Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 1147. Отображено 191.
20-07-2013 дата публикации

МАТЕРИАЛ ДЛЯ ГАЗИФИКАТОРА НА ОСНОВЕ ОКСИДОВ АЛЮМИНИЯ И МАГНИЯ

Номер: RU2011148476A

1. Плавлено-литое огнеупорное изделие, имеющее следующий химический состав в массовых процентах в пересчете на оксиды:2. Огнеупорное изделие по п.1, в котором содержание CuO составляет более или равно 0,10 мас.% и менее или равно 0,8 мас.%.3. Огнеупорное изделие по п.2, в котором содержание CuO составляет более или равно 0,15 мас.% и менее или равно 0,7 мас.%.4. Огнеупорное изделие по п.3, в котором содержание CuO составляет более или равно 0,20 мас.% и менее или равно 0,6 мас.%.5. Огнеупорное изделие по п.1, в котором содержание BOсоставляет более или равно 0,05 мас.%.6. Огнеупорное изделие по п.5, в котором содержание BOсоставляет более или равно 0,1 мас.%.7. Огнеупорное изделие по п.1, в котором содержание BOсоставляет менее или равно 0,6 мас.%.8. Огнеупорное изделие по п.7, в котором содержание BOсоставляет менее или равно 0,3 мас.%.9. Огнеупорное изделие по п.1, в котором содержание оксида алюминия AlOсоставляет менее или равно 70 мас.% и более или равно 55 мас.%.10. Огнеупорное изделие по п.9, в котором содержание оксида алюминия AlOсоставляет менее или равно 68 мас.% и более или равно 60 мас.%.11. Огнеупорное изделие по п.1, в котором содержание MgO составляет менее или равно 45 мас.% и более или равно 28,2 мас.%.12. Огнеупорное изделие по п.11, в котором содержание MgO составляет менее или равно 40 мас.% и более или равно 30 мас.%.13. Огнеупорное изделие по п.1, в котором:- содержание СаО составляет менее или равно 0,6 мас.%; и/или- содержание NaO+KO составляет менее или равно 0,25 мас.%; и/или- содержание диоксида кремния SiOсоставляет менее или равно 0,15 мас.%; и/или- содержание оксида железа и/или оксида титана, FeO+TiO, составляет менее 0,4 мас.%; и/или- содержание оксида хрома составляет менее 0,1 мас.%.14. Газификатор РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК C04B 35/107 (13) 2011 148 476 A (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2011148476/03, 01.06.2010 (71) Заявитель(и): СЕН-ГОБЕН ...

Подробнее
15-11-2011 дата публикации

FIREPROOF CERAMIC PRODUCT AND ASSOCIATED SHAPED PART

Номер: AT0000531679T
Принадлежит:

Подробнее
07-12-2006 дата публикации

REFRACTORY CERAMIC PRODUCT

Номер: CA0002611029A1
Автор: TREIMER, ROBERT
Принадлежит:

The invention relates to a refractory ceramic product which comprises a) > 93 % by weight of at least one refractory basic component and b) < 7 % by weight of at least one anticorrosive component from the group including: b1) transition metals, b2) compounds of transition metals with each other, b3) non- oxidic compounds of transition metals, b4) oxidic compounds of transition metals, b5) compounds of the transition metals with Ca, Ba, Sr.

Подробнее
30-06-2009 дата публикации

ОГНЕУПОРНЫЙ КЕРАМИЧЕСКИЙ ПРОДУКТ

Номер: EA0000011907B1

В изобретении описан огнеупорный керамический продукт, содержащий: а) по меньшей мере один основной огнеупорный компонент в количестве не менее 93 мас.% и б) по меньшей мере один замедляющий коррозию компонент в количестве не более 7 мас.% из группы, включающей: б1) переходные металлы, б2) соединения переходных металлов между собой, б3) неоксидные соединения переходных металлов, б4) оксидные соединения переходных металлов и б5) соединения переходных металлов с кальцием, барием, стронцием.

Подробнее
19-11-1971 дата публикации

hIGH-FIREPROOF MATERIAL

Номер: FR0002080575A1
Автор:
Принадлежит:

Подробнее
26-06-1967 дата публикации

Procedure for the production of fireproof stones

Номер: AT0000255311B
Автор:
Принадлежит:

Подробнее
05-09-2017 дата публикации

ALUMINA-MAGNESIA MATERIAL FOR A GASIFIER

Номер: CA0002763965C

La présente invention concerne un produit réfractaire fondu et coulé présentant une composition chimique telle que, en pourcentages massiques sur la base des oxydes : - AI2O3 : complément à 100%; - MgO : 28% à 50%; - CuO 0,05% à 1,0%; --B2O3 : 1,0%; - SiO2 : < 0,5%; - Na2O + K2O : < 0,3%; - CaO : < 1,0%; - Fe2O3 + TiO2 : < 0,55%; - autres espèces oxydes : < 0,5%.

Подробнее
26-06-2014 дата публикации

ALUMINA-MAGNESIA PRODUCT FOR GASIFIER OR FOR METALLURGICAL FURNACE

Номер: CA0002895465A1
Автор: JORGE ERIC, FRANCY OLIVIER
Принадлежит:

La présente invention concerne un produit réfractaire fondu et coulé présentant une composition chimique telle que, en pourcentages massiques sur la base des oxydes : AI2O3 : complément à 100%; - MgO : 26% à 45%; - ZrO2 0,5% à 10,0%; - B2O3 : < 1,5%; - SiO2 : = 0,5%; Na2O + K2O: = 0,3%; CaO : =1,0%; Fe2O3 + TiO2 : < 0,55%; autres espèces oxydes : < 1,0%; produit dans lequel le rapport massique élémentaire R de la teneur en Zirconium sur la teneur totale en Bore, en Fluor et en Silicium est compris entre 2 et 80.

Подробнее
30-06-2008 дата публикации

FIREPROOF CERAMIC PRODUCT

Номер: EA0200702383A1
Принадлежит:

Подробнее
20-06-2014 дата публикации

ALUMINA-MAGNESIA MATERIAL FOR A GASIFIER OR FOR METALLURGICAL FURNACE

Номер: FR0002999566A1
Автор: JORGE ERIC, FRANCY OLIVIER
Принадлежит:

La présente invention concerne un produit réfractaire fondu et coulé présentant une composition chimique telle que, en pourcentages massiques sur la base des oxydes : Al2O3 : complément à 100% ; - MgO : 26% à 45% ; - ZrO2 0,5% à 10,0%; - B2O3 : ≤ 1,5% ; - SiO2 : ≤ 0,5% ; - Na2O + K2O : ≤ 0,3% ; - CaO: ≤1,0%; Fe2O3 + TiO2 : < 0,55% ; - autres espèces oxydes : < 1,0%.

Подробнее
01-07-2011 дата публикации

PRODUCT ALUMINE-MAGNESIE FOR WATER AERATOR

Номер: FR0002946044B1

Подробнее
15-01-1965 дата публикации

Molten and run refractory parts with very high content magnesia

Номер: FR0001385462A
Автор:
Принадлежит:

Подробнее
27-05-2012 дата публикации

ОГНЕУПОРНОЕ КЕРАМИЧЕСКОЕ ИЗДЕЛИЕ И ОТНОСЯЩЕЕСЯ К НЕМУ ФОРМОВАННОЕ ИЗДЕЛИЕ

Номер: RU2010138043A
Принадлежит:

... 1. Огнеупорное, образованное из затвердевшего расплава керамическое изделие, состоящее на ≥95 мас.% из MgO и цирконата кальция. ! 2. Изделие по п.1, состоящее на ≥97 мас.% из MgO и цирконата кальция. !3. Изделие по п.1 с долей MgO>15 мас.%. ! 4. Изделие по п.1 с долей цирконата кальция >30 мас.%. ! 5. Изделие по п.1 с долей MgO между 45 и 65 мас.% и долей цирконата кальция между 35 и 55 мас.%. ! 6. Изделие по п.1 с содержанием Аl2О3<2 мас.%. ! 7. Изделие по п.1 с содержанием SiO2<1 мас.%. ! 8. Изделие по п.1 с открытой пористостью <8 об.%. ! 9. Огнеупорное керамическое формованное изделие с матрицей на основе MgO и долей между 3 и 30 мас.% изделия по одному из пп.1-8. ! 10. Огнеупорное керамическое формованное изделие с долей между 5 и 20 мас.% изделия по одному из пп.1-8. ! 11. Формованное изделие по п.9, состоящее на >95 мас.% из структурных фаз периклаза и цирконата кальция. ! 12. Формованное изделие по п.9, состоящее на >97 мас.% из структурных фаз периклаза и цирконата кальция. ! 13 ...

Подробнее
22-11-1972 дата публикации

Номер: GB0001296860A
Автор:
Принадлежит:

Подробнее
21-10-2019 дата публикации

ШИХТА ДЛЯ ПОЛУЧЕНИЯ МАГНЕЗИАЛЬНО-УГЛЕРОДИСТОГО ИЛИ ГЛИНОЗЕМИСТО-МАГНЕЗИАЛЬНО-УГЛЕРОДИСТОГО ОГНЕУПОРА, СПОСОБ ПОЛУЧЕНИЯ ТАКОГО ОГНЕУПОРА, ТАКОЙ ОГНЕУПОР, А ТАКЖЕ ЕГО ПРИМЕНЕНИЕ

Номер: RU2703551C2

Изобретение относится к получению основных огнеупоров на углеродистой связке, которые могут быть использованы для футеровки кислородных конвертеров, дуговых электропечей и сталеразливочных ковшей. Шихта для получения огнеупора содержит, мас.%: основной огнеупорный компонент магнезиального или магнезиально-глинозёмистого состава 70-96, резольное связующее 1,2-2,1, пек 1,0-3,0, углеродистый компонент в виде графита или сажи 1,0-27,0, при этом массовое соотношение резольного связующего и пека составляет от 0,5 до 1,5. Технический результат изобретения - снижение выброса летучих опасных для здоровья веществ при сохранении огнеупорных свойств изделий на углеродной связке. 4 н. и 5 з.п. ф-лы, 15 ил., 1 табл.

Подробнее
24-01-2019 дата публикации

Номер: RU2017106268A3
Автор:
Принадлежит:

Подробнее
27-08-2018 дата публикации

ШИХТА ДЛЯ ПОЛУЧЕНИЯ МАГНЕЗИАЛЬНО-УГЛЕРОДИСТОГО ИЛИ ГЛИНОЗЕМИСТО-МАГНЕЗИАЛЬНО-УГЛЕРОДИСТОГО ОГНЕУПОРА, СПОСОБ ПОЛУЧЕНИЯ ТАКОГО ОГНЕУПОРА, ТАКОЙ ОГНЕУПОР, А ТАКЖЕ ЕГО ПРИМЕНЕНИЕ

Номер: RU2017106268A

РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2017 106 268 A (51) МПК C04B 35/01 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2017106268, 29.06.2015 (71) Заявитель(и): РИФРЭКТОРИ ИНТЕЛЛЕКТЧУАЛ ПРОПЕРТИ ГМБХ УНД КО. КГ (AT) Приоритет(ы): (30) Конвенционный приоритет: 01.10.2014 EP 14187322.4 24 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 27.02.2017 EP 2015/064679 (29.06.2015) (87) Публикация заявки PCT: WO 2016/050376 (07.04.2016) R U (54) ШИХТА ДЛЯ ПОЛУЧЕНИЯ МАГНЕЗИАЛЬНО-УГЛЕРОДИСТОГО ИЛИ ГЛИНОЗЕМИСТОМАГНЕЗИАЛЬНО-УГЛЕРОДИСТОГО ОГНЕУПОРА, СПОСОБ ПОЛУЧЕНИЯ ТАКОГО ОГНЕУПОРА, ТАКОЙ ОГНЕУПОР, А ТАКЖЕ ЕГО ПРИМЕНЕНИЕ (57) Формула изобретения 1. Шихта для получения огнеупора на углеродистой связке, содержащая следующие компоненты в следующих массовых долях, в каждом случае в пересчете на общую массу огнеупора: основной компонент в количестве от 70 до 97 мас.%, связующий компонент в виде по меньшей мере одного резола в количестве от 1,0 до 2,3 мас.%, связующий компонент в виде по меньшей мере одного пека в количестве от 1,5 до 3,0 мас.%, углеродистый компонент в виде по меньшей мере одного носителя углерода, выбранного из графита и сажи, в количестве от 1,0 до 28 мас.%. 2. Шихта по п. 1 со связующим компонентом в виде по меньшей мере одного пека в виде каменноугольного пека. 3. Шихта по меньшей мере по одному из предыдущих пунктов с основным компонентом в виде магнезиального компонента или глиноземисто-магнезиального компонента. 4. Шихта по п. 3 с магнезиальным компонентом в виде по меньшей мере одного из сырьевых материалов на основе MgO, выбранных из плавленого оксида магния и Стр.: 1 A 2 0 1 7 1 0 6 2 6 8 A Адрес для переписки: 105082, Москва, Спартаковский пер., 2, стр. 1, секция 1, этаж 3, ЕВРОМАРКПАТ 2 0 1 7 1 0 6 2 6 8 (86) Заявка PCT: R U (43) Дата публикации заявки: 27.08.2018 Бюл. № (72) Автор(ы): ЭБНЕР Клеменс (AT), НОЙБАУЭР Бернд (AT), РИФ Андреас (AT), МАРАНИЧ Александер (AT), ТРУММЕР ...

Подробнее
03-12-1970 дата публикации

Номер: AU0005540269A
Автор:
Принадлежит:

Подробнее
03-12-2010 дата публикации

PRODUCT ALUMINE-MAGNESIE FOR WATER AERATOR

Номер: FR0002946044A1
Принадлежит:

Подробнее
23-11-2010 дата публикации

product cerámico refractory

Номер: BR0PI0611487A2
Принадлежит:

Подробнее
30-07-2013 дата публикации

Alumina-magnesia material for a gasifier

Номер: US0008497222B2

A molten and cast refractory material having a chemical composition, in weight percent on the basis of oxides, of: -Al2O3: the remainder up to 100%; -MgO: 28% to 50%; -CuO: 0.05% to 1.0%; -B2O3: @1.0%; -SiO2: <0.5%; -Na2O+K2O: <0.3%; -CaO: <1.0%; -Fe2O3+TiO2: <0.55%; -and other oxide species: <0.5%.

Подробнее
27-11-2012 дата публикации

ОГНЕУПОРНОЕ КЕРАМИЧЕСКОЕ ИЗДЕЛИЕ И ОТНОСЯЩЕЕСЯ К НЕМУ ФОРМОВАННОЕ ИЗДЕЛИЕ

Номер: RU2467982C2

Изобретение относится к огнеупорному керамическому изделию для облицовки высокотемпературных агрегатов черной и цветной металлургии, а также печей для обжига минерального сырья. При изготовлении формованного огнеупорного керамического изделия используют добавку, образованную из затвердевшего расплава и состоящую на ≥95 мас.% MgO и цирконата кальция, с долей MgO между 45 и 65 мас.% и долей цирконата кальция между 35 и 55 мас.%. Формованное огнеупорное изделие с матрицей на основе MgO содержит указанную добавку в количестве 3-30 мас.%, при этом оно более чем на 95 мас.% состоит из структурных фаз периклаза и цирконата кальция. Технический результат изобретения - улучшенные свойства механики разрушения изделий. 3 н. и 10 з.п. ф-лы, 1 табл., 1 ил.

Подробнее
17-11-2016 дата публикации

COMPOSITION FOR PREPARING A GREEN BODY FOR THE MANUFACTURE OF A REFRACTORY CARBON-BONDED PRODUCT, METHOD FOR PREPARING SUCH A GREEN BODY AND GREEN BODY PREPARED THEREBY

Номер: CA0002977453A1
Принадлежит:

The invention relates to a batch composition for producing a green body for manufacturing a refractory carbon-bonded product, a method for producing such a green body, and a green body produced by such a method.

Подробнее
05-10-2002 дата публикации

SYNTHETIC, REFRACTORY MATERIAL FOR REFRACTORY PRODUCTS, AND PROCESS FOR PRODUCING THE PRODUCT

Номер: CA0002379885A1
Принадлежит:

The invention relates to a material for refractory shaped bodies or compounds, wherein the material is a pleonaste and/or a spinel of the pleonaste type which, in addition to FeO x and Al2O3, also includes MgO, the ratio of the iron, calculated as Fe2O3:Al2O3 ranging from 30:70 to 60:40, and the material containing from 20 to 60% by mass of MgO, based on Fe2O3 + Al2O3.

Подробнее
22-10-2009 дата публикации

REFRACTORY CERAMIC PRODUCT AND ASSOCIATED MOLDED PART

Номер: WO2009127312A1
Принадлежит:

The invention relates to a refractory ceramic product and to a molded part produced by use of said product.

Подробнее
12-05-2010 дата публикации

Feuerfestes keramisches Erzeugnis und zugehöriges Formteil

Номер: DE102008019529B4

Feuerfestes, aus einer erstarrten Schmelze gebildetes keramisches Erzeugnis, das zu ≥ 95 Masse-% aus MgO und Calciumzirkonat besteht, wobei der MgO-Anteil > 15 Masse-% beträgt.

Подробнее
07-12-2006 дата публикации

Refractory ceramic product

Номер: AU2006254476A1
Принадлежит:

Подробнее
09-12-2010 дата публикации

ALUMINA-MAGNESIA MATERIAL FOR A GASIFIER

Номер: CA0002763965A1
Принадлежит:

La présente invention concerne un produit réfractaire fondu et coulé présentant une composition chimique telle que, en pourcentages massiques sur la base des oxydes : - AI2O3 : complément à 100%; - MgO : 28% à 50%; - CuO 0,05% à 1,0%; - B2O3 : = 1,0%; - SiO2 : < 0,5%; - Na2O + K2O : < 0,3%; - CaO : < 1,0%; - Fe2O3 + TiO2 : < 0,55%; - autres espèces oxydes : < 0,5%.

Подробнее
02-11-2011 дата публикации

REFRACTORY CERAMIC PRODUCT AND ASSOCIATED MOLDED PART

Номер: EP2285751B1

Подробнее
25-05-2010 дата публикации

SYNTHETIC, REFRACTORY MATERIAL FOR REFRACTORY PRODUCTS, AND PROCESS FOR PRODUCING THE PRODUCT

Номер: CA0002379885C
Принадлежит: REFRATECHNIK HOLDING GMBH

The invention relates to a material for refractory shaped bodies or compounds, wherein the material is a pleonaste and/or a spinel of the pleonaste type which, in addition to FeO x and Al2O3, also includes MgO, the ratio of the iron, calculated as Fe2O3:Al2O3 ranging from 30:70 to 60:40, and the material containing from 20 to 60% by mass of MgO, based on Fe2O3 + Al2O3.

Подробнее
07-04-2016 дата публикации

BATCH FOR THE PRODUCTION OF A REFRACTORY MAGNESIA-CARBON PRODUCT OR A REFRACTORY ALUMINA-MAGNESIA-CARBON PRODUCT, A PROCESS FOR THE PRODUCTION OF A PRODUCT OF THIS TYPE, A PRODUCTOF THIS TYPE AS WELL AS THE USE OF A PRODUCT OF THIS TYPE

Номер: CA0002957746A1
Принадлежит:

The invention relates to a batch for producing a refractory magnesia carbon product or a refractory alumina-magnesia carbon product, to a method for producing a refractory magnesia carbon product or a refractory alumina-magnesia carbon product, to a refractory magnesia carbon product or a refractory alumina-magnesia carbon product and to the use of a magnesia carbon product or a refractory alumina-magnesia carbon product.

Подробнее
26-06-2014 дата публикации

ALUMINA-MAGNESIA PRODUCT FOR GASIFIER OR FOR METALLURGICAL FURNACE

Номер: WO2014097219A1
Принадлежит:

The invention relates to a melted and cast refractory product having a chemical composition such that, in mass percentages on the basis of the oxides: AI2O3 : complement up to 100%; MgO : 26% to 45%; ZrO2 : 0.5% to 10.0%; B2O3 : < 1.5%; SiO2 : ≤ 0.5%; Na2O + K2O: ≤ 0.3%; CaO : ≤1.0%; Fe2O3 + TiO2 : < 0.55%; other oxide species : < 1,0%. In said product, the elementary mass ratio R of the zirconium content to the total boron, fluorine and silicon content is between 2 and 80.

Подробнее
24-10-2002 дата публикации

Synthetisches, feuerfestes Material für feuerfeste Produkte sowie Verfahren zur Herstellung des Produkts

Номер: DE0010117029A1
Автор: NACHTRÄGLICH
Принадлежит:

Die Erfindung betrifft ein Material für feuerfeste Formkörper oder Massen, wobei das Material ein Pleonast und/oder ein Spinell vom Pleonasttyp ist, der neben FeO¶x¶ und Al¶2¶O¶3¶ MgO aufweist, wobei das Verhältnis des Eisens gerechnet als Fe¶2¶O¶3¶ zu Al¶2¶O¶3¶ von 30 : 70 bis 60 : 40 reicht und 20 bis 60 M-% MgO, bezogen auf Fe¶2¶O¶3¶ + Al¶2¶O¶3¶, enthalten sind.

Подробнее
04-01-2017 дата публикации

FILLER TO PRODUCE A REFRACTORY PRODUCT LINKED BY CARBON AND PROCESS FOR PRODUCING THE REFRACTORY PRODUCT

Номер: AR0000101676A1
Принадлежит:

Reivindicación 1: Relleno para producir un producto refractario ligado por carbono, que abarca los siguientes componentes en las siguientes proporciones en masa, en cada caso referido a la masa total del producto: 1.1) del 70 al 97% en masa, de un componente fundamental; 1.2) del 1,0 al 2,3% en masa, de un componente agente de ligación en forma de por lo menos un resol; 1.3) del 1,0 al 3,0% en masa de un componente agente de ligación en forma de por lo menos un alquitrán; 1.4) del 1,0 al 28% en masa de un componente carbono en forma de por lo menos un portador de carbono. Reivindicación 3: Relleno de acuerdo con una de las reivindicaciones precedentes, con un componente fundamental consistente en un componente magnesia o un componente alúmina magnesia. Reivindicación 7: Procedimiento inventivo para la producción de un producto refractario ligado por carbono, que comprende las siguientes etapas: poner a disposición un relleno de acuerdo con por lo menos una de las reivindicaciones 1 a 6; ...

Подробнее
09-09-1971 дата публикации

Номер: DE0002107004A1
Автор:
Принадлежит:

Подробнее
15-12-2022 дата публикации

BACKFILL FOR PRODUCING A BASIC HEAVY-CLAY REFRACTORY PRODUCT, SUCH A PRODUCT AND METHOD FOR PRODUCING SAME, LINING OF AN INDUSTRIAL FURNACE, AND INDUSTRIAL FURNACE

Номер: US20220396528A1
Принадлежит:

A dry backfill for producing a basic molded heavy-clay refractory product, to such a product and a method for producing the same, to a lining of an industrial furnace, and to an industrial furnace.

Подробнее
19-11-2020 дата публикации

MANUFACTURING METHOD OF MAGNESIUM-ALUMINIUM SPINEL BRICK AND MAGNESIUM-ALUMINIUM SPINEL BRICK MANUFACTURED BY THE METHOD

Номер: US20200361827A1

A manufacturing method of a low heat-conducting magnesium-aluminium spinel brick includes: (1) evenly mixing sintered magnesia, fused magnesia, magnesium-aluminium spinel and corundum to prepare flame retardant coating raw material mixed powder, adding naphthalene binder to the flame retardant coating raw material mixed powder to prepare the flame retardant coating raw materials after evenly mixing; (2) evenly mixing forsterite, fayalite and magnesia, adding the naphthalene binder to the mixed powder, moulding, drying, and then burning to obtain aggregate composite hortonolite raw materials; adding the naphthalene binder to the aggregate composite hortonolite having granularity ≤5 mm to prepare the thermal insulating layer raw materials after evenly mixing; (3) spacing and loading the flame retardant coating raw materials and the thermal insulating layer raw materials in a mold, pressing into green bricks, keeping the green bricks at a temperature of 110° C. for 24 hours, drying, and burning ...

Подробнее
13-04-2006 дата публикации

Material für feuerfeste Formkörper oder Massen, feuerfestes Produkt hieraus sowie Verfahren zur Herstellung eines feuerfesten Produkts

Номер: DE0010117029B4
Принадлежит: REFRATECHNIK HOLDING GMBH

Material für feuerfeste Formkörper oder Massen, dadurch gekennzeichnet, dass das Material ein Pleonast und/oder ein Spinell vom Pleonasttyp ist, das neben FeOx und Al2O3 MgO aufweist, wobei das Gewichtsverhältnis des Eisens gerechnet als Fe2O3 zu Al2O3 von 30 zu 70 bis 60 zu 40 reicht, und wobei 20 bis 60 Gew.-% MgO, bezogen auf das eingesetzte Material, enthalten sind.

Подробнее
30-11-1966 дата публикации

Refractory products

Номер: GB0001049708A
Автор:
Принадлежит:

A composition, forming a melt having a wide solidification range and which is superheated in an electric furnace above the complete melting temperature and then cast in a mould in which solidification results in a crystallization particularly resistant to corrosion and erosion in a basic medium, contains in per cent by weight magnesia at least 90; alumina 1 to 6; lime 2 to 7; silica proportioned that the CaO/SiO2 ratio is from 0.2 to 1.9: 1; iron 0-3 (calculated as Fe2O3) and less than 0.5 of minor impurities.

Подробнее
14-03-2019 дата публикации

HIGH-ZIRCONIAELECTROCAST REFRACTORY AND METHOD FOR MANUFACTURING THE SAME

Номер: US20190077714A1
Принадлежит: AGC CERAMICS CO., LTD.

... where CK2O is the content of K2O and CNa2O is the content of Na2O, and each of the contents is expressed by mass % in the refractory.

Подробнее
26-04-2018 дата публикации

COMPOSITION FOR PREPARING A GREEN BODY FOR THE MANUFACTURE OF A REFRACTORY CARBON-BONDED PRODUCT, METHOD FOR PREPARING SUCH A GREEN BODY AND GREEN BODY PREPARED THEREBY

Номер: US20180111879A1
Принадлежит:

The invention relates to a composition for preparing a green body for the manufacture of a refractory carbon-bonded product, a method for preparing such a green body and a green body prepared by such a method. 1. A composition for preparing a green body for the manufacture of a refractory carbon-bonded product , comprising the following components:at least one refractory raw material,at least one carbon carrier, and a resin, and', 'at least one initiator which initiates a curing reaction of the resin through ionizing radiation., 'at least one binder which comprises2. The composition according to having a proportion of refractory base material in the range of 60 to 98% by mass.3. The composition according to in which the percentage of binder is in the range from 0.5 to 10% by mass.4. The composition according to having a binder consisting of an ionically curable resin and a cationic photoinitiator.5. The composition according to having an ionically curable resin in the form of an epoxy resin.6. The composition according to having a cationic photoinitiator in the form of an onium salt.7. The composition according to with a binder consisting of a radically curable resin and a free radical photoinitiator.8. The composition according to with a radically curable resin in the form of acrylate resin.9. The composition according to having a free radical photoinitiator selected from the group: benzophenone claim 1 , aromatic phosphine oxides claim 1 , phosphonates claim 1 , peroxides or azo-compounds.10. A method for preparing a green body for the manufacture of a refractory carbon-bonded product claim 1 , comprising the following steps:providing a composition, the composition comprising the following components: at least one carbon carrier, and', a resin, and', 'at least one initiator which initiates a curing reaction of the resin through ionizing radiation,, 'at least one binder which comprises'}], 'at least one refractory raw material,'}exposing the composition to such an ...

Подробнее
16-01-2018 дата публикации

내화성 탄소-결합된 제품의 제조를 위한 생소지를 제조하기 위한 조성물, 그러한 생소지를 제조하기 위한 방법 및 그에 의해 제조된 생소지

Номер: KR1020180005654A
Принадлежит:

... 본 발명은 내화성 탄소-결합된 제품의 제조를 위한 생소지를 제조하기 위한 조성물, 그러한 생소지를 제조하기 위한 방법 및 그러한 방법에 의해 제조된 생소지에 관한 것이다.

Подробнее
22-10-2009 дата публикации

Feuerfestes keramisches Erzeugnis und zugehöriges Formteil

Номер: DE102008019529A1
Принадлежит:

Die Erfindung betrifft ein feuerfestes keramisches Erzeugnis sowie ein unter Verwendung dieses Erzeugnisses hergestelltes Formteil.

Подробнее
16-06-1976 дата публикации

HOCHFEUERFESTES MATERIAL

Номер: DE0002107004B2
Автор:
Принадлежит:

Подробнее
27-11-2013 дата публикации

Alumina-magnesia material for gasifier

Номер: CN102459123B
Принадлежит:

Подробнее
07-12-2006 дата публикации

REFRACTORY CERAMIC PRODUCT

Номер: WO2006128556A2
Автор: TREIMER, Robert
Принадлежит:

The invention relates to a refractory ceramic product which comprises a) > 93 % by weight of at least one refractory basic component and b) < 7 % by weight of at least one anticorrosive component from the group including: b1) transition metals, b2) compounds of transition metals with each other, b3) non-oxidic compounds of transition metals, b4) oxidic compounds of transition metals, b5) compounds of the transition metals with Ca, Ba, Sr.

Подробнее
03-04-2003 дата публикации

Synthetic, refractory material for refractory products, and process for producing the product

Номер: US20030064880A1
Принадлежит:

The invention relates to a material for refractory shaped bodies or compounds, wherein the material is a pleonaste and/or a spinel of the pleonaste type which, in addition to FeOxand Al2O3, also includes MgO, the ratio of the iron, calculated as Fe2O3:Al2O3ranging from 30:70 to 60:40, and the material containing from 20 to 60% by mass of MgO, based on Fe2O3+Al2O3.

Подробнее
09-10-2002 дата публикации

Synthethic refractory material for refractory products and process for manufacturing the product

Номер: EP0001247784A3
Принадлежит:

Material for fire-resistant molding or composition comprises pleonaste and/or spinel of pleonaste type containing iron oxide and alumina-magnesia A material for a fire-resistant molding or composition is a pleonaste and/or a spinel of the pleonaste type containing FeOx and Al2O3MgO. The ratio of iron calculated as Fe2O3:Al2O3 is 30:70-60:40 at 20-60 wt.% MgO referring to Fe2O3 + Al2O3. An Independent claim is also included for the production of a fire-resistant product comprising comminution of the above material as a solidified melt or sinter product, classification into corresponding grain sizes, and mixing with a fire-resistant, mineral, metal oxide main component (resistor). Preferred Features: The material is a melted synthetic spinel made from magnesia, alumina, or iron compounds, especially iron oxide such as magnetite of the pleonaste type. The elastifier is a synthetic spinel of the pleonaste type sintered from magnesia, alumina and magnetite.

Подробнее
16-02-2011 дата публикации

Refractory ceramic product and associated molded part

Номер: CN0101977872A
Принадлежит:

The invention relates to a refractory ceramic product and to a molded part produced by use of said product.

Подробнее
13-11-2002 дата публикации

Synthetic refractory material for refractory product and its production method

Номер: CN0001378997A
Принадлежит:

Подробнее
07-12-2006 дата публикации

REFRACTORY CERAMIC PRODUCT

Номер: WO000002006128556A3
Автор: TREIMER, Robert
Принадлежит:

The invention relates to a refractory ceramic product which comprises a) > 93 % by weight of at least one refractory basic component and b) < 7 % by weight of at least one anticorrosive component from the group including: b1) transition metals, b2) compounds of transition metals with each other, b3) non-oxidic compounds of transition metals, b4) oxidic compounds of transition metals, b5) compounds of the transition metals with Ca, Ba, Sr.

Подробнее
03-04-2003 дата публикации

Synthetic, refractory material for refractory products, and process for producing the product

Номер: US2003064880A1
Автор:
Принадлежит:

The invention relates to a material for refractory shaped bodies or compounds, wherein the material is a pleonaste and/or a spinel of the pleonaste type which, in addition to FeOx and Al2O3, also includes MgO, the ratio of the iron, calculated as Fe2O3:Al2O3 ranging from 30:70 to 60:40, and the material containing from 20 to 60% by mass of MgO, based on Fe2O3+Al2O3.

Подробнее
08-08-2016 дата публикации

철강 래들용 충진재의 제조 방법 및 이에 의해 제조된 철강 래들용 충진재

Номер: KR0101645627B1
Автор: 김인술, 한기현, 김요한
Принадлежит: 주식회사 인텍

... 본 발명은 철강 래들용 충진재의 제조방법 및 이에 의해 제조된 철강 래들용 충진재에 관한 것으로, 상기 충진재의 제조방법에 의해 탄소계 물질을 샌드 표면에 균일하게 코팅시킬 수 있으며, 상기 제조방법에 의해 제조된 래들용 충진재는 용강 배출시에 소결 또는 융착, 용강의 침투가 없고, 높은 개공률을 나타낸다.

Подробнее
09-12-2010 дата публикации

ALUMINA-MAGNESIA MATERIAL FOR A GASIFIER

Номер: WO2010140120A1
Принадлежит:

The present invention relates to a molten and cast refractory material having a chemical composition, in weight percent on the basis of oxides, of: Al2O3: the remainder up to 100%; MgO: 28% to 50%; CuO 0.05% to 1.0%; B2O3: ≤ 1.0%; SiO2: < 0.5%; Na2O + K2O: < 0.3%; CaO: < 1.0%; Fe2O3 + TiO2: < 0.55%; and other oxide species: < 0.5%.

Подробнее
04-11-2004 дата публикации

Synthetic, refractory material for refractory products, and process for producing the product

Номер: US20040220042A1
Принадлежит: Refratechnik Holding GmbH

A material for refractory shaped bodies or compounds, the material being a pleonaste and/or a spinel of the pleonaste type. In addition to FeOx and A12O3, the material also includes MgO. The ratio of the iron in the material is calculated as Fe2O3:Al2O3 and ranges from 30:70 to 60:40. The material contains from 20 to 60% by mass of MgO, as based on Fe2O3+Al2O3.

Подробнее
19-04-2007 дата публикации

METHOD FOR MAKING CERAMIC CASTING CORE AND RELATED ARTICLE THEREOF AND PROCESS

Номер: JP2007098475A
Принадлежит:

PROBLEM TO BE SOLVED: To provide a method for making a ceramic casting core. SOLUTION: This casting core has a pre-selected shape and is characterized a plurality of parallel cross-sections. Each cross-section has a pre-selected pattern and thickness. This method includes a step for melting a ceramic core material 106 with a laser beam 132 in a laser beam consolidation process and a step, in which the thickness of a first layer 116 is made to correspond to the thickness of a first cross section. A second layer 140 is formed in a similar manner and thereafter, the additional layers are formed till completing the core. As the same way of the method for making gas turbine parts with an investment casting by using the ceramic core, a method for modifying the existing shape of the core by using this process and the related article thereof and the processes, are also described. COPYRIGHT: (C)2007,JPO&INPIT ...

Подробнее
07-08-2015 дата публикации

METHOD TO PREPARE FILLING MATERIAL FOR STEEL LADLE AND FILLING MATERIAL FOR STEEL LADLE PREPARED THEREOF

Номер: KR1020150091030A
Принадлежит:

The present invention relates to a method to prepare a filling material for a steel ladle, and a filling material for a steel ladle prepared thereof. A carbonaceous material can evenly be coated on a surface by the preparation method of the filling material. The filling material for a ladle prepared by the preparing method does not have sintering or fusing, has no penetration of molten steel when a molten steel is discharged, and exhibits a high hole size ratio. COPYRIGHT KIPO 2015 ...

Подробнее
26-10-2017 дата публикации

BATCH FOR PRODUCTION OF A REFRACTORY MAGNESIA-CARBON PRODUCT OR A REFRACTORY ALUMINA-MAGNESIA-CARBON PRODUCT, A PROCESS FOR THE PRODUCTION OF A PRODUCT OF THIS TYPE, A PRODUCT OF THIS TYPE AS WELL AS THE USE OF A PRODUCT OF THIS TYPE

Номер: US20170305795A1
Принадлежит:

The invention concerns a batch for the production of a refractory magnesia-carbon product or a refractory alumina-magnesia-carbon product, a process for the production of a refractory magnesia-carbon product or a refractory alumina-magnesia-carbon product, a refractory magnesia-carbon product or a refractory alumina-magnesia-carbon product as well as the use of a magnesia-carbon product or a refractory alumina-magnesia-carbon product. 1. A batch for the production of a refractory carbon-bonded product , comprising the following components in the following proportions by weight , respectively with respect to the total weight of the product:70% to 97% by weight of a base component;1.0% to 2.3% by weight of a binder component in the form of at least one resol;1.5 to 3% by weight of a binder component in the form of at least one pitch;1.0% to 28% by weight of a carbon component in the form of at least one of the following carbon sources: graphite or carbon black.2. The batch as claimed in claim 1 , having a binder component in the form of at least one pitch in the form of coaltar pitch.3. The batch as claimed in claim 1 , having a base component formed by a magnesia component or an alumina-magnesia component.4. The batch as claimed in claim 3 , having a magnesia component in the form of at least one of the following MgO-based raw materials: fused magnesia or sintered magnesia.5. The batch as claimed in claim 3 , having an alumina-magnesia component in the form of at least one of the following MgO- or AlO-based raw materials: fused corundum claim 3 , sintered corundum claim 3 , bauxite claim 3 , magnesia spinel claim 3 , sintered magnesia or fused magnesia claim 3 , wherein the raw materials comprise MgO as well as AlO.6. The batch as claimed in claim 1 , having a proportion of solid resin of less than 0.5% by weight.7. A process for the production of a refractory carbon-bonded product claim 1 , comprising the following steps: 70% to 97% by weight of a base component;', ...

Подробнее
11-04-2007 дата публикации

Methods for making ceramic casting cores and cores

Номер: EP0001772210A2
Принадлежит:

A method for making a ceramic casting core is described. The casting core has a pre-selected shape, and is characterized as a plurality of parallel cross-sections. Each cross-section has a pre-selected pattern and thickness. The method includes the steps of melting a ceramic core material (16) with a laser beam (140) in a laser consolidation process, and depositing the molten material to form a first layer (116) in the pattern of a first cross-section of the core, the thickness of the first deposited layer (116) corresponding to the thickness of the first cross-section. A second layer (140) is formed in a similar manner, followed by the formation of additional layers, until the core is complete. A method of modifying the shape of an existing ceramic core with this process is also described, as is a method of making a gas turbine component by investment casting, using the ceramic core. Related articles and processes are also described.

Подробнее
19-03-2009 дата публикации

NANOCRYSTALLINE COMPOSITE MATERIAL BASED ON AL2O3 - ZRO2 - SIO2 AND ITS PRODUCTION METHOD

Номер: WO2009033435A1
Принадлежит:

The merits of the present invention is production of commercially utilizable three- dimensional articles with nanocrystalline composite structure from a material based on Al2O3- ZrO2 - SiO2. The nanocrystalline composite material contains 45 - 58 wt.% Al2O3, 28 - 38 wt.% ZrO2, 9 - 25 wt.% SiO2, its total porosity is below 5% and contains two levels of internal structure. At the micrometer level, the material is made up from mutually overlapping, thin and wavy discs (called splats) with thickness of up to 3 μm. The splats are formed by thermal spraying process and their respective chemical composition varies slightly. Inside of each splat, nanometer sized crystallites are found with average sizes ranging from 8 to 25 run and narrow size distribution. The nanometer sized crystallites are solely of one phase, which is the solid solution of tetragonal ZrO2 with Al2O3 and SiO2. The method producing the above material is as follows. Material containing Al2O3, ZrO2, and SiO2, is melted in arc ...

Подробнее
11-04-2012 дата публикации

ALUMINA-MAGNESIA MATERIAL FOR A GASIFIER

Номер: EP2438028A1
Принадлежит:

Подробнее
01-09-2016 дата публикации

Batch for the production of a refractory magnesia-carbon product or a refractory alumina-magnesia-carbon product, a process for the production of a product of this type, a product of this type as well as the use of a product of this type

Номер: TW0201630850A
Принадлежит:

The invention concerns a batch for the production of a refractory magnesia-carbon product or a refractory alumina-magnesia-carbon product, a process for the production of a refractory magnesia-carbon product or a refractory alumina-magnesia-carbon product, a refractory magnesia-carbon product or a refractory alumina-magnesia-carbon product as well as the use of a magnesia-carbon product or a refractory alumina-magnesia-carbon product.

Подробнее
09-06-2010 дата публикации

REFRACTORY CERAMIC PRODUCT AND ASSOCIATE MOLD

Номер: AR0000071320A1
Принадлежит:

Se divulga un producto cerámico refractario obtenido por colada solidificada constituido por >= 95% en masa de MgO y zirconato de calcio. El molde cerámico refractario está constituido por una matriz basada en MgO y entre 3 y 30% en masa de dicho producto.

Подробнее
15-05-2018 дата публикации

Batch for production of a refractory magnesia-carbon product or a refractory alumina-magnesia-carbon product, a process for the production of a product of this type, a product of this type as well as the use of a product of this type

Номер: US0009969650B2

The invention concerns a batch for the production of a refractory magnesia-carbon product or a refractory alumina-magnesia-carbon product, a process for the production of a refractory magnesia-carbon product or a refractory alumina-magnesia-carbon product, a refractory magnesia-carbon product or a refractory alumina-magnesia-carbon product as well as the use of a magnesia-carbon product or a refractory alumina-magnesia-carbon product.

Подробнее
14-03-2017 дата публикации

Alumina-magnesia product for gasifier or for metallurgical furnace

Номер: US0009593048B2

The invention relates to a melted and cast refractory product having a chemical composition such that, in mass percentages on the basis of the oxides: AI2O3: complement up to 100%; MgO: 26% to 50%; ZrO2: 0.5% to 10.0%; B2O3: <1.5%; SiO2: ≦0.5%; Na2O+K2O: ≦0.3%; CaO: ≦1.0%; Fe2O3+TiO2: <0.55%; other oxide species: <1.0%. In said product, the elementary mass ratio R of the zirconium content to the total boron, fluorine and silicon content is between 2 and 80.

Подробнее
09-07-2010 дата публикации

Molde ceramico refractario, basado en oxido de magnesio, que tiene entre 3 a 30% de un producto ceramico refractario formado de un fundido mayor a 95% en masa de oxido de magnesio y circonato de calcio.

Номер: CL2009000795A1
Принадлежит:

Producto cerámico refractario formado de un fundido solificado, mayor o igual a 95% en masa que comprende mgo y circonato de calcio; y molde cerámico refractario con una matriz basada en mgo.

Подробнее
03-05-2005 дата публикации

Synthetic, refractory material for refractory products, and process for producing the product

Номер: US0006887810B2

A material for refractory shaped bodies or compounds, the material being a pleonaste and/or a spinel of the pleonaste type. In addition to FeOx and Al2O3, the material also includes MgO. The ratio of the iron in the material is calculated as Fe2O3:Al2O3 and ranges from 30:70 to 60:40. The material contains from 20 to 60% by mass of MgO, as based on Fe2O3+Al2O3.

Подробнее
15-09-2015 дата публикации

REFRACTORY CERAMIC PRODUCT AND RESPECTIVE MOLDED PART

Номер: BR0PI0909669A2
Принадлежит:

Подробнее
29-03-2016 дата публикации

produto refratário fundido e moldado, e, gaseificador

Номер: BRPI1011866A2
Принадлежит:

Подробнее
23-02-2011 дата публикации

REFRACTORY CERAMIC PRODUCT AND ASSOCIATED MOLDED PART

Номер: EP2285751A1
Принадлежит:

Подробнее
22-06-2004 дата публикации

Synthetic, refractory material for refractory products, and process for producing the product

Номер: US0006753283B2

A material for refractory shaped bodies or compounds, the material being a pleonaste and/or a spinel of the pleonaste type. In addition to FeOX and Al2O3, the material also includes MgO. The ratio of the iron in the material is calculated as Fe2O3:Al2O3, and ranges from 30:70 to 50:40. The material contains from 20 to 60% by mass of MgO, as based on Fe2O3+Al2O3.

Подробнее
06-06-2017 дата публикации

For gasification furnace or for metallurgical furnaces aluminum-magnesium-products

Номер: CN0105143147B
Автор:
Принадлежит:

Подробнее
20-02-2008 дата публикации

REFRACTORY CERAMIC PRODUCT

Номер: EP0001888484A2
Автор: TREIMER, Robert
Принадлежит:

Подробнее
09-10-2002 дата публикации

Synthethic refractory material for refractory products and process for manufacturing the product

Номер: EP0001247784A2
Принадлежит:

Material for fire-resistant molding or composition comprises pleonaste and/or spinel of pleonaste type containing iron oxide and alumina-magnesia A material for a fire-resistant molding or composition is a pleonaste and/or a spinel of the pleonaste type containing FeOx and Al2O3MgO. The ratio of iron calculated as Fe2O3:Al2O3 is 30:70-60:40 at 20-60 wt.% MgO referring to Fe2O3 + Al2O3. An Independent claim is also included for the production of a fire-resistant product comprising comminution of the above material as a solidified melt or sinter product, classification into corresponding grain sizes, and mixing with a fire-resistant, mineral, metal oxide main component (resistor). Preferred Features: The material is a melted synthetic spinel made from magnesia, alumina, or iron compounds, especially iron oxide such as magnetite of the pleonaste type. The elastifier is a synthetic spinel of the pleonaste type sintered from magnesia, alumina and magnetite.

Подробнее
09-12-2015 дата публикации

Alumina-magnesia product for gasifier or for metallurgical furnace

Номер: CN0105143147A
Автор: JORGE ERIC, FRANCY OLIVIER
Принадлежит:

Подробнее
04-11-2004 дата публикации

Synthetic, refractory material for refractory products, and process for producing the product

Номер: US2004220042A1
Автор:
Принадлежит:

A material for refractory shaped bodies or compounds, the material being a pleonaste and/or a spinel of the pleonaste type. In addition to FeOx and A12O3, the material also includes MgO. The ratio of the iron in the material is calculated as Fe2O3:Al2O3 and ranges from 30:70 to 60:40. The material contains from 20 to 60% by mass of MgO, as based on Fe2O3+Al2O3.

Подробнее
02-07-1968 дата публикации

Номер: US0003391011A1
Автор:
Принадлежит:

Подробнее
01-12-2009 дата публикации

Refractory ceramic product and associated moulding

Номер: TW0200948744A
Принадлежит:

The invention relates to a refractory ceramic product and a moulding manufactured using this product.

Подробнее
16-11-2016 дата публикации

Batch composition for the production of a green body for manufacturing a refractory carbon-bonded product, method for the production of such a green body, and green body produced thereby

Номер: TW0201639802A
Принадлежит:

The invention relates to a batch composition for producing a green body for manufacturing a refractory carbon-bonded product, a method for producing such a green body, and a green body produced by such a method.

Подробнее
23-04-2019 дата публикации

Low heat-conductive magnesium-aluminum spinel brick preparation method

Номер: CN0105565794B
Автор:
Принадлежит:

Подробнее
15-08-1978 дата публикации

Manufacture of improved fused cast refractory

Номер: US0004107255A1
Принадлежит: Corning Glass Works

Basic fused cast refractory with principal crystal phases of periclase and magnesium-spinel is made by adding nonfused oxidic inorganic grog particles to molten mass of the refractory as it is cast into a mold cavity, thereby resulting in increased modulus of rupture at temperature in the range of about 1340°-1500° C. and avoidance of shell formation. Molten mass has a composition consisting essentially (by weight) of 45-78% MgO, 0-30% Cr2 O3, 0-35% Al2 O3, 0-17% FeO + Fe2 O3, at least 82% MgO + Cr2 O3 + Al2 O3 + FeO + Fe2 O3, 1-8% SiO2, 0-2% CaO + BaO + SrO2, 0-10% TiO2 and 0-3% fluorine. Nonfused particles have a loss on ignition at 1000° C. of less than about 0.5% by weight and an aggregate SiO2 content at least about equal to the SiO2 content of the molten mass forming the cast refractory. Grog particles are of a size (e.g., within the range of particles passing about 25 mm. sieve openings and retained by about 0.5 mm sieve openings) and in an amount (e.g., about 2.5 to 70% by weight ...

Подробнее
27-05-2003 дата публикации

Material sintético, resistente às chamas para produtos resistentes às chamas bem como processo para a preparação do produto

Номер: BR0201088A
Автор:
Принадлежит:

Подробнее
05-11-2014 дата публикации

Refractory ceramic product and associated molded part

Номер: CN101977872B
Принадлежит:

Подробнее
02-01-2014 дата публикации

Inorganic Fiber

Номер: US20140000089A1
Принадлежит: UNIFRAX I LLC

Provided are inorganic fibers containing calcium and alumina as the major fiber components. According to certain embodiments, the inorganic fibers containing calcia and alumina are provided with a coating of a phosphorous containing compound on at least a portion of the fiber surfaces. Also provided are methods of preparing the coated and non-coated inorganic fibers and of thermally insulating articles using thermal insulation comprising the inorganic fibers. 1. A low shrinkage , high temperature resistant inorganic fiber having a use temperature of 1100° C. or greater , wherein at least 90 weight percent of said fiber consists essentially of a fiberization product of greater than 50 weight percent calcia , greater than 0 to less than 50 weight percent alumina , and about 10 weight percent or less silica.2. The inorganic fiber of claim 1 , wherein at least 90 weight percent of said fiber consists essentially of the fiberization product of greater than 50 to about 60 weight percent calcia and from about 40 to less than 50 weight percent alumina.3. The inorganic fiber of claim 1 , wherein at least 90 weight percent of said fiber consists essentially of the fiberization product of about greater than 50 to about 80 weight percent calcia and about 20 to less than 50 weight percent alumina.4. The inorganic fiber of claim 1 , wherein at least 90 weight percent of said fiber consists essentially of the fiberization product of about 60 to about 80 weight percent calcia and about 20 to about 40 weight percent alumina.5. The inorganic fiber of claim 1 , wherein at least 90 weight percent of said fiber consists essentially of the fiberization product of greater than 50 to about 70 weight percent calcia and about 30 to less than 50 weight percent alumina.6. The inorganic fiber of claim 1 , containing about 5 weight percent or less silica.7. The inorganic fiber of claim 1 , containing about 2 weight percent or less silica.8. The inorganic fiber of claim 1 , containing ...

Подробнее
09-01-2020 дата публикации

MAGNESIUM OXIDE SPUTTERING TARGET AND METHOD OF MAKING SAME

Номер: US20200010368A1
Принадлежит:

A sintered compact magnesium oxide target for sputtering having a purity of 99.99 wt % or higher, a density of 3.58 g/cmor higher, and a transparency 10% or more. A sintered compact magnesium oxide target for sputtering having a purity of 99.99 wt % or higher, a density of 3.58 g/cmor higher, and an average crystal grain size of 50 μm or more. 1. A sintered compact magnesium oxide target for sputtering comprising:a purity of 99.99 wt % or higher;{'sup': '3', 'a density of 3.58 g/cmor higher; and'}a transparency 10% or more.2. The sintered compact magnesium oxide target for sputtering as in claim 1 , wherein the sintered compact magnesium oxide target for sputtering further includes raw material of pure MgO powder claim 1 , wherein said MgO powder includes a particle size of less than 10m and specific surface area of less than 15 10m/kg.3. The sintered compact magnesium oxide target for sputtering as in claim 1 , wherein the transparence is 10% or higher.4. The sintered compact magnesium oxide target for sputtering as in claim 1 , wherein variation in the transparence is within 1%.5. A sintered compact magnesium oxide target for sputtering comprising:a purity of 99.99 wt % or higher;{'sup': '3', 'a density of 3.58 g/cmor higher; and'}an average crystal grain size of 50 μm or more.6. The sintered compact magnesium oxide target for sputtering according to claim 5 , wherein said sintered compact magnesium oxide target further includes raw material of pure MgO powder claim 5 , wherein said MgO power includes a particle size of less than 10m and a specific surface area less than 15 10m/kg.7. The sintered compact magnesium oxide target for sputtering according to claim 5 , wherein the transparence is 10% or higher