5. The QLED manufacturing method according to claim 1 , wherein a solvent in the first compound solution is selected from one or more of a group comprising mercaptans with a carbon atom number less than 20 in a straight chain claim 1 , olefins with a carbon atom number less than 20 in a straight chain claim 1 , alcohols and their derivatives with a carbon atom number less than 20 in a straight chain claim 1 , and organic esters with a carbon atom number less than 20.6. The QLED manufacturing method according to claim 5 , wherein the mercaptan ...

Подробнее
17-03-2022 дата публикации

METHOD FOR PREPARING QUANTUM DOTS LIGHT-EMITTING DIODE

Номер: US20220085343A1
Автор: XIANG Chaoyu, Zhang Jie
Принадлежит:

The present application discloses a method for preparing quantum dots light-emitting diode, including the following step: providing a base plate, placing the base plate into an inert atmosphere containing active gas, and printing quantum dots ink on a surface of the base plate to prepare a quantum dots light-emitting layer. The method for preparing the quantum dots light-emitting diode provided in the present application changes the film-forming atmosphere of inkjet printing, and prepares the quantum dots light-emitting layer in the inert atmosphere containing active gas, which can improve the device efficiency of the quantum dots light-emitting diode while ensuring the printability of quantum dots ink. 1. A method for preparing quantum dots light-emitting diode , comprising following step:providing a base plate, placing the base plate into an inert atmosphere containing active gas, and printing quantum dots ink on a surface of the base plate to prepare a quantum dots light-emitting layer.2. The method of claim 1 , wherein the active gas is one or a combination of two or more selected from a group consisting of saturated fatty acids claim 1 , unsaturated fatty acids claim 1 , esters claim 1 , and organic bases.3. The method of claim 2 , wherein the saturated fatty acid is selected from a group consisting of butyric acid claim 2 , caprylic acid claim 2 , lauric acid claim 2 , and stearic acid.4. The method of claim 2 , wherein the unsaturated fatty acid is selected from a group consisting of acrylic acid claim 2 , crotonic acid claim 2 , methacrylic acid claim 2 , and 3-pentenoic acid.5. The method of claim 2 , wherein the ester is selected from a group consisting of methyl methacrylate claim 2 , ethyl crotonate claim 2 , ethyl acetate claim 2 , and methyl benzoate.6. The method of claim 2 , wherein the organic base is selected from a group consisting of ethanolamine claim 2 , tetramethylammonium hydroxide claim 2 , aniline claim 2 , and triethanolamine.7. The method ...

Подробнее
02-04-2015 дата публикации

Crystals of semiconductor material having a tuned band gap energy and method for preparation thereof

Номер: US20150090942A1

The present invention provides a semiconductor crystal comprising a semiconductor material having a tuned band gap energy, and methods for preparation thereof. More particularly, the invention provides a semiconductor crystal comprising a semiconductor material and amino acid molecules, peptides, or a combination thereof, incorporated within the crystal lattice, wherein the amino acid molecules, peptides, or combination thereof tune the band gap energy of the semiconductor material.

Подробнее
12-03-2020 дата публикации

MID AND FAR-INFRARED NANOCRYSTALS BASED PHOTODETECTORS WITH ENHANCED PERFORMANCES

Номер: US20200083469A1
Автор: LHUILLIER Emmanuel
Принадлежит:

Disclosed is a plurality of metal chalcogenide nanocrystals coated with multiple organic and inorganic ligands; wherein the metal is selected from Hg, Pb, Sn, Cd, Bi, Sb or a mixture thereof; and the chalcogen is selected from S, Se, Te or a mixture thereof; wherein the multiple inorganic ligands includes at least one inorganic ligands are selected from S, HS, Se, Te, OH, BF, PF, Cl, Br, I, AsSe, SbS, SbTe, SbSe, AsSor a mixture thereof; and wherein the absorption of the C—H bonds of the organic ligands relative to the absorption of metal chalcogenide nanocrystals is lower than 50%, preferably lower than 20%. 114-. (canceled)15. A plurality of metal chalcogenide nanocrystals coated with multiple organic and inorganic ligands;wherein said metal is selected from Hg, Pb, Sn, Cd, Bi, Sb or a mixture thereof; and said chalcogen is selected from S, Se, Te or a mixture thereof;{'sup': 2−', '−', '2−', '2−', '−', '−', '−', '−', '−', '−, 'sub': 4', '6', '2', '3', '2', '3', '2', '3', '2', '3', '2', '3, 'wherein said multiple inorganic ligands comprise at least one inorganic ligand selected from S, HS, Se, Te, OH, BF, PF, Cl, Br, I, AsSe, SbS, SbTe, SbSe, AsSor a mixture thereof.'}16. The plurality of metal chalcogenide nanocrystals according to claim 15 , wherein the optical absorption of the organic ligands relative to the optical absorption of coated metal chalcogenide nanocrystals is lower than 50%.17. The plurality of metal chalcogenide nanocrystals according to claim 15 , wherein said plurality of metal chalcogenide nanocrystals exhibits an optical absorption feature in a range from 3 μm to 50 μm and a carrier mobility not less than 1 cmVs.18. The plurality of metal chalcogenide nanocrystals according to claim 15 , wherein said metal is selected from Hg or a mixture of Hg and at least one of Pb claim 15 , Sn claim 15 , Cd claim 15 , Bi claim 15 , Sb; and said chalcogen is selected from S claim 15 , Se claim 15 , Te or a mixture thereof; provided that said metal ...

Подробнее
01-04-2021 дата публикации

METHOD FOR PREPARING VESICLE, HOLLOW NANOSTRUCTURE, AND METHOD FOR PREPARING THE SAME

Номер: US20210094011A1
Автор: PENG Kang
Принадлежит:

The present disclosure provides a method for preparing a vesicle, a hollow nanostructure, and a method for preparing the same. The preparation method of the vesicle includes: mixing and evenly stirring an aqueous solution of cetyl trimethyl ammonium bromide and an aqueous solution of tetraphenylethylene-bisphenol A; and allowing a stirred aqueous solution including cetyl trimethyl ammonium bromide and tetraphenylethylene-bisphenol A to stand for a first preset period to obtain an aggregate vesicle of cetyl trimethyl ammonium bromide and tetraphenylethylene-bisphenol A. 1. A method for preparing a vesicle , comprising:mixing and evenly stirring an aqueous solution of cetyl trimethyl ammonium bromide and an aqueous solution of tetraphenylethylene-bisphenol A; andallowing a stirred aqueous solution comprising cetyl trimethyl ammonium bromide and tetraphenylethylene-bisphenol A to stand for a first preset period to obtain an aggregate vesicle of cetyl trimethyl ammonium bromide and tetraphenylethylene-bisphenol A.2. The method of claim 1 , wherein an amount-of-substance concentration ratio of the aqueous solution of cetyl trimethyl ammonium bromide to the aqueous solution of tetraphenylethylene-bisphenol A is 1:8.3. The method of claim 1 , wherein the first preset period is in a range from 0.5 h to 1 h.4. The method of claim 1 , wherein the vesicle has a double-layer membrane structure claim 1 , and an area surrounded by an inner membrane is a hollow area.5. A method for preparing a hollow nanostructure claim 1 , comprising:preparing a vesicle, and embedding a metal cation on a surface of the vesicle to obtain a metal cation vesicle structure, wherein the preparing the vesicle comprises: mixing and evenly stirring an aqueous solution of cetyl trimethyl ammonium bromide and an aqueous solution of tetraphenylethylene-bisphenol A, and allowing a stirred aqueous solution comprising cetyl trimethyl ammonium bromide and tetraphenylethylene-bisphenol A to stand for a first ...

Подробнее
05-04-2018 дата публикации

NANOPARTICLES PASSIVATED WITH CATIONIC METAL-CHALCOGENIDE COMPOUND

Номер: US20180093892A1
Принадлежит:

Provided are nanoparticles passivated with a cationic metal-chalcogenide complex (MCC) and a method of preparing the same. A passivated nanoparticle includes: a core nanoparticle; and a cationic metal-chalcogenide compound (MCC) fixed on a surface of the core nanoparticle 1. A cationic metal-chalcogenide compound.2. The cationic metal-chalcogenide compound of claim 1 , wherein the cationic metal-chalcogenide compound is selected from the group consisting of ZnS claim 1 , ZnSe claim 1 , ZnTe claim 1 , CuS claim 1 , CuSe claim 1 , CuTe claim 1 , MnS claim 1 , MnSe claim 1 , MnTe claim 1 , FeS claim 1 , FeSe claim 1 , FeTe claim 1 , CoS claim 1 , CoSe claim 1 , CoTe claim 1 , and mixtures thereof.3. A passivated nanoparticle colloid comprising:a plurality of passivated nanoparticles, each of the passivated nanoparticles comprising a core nanoparticle and a cationic metal-chalcogenide compound (MCC) fixed on a surface of the core nanoparticle; anda dispersion medium in which the passivated nanoparticles are dispersed.4. The passivated nanoparticle colloid of claim 3 , wherein the dispersion medium comprises ethanol amine claim 3 , dimethyl sulfoxide (DMSO) claim 3 , dimethylformamide (DMF) claim 3 , formamide claim 3 , water claim 3 , hydrazine claim 3 , or hydrazine hydrate.5. A method of preparing a cationic metal-chalcogenide compound claim 3 , the method comprising:{'sub': '4', 'reacting a chalcogen element with NaBHto form a sodium-chalcogenide compound;'}reacting the sodium-chalcogenide compound with a metal perchlorate to form a metal-chalcogenide perchlorate; andreacting the metal-chalcogenide perchlorate with ethanolamine to form a metal-chalcogenide compound.6. The method of claim 5 , wherein the metal perchlorate is selected from the group consisting of zinc perchlorate claim 5 , tin perchlorate claim 5 , indium perchlorate claim 5 , antimony perchlorate claim 5 , sodium perchlorate claim 5 , silver perchlorate claim 5 , iron perchlorate claim 5 , potassium ...

Подробнее
02-04-2020 дата публикации

METHODS OF DEGRADING ORGANIC POLLUTANTS AND PREVENTING OR TREATING MICROBE USING Bi2S3-CdS PARTICLES

Номер: US20200102228A1
Принадлежит: Imam Abdulrahman Bin Faisal University

Methods of synthesizing BiS—CdS particles in the form of spheres as well as properties of these BiS—CdS particles are described. Methods of photocatalytic degradation of organic pollutants employing these BiS—CdS particles and methods of preventing or reducing microbial growth on a surface by applying these BiS—CdS particles in the form of a solution or an antimicrobial product onto the surface are also specified. 1. A method for degrading an organic pollutant , the method comprising:{'sub': 2', '3, 'contacting BiS—CdS particles with an aqueous solution comprising the organic pollutant to form a mixture;'}illuminating the mixture with a light at a wavelength in a range of 200-700 nm for 0.1-6 hours thereby degrading the organic pollutant; [{'sub': 2', '3, 'the BiS—CdS particles comprise bismuth(III) sulfide and cadmium(II) sulfide;'}, {'sub': 2', '3, 'the BiS—CdS particles are in the form of spheres; and'}, 'the organic pollutant is present in the aqueous solution at a concentration of 1-1,000 mg/L relative to a total volume of the aqueous solution., 'wherein2. The method of claim 1 , wherein an atomic ratio of bismuth to cadmium in the BiS—CdS particles is in a range of 0.5:1 to 4:1 claim 1 , and an atomic ratio of sulfur to bismuth in the BiS—CdS particles is in a range of 3:2 to 8:1.3. The method of claim 1 , wherein the BiS—CdS particles are in the form of spheres with an average diameter of 0.3-5 μm.4. The method of claim 1 , wherein the BiS—CdS particles have a BET surface area of 5-25 m/g claim 1 , a pore size of 10-50 nm claim 1 , and a pore volume of 0.02-0.2 cm/g.5. The method of claim 1 , wherein an amount of the BiS—CdS particles in the mixture is in a range of 0.1-10 g/L relative to a total volume of the mixture.6. The method of claim 1 , wherein at least 30% by mole of the organic pollutant is degraded within 2 hours of illuminating.7. The method of claim 1 , wherein the organic pollutant comprises methyl orange claim 1 , methyl green claim 1 , or both ...

Подробнее
09-06-2022 дата публикации

A Method For Producing An Oxide Shell Around Nanocrystals

Номер: US20220177777A1
Принадлежит:

The present invention relates to a method for producing core-shell nanocrystals consisting of a metal-containing nanocrystal core and a shell layer comprising at least one metal oxide material having variable shell thicknesses, and use of the core-shell nanocrystals for different applications. 1. A colloidal atomic layer deposition (c-ALD) method for producing core-shell nanocrystals consisting of a metal-containing nanocrystal core and a shell layer comprising at least one metal oxide material , the method comprising [{'sub': 3', '2', '3, 'wherein the semiconductors are selected from the group consisting of CdSe, ZnSe, InP, ZnP, InSe, C-dot, CsPbX(wherein X is Br, I, or Cl), and combinations thereof,'}, 'wherein the metals are selected from the group consisting of Ag, Au, Pt, Pd, and combinations thereof, and', {'sub': 2', '2', '2, 'wherein the metal oxides are selected from the group consisting of CeO, ZnO, TiO, SiO, and combinations thereof,'}], 'a) providing metal-containing nanocrystal cores selected from the group consisting of semiconductors, metals, metal oxides and combinations thereof,'}b) dispersing metal-containing nanocrystal cores in an organic solvent under inert gas to provide a reaction mixture and maintaining the reaction mixture under inert gas atmosphere,c) introducing one or more highly reactive organometallic compounds to the reaction mixture, wherein the one or more highly reactive organometallic compounds are able to produce volatile secondary products during the reaction and are selected from the group consisting of trimethyl aluminum, dimethylzinc, tetrakis(dimethylamido)titanium(IV), trymethylindium, trymethylgallium and combinations thereof,d) waiting for sufficient time to allow reaction and then deposition of the one or more highly reactive organometallic compounds on the surface of the metal-containing nanocrystal cores,e) introducing the pure oxygen to the reaction mixture,f) waiting for sufficient time to obtain formation of a metal ...

Подробнее
03-05-2018 дата публикации

NANOSTRUCTURED PHOTOCATALYSTS AND DOPED WIDE-BANDGAP SEMICONDUCTORS

Номер: US20180117577A1
Принадлежит:

Photocatalysts for reduction of carbon dioxide and water are provided that can be tuned to produce certain reaction products, including hydrogen, alcohol, aldehyde, and/or hydrocarbon products. These photocatalysts can form artificial photosystems and can be incorporated into devices that reduce carbon dioxide and water for production of various fuels. Doped wide-bandgap semiconductor nanotubes are provided along with synthesis methods. A variety of optical, electronic and magnetic dopants (substitutional and interstitial, energetically shallow and deep) are incorporated into hollow nanotubes, ranging from a few dopants to heavily-doped semiconductors. The resulting wide-bandgap nanotubes, with desired electronic (p- or n-doped), optical (ultraviolet bandgap to infrared absorption in co-doped nanotubes), and magnetic (from paramagnetic to ferromagnetic) properties, can be used in photovoltaics, display technologies, photocatalysis, and spintronic applications. 1. A composition comprising uniformly doped wide-bandgap semiconductor nanotubes.2. The composition of claim 1 , wherein the uniformly doped wide-bandgap semiconductor nanotubes lack secondary phase diffraction peaks when subjected to energy dispersive x-ray spectroscopy.3. The composition of claim 1 , wherein the dopant is anionic.4. The composition of claim 1 , wherein the dopant is cationic.5. The composition of claim 1 , wherein the nanotubes are mono-doped.6. The composition of claim 1 , wherein the nanotubes are co-doped.7. The composition of claim 1 , wherein the nanotubes comprise titanium dioxide.8. The composition of claim 1 , wherein the nanotubes comprise tungsten oxide.9. The composition of claim 1 , wherein the nanotubes are n-type doped wide-bandgap semiconductor nanotubes.10. The composition of claim 1 , wherein the nanotubes are p-type doped wide-bandgap semiconductor nanotubes.11. The composition of claim 1 , wherein the nanotubes are doped with one of copper claim 1 , copper-nitrogen claim 1 ...

Подробнее
02-06-2016 дата публикации

MESOPOROUS MATERIALS AND PROCESSES FOR PREPARATION THEREOF

Номер: US20160151767A1
Принадлежит:

A process for preparing a mesoporous material, e.g., transition metal oxide, sulfide, selenide or telluride, Lanthanide metal oxide, sulfide, selenide or telluride, a post-transition metal oxide, sulfide, selenide or telluride and metalloid oxide, sulfide, selenide or telluride. The process comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic or lyotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to form the mesoporous material. A mesoporous material prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous materials. The method comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic or lyotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous material. Mesoporous materials and a method of tuning structural properties of mesoporous materials. 1383-. (canceled)384. A process for preparing a mesoporous material , said process comprising:preparing an acidic mixture by mixing one or more metal precursors, an interface modifier, a hydrotropic or lyotropic ion precursor, and a surfactant;aging the acidic mixture at a temperature and for a period of time sufficient to form a powder, film or gel; andheating the powder, film or gel at a temperature and for a period of time sufficient to form the mesoporous material.385. The process of wherein the mesoporous material comprises an oxide claim 384 , a sulfide claim 384 , a selenide or a telluride of the following:a transition metal selected from the group consisting of Cr, Zr, Nb, Hf and Ta; a Lanthanide selected from the group consisting of Nd, Sm, Ce and Gd; a post-transition metal comprising Sn; or a mixed metal or a solid acid selected from the group ...

Подробнее
02-06-2016 дата публикации

MESOPOROUS MATERIALS AND PROCESSES FOR PREPARATION THEREOF

Номер: US20160151768A1
Принадлежит:

A process for preparing a mesoporous material, e.g., transition metal oxide, sulfide, selenide or telluride, Lanthanide metal oxide, sulfide, selenide or telluride, a post-transition metal oxide, sulfide, selenide or telluride, and metalloid oxide, sulfide, selenide or telluride. The process comprises providing a micellar solution comprising a metal precursor, an interface modifier, a hydrotropic or lyotropic ion precursor, and a surfactant; and heating the micellar solution at a temperature and for a period of time sufficient to form the mesoporous material. A mesoporous material prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous materials. The method comprises providing a micellar solution comprising a metal precursor, an interface modifier, a hydrotropic or lyotropic ion precursor, and a surfactant; and heating the micellar solution at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous materials. Mesoporous materials and a method of tuning structural properties of mesoporous materials. 1556-. (canceled)557. A process for preparing a mesoporous material , said process comprising:providing a micellar solution comprising one or more metal precursors, one or more surfactants, one or more interface modifiers, one or more hydrotropic or lyotropic ion precursors, and optionally one or more organic and/or inorganic additives; wherein said micellar solution comprises a dispersion of micelles in which at least a portion of said one or more metal precursors are solubilized in the micelles; andheating the micellar solution at a temperature and for a period of time sufficient to form the mesoporous material.558. The process of which is a sol-gel micelle based process.559. The process of in which micellization and inter-micellar interaction are controlled by said one or more metal precursors claim 557 , one or more surfactants claim 557 , ...

Подробнее
23-05-2019 дата публикации

Devices and methods for making polycrystalline alloys

Номер: US20190151949A1
Принадлежит: First Solar Inc

A process for preparing alloy products is described using a self-sustaining or self-propagating SHS-type combustion process with point-source ignition, preferably a laser, in a pressurized vessel. Binary, ternary and quaternary alloys can be formed with control over polycrystalline structure and bandgap. Methods to tune the bandgap and the alloys formed are described. The alloy products may be doped. Preferably sulfides, tellurides or selenides are formed. Cooling during reaction takes place.

Подробнее
08-06-2017 дата публикации

Gas Phase Enhancement of Emission Color Quality in Solid State LEDs

Номер: US20170158959A1
Принадлежит:

Light-emitting materials are made from a porous light-emitting semiconductor having quantum dots (QDs) disposed within the pores. According to some embodiments, the QDs have diameters that are essentially equal in size to the width of the pores. The QDs are formed in the pores by exposing the porous semiconductor to gaseous QD precursor compounds, which react within the pores to yield QDs. According to certain embodiments, the pore size limits the size of the QDs produced by the gas-phase reactions. The QDs absorb light emitted by the light-emitting semiconductor material and reemit light at a longer wavelength than the absorbed light, thereby “down-converting” light from the semiconductor material. 1. A method for synthesizing quantum dots (QDs) in a light-emitting semiconductor material , the method comprising:flowing gaseous QD precursors through pores in a semiconductor material to effect reaction of the QD precursors in the absence of liquid solvent.2. The method of claim 1 , wherein the pores are about 1 nm to about 20 nm in diameter.3. The method of claim 1 , wherein the light-emitting semiconductor material comprises as GaN claim 1 , AlGaAs claim 1 , AlGaInP claim 1 , or AlGaInN claim 1 , or any derivatives thereof.4. The method of claim 1 , further comprising growing QDs in the pores.5. The method of claim 4 , wherein the QDs comprise a semiconductor material selected from CdS claim 4 , CdSe claim 4 , ZnS claim 4 , ZnSe InP claim 4 , GaP CdPand InSe.6. The method of claim 4 , wherein the QDs have diameters essentially equal to the diameters of the pores.7. The method of claim 4 , wherein the QDs comprise red light-emitting QDs.8. The method of claim 4 , wherein the QDs comprise green light-emitting QDs.9. A method for synthesizing QDs in a light-emitting semiconductor material claim 4 , the method comprising:flowing gaseous QD precursors through first pores in a semiconductor material to effect reaction of the QD precursors in the absence of liquid solvent; ...

Подробнее
14-05-2020 дата публикации

Process for Leaching Metal Sulfides with Reagents Having Thiocarbonyl Functional Groups

Номер: US20200149131A1
Принадлежит:

This application pertains to methods of recovering metals from metal sulfides that involve contacting the metal sulfide with an acidic sulfate solution containing ferric sulfate and a reagent that has a thiocarbonyl functional group, wherein the concentration of reagent in the acidic sulfate solution is sufficient to increase the rate of metal ion extraction relative to an acidic sulfate solution that does not contain the reagent, to produce a pregnant solution containing the metal ions. 159. -. (canceled)60. A method of recovering at least one base metal from at least one base metal sulfide in a material , the method comprising:contacting the material with an acidic sulfate solution comprising a reagent having a thiocarbonyl functional group to produce a pregnant solution containing base metal ions; andrecovering the at least one base metal from the pregnant solution,wherein the reagent is not thiourea (Tu), and wherein the thiocarbonyl functional group of the reagent has a sulfur that bears a partial negative charge, bears negative electrostatic potential surface, and has an empty π*-antibonding orbital as its lowest unoccupied molecular orbital.61. The method of claim 60 , wherein the acidic sulfate solution comprises ferric sulfate.62. The method of claim 60 , wherein the reagent is N-N′ substituted thioureas; 2 claim 60 ,5-Dithiobimea; Dithiobiuret; Thiosemicarbazide purum; Thiosemicarbazide; Thioacetamide; 2-Methyl-3-thiosemicarbazide; 4-Methyl-3-thiosemicarbazide; Vinylene trithiocarbonate purum; Vinylene trithiocarbonate; 2-Cyanothioacetamide; Ethylene trithiocarbonate; Potassium ethyl xanthogenate; Dimethylthiocarbamoyl chloride; Dimethyldithiocarbamate; Dimethyl trithiocarbonate; N claim 60 ,N-Dimethylthioformamide; 4 claim 60 ,4-Dimethyl-3-thiosemicarbazide; 4-Ethyl-3-thiosemicarbazide; O-Isopropylxanthic acid; Ethyl thiooxamate; Ethyl dithioacetate; Pyrazine-2-thiocarboxamide; Diethylthiocarbamoyl chloride; Diethyldithiocarbamate; Tetramethylthiuram ...

Подробнее
14-05-2020 дата публикации

Process for Leaching Metal Sulfides with Reagents Having Thiocarbonyl Functional Groups

Номер: US20200149132A1
Принадлежит:

This application pertains to methods of recovering metals from metal sulfides that involve contacting the metal sulfide with an acidic sulfate solution containing ferric sulfate and a reagent that has a thiocarbonyl functional group, wherein the concentration of reagent in the acidic sulfate solution is sufficient to increase the rate of metal ion extraction relative to an acidic sulfate solution that does not contain the reagent, to produce a pregnant solution containing the metal ions. 159.-. (canceled)60. A method of recovering at least one base metal from at least one base metal sulfide in a material , the method comprising:contacting the material with an acidic sulfate solution comprising formamidine disulfide (FDS) to produce a pregnant solution containing base metal ions; andrecovering the base metal from the pregnant solution.61. The method of claim 60 , wherein the acidic sulfate solution further comprises ferric sulfate.62. The method of or claim 60 , wherein the concentration of FDS in the acidic sulfate solution is in the range of about 0.1 mM to about 15 mM.63. The method of or claim 60 , wherein the concentration of FDS in the acidic sulfate solution is in the range of about 0.1 mM to about 10 mM.64. The method of or claim 60 , wherein the concentration of FDS in the acidic sulfate solution is in the range of about 0.2 mM to about 5 mM.65. The method of or claim 60 , wherein the concentration of FDS in the acidic sulfate solution is in the range of about 0.1 mM to about 2.5 mM.66. The method of or claim 60 , wherein the concentration of FDS in the acidic sulfate solution is in the range of about 0.1 mM to about 2 mM.67. The method of or claim 60 , wherein the concentration of FDS in the acidic sulfate solution is in the range of about 0.1 mM to about 1.5 mM.68. The method of or claim 60 , wherein the concentration of FDS in the acidic sulfate solution is in the range of about 0.1 mM to about 1.0 mM.69. The method of or claim 60 , wherein the ...

Подробнее
16-06-2016 дата публикации

SYNTHESIS OF CHIRAL NANOPARTICLES USING CIRCULARLY POLARIZED LIGHT

Номер: US20160167136A1

New methods of forming chiral nanoparticles (e.g., nano structures) are provided. The method comprises directing circular polarized light (CPL) towards a nanoparticle precursor to cause a photo induced reaction of the nanoparticle precursor and induce chirality to form a stable chiral nanoparticle. In this manner, CPL is used to template chirality onto nanoparticles without use of any chiral component or chiral ligands for inducing chirality to the particle in such a method. The nanoparticles may include a variety of light-absorbing materials (e.g., CdTe, CdS, Au, and the like). Such methods provide a rapid, simple, and inexpensive way of forming chiral nanoparticles that have long term chiral stability. 1. A method of forming a chiral nanoparticle comprising:directing circular polarized light towards a nanoparticle precursor to cause a photo-induced reaction of the nanoparticle precursor that induces chirality therein to form the chiral nanoparticle.2. The method of claim 1 , wherein the nanoparticle precursor and the chiral nanoparticle are free of any ligands for inducing chirality.3. The method of claim 1 , wherein the nanoparticle precursor comprises a first component for forming the chiral nanoparticle and a second component that serves as a capping agent on the chiral nanoparticle.4. The method of claim 1 , wherein the nanoparticle precursor is a dispersion of a first component for forming the chiral nanoparticle in an aqueous medium.5. The method of claim 1 , wherein the nanoparticle precursor comprises an element selected from the group consisting of: gold claim 1 , cadmium claim 1 , silver claim 1 , copper claim 1 , nickel claim 1 , iron claim 1 , carbon claim 1 , platinum claim 1 , silicon claim 1 , mercury claim 1 , lead claim 1 , molybdenum claim 1 , iron claim 1 , and combinations thereof.6. The method of claim 1 , wherein the chiral nanoparticle is selected from the group consisting of: gold claim 1 , silver claim 1 , copper claim 1 , nickel claim 1 , ...

Подробнее
11-09-2014 дата публикации

Method for Producing Aqueous Compatible Nanoparticles

Номер: US20140252273A1
Принадлежит: Nanoco Technologies Ltd

A method for producing aqueous compatible semiconductor nanoparticles includes binding pre-modified ligands to nanoparticles without the need for further post-binding modification to render the nanoparticles aqueous compatible. Nanoparticles modified in this way may exhibit enhanced fluorescence and stability compared to aqueous compatible nanoparticles produced by methods requiring post-binding modification processes.

Подробнее
11-09-2014 дата публикации

CONTROLLED SYNTHESIS OF NANOPARTICLES USING ULTRASOUND IN CONTINUOUS FLOW

Номер: US20140255293A1
Принадлежит:

Apparatuses and methods for synthesizing nanoparticles are provided.

Подробнее
01-07-2021 дата публикации

Luminescent composite material and preparation method therefor

Номер: US20210198568A1
Автор: BO Wang, Liang Li
Принадлежит: Shanghai Jiaotong University

A luminescent composite material and a preparation method therefor. The luminescent composite material is prepared by mixing a precursor of a quantum dot and an oxide or a precursor thereof followed by high-temperature calcination. Compared with traditional methods, the method provided herein is a simple and low-cost synthesis process without using solvents, and is suitable for large-scale production. The luminescent composite material has high quantum efficiency, luminous intensity and luminous color purity and good photothermal stability, which can provide basis for theoretical research and applications of the luminescent composite material in high-performance photoluminescence devices, lasers and nonlinear optical devices.

Подробнее
01-07-2021 дата публикации

Process for Leaching Metal Sulfides with Reagents Having Thiocarbonyl Functional Groups

Номер: US20210198767A1
Принадлежит: University of British Columbia

This application pertains to methods of recovering metals from metal sulfides that involve contacting the metal sulfide with an acidic sulfate solution containing ferric sulfate and a reagent that has a thiocarbonyl functional group, wherein the concentration of reagent in the acidic sulfate solution is sufficient to increase the rate of metal ion extraction relative to an acidic sulfate solution that does not contain the reagent, to produce a pregnant solution containing the metal ions.

Подробнее
06-07-2017 дата публикации

One-step process for synthesis of core shell nanocrystals

Номер: US20170190967A1

Present invention provides a process for the synthesis of size and composition tunable colloidal PbMgS core and PbMgS/MS core shell quantum dots emitting in the near infrared (NIR) region of the spectrum in a single operation in a continuous flow reactor. M includes at least one of Cd, Mg, Zn and Cu metals.

Подробнее
11-06-2020 дата публикации

Process for Leaching Metal Sulfides with Reagents Having Thiocarbonyl Functional Groups

Номер: US20200181731A1
Принадлежит:

This application pertains to methods of recovering metals from metal sulfides that involve contacting the metal sulfide with an acidic sulfate solution containing ferric sulfate and a reagent that has a thiocarbonyl functional group, wherein the concentration of reagent in the acidic sulfate solution is sufficient to increase the rate of metal ion extraction relative to an acidic sulfate solution that does not contain the reagent, to produce a pregnant solution containing the metal ions. 159.-. (canceled)60. A method of recovering at least one base metal from at least one base metal sulfide in a material , the method comprising:contacting the material with an acidic sulfate solution comprising a reagent having a thiocarbonyl functional group, wherein the reagent is thioacetamide (TA), to produce a pregnant solution containing base metal ions; andrecovering the at least one base metal from the pregnant solution.61. The method of claim 60 , wherein the acidic sulfate solution further comprises ferric sulfate.62. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 30 mM.63. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 20 mM.64. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 10 mM.65. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 5 mM.66. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 4 mM.67. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 3 mM.68. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate ...

Подробнее
11-06-2020 дата публикации

Process for Leaching Metal Sulfides with Reagents Having Thiocarbonyl Functional Groups

Номер: US20200181732A1
Принадлежит:

This application pertains to methods of recovering metals from metal sulfides that involve contacting the metal sulfide with an acidic sulfate solution containing ferric sulfate and a reagent that has a thiocarbonyl functional group, wherein the concentration of reagent in the acidic sulfate solution is sufficient to increase the rate of metal ion extraction relative to an acidic sulfate solution that does not contain the reagent, to produce a pregnant solution containing the metal ions. 159.-. (canceled)60. A method of recovering at least one base metal from at least one base metal sulfide in a material , the method comprising:contacting the material with an acidic sulfate solution comprising a reagent having a thiocarbonyl functional group, wherein the reagent is sodium dimethyldithiocarbamate (SDDC), to produce a pregnant solution containing base metal ions; andrecovering the at least one base metal from the pregnant solution.61. The method of claim 60 , wherein the acidic sulfate solution further comprises ferric sulfate.62. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 30 mM.63. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 20 mM.64. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 10 mM.65. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 5 mM.66. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 4 mM.67. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 3 mM.68. The method of claim 60 , wherein the concentration of the reagent in ...

Подробнее
11-06-2020 дата публикации

Process for Leaching Metal Sulfides with Reagents Having Thiocarbonyl Functional Groups

Номер: US20200181733A1
Принадлежит:

This application pertains to methods of recovering metals from metal sulfides that involve contacting the metal sulfide with an acidic sulfate solution containing ferric sulfate and a reagent that has a thiocarbonyl functional group, wherein the concentration of reagent in the acidic sulfate solution is sufficient to increase the rate of metal ion extraction relative to an acidic sulfate solution that does not contain the reagent, to produce a pregnant solution containing the metal ions. 159.-. (canceled)60. A method of recovering at least one base metal from at least one base metal sulfide in a material , the method comprising:contacting the material with an acidic sulfate solution comprising a reagent having a thiocarbonyl functional group, wherein the reagent is ethylene trithiocarbonate (ETC), to produce a pregnant solution containing base metal ions; andrecovering the at least one base metal from the pregnant solution.61. The method of claim 60 , wherein the acidic sulfate solution further comprises ferric sulfate.62. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 30 mM.63. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 20 mM.64. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 10 mM.65. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 5 mM.66. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 4 mM.67. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 3 mM.68. The method of claim 60 , wherein the concentration of the reagent in the ...

Подробнее
11-06-2020 дата публикации

Process for Leaching Metal Sulfides with Reagents Having Thiocarbonyl Functional Groups

Номер: US20200181734A1
Принадлежит:

This application pertains to methods of recovering metals from metal sulfides that involve contacting the metal sulfide with an acidic sulfate solution containing ferric sulfate and a reagent that has a thiocarbonyl functional group, wherein the concentration of reagent in the acidic sulfate solution is sufficient to increase the rate of metal ion extraction relative to an acidic sulfate solution that does not contain the reagent, to produce a pregnant solution containing the metal ions. 159.-.(canceled)60. A method of recovering at least one base metal from at least one base metal sulfide in a material , the method comprising:contacting the material with an acidic sulfate solution comprising a reagent having a thiocarbonyl functional group, wherein the reagent is thiosemicarbazide (TSCA), to produce a pregnant solution containing base metal ions; andrecovering the at least one base metal from the pregnant solution.61. The method of claim 60 , wherein the acidic sulfate solution further comprises ferric sulfate.62. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 30 mM.63. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 20 mM.64. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 10 mM.65. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 5 mM.66. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 4 mM.67. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 3 mM.68. The method of claim 60 , wherein the concentration of the reagent in the acidic ...

Подробнее
11-06-2020 дата публикации

Process for Leaching Metal Sulfides with Reagents Having Thiocarbonyl Functional Groups

Номер: US20200181735A1
Принадлежит:

This application pertains to methods of recovering metals from metal sulfides that involve contacting the metal sulfide with an acidic sulfate solution containing ferric sulfate and a reagent that has a thiocarbonyl functional group, wherein the concentration of reagent in the acidic sulfate solution is sufficient to increase the rate of metal ion extraction relative to an acidic sulfate solution that does not contain the reagent, to produce a pregnant solution containing the metal ions. 159.-. (canceled)60. A method of recovering at least one metal from an ore containing at least one metal sulfide , the method comprising:contacting the ore with an acidic sulfate solution comprising ferric sulfate and formamidine disulfide (FDS) to produce a pregnant solution containing metal ions; andrecovering the at least one metal from the pregnant solution,wherein the at least one metal includes:copper, wherein the at least one metal sulfide includes chalcopyrite, covellite, bornite, enargite, a copper sulfide of the formula CuxSy wherein the x:y ratio is between 1 and 2, or a combination thereof;cadmium, wherein the at least one metal sulfide is greenockite;nickel, wherein the at least one metal sulfide is pentlandite, violarite, or a combination thereof;or a combination thereof.61. The method of claim 60 , wherein the concentration of FDS in the acidic sulfate solution is in the range of about 0.1 mM to about 15 mM.62. The method of claim 60 , wherein the concentration of FDS in the acidic sulfate solution is in the range of about 0.1 mM to about 10 mM.63. The method of claim 60 , wherein the concentration of FDS in the acidic sulfate solution is in the range of about 0.2 mM to about 5 mM.64. The method of claim 60 , wherein the concentration of FDS in the acidic sulfate solution is in the range of about 0.1 mM to about 2.5 mM.65. The method of claim 60 , wherein the concentration of FDS in the acidic sulfate solution is in the range of about 0.1 mM to about 2 mM.66. The ...

Подробнее
11-06-2020 дата публикации

Process for Leaching Metal Sulfides with Reagents Having Thiocarbonyl Functional Groups

Номер: US20200181736A1
Принадлежит:

This application pertains to methods of recovering metals from metal sulfides that involve contacting the metal sulfide with an acidic sulfate solution containing ferric sulfate and a reagent that has a thiocarbonyl functional group, wherein the concentration of reagent in the acidic sulfate solution is sufficient to increase the rate of metal ion extraction relative to an acidic sulfate solution that does not contain the reagent, to produce a pregnant solution containing the metal ions. 159.-. (canceled)60. A method of recovering at least one metal from an ore containing at least one metal sulfide , the method comprising:contacting the ore with an acidic sulfate solution containing ferric sulfate and a reagent having a thiocarbonyl functional group to extract metal ions from the at least one metal sulfide, wherein the concentration of the reagent in the acidic sulfate solution is sufficient to increase the rate of the metal ion extraction relative to an acidic sulfate solution that does not contain the reagent, to produce a pregnant solution containing the metal ions; andrecovering the at least one metal from the pregnant solution,wherein the at least one metal includes:copper, wherein the at least one metal sulfide includes chalcopyrite, covellite, bornite, enargite, a copper sulfide of the formula CuxSy wherein the x:y ratio is between 1 and 2, or a combination thereof;cadmium, wherein the at least one metal sulfide is greenockite;nickel, wherein the at least one metal sulfide is pentlandite, violarite, or a combination thereof; or a combination thereof.61. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 30 mM.62. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of about 0.2 mM to about 20 mM.63. The method of claim 60 , wherein the concentration of the reagent in the acidic sulfate solution is in the range of ...

Подробнее
11-06-2020 дата публикации

Process for Leaching Metal Sulfides with Reagents Having Thiocarbonyl Functional Groups

Номер: US20200181737A1
Принадлежит: University of British Columbia

This application pertains to methods of recovering metals from metal sulfides that involve contacting the metal sulfide with an acidic sulfate solution containing ferric sulfate and a reagent that has a thiocarbonyl functional group, wherein the concentration of reagent in the acidic sulfate solution is sufficient to increase the rate of metal ion extraction relative to an acidic sulfate solution that does not contain the reagent, to produce a pregnant solution containing the metal ions.

Подробнее
13-08-2015 дата публикации

METAL CHALCOGENIDE SYNTHESIS METHOD AND APPLICATIONS

Номер: US20150225254A1
Принадлежит: CORNELL UNIVERSITY

A method for synthesizing a metal chalcogenide nanocrystal (NC) material includes reacting a metal material and an ammonium chalcogenide material in an organic solvent material. The method provides that the metal chalcogenide nanocrystal material may be synthesized by a heating-up method at large scale (i.e., greater than 30 grams). Ammonium chalcogenide salts exhibit high reactivity and metal chalcogenide nanocrystals can be synthesized at low temperatures (i.e., less than 200° C.) with high conversion yields (i.e., greater than 90 percent). 1. A synthetic method comprising reacting in an organic solvent material a metal material and an ammonium chalcogenide material to form a metal chalcogenide nanocrystal material.2. The method of wherein the organic solvent material comprises an anhydrous organic solvent material.3. The method of wherein the reacting produces greater than 30 grams of metal chalcogenide nanocrystal material in a single reaction batch.4. The method of wherein the metal chalcogenide nanocrystal material has a monodispersity less than 10 percent.5. The method of wherein the metal material is selected from the group consisting of a metal oxide claim 1 , a metal coordination complex and a metal salt.6. The method of wherein the metal material comprises a metal cation selected from the group consisting of Ti claim 5 , Mn claim 5 , Fe claim 5 , Co claim 5 , Ni claim 5 , Cu claim 5 , Zn claim 5 , Ga claim 5 , Mo claim 5 , Ag claim 5 , Cd claim 5 , In claim 5 , Sn claim 5 , Sb claim 5 , W claim 5 , Hg claim 5 , Pb claim 5 , and Bi metal cations.7. The method of wherein the metal salt comprises an anion selected from the group consisting of carboxylate claim 5 , diketonate claim 5 , halide claim 5 , perchlorate and amide anions.8. The method of wherein the ammonium chalcogenide is selected from the group consisting of ammonium sulfide claim 1 , ammonium selenide and ammonium telluride.9. The method of wherein the reacting is undertaken at a temperature ...

Подробнее
03-08-2017 дата публикации

SULFONATED AMINOMETHYLATED CHELATE RESINS

Номер: US20170216833A1
Принадлежит: LANXESS DEUTSCHLAND GMBH

The invention relates to sulfonated aminomethylated chelate resins, to a method for producing same, to the use thereof for obtaining and purifying metals, in particular rare earth metals, from aqueous solutions and organic liquids, and for producing highly pure silicon. 2. The chelating resin as claimed in claim 1 , wherein:{'sub': 1', '2', '2', '2', '2, 'sup': 1', '2, 'Rand Rindependently of one another, are —CHPO(OX), —CHPO(OH)OXor hydrogen; and'}{'sup': 1', '2, 'Xand X, independently of one another, represent hydrogen, sodium or potassium.'}3. A process for preparing the chelating resin as claimed in claim 1 , the process comprising: at least one monovinylaromatic compound and at least one polyvinylaromatic compound, and', 'at least one initiator or an Initiator combination, 'a) converting monomer droplets composed ofinto a bead polymer,{'sub': '3', 'b) phthalimidomethylating and sulfonating the bead polymer with phthalimide in the presence of oleum to produce phthalimidomethylated, sulfonated bead polymer, wherein the amount of free SOis at least 0.69 mol based on 1 mol of phthalimide,'}c) converting the phthalimidomethylated, sulfonated bead polymer into aminomethylated, sulfonated bead polymer, andd) reacting the aminomethylated, sulfonated bead polymer to afford chelating resins comprising functional groups of structural element (I).4. The process for preparing the chelating resin as claimed in claim 3 , wherein the bead polymers in step a) are prepared in monodisperse form and thus monodisperse chelating resins are prepared.5. The process for preparing the chelating resin as claimed in claim 3 , wherein the amount of free SOin step b) is between 0.69 and 1.5 mol based on 1 mol of phthalimide.6. The process for preparing the chelating resin as claimed in claim 3 , wherein the amount of free SOin step b) is between 0.69 and 1.2 mol based on 1 mol of phthalimide.7. A chelating resin comprising functional groups of structural element (I) prepared as claimed in . ...

Подробнее
18-08-2016 дата публикации

Use of sulfur and selenium compounds as precursors to nanostructured materials

Номер: US20160237345A1
Принадлежит: Columbia University of New York

The presently disclosed subject matter provides processes for preparing nanocrystals, including processes for preparing core-shell nanocrystals. The presently disclosed subject matter also provides sulfur and selenium compounds as precursors to nanostructured materials. The presently disclosed subject matter also provides nanocrystals having a particular particle size distribution.

Подробнее
30-08-2018 дата публикации

CHALCOGENIDE MATERIALS, CHALCOGENIDE-BASED MATERIALS, AND METHODS OF MAKING AND USING THE SAME

Номер: US20180244534A1

Disclosed herein are embodiments of chalcogenide materials and chalcogenide-based materials that exhibit improved light-driven properties and performance in comparison to conventional materials. Also disclosed herein are embodiments of cost- and time-efficient methods of making such materials. 1. A chalcogenide material having a formula MXwherein M is selected from Cd , Cu , Pb , or Zn; X is a chalcogen selected from S , Se , Te , or combinations thereof; and n is 1 or 2; wherein the chalcogenide material exhibits high crystallinity and is chalcogen-deficient.2. The chalcogenide material of claim 1 , wherein M is Cd or Pb claim 1 , X is S claim 1 , and n is 1.3. The chalcogenide material of claim 1 , wherein the chalcogenide material is chalcogen-deficient such that it comprises from greater than zero atomic % of the chalcogen to less than 1 atomic % of the chalcogen.4. The chalcogenide material of claim 1 , wherein the chalcogenide material is chalcogen-deficient such that it comprises from 0.1 atomic % of the chalcogen to less than 0.95 atomic % of the chalcogen.5. The chalcogenide material of claim 1 , wherein the high crystallinity of the chalcogenide material comprises a high intensity ratio ranging from 2 to 5.6. (canceled)7. The chalcogenide material of claim 1 , wherein the chalcogenide material is CdS or PbS claim 1 , and wherein the CdS or PbS exhibits high crystallinity comprising an intensity ratio of 3 to 4 and comprises greater than zero atomic % sulfide to less than 1 atomic % sulfide.8. The chalcogenide material of claim 1 , wherein the chalcogenide material is CdS and the CdS exhibits high crystallinity of about 3.90 to about 4.0 and comprises 0.81 to 0.85 atomic % sulfide.9. (canceled)10. A composition for producing a chalcogenide material or a chalcogenide-based material claim 1 , comprising a chalcogenide precursor having a formula MLLwherein M is selected from Cd claim 1 , Cu claim 1 , Pb claim 1 , or Zn and each of Land Lindependently is ...

Подробнее
07-09-2017 дата публикации

DIMENSIONALLY FOCUSED NANOPARTICLE SYNTHESIS METHODOLOGY

Номер: US20170253493A1
Принадлежит:

A methodology for synthesizing a nanoparticle batch, such as but not limited to a metal chalcogenide nanoparticle batch and further such as but not limited to a metal sulfide nanoparticle batch is predicated upon an expectation and observation that at elevated concentrations of at least one reactant material within a heat-up nanoparticle batch synthesis method, the resulting nucleated batch comprises nanoparticles that may be dimensionally focused to provide a substantially monodisperse nanoparticle batch. The embodied methodology is also applicable to a continuous reactor. The embodied methodology also considers viscosity as a dimensionally focusing result effective variable. 1. A nanoparticle synthesis method comprising: a first reactant material at a first concentration; and', 'a second reactant material at a second concentration, to provide a reactant composition; and, 'mixing together at a first temperature at leastthermally adjusting the reactant composition to a second temperature to provide a nucleated virgin nanoparticle population within a nucleated reactant composition, wherein at least one of the first concentration and the second concentration is sufficiently high to dimensionally focus the nucleated virgin nanoparticle population to a substantially monodisperse nanoparticle population when thermally soaking the nucleated virgin nanoparticle population in the nucleated reactant composition.2. The method of wherein the nanoparticle synthesis method comprises a batch nanoparticle synthesis method.3. The method of wherein the nanoparticle synthesis method comprises a continuous nanoparticle synthesis method.4. The method of wherein the nanoparticle batch comprises a material selected from the group consisting of metal carbide materials claim 1 , metal nitride materials and metal oxide materials.5. The method of wherein the reactant composition also comprises a diluent.6. The method of wherein the thermally soaking of the virgin nanoparticle batch is ...

Подробнее
11-10-2018 дата публикации

Self-Propagating Low-Temperature Synthesis and pre-treatment of Chalcogenides for Spark Plasma Sintering

Номер: US20180290896A1
Принадлежит: Texas Biochemicals Inc.

A method is provided for producing an article which is transparent to IR wavelength in the region of 4 μm to 9 μm. The method includes the steps of (a) Producing ultra-fine powders of ZnS, (b) followed by pretreatment of the ultra-fine powders under reduced gas conditions including H2, H2S, N2, Ar and mixtures there of (c) followed by vacuum (3×10torr) treatment to remove oxygen and sulfates adsorbed to the surface disposing a plurality of nano-particles on a substrate, wherein said nanoparticles comprise ZnS with ultra-high purity of cubic phase; (b) subjecting the nano-particles to spark plasma sintering thereby producing a sintered ZnS product with IR transmission reaching 75% in the wavelength range of 4 μm to 9 μm. 2. The process according to wherein the pre-treatment of said ZnS nano-particles is done in a mixture of HS and Hwith volume ratio 1:(4 claim 1 , 9) claim 1 , at a temperature in the range of 450° C. to 700° C. and duration in the range of 2 to 4 hours.3. The process according to wherein the pre-treatment of said ZnS nano-particles is done in a mixture of claim 1 , HS and Nwith volume ratio 1:(4 claim 1 ,9) claim 1 , at a temperature in the range of 450° C. to 700° C. and duration in the range of 2 to 4 hours4. The process according to wherein the pre-treatment of said ZnS nano-particles is done in a mixture of HS and Ar with volume ratio 1:(4 claim 1 , 9) claim 1 , at a temperature in the range of 450° C. to 700° C. and duration in the range of 2 to 4 hours5. The process according to wherein the said vacuum treatment of ZnS nano-particles is done in the range of temperatures less than 600° C. and in the range of vacuum of 1×10Torr to 3×10Torr for a time duration of 3-6 hr.6. The process according to wherein the said pulsed spark plasma treatment can be replaced by Laser sintering or Micro-wave sintering or vacuum sintering or cold-Isostatic pressing or combinations of the sequence of these sintering methods.7. The process according to wherein the ...

Подробнее
28-12-2017 дата публикации

METHODS OF PRODUCING METAL SULFIDES, METAL SELENIDES, AND METAL SULFIDES/SELENIDES HAVING CONTROLLED ARCHITECTURES USING KINETIC CONTROL

Номер: US20170369779A1

The present invention is directed to methods of preparing metal sulfide, metal selenide, or metal sulfide/selenide nanoparticles and the products derived therefrom. In various embodiments, the nanoparticles are derived from the reaction between precursor metal salts and certain sulfur- and/or selenium-containing precursors each independently having a structure of Formula (I), (II), or (III), or an isomer, salt, or tautomer thereof, where Q,Q,Q,R,R,R,R, and X are defined within the specification. 2. The method of claim 1 , comprising contacting two precursor metal salts with the sulfur-containing precursor claim 1 , the selenium-containing precursor claim 1 , or a combination of the sulfur-containing and selenium-containing precursors to form the nanoparticles.3. The method of comprising contacting a precursor metal salt with a combination of a sulfur-containing precursor and a selenium-containing precursor to form the nanoparticles.5. The method of claim 1 , wherein a mixture of a sulfur-containing and a selenium-containing precursor is used claim 1 , the sulfur-containing and selenium-containing precursors exhibiting pseudo first order kinetics with respect to the metal precursor salt claim 1 , the pseudo first kinetics of each having an associated pseudo first order rate constant claim 1 , the ratio of the pseudo first order rate constants being in a range of from 1 to 10 claim 1 , under the reaction conditions employed.6. The method of claim 5 , wherein the pseudo-first order rate constants claim 5 , k(s) associated with at least one of the sulfur-containing or selenium-containing precursors with the metal containing precursor salt is in a range from 1×10to 1×10.8. The method of claim 5 , wherein Rand Rare claim 5 , within the same structure claim 5 , linked to form a 5- to 10-membered heterocycle comprising an optionally substituted alkylene or an optionally substituted and/or conjugated alkenylene linkage.15. The method of claim 14 , wherein Qis phenyl or ...

Подробнее
15-01-2004 дата публикации

Semiconductor nanoparticles and thin film containing the same

Номер: US20040007169A1
Принадлежит: Mitsubishi Chemical Corp

Semiconductor nanoparticles, having a poly(alkylene glycol) residue attached to the surface of semiconductor crystals, exhibit hydrophilicity, a non-specific adsorbing property to biosubstances, and absorption and luminescence characteristics controlled by aquantum effect of the semiconductor crystals.

Подробнее
02-08-2007 дата публикации

A coating method of nano particle

Номер: KR100745744B1
Автор: 임정은, 장은주, 전신애
Принадлежит: 삼성전기주식회사

본 발명은 나노 입자를 금속 산화물로 코팅하는 방법에 관한 것이다. 나노 입자를 금속 산화물로 코팅하는 방법에 있어서, (가) 나노 입자의 표면을 친수성 치환기가 있는 유기물로 치환하는 단계; 및 (나) 양친매성 계면 활성제를 포함하는 유기 용매에 상기 나노 입자 및 금속 산화물 전구체를 주입하여 상기 나노 입자 표면에 상기 금속 산화물을 코팅하는 단계;를 포함하는 나노 입자 코팅 방법을 제공한다. The present invention relates to a method of coating nanoparticles with a metal oxide. A method of coating nanoparticles with a metal oxide, the method comprising: (a) replacing the surface of the nanoparticles with an organic material having a hydrophilic substituent; And (b) coating the metal oxide on the surface of the nanoparticle by injecting the nanoparticle and the metal oxide precursor into an organic solvent including an amphiphilic surfactant.

Подробнее
22-06-1994 дата публикации

Anticorrosion paint composition

Номер: JPH0647659B2
Автор: 茂男 宮田
Принадлежит: Kyowa Chemical Industry Co Ltd

Подробнее
15-08-2017 дата публикации

一种硫化镉纳米花、制备及其应用

Номер: CN107043124A
Принадлежит: CENTRAL SOUTH UNIVERSITY

本发明公开了一种硫化镉纳米花,其特征在于,由若干硫化镉纳米片相互聚集,自组装成花状球团。此外,本发明还公开了所述的硫化镉纳米花的制备方法,镉源与硫脲分散和/或溶解在二乙烯三胺/乙醇的混合溶液中,随后进行水热反应,固液分离、洗涤、冷冻干燥得所述的硫化镉纳米花。本发明所述的花状硫化镉有着高(002)面晶面取向,并拥有优良的产氢性能。

Подробнее
10-01-2017 дата публикации

Biocompatible nanomaterial for photosensitivity singlet oxygen and method for production thereof

Номер: RU2607579C2

FIELD: medicine. SUBSTANCE: group of inventions refers to medicine, in particular to oncology, and describes a biocompatible nanomaterial and method of its production. Proposed biocompatible nanomaterial is a hybrid associates of colloidal quantum dots CdS with average size of 2–4 nm with cations of methylene blue (MB+) in concentration 10 -1 –10 -4 (ν paints /ν CdS ). Method involves double jet merging of 0.6–5 % solution of sodium sulphide and 0.8–7 % solution of cadmium bromide with melt of gelatin with producing of colloidal solution, containing colloidal quantum dots of CdS, solution is held at temperature of 4–10 °C, produced gelatine jelly is crushed to grain with size 5–10 mm, washed in distilled water at temperature from 7 to 13 °C for 30 minutes, decant excess water and granules are heated to temperature above 40°C. Nanomaterial is highly efficient generation of singlet oxygen and satisfactory parameters of cytotoxicity, testifies to its biocompatibility. EFFECT: invention can be used in medicine and biology for photodynamic therapy of oncological and other human diseases. 2 cl, 6 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 607 579 C2 (51) МПК A61K 9/51 (2006.01) A61K 47/42 (2006.01) C01G 11/02 (2006.01) B82B 3/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ФОРМУЛА (21)(22) Заявка: ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 2014141085, 10.10.2014 (24) Дата начала отсчета срока действия патента: 10.10.2014 Дата регистрации: Приоритет(ы): (22) Дата подачи заявки: 10.10.2014 (43) Дата публикации заявки: 27.04.2016 Бюл. № 12 Адрес для переписки: 394006, г. Воронеж, Университетская пл., 1, ФГБОУ ВПО "ВГУ", ЦКТ (56) Список документов, цитированных в отчете о поиске: US 20020127224, 12.09.2002. C 2 2 6 0 7 5 7 9 R U (54) БИОСОВМЕСТИМЫЙ НАНОМАТЕРИАЛ ДЛЯ ФОТОСЕНСИБИЛИЗАЦИИ СИНГЛЕТНОГО КИСЛОРОДА И СПОСОБ ЕГО ПОЛУЧЕНИЯ (57) Формула изобретения 1. Биосовместимый наноматериал для фотосенсибилизации синглетного кислорода, представляет собой ...

Подробнее
10-05-2011 дата публикации

Compositions and methods using substances containing carbon

Номер: US7939336B2
Принадлежит: Calera Corp

Methods of characterizing and producing compositions with negative δ 13 C values are provided. Aspects of the invention include characterizing source materials and process products. Aspects of the invention also include compositions that contain carbon with negative δ 13 C values. Methods and techniques are provided for confirming that a given composition contains substances sequestered from a particular source e.g., fossil fuels.

Подробнее
01-04-2010 дата публикации

Compositions and methods using substances containing carbon

Номер: US20100077922A1
Принадлежит: Calera Corp

Methods of characterizing and producing compositions with negative δ 13 C values are provided. Aspects of the invention include characterizing source materials and process products. Aspects of the invention also include compositions that contain carbon with negative δ 13 C values.

Подробнее
26-05-2020 дата публикации

包括经封裝之纳米颗粒之墨水

Номер: CN111201300A
Принадлежит: NEXDOT

本发明涉及一种墨水,其包括至少一个包含材料甲(11)的粒子(1);和至少一种液体媒液;其中所述之粒子(1)包含至少一个粒子(2),其包含材料乙(21)和分散在所述之材料乙(21)中的至少一种纳米颗粒(3);其中,所述之材料甲(11)和材料乙(21)在460纳米处的消光系数小于或等于15x10 ‑5 。本发明还涉及墨水、包含至少一种墨水的发光材料、包含至少一种墨水的图形模型、沉积在载体上的粒子、包含至少一种墨水的光电装置,和用于在载体上沉积墨水的方法。

Подробнее
28-12-2021 дата публикации

Heat-accumulating composition based on eutectic mixture of crystal hydrates of calcium and cadmium nitrates

Номер: RU2763288C1

FIELD: heat-saving technologies; energy-saving technologies. SUBSTANCE: heat-accumulating composition, based on an eutectic mixtures of calcium nitrate tetrahydrate and cadmium nitrate tetrahydrate, contains an eutectic mixture of Ca(NO 3 ) 2 ·4H 2 O and Cd(NO 3 ) 2 ·4H 2 O with the addition of expanded graphite and carboxymethylcellulose, or an eutectic mixture of Ca(NO 3 ) 2 ·4H 2 O and Cd(NO 3 ) 2 ·4H 2 O with the addition of calcium oxide and carboxymethylcellulose, or an eutectic mixture of Ca(NO 3 ) 2 ·4H 2 O and Cd(NO 3 ) 2 ·4H 2 O with the addition of calcium hydroxide and carboxymethylcellulose. The heat-accumulating composition is characterized by a temperature of a phase transition, which ensures the operability of the composition as heat-accumulating material, between 36 and 45°C. The specified composition is prepared by heating to 60°C of the eutectic mixture of Ca(NO 3 ) 2 ·4H 2 O and Cd(NO 3 ) 2 ·4H 2 O, melting for 30 min with constant mixing, holding for 10 min, sequential addition of additives and further mixing for 3 h with a temperature control of 60°C. EFFECT: invention makes it possible to obtain material for accumulating excess heat energy for the purpose of heating rooms, motor vehicle salons. 1 cl, 9 dwg, 1 tbl, 3 ex РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 763 288 C1 (51) МПК C09K 5/06 (2006.01) C01F 11/36 (2006.01) C01G 11/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК C09K 5/063 (2021.05); C01F 11/36 (2021.05); C01G 11/00 (2021.05) (21)(22) Заявка: 2020140982, 11.12.2020 (24) Дата начала отсчета срока действия патента: Дата регистрации: Приоритет(ы): (22) Дата подачи заявки: 11.12.2020 (45) Опубликовано: 28.12.2021 Бюл. № 1 2 7 6 3 2 8 8 R U (56) Список документов, цитированных в отчете о поиске: SU 943265 A1, 15.07.1982. SU 834088 A1, 30.05.1981. DE 59702643 D1, 21.12.2000. EP 1156097 B1, 15.10.2003. US 9914865 B2, 13.03.2018. WO 2020074883 A1, 16.04.2020. (54) ...

Подробнее
31-05-2017 дата публикации

The method that selenium is leached from cadmium selenide waste material

Номер: CN106744725A
Автор: 朱刘, 李琴香, 陈辉, 黄华强
Принадлежит: Vital Materials Co Ltd

本发明涉及一种从硒化镉废料中浸出硒的方法,该方法采用两段氧压碱浸,先将硒化镉废料进行一段氧压碱浸,一段氧压碱浸的浸出渣作为二段氧压碱浸的原料,二段氧压碱浸的浸出液返回至一段氧压碱浸的浸出剂中;其中一段氧压碱浸和二段氧压碱浸均在高压反应釜中进行,且均通入氧气作为氧化剂。本发明的方法,使硒化镉废料中的硒完全以亚硒酸钠的形式存在于浸出液中,安全环保,硒回收率高,成本低。

Подробнее
01-02-2017 дата публикации

Preparation method of magic-size nanocrystal substance

Номер: CN106365128A
Принадлежит: Sichuan University

魔尺寸纳米晶类物质的制备方法,以含有元素周期表ⅡB族、ⅢA和

Подробнее
29-11-2007 дата публикации

Non-alloyed core-shell nanoparticles

Номер: DE60218840T2
Принадлежит: Northwestern University

Подробнее
27-08-2019 дата публикации

A kind of La doped gallium oxide-cadmium oxide composite material of pair of ethyl alcohol high sensitivity, quick response

Номер: CN110171841A
Принадлежит: Anhui University of Technology AHUT

本发明公开一种对乙醇高灵敏度、快速响应的镧掺杂氧化镓‑氧化镉复合材料,属于气敏材料技术领域。该复合材料主体组成为氧化镓和氧化镉纳米粉体,并含有少量的氧化镧。该复合材料是通过水热和热处理方法制备。以该材料作为气敏材料制成的旁热式气敏元件,在工作温度为150℃时,元件对1000ppm乙醇的灵敏度达到150‑170,对乙醇检测限低至0.1ppm,并且对0.1‑1000ppm乙醇气体的响应和恢复时间不超过7.0s;该元件在工作温度150℃时,对1000ppm的丙酮、三甲胺、乙醛、氨气、苯、甲苯的灵敏度均低于5.0;即本发明镧掺杂的氧化镓‑氧化镉气敏材料对乙醇气体具有高灵敏度和快速响应特性。

Подробнее
24-07-2017 дата публикации

Complex oxid of cadmium and iron and method of its production

Номер: RU2626209C2

Изобретение относится к области спиновой электроники, конкретно к получению нового магнитного материала - сложного оксида кадмия и железа состава Cd 1-x Fe x O, где 0,025≤x≤0,07. Способ получения сложного оксида кадмия и железа состава Cd 1-x Fe x O, где 0,025≤x≤0,07 включает получение смеси растворов формиата кадмия и формиата железа в дистиллированной воде при нагревании. Далее смесь упаривают до сухого остатка при температуре 80-85°С на воздухе. Термообработку сухого остатка проводят в две стадии: I стадия - при температуре 300-310°С в течение 0,5-0,6 ч и II стадия - при температуре 400-410°С в течение 2,0-2,5 ч. Обеспечивается получение нового химического соединения, обладающего высокими значениями намагниченности при комнатной температуре. 2 н.п. ф-лы, 3 ил., 4 пр. С 2 2626209 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) (11) оз за га г (13) > & *% хх $3 АХ“ (51) МПК ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ СОС 11000 (2006.01) (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (21)(22) Заявка: 2015154846, 21.12.2015 (24) Дата начала отсчета срока действия патента: 21.12.2015 Дата регистрации: 24.07.2017 Приоритет(ы): (22) Дата подачи заявки: 21.12.2015 (43) Дата публикации заявки: 26.06.2017 Бюл. № 18 (45) Опубликовано: 24.07.2017 Бюл. № 21 Адрес для переписки: 620990, г. Екатеринбург, ул. Первомайская, 91, ИХТТ УрО РАН, патентный отдел (72) Автор(ы): Красильников Владимир Николаевич (КП), Гырдасова Ольга Ивановна (КО), Дьячкова Татьяна Витальевна (КО), Тютюнник Александр Петрович (КО), Марченков Вячеслав Викторович (КП), Перевозчикова Юлия Александровна (КП) (73) Патентообладатель(и): Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук (ИХТТ УрО РАН) (КО), Федеральное государственное бюджетное учреждение науки Институт физики металлов имени М.Н. Михеева Уральского отделения Российской академии наук (ИФМ УрО РАН) (КО) (56) Список документов, цитированных в отчете о поиске: А.А. РаКВе], М. Е1-НПо, М. ...

Подробнее
17-11-2014 дата публикации

Preparing Method of Nano particle using Carbene derivative

Номер: KR101462653B1
Автор: 손성욱, 장은주

본 발명은 카르벤 유도체를 이용한 나노입자 제조방법에 관한 것으로, 더욱 상세하게는 유기 용매에 하나 이상의 전구체 물질을 가하여 결정을 성장시켜 나노입자를 합성함에 있어서, 전구체 물질로 특정 카르벤(carbene) 유도체를 사용하는 나노입자의 제조방법에 관한 것이다. The present invention relates to a method for producing nanoparticles using carbene derivatives. More particularly, the present invention relates to a method for preparing nanoparticles by growing at least one precursor material in an organic solvent to produce nanoparticles, To a method for producing nanoparticles using the nanoparticles. 나노입자, 카르벤 유도체, 퀀텀 닷 Nanoparticles, Carbene derivatives, Quantum dot

Подробнее
16-07-2021 дата публикации

Method for enhancing even-order higher harmonics of two-dimensional material

Номер: CN113122236A
Автор: 刘开辉, 吴春春, 洪浩
Принадлежит: PEKING UNIVERSITY

本发明提供一种增强二维材料的偶数阶高次谐波的方法,属于光信号增强技术领域。该方法包括:1)制备二维材料,并测定二维材料的二次谐波光谱或四次谐波光谱;2)在二维材料上涂覆量子点薄膜;3)选择量子点的双光子吸收波长与激光器的发光波长共振;实现增强二维材料的偶数阶高次谐波的强度。本发明通过QD涂层方法大大提高了二维材料的非线性光学响应。

Подробнее
06-07-2018 дата публикации

Core-shell quanta dots and preparation method thereof and the electroluminescent device containing it

Номер: CN108251117A
Принадлежит: Najing Technology Corp Ltd

本发明提供了一种核壳量子点及其制备方法、及含其的电致发光器件。该核壳量子点的核是CdSe X S (1‑X) ,量子点壳层包括第一和第二壳层,第一壳层选自ZnSe、ZnSe Y S (1‑Y) 和Cd (Z) Zn (1‑Z) S中的一种或多种,包覆第一壳层的第二壳层为Cd (Z) Zn (1‑Z) S或ZnS,核壳量子点的最大发射峰值≤480nm,X、Y、Z均大于0小于1。由于CdSe X S (1‑X) 核的带宽较小,HOMO能级较浅,空穴容易注入;第一壳层材料能带介于核和第二壳层之间,不但降低了核的缺陷,提高了量子点光致发光效率,而且降低了载流子注入势垒,提高了外量子效率及寿命;该第二壳层钝化量子点,提高了整体的稳定性。

Подробнее
15-12-2011 дата публикации

The method for preparation of nanocomposite with enhanced thermoelectric ability and nanocomposite thereof

Номер: KR101094458B1
Автор: 김성진, 김희진, 한미경
Принадлежит: 이화여자대학교 산학협력단

본 발명은 열전효율이 향상된 나노복합체의 제조방법 및 이에 따라 제조되는 나노복합체에 관한 것으로, 더욱 상세하게는 배위리간드를 가지며, 표면처리된 MO(M= Cd 또는 Zn)에 계면활성제를 첨가한 후 Te 금속분말을 고온주입하여 MTe를 제조하는 단계(단계 1); 상기 단계 1에서 제조된 MTe에 N(N= Pb 또는 Sn) 전구체를 주입하여 코어-셀 구조의 MTe-NTe를 제조하는 단계(단계 2); 및 상기 단계 2에서 제조된 나노입자 MTe-NTe와 벌크 NTe를 혼합하여 전열처리한 후 열처리하는 단계(단계 3)를 포함하는 열전효율이 향상된 나노복합체의 제조방법 및 구형의 나노입자 MTe(M= Cd 또는 Zn)의 둘레를 NTe(N= Pb 또는 Sn)가 구형으로 둘러싸는 형상인 코어-셀 구조의 MTe-NTe 나노입자와 벌크 NTe가 혼합된 나노복합체에 관한 것이다. 본 발명에 따른 열전효율이 향상된 나노복합체의 제조방법은 고온주입법을 이용하여 균일한 크기의 코어-셀 나노입자를 제조할 수 있고, 벌크 크기의 PbTe 또는 SnTe와 혼합하여 나노복합체를 제조함으로써, 열적, 전기적 특성을 동시에 제어하여 향상된 열전효율이 나타나므로, 열전냉각 및 열전발전 분야의 열전재료로 유용하게 사용할 수 있다. The present invention relates to a method for manufacturing a nanocomposite having improved thermoelectric efficiency and a nanocomposite prepared according to the present invention. More specifically, the present invention has a coordination ligand, and after adding a surfactant to a surface-treated MO (M = Cd or Zn), Injecting Te metal powder at high temperature to prepare MTe (Step 1); Preparing MTe-NTe having a core-cell structure by injecting an N (N = Pb or Sn) precursor into the MTe prepared in step 1 (step 2); And a method for preparing a thermocomposite-improved nanocomposite comprising the nanoparticle MTe-NTe and the bulk NTe prepared in step 2, followed by heat treatment (step 3), and the spherical nanoparticle MTe (M = The present invention relates to a nanocomposite in which MTe-NTe nanoparticles having a core-cell structure and bulk NTe are mixed with a spherical shape surrounded by NTe (N = Pb or Sn) around Cd or Zn). In the method of manufacturing a nanocomposite having improved thermoelectric efficiency according to the present invention, a core-cell nanoparticle having a uniform size can be prepared using a high temperature injection method, and a nanocomposite is prepared by mixing with a bulk sized PbTe or SnTe, In addition, since the thermoelectric efficiency is improved by controlling the electrical characteristics at the same time ...

Подробнее
27-08-2008 дата публикации

Method for producing aqueous compatible nanoparticles

Номер: GB0813273D0
Автор: [UNK]
Принадлежит: Nanoco Technologies Ltd

Подробнее
21-02-2017 дата публикации

Gas phase enhancement of emission color quality in solid state LEDs

Номер: US9574135B2
Принадлежит: Nanoco Technologies Ltd

Light-emitting materials are made from a porous light-emitting semiconductor having quantum dots (QDs) disposed within the pores. According to some embodiments, the QDs have diameters that are essentially equal in size to the width of the pores. The QDs are formed in the pores by exposing the porous semiconductor to gaseous QD precursor compounds, which react within the pores to yield QDs. According to certain embodiments, the pore size limits the size of the QDs produced by the gas-phase reactions. The QDs absorb light emitted by the light-emitting semiconductor material and reemit light at a longer wavelength than the absorbed light, thereby “down-converting” light from the semiconductor material.

Подробнее
19-10-2021 дата публикации

Production method of high-purity one-third cadmium sulfate octahydrate

Номер: CN113511671A
Автор: 张佳, 王波
Принадлежит: First Rare Materials Co Ltd

本发明公开了一种高纯度三分之八水合硫酸镉的生产方法,包括如下步骤:将氧化镉溶于硫酸溶液中得到硫酸镉溶液,然后调pH值至2~5,再过滤,将滤液蒸发至比重为1.6~1.7g/mL;向蒸发后的滤液中加入有机溶剂醇或乙酸乙酯或乙醚,进行搅拌萃取,待萃取后进行离心,然后将离心所得晶体晾干,即得到三分之八水合硫酸镉。本发明的生产方法生产效率高、工艺步骤简单、成本低且安全、环境友好,且制备的三分之八水合硫酸镉产品产率和纯度高,适用于大规模生产。

Подробнее
06-09-2019 дата публикации

A kind of ZnO/ZnS/CdS photo-anode film and preparation method thereof

Номер: CN110205634A
Автор: 李伟华, 陈昊翔
Принадлежит: National Sun Yat Sen University

本发明公开了一种ZnO/ZnS/CdS光阳极薄膜及其制备方法。包括以下步骤:将锌盐完全溶解于溶剂中后,将其滴涂在预处理后的FTO导电玻璃上,在350~385℃空气氛围中煅烧2~3h,将其放入锌盐和六亚甲基四胺的混合溶液中,在90~98℃下反应4~8h,得到ZnO纳米棒阵列膜后,置于硫源溶液中,于85~95℃下加热4~16h,得到ZnO/ZnS纳米管阵列膜后,置于镉源醇溶液中,在165~180℃下加热4~8h,即得。本发明克服了传统CdS、ZnO材料稳定性低的问题,同时提升了ZnO材料的光吸收范围,可同时获得高效率、零能耗、长寿命、可对被保护的金属进行阴极极化的光阳极复合材料。

Подробнее
10-04-2013 дата публикации

Method of producing metal products

Номер: RU2478566C2
Автор: Ашер ВИТНЕР

Способ промышленной очистки потока низкосортного поливалентного катиона с чистотой Р1 путем образования осадка двойной соли поливалентного катиона с чистотой Р2 и раствора поливалентного катиона с чистотой Р3, где Р2>Р1>Р3 включает следующие этапы: (а) образования из упомянутого потока среды, содержащей воду, поливалентный катион, катион, выбираемый из группы, состоящей из аммония, катионов щелочных металлов, протонов и любого их сочетания, и анионы, причем образовавшаяся среда далее характеризуется присутствием (i) осадка двойной соли, содержащего поливалентный катион, по меньшей мере один из упомянутых катионов и по меньшей мере один из упомянутых анионов; и (ii) раствор поливалентного катиона; в которой концентрация упомянутых анионов больше 10% и соотношение между концентрациями упомянутого катиона и упомянутого аниона в упомянутом растворе поливалентного катиона находится в пределах Зоны DS, которая определена в настоящем документе; и (b) отделения по меньшей мере части упомянутого осадка от упомянутого раствора. Техническим результатом изобретения является получение сырья для производства металлопродукта высокой чистоты. 34 з.п. ф-лы, 6 табл., 4 пр. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 2 478 566 (13) C2 (51) МПК C01B 13/14 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (21)(22) Заявка: 2009140320/05, 01.05.2008 (24) Дата начала отсчета срока действия патента: 01.05.2008 (73) Патентообладатель(и): ЙОМА ИНТЕРНЭШНЛ АС (NO), АШЕР ВИТНЕР ЛТД. (IL) R U Приоритет(ы): (30) Конвенционный приоритет: 03.05.2007 IL 182,946 (72) Автор(ы): ВИТНЕР Ашер (IL) (43) Дата публикации заявки: 10.05.2011 Бюл. № 13 2 4 7 8 5 6 6 (45) Опубликовано: 10.04.2013 Бюл. № 10 (56) Список документов, цитированных в отчете о поиске: WO 2007043055 A, 19.04.2007. SU 629857 A3, 25.10.1978. SU 594046 A1, 25.02.1978. RU 2045477 C1, 10.10.1995. US 5865952 A, 02.02.1999. US 6264904 B1, 24.07.2001. 2 4 7 8 5 6 6 R U (86) Заявка PCT: IL 2008/000583 ...

Подробнее
14-09-2006 дата публикации

Method for Preparing Metal Sulfide Nanocrystal Using Thiol Compound As Sulfur Precursor

Номер: KR100621309B1
Автор: 장은주, 전신애, 최성재
Принадлежит: 삼성전자주식회사

본 발명은 황 전구체로서 싸이올 화합물을 이용한 황화 금속 나노결정의 제조방법에 관한 것으로, 보다 상세하게는 용매 중에서 금속 전구체와 싸이올 화합물을 반응시켜 황화 금속 결정을 성장시켜 나노 크기의 결정 상으로 합성하거나, 용매 중에서 금속 전구체와 싸이올 화합물을 반응시켜 코어 표면에 황화 금속 결정층을 성장시켜 코어-쉘(core-shell) 구조의 나노결정을 합성하는 방법에 관한 것으로, 본 발명에 의해 균일한 크기의 나노 입자를 제조할 수 있고, 원하는 결정 구조를 선택적으로 얻을 수 있으며, 다양하게 형태를 조절하여 황화 금속 나노결정을 제조할 수 있다. The present invention relates to a method for producing metal sulfide nanocrystals using a thiol compound as a sulfur precursor, and more specifically, to a metal size crystal phase by growing a metal sulfide crystal by reacting a metal precursor with a thiol compound in a solvent. Alternatively, the present invention relates to a method of synthesizing a core-shell structure nanocrystal by growing a metal sulfide crystal layer on a core surface by reacting a metal precursor with a thiol compound in a solvent. Nanoparticles can be prepared, the desired crystal structure can be selectively obtained, and metal sulfide nanocrystals can be prepared by variously adjusting the shape. 황화 금속 나노결정, 싸이올 화합물, 코어-쉘 구조, 습식 합성법, 화합물 반도체 Metal sulfide nanocrystals, thiol compounds, core-shell structures, wet synthesis, compound semiconductors

Подробнее
09-01-2007 дата публикации

Controlled chemical aerosol flow synthesis of nanometer-sized particles and other nanometer-sized products

Номер: US7160489B2
Принадлежит: University of Illinois

A method and apparatus for producing nanometer-sized particles, the method including the steps of forming of mixture by mixing a first precursor reactant, a second precursor reactant, a surface-stabilizing surfactant, and a high boiling point liquid to form a mixture, forming a mist of droplets of the mixture, heating the droplets to cause a reaction between species of the first and second precursor reactants within the heated droplets, and collecting the nanometer-sized products.

Подробнее
09-01-2007 дата публикации

Method for Manufacturing Metal Oxide Hollow Nanoparticles

Номер: KR100666728B1
Автор: 이재성, 이창우, 임성순
Принадлежит: 한양대학교 산학협력단

본 발명은 화학기상응축공정에 의하여 나노입자를 제조하는 방법에 관한 것으로서, 전구체로서 금속 아세틸아세토네이트를 사용하여 기상합성공정에서 보다 쉽고 간단한 방법으로 우수한 특성을 갖는 금속산화물 중공 나노입자를 제조하는 방법 및 이 방법에 의하여 제조된 금속산화물 중공 나노입자를 제공한다. The present invention relates to a method for producing nanoparticles by chemical vapor condensation process, using a metal acetylacetonate as a precursor to a method for producing metal oxide hollow nanoparticles having excellent properties in an easier and simpler method in the gas phase synthesis process And it provides a metal oxide hollow nanoparticles produced by this method. 본 발명은 화학기상응축공정에 의하여 금속 산화물 중공나노입자를 제조하는 방법에 있어서, 전구체인 금속 아세틸아세토네이트를 준비하는 단계; 상기와 같이 준비된 금속 아세틸아세토네이트를 그 녹는점이상의 온도에서 기화시키는 단계; 상기와 같이 기화된 금속 아세틸아세토네이트를 반응구역으로 이송시키는 단계; 상기와 같이 반응구역으로 이송된 기상의 금속 아세틸아세토네이트를 열분해시킴과 동시에 산소와의 반응을 통하여 금속산화물 중공 나노입자를 합성하는 단계; 및 상기와 같이 합성된 기상의 금속산화물 중공 나노입자를 응축 및 수집하는 단계를 포함하여 구성되는 금속 산화물 중공나노입자의 제조방법 및 이 방법에 의하여 제조된 금속산화물 중공 나노입자를 그 요지로 한다. The present invention provides a method for preparing metal oxide hollow nanoparticles by chemical vapor condensation, comprising the steps of: preparing a metal acetylacetonate as a precursor; Vaporizing the metal acetylacetonate prepared as above at a temperature above its melting point; Transferring the vaporized metal acetylacetonate to the reaction zone as described above; Pyrolyzing the metal acetylacetonate in the gas phase transferred to the reaction zone as described above and synthesizing the metal oxide hollow nanoparticles through reaction with oxygen; And a method for producing the metal oxide hollow nanoparticles comprising the step of condensing and collecting the metal oxide hollow nanoparticles synthesized as described above and the metal oxide hollow nanoparticles prepared by the method. 전구체, 금속산화물, 중공, 나노입자, 금속 아세틸아세토네이트, 화학기상응축 Precursors, metal oxides, hollow, nanoparticles, metal acetylacetonates, chemical vapor condensation

Подробнее
22-09-2020 дата публикации

Green synthesis method of amino alcohol compound under catalysis of visible light

Номер: CN111686762A
Принадлежит: Liaoning Technical University

本发明属于化合物制备技术领域,公开了一种可见光催化下氨基醇类化合物的绿色合成方法,所述可见光催化下氨基醇类化合物的绿色合成方法包括在反应釜中依次加入氨基酸、光催化剂和无机酸水溶液;向反应釜中通入氩气;密封反应釜,向反应釜内通入氢气,升温至120‑130℃;反应30分钟后降温继续反应30分钟;降温,室温下冷却;向反应物中加入溶剂,搅拌20分钟,层析分离,对分离物提纯后得到氨基醇类化合物。本发明提供的合成路线简单、原材料易得且成本低,操作简便,且反应过程温和可控,同时副产物少,产率高;同时本发明利用硫化镉纳米晶作为光催化剂能够提高整体反应的效率,还能够有效提高氨基醇类化合物的活性。

Подробнее
11-12-2008 дата публикации

Methods for Production of Metal Oxide Nano Particles, and Nano Particles and Preparations Produced Thereby

Номер: US20080305025A1
Автор: AHARON Eyal, Asher Vitner
Принадлежит: Joma International AS

The invention provides a method for the formation of small-size metal oxide particles, comprising the steps of: a) preparing a starting aqueous solution comprising at least one of metallic ion and complexes thereof, at a concentration of at least 0.1% w/w of the metal component; b) preparing a modifying aqueous solution having a temperature greater than 50° C.; c) contacting the modifying aqueous solution with the starting aqueous solution in a continuous mode in a mixing chamber to form a-modified system; d) removing the modified system from the mixing chamber in a plug-flow mode; wherein the method is characterized in that: i) the residence time in the mixing chamber is less than about 5 minutes; and iii) there are formed particles or aggregates thereof, wherein the majority of the particles formed are between about 2 nm and about 500 nm in size.

Подробнее
03-08-2010 дата публикации

Processes for production of group ii metal sulfide phosphor precursors and phosphors

Номер: KR20100087137A
Принадлежит: 가부시키가이샤 구라레

본 발명은, II족 금속 황화물 형광체 및 그의 전구체의 제조에 있어서, 형광체 입자에의 부활 금속의 균질적인 도입, 및 사용하는 금속 원소의 이용 효율 향상을 도모하기 위한 방법을 제공한다. 즉, II족 원소 화합물, 황화제, 및 구리, 은, 망간, 금 및 희토류 원소 중 어느 것을 포함하는 화합물의 적어도 1종류를 포함하는 수용액을 유기 용매 중에 첨가하여 반응 혼합액으로 하고, 상기 반응 혼합액을 가열하여 물과 유기 용매를 공비시키고, 그 때 공비에 의해 생긴 증기를 응축하여 얻어지는 물만을 회수함으로써, 상기 반응 혼합액으로부터 물을 제거하면서 상기 반응 혼합액 중에 목적하는 II족 금속 황화물을 생성시키는 것을 특징으로 하는 II족 금속 황화물 형광체 전구체의 제조 방법에 의해 상기 과제를 해결한다.

Подробнее
26-10-1999 дата публикации

Transparent electrically conductive layer, electrically conductive transparent substrate and electrically conductive material

Номер: US5972527A
Принадлежит: Idemitsu Kosan Co Ltd

A transparent electrically conductive layer having practically sufficient electrical conductivity and light transmittance and having excellent resistance to moist heat and etching properties, and an electrically conductive transparent substrate utilizing the transparent electrically conductive layer, the transparent electrically conductive layer being formed of a substantially amorphous oxide containing indium (In) and zinc (Zn) as main cation components or a substantially amorphous oxide containing indium (In), zinc (Zn) and at least one other third element having a valence of at least 3, in which the atomic ratio of In, In/(In+Zn), is 0.50 to 0.90 or the atomic ratio of the total amount of the third element(s), (total third element)/(In+Zn+total third element(s)), when at least one other third element is contained, is 0.2 or less.

Подробнее
11-01-2022 дата публикации

Composite nano material with mesoporous silica coated with nano particles and preparation method and application thereof

Номер: CN111137915B
Принадлежит: WUYI UNIVERSITY

本发明提供了一种利用介孔二氧化硅包裹纳米颗粒的复合纳米材料及其制备方法与应用。本发明先将纳米颗粒分散于乙醇水溶液中,加入氨水调节pH,再在超声作用下滴加十六烷基三甲基溴化铵的乙醇水溶液,之后继续超声,再滴加正硅酸乙酯,经纯化,得到以介孔二氧化硅为壳、纳米颗粒为核、大小均匀、稳定且可控的复合纳米材料;本发明制备方法能将不同种类/功能的双核或三核纳米颗粒嵌入到同一介孔二氧化硅壳中,实现多核包裹,且方法通用,可扩展到更多不同的纳米颗粒的包裹,制备过程绿色高效,室温下即可进行,所用溶剂亲水,成本较低,工艺简单,所得复合纳米材料的粒径低至50nm,还可通过调整所用试剂的配比,得到不同尺寸的复合纳米材料。

Подробнее
17-01-2013 дата публикации

ZnO NANORODS COATED WITH CdSe/ZnS QUANTUM AND METHOD FOR FABRICATING THE SAME

Номер: KR101223212B1
Автор: 성윤모, 장지영
Принадлежит: 고려대학교 산학협력단

본 발명은, 카드뮴셀레나이드/황화아연 양자점의 코팅에 의하여, 산화아연 나노로드가 전형적으로 나타내는 내인성 결함에 의한 가시광선 영역의 발광을 억제하고, 밴드갭에 해당하는 380 nm의 단파장 발광 특성을 향상시킴으로써, 광학적 특성이 개선된 산화아연 나노로드 및 그의 제조방법을 제공한다. According to the present invention, the coating of cadmium selenide / zinc sulfide quantum dots suppresses the emission of visible light regions due to endogenous defects typically represented by zinc oxide nanorods, and improves the short wavelength emission characteristics of 380 nm corresponding to the band gap. By providing a zinc oxide nanorods with improved optical properties and a method for producing the same.

Подробнее
27-04-2016 дата публикации

BIO COMPATIBLE NANOMATERIAL FOR PHOTOSENSIBILIZATION OF SINGLET OXYGEN AND METHOD FOR ITS PRODUCTION

Номер: RU2014141085A

1. Биомовместимый наноматериал для фотосенсибилизации синглетного кислорода, представляет собой низкотоксичные гибридные ассоциаты люминесцирующих коллоидных квантовых точек CdS размером 2-4 нм с катионами метиленового голубого МВв соотношении 10-10(ν/ν).2. Способ получения биомовместимого наноматериала для фотосенсибилизации синглетного кислорода, включает двуструйное сливания 0,6-5%-ного раствора сульфида натрия и 0,8-7%-ного раствора бромида кадмия в термостатируемом реакторе, с расплавом желатина при постоянной температуре 40°C, отличающийся тем, что вводят в полученный коллоидный раствор, содержащий коллоидные квантовые точки CdS, на завершающей стадии кристаллизации квантовых точек раствор катионов МВв соотношении 10-10(ν/ν), с последующим охлаждением полученного золя до температуры от 4 до 10°C, раствор выдерживают при данной температуре на протяжении суток, после чего полученный желатиновый студень измельчают до размера гранул 5-10 мм, промывают в дистиллированной воде при температуре от 7 до 13°C в течение 30 мин, сцеживают лишнюю воду и гранулы нагреваются до температуры свыше 40°C. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2014 141 085 A (51) МПК A61K 31/00 (2006.01) B82B 1/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2014141085, 10.10.2014 Приоритет(ы): (22) Дата подачи заявки: 10.10.2014 (43) Дата публикации заявки: 27.04.2016 Бюл. № 12 A 2 0 1 4 1 4 1 0 8 5 (57) Формула изобретения 1. Биомовместимый наноматериал для фотосенсибилизации синглетного кислорода, представляет собой низкотоксичные гибридные ассоциаты люминесцирующих коллоидных квантовых точек CdS размером 2-4 нм с катионами метиленового голубого МВ+ в соотношении 10-1-10-4 (νкрасит/νCdS). 2. Способ получения биомовместимого наноматериала для фотосенсибилизации синглетного кислорода, включает двуструйное сливания 0,6-5%-ного раствора сульфида натрия и 0,8-7%-ного раствора бромида кадмия в термостатируемом реакторе, с расплавом ...

Подробнее
31-03-1987 дата публикации

Rust-preventive paint composition

Номер: JPS6270463A
Принадлежит: Kyowa Chemical Industry Co Ltd

(57)【要約】本公報は電子出願前の出願データであるた め要約のデータは記録されません。

Подробнее
04-12-2013 дата публикации

Stabilized semiconductor nanocrystals

Номер: JP5356318B2
Принадлежит: Massachusetts Institute of Technology

A semiconductor nanocrystal associated with a polydentate ligand. The polydentate ligand stabilizes the nanocrystal.

Подробнее
01-01-2021 дата публикации

Method for preparing CdS by low-temperature molten salt method and application of prepared CdS in photocatalysis field

Номер: CN112158879A

本发明公开了一种低温熔盐法制备CdS的方法及制得的CdS在光催化领域的应用,属于无机材料领域。本方法以NaOH和尿素为熔盐,将镉源和硫源与熔盐混合,在100℃‑300℃下反应5h‑72h,制得了结晶性较好的六方相CdS。本方法制备工艺中含大量的NaOH可以有效的吸收反应过程中所产生的H 2 S气体,避免了环境污染。与现有的水热法制备的CdS相比,低温熔盐法制备CdS工艺流程简单,合成温度低,时间短,能耗小,产量大,盐类可回收利用,对环境不会造成污染;而且在合成过程中,不需要任何模板、表面活性剂、有机溶剂和高温处理作为辅助,具有很好的工业化前景。

Подробнее
19-03-2019 дата публикации

Gas phase enhancement of emission color quality in solid state LEDs

Номер: US10233390B2
Принадлежит: Nanoco Technologies Ltd

Light-emitting materials are made from a porous light-emitting semiconductor having quantum dots (QDs) disposed within the pores. According to some embodiments, the QDs have diameters that are essentially equal in size to the width of the pores. The QDs are formed in the pores by exposing the porous semiconductor to gaseous QD precursor compounds, which react within the pores to yield QDs. According to certain embodiments, the pore size limits the size of the QDs produced by the gas-phase reactions. The QDs absorb light emitted by the light-emitting semiconductor material and reemit light at a longer wavelength than the absorbed light, thereby “down-converting” light from the semiconductor material.

Подробнее
07-04-1978 дата публикации

Separating method of cd** ion from waste water and aqueous solution

Номер: JPS5338160A
Принадлежит: Degussa GmbH

Подробнее
01-07-2003 дата публикации

Semiconducting oxide nanostructures

Номер: US6586095B2
Принадлежит: Georgia Tech Research Corp

Nanostructures and methods of fabricating nanostructures are disclosed. A representative nanostructure includes a substrate having at least one semiconductor oxide. In addition, the nanostructure has a substantially rectangular cross-section. A method of preparing a plurality of semiconductor oxide nanostructures that have a substantially rectangular cross-section from an oxide powder is disclosed. A representative method includes: heating the oxide powder to an evaporation temperature of the oxide powder for about 1 hour to about 3 hours at about 200 torr to about 400 torr in an atmosphere comprising argon; evaporating the oxide powder; and forming the plurality of semiconductor oxide nanostructures.

Подробнее
12-12-2006 дата публикации

Non-alloying core shell nanoparticles

Номер: US7147687B2
Принадлежит: Nanosphere LLC

The present invention relates composite core/shell nanoparticles and a two-step method for their preparation. The present invention further relates to biomolecule-core/shell nanoparticle conjugates and methods for their preparation. The invention also relates to methods of detection of biomolecules comprising the biomolecule-core/shell nanoparticle conjugates.

Подробнее
03-07-2007 дата публикации

Non-alloying core shell nanoparticles

Номер: US7238472B2
Принадлежит: Nanosphere LLC

The present invention relates composite core/shell nanoparticles and a two-step method for their preparation. The present invention further relates to biomolecule-core/shell nanoparticle conjugates and methods for their preparation. The invention also relates to methods of detection of biomolecules comprising the biomolecule or specific binding substance-core/shell nanoparticle conjugates.

Подробнее
20-09-2018 дата публикации

SULFURED, AMINOMETHYLated CHELATE RESINS

Номер: RU2017108972A

РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2017 108 972 A (51) МПК C08F 8/36 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2017108972, 17.08.2015 (71) Заявитель(и): ЛЕНКСЕСС ДОЙЧЛАНД ГМБХ (DE) Приоритет(ы): (30) Конвенционный приоритет: 20.08.2014 EP 14181606.6 R U (43) Дата публикации заявки: 20.09.2018 Бюл. № (72) Автор(ы): КЛИППЕР Райнхольд (DE), НОЙФАЙНД Штефан (DE) 26 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 20.03.2017 2 0 1 7 1 0 8 9 7 2 (86) Заявка PCT: EP 2015/068827 (17.08.2015) (87) Публикация заявки PCT: A WO 2016/026804 (25.02.2016) Адрес для переписки: 105064, Москва, а/я 88, ООО "Патентные поверенные Квашнин, Сапельников и партнеры" (57) Формула изобретения 1. Хелатные смолы, содержащие функциональные группы структурного элемента (I): A 2 0 1 7 1 0 8 9 7 2 (54) СУЛЬФИРОВАННЫЕ, АМИНОМЕТИЛИРОВАННЫЕ ХЕЛАТНЫЕ СМОЛЫ R U , в котором означает полимерный скелет и R1 и R2 независимо друг от друга Стр.: 1 означают -СН2СООХ, -СН2РО(ОХ1)2, -СН2РО(ОН)ОХ2, -(CS)NH2, -СН2-пиридил или водород, причем оба R1 и R2 не могут одновременно означать водород, и X, X1, X2 и Y независимо друг от друга означают водород, натрий или калий. 2. Хелатные смолы, содержащие функциональные группы структурного элемента 2 0 1 7 1 0 8 9 7 2 R U A Стр.: 2 2 0 1 7 1 0 8 9 7 2 (ОН)ОХ2 или водород и X1 и X2 независимо друг от друга означают водород, натрий или калий. 3. Способ получения хелатных смол, содержащих функциональные группы структурного элемента (I) по п. 1, отличающийся тем, что: a) мономерные капельки из по меньшей мере одного моновинилароматического соединения и по меньшей мере одного поливинилароматического соединения, а также по меньшей мере одного инициатора или комбинации инициаторов, превращают в бисерный полимеризат, b) бисерный полимеризат фталимидометилируют фталимидом и сульфируют в присутствии олеума, причем количество свободного SO3 составляет по меньшей мере 0,69 моля в пересчете на 1 моль ...

Подробнее
30-06-2021 дата публикации

Method of synthesis of cadmium oxide

Номер: RU2750672C1

FIELD: metallurgy.SUBSTANCE: invention relates to non-ferrous metallurgy and can be used in obtaining cadmium oxide from industrial products of zinc production, particularly, from a cadmium sponge. Leaching of the sponge, cadmium extraction and calcination of the deposit are executed. Leaching is executed in two stages, using sodium hydroxide in the first stage in an amount of 200 to 300% of the weight content of zinc in the sponge. After zinc leaching, cadmium is sent to the second stage of leaching in sulfuric acid. Cadmium extraction from a solution of cadmium sulfate is executed with a solution of sodium hydroxide at pH=11.5 to 12.0. Calcination of the deposit, cadmium hydroxide, is executed at a temperature of 300 to 350°C.EFFECT: implementation of the purpose is ensured while excluding the operation of electrolysis and reducing natural gas consumption.1 cl, 3 tbl, 1 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 750 672 C1 (51) МПК C01G 11/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК C01G 11/00 (2021.02) (21)(22) Заявка: 2020130339, 15.09.2020 (24) Дата начала отсчета срока действия патента: Дата регистрации: 30.06.2021 (45) Опубликовано: 30.06.2021 Бюл. № 19 2 7 5 0 6 7 2 R U (54) Способ получения окиси кадмия (57) Реферат: Изобретение относится к металлургии цветных металлов и может быть использовано при получении окиси кадмия из промышленных продуктов цинкового производства, в частности из кадмиевой губки. Осуществляют выщелачивание губки, экстракцию кадмия и прокалку осадка. Выщелачивание ведут в две стадии, с использованием на первой стадии гидроксида натрия в количестве 200-300% от содержания веса цинка в губке. После Стр.: 1 (56) Список документов, цитированных в отчете о поиске: ДЗЛИЕВ И.И., "Металлургия кадмия", Металлургиздат, 1962 г. 189 с., с.19, 62. SU 193471 A1, 13.03.1967. CN 104386737 B, 30.03.2016. US 3453078 A1, 01.07.1969. CN 102424416 A, 25.04.2012. RU 2604080 C2, 10.12.2016. ...

Подробнее
14-01-1977 дата публикации

Removal of impurities from zinc or cadmium sulphate - by addition of hydrolysed persulphuric acid

Номер: FR2314951A1
Автор: [UNK]

Impurities in a solution of zinc or cadmium sulphate, for use in prodn. of electrolytic zinc or cadmium, are eliminated by addition of persulphuric acid which has been hydrolysed, esp. contg. Caro's acid, and pref. hydrolysed so that the ratio of moles of Caro's acid to the sum of the number of moles of H2S2O8, H2SO5 (Caro's acid) and H2O2 produced by the hydrolysis reaction is about unity. Alternatively the Caro's acid may be produced from oleum and H2O2. The sulphuric acid content of the added acid is 10 g/l.

Подробнее
23-07-2021 дата публикации

WO for photoelectrocatalytic degradation of pollutants3/CdS/MoS2Preparation method of composite film

Номер: CN113145136A
Автор: 刘志锋, 赵全有
Принадлежит: Tianjin Chengjian University

本发明公开一种用于光电催化降解污染物的WO 3 /CdS/MoS 2 复合薄膜的制备方法。该方法首先配制WO 3 生长溶液,采用水热法经过退火处理在FTO导电玻璃上生长WO 3 纳米棒薄膜,然后以WO 3 纳米棒为基底,采用水热法在较低温度下负载一层CdS纳米球,之后采用水热法在WO 3 /CdS纳米结构上负载一层片层状的MoS 2 纳米薄膜,最终得到WO 3 /CdS/MoS 2 复合薄膜。所制备的复合薄膜提升了WO 3 的可见光吸收,促进了光电催化性能的提高,制备方法简单易操作,整体成本低廉。

Подробнее
13-11-2008 дата публикации

A method for the production of metal products

Номер: CA2687428A1
Автор: Asher Vitner

The invention provides a method for the Industrial purification of a low-grade polyvalent cation feed stream of purity P1, by the formation of a polyvalent cation- double-salt precipitate of purity P2 and a polyvalent cation solution with purity P3, wherein P2>P1>P3, said method comprising the steps of: a) forming, from said feed, a medium comprising water, polyvalent cation, a cation selected from the group consisting of ammonium, cations of alkali metals, protons and a combination thereof, and anions; which formed medium is further characterized by the presence of (i) a double- salt precipitate comprising a polyvalent cation, at least one of said cations and at least one of said anions; and (ii) a polyvalent cation solution; and wherein the concentration of said anions is higher then 10% and the ratio between the concentrations of said cation to said anion in said polyvalent cation solution is within Zone DS as herein defined; and b) separating at least a portion of said precipitate from said solution.

Подробнее
30-01-1987 дата публикации

PROCESS FOR RECOVERING ZINC FROM FLYING ASHES OF A METALLURGICAL OVEN

Номер: FR2585369A1
Автор: Derek John Fray
Принадлежит: National Research Development Corp UK

PROCEDE DE RECUPERATION DU ZINC A PARTIR DE CENDRES VOLANTES D'UN FOUR METALLURGIQUE. ON RECUPERE LE ZINC, ET D'AUTRES METAUX, A PARTIR DES COMPOSES DU TYPE FERRITE DE ZINC FORTEMENT LIES DE LA CENDRE VOLANTE DE FOUR. ON AJOUTE A CETTE CENDRE VOLANTE 1 EN POIDS D'OXYDE DE ZINC LIBRE (SAUF SI L'OXYDE EST DEJA PRESENT). ON TRAITE LA CENDRE VOLANTE DURANT 1HEURE A 750C AVEC UN MELANGE A 20:1 AIR: CHLORE, DE SORTE QUE L'ON ENLEVE DE LA CENDRE VOLANTE, SOUS FORME DE CHLORURES VOLATILISES, LE ZINC, LE PLOMB ET LE CADMIUM. APPLICATION: TRAITEMENT DES CENDRES VOLANTES PROVENANT D'UN FOUR A ARC ELECTRIQUE POUR LE RAFFINAGE DE L'ACIER.

Подробнее
20-06-1980 дата публикации

BENZOTHIAZOLE COMPOSITIONS, AND METHOD FOR THE CHELATION OF METAL IONS FROM AN AQUEOUS SOLUTION USING SUCH COMPOSITIONS CONTAINING THESE COMPOUNDS

Номер: FR2442233A1
Автор:
Принадлежит: Uniroyal Inc

La présente invention concerne un composé de benzothiazole. Selon l'invention, il a pour formule :

Подробнее
16-02-1979 дата публикации

Patent FR2314951B3

Номер: FR2314951B3
Автор: [UNK]

Подробнее
23-11-2021 дата публикации

Zn for photocatalytic decomposition of pure water1-xCdxS/D-ZnS(en)0.5/Pi/NiaPreparation method of Pi type catalyst

Номер: CN113680356A
Автор: 刘洋, 宋金刚, 游遨, 肖吉
Принадлежит: GUANGDONG INDUSTRY TECHNICAL COLLEGE

本申请首先利用溶剂热方法,制备了一种Zn 1‑x Cd x S/D‑ZnS(en) 0.5 异质结材料。并进一步对其进行两步光化学合成修饰,磷氧化物(Pi)保护层和Ni a Pi助催化剂合成并负载于材料表面。Ni a Pi材料可以进一步捕获催化剂产生的光生电子和空穴,原位生成Ni I P和Ni III Pi(2MPi→M I P+M III Pi)助催化剂,并分别以Ni I P和Ni III Pi助催化剂为反应位点,进行产氢和产H 2 O 2 反应。此外,通过Pi保护催化剂材料免受光腐蚀侵害,使Zn 1‑ x Cd x S/D‑ZnS(en) 0.5 /Pi/Ni a Pi材料进一步实现了优异的光催化分解纯水产氢过程。本申请提出的两步光化学合成制备Zn 1‑x Cd x S/D‑ZnS(en) 0.5 /Pi/Ni a Pi催化剂的方法,可用于构筑更多高效、稳定的Zn 1‑x Cd x S分解纯水催化体系,具有较高的创新性和实用性。

Подробнее
26-06-2017 дата публикации

Complex oxide of cadmium and iron and method thereof

Номер: RU2015154846A

РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2015 154 846 A (51) МПК C01G 11/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2015154846, 21.12.2015 Приоритет(ы): (22) Дата подачи заявки: 21.12.2015 (43) Дата публикации заявки: 26.06.2017 Бюл. № 18 A R U (57) Формула изобретения 1. Сложный оксид кадмия и железа состава Cd1-xFexO, где 0,025≤x≤0,07; в качестве магнитного полупроводникового материала, обладающего высокой намагниченностью при комнатной температуре. 2. Способ получения сложного оксида кадмия и железа состава Cd1-xFexO, где 0,025≤x≤0,07; включающий получение смеси растворов формиата кадмия и формиата железа в дистиллированной воде при нагревании с последующем упариванием смеси до сухого остатка при температуре 80-85°С на воздухе и термообработку сухого остатка в две стадии: I стадия - при температуре 300-310°С в течение 0,5-0,6 ч и II стадия - при температуре 400-410°С в течение 2,0-2,5 ч. Стр.: 1 A 2 0 1 5 1 5 4 8 4 6 (54) Сложный оксид кадмия и железа и способ его получения 2 0 1 5 1 5 4 8 4 6 (72) Автор(ы): Красильников Владимир Николаевич (RU), Гырдасова Ольга Ивановна (RU), Дьячкова Татьяна Витальевна (RU), Тютюнник Александр Петрович (RU), Марченков Вячеслав Викторович (RU), Перевозчикова Юлия Александровна (RU) R U Адрес для переписки: 620990, г. Екатеринбург, ул. Первомайская, 91, ИХТТ УрО РАН, патентный отдел (71) Заявитель(и): Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук (ИХТТ УрО РАН) (RU), Федеральное государственное бюджетное учреждение науки Институт физики металлов имени М.Н. Михеева Уральского отделения Российской академии наук (ИФМ УрО РАН) (RU)

Подробнее
10-12-2010 дата публикации

PROCESS FOR THE PREPARATION OF A HYDROCOMPATIBLE COMPOSITION OF NANOCRYSTAL (S) OXIDE (S) OXIDES AND HYDROCOMPATIBLE COMPOSITION OBTAINED

Номер: FR2946266A1

L'invention concerne un procédé de préparation d'une composition de nanocristaux d'oxyde(s) métallique(s) à partir d'au moins un précurseur organométallique un milieu solvant aprotique en présence d'au moins un ligand PEG, comprenant une chaîne carbonée dont au moins une extrémité est fonctionnalisée par un groupe de coordination comprenant au moins un hétéroatome, et présentant au moins un groupement [-OCH CH ] , de façon à être soluble à la fois dans ledit milieu solvant aprotique et dans l'eau. L'invention s'étend à une composition hydrocompatible et organocompatible de nanocristaux d'oxyde(s) métallique(s) ainsi obtenue. The invention relates to a method for preparing a composition of metal oxide nanocrystals from at least one organometallic precursor and an aprotic solvent medium in the presence of at least one PEG ligand, comprising a chain at least one end of which is functionalized by a coordination group comprising at least one heteroatom, and having at least one [-OCH CH] group, so as to be soluble both in said aprotic solvent medium and in water. The invention extends to a hydrocompatible and organocompatible composition of nanocrystals of metal oxide (s) thus obtained.

Подробнее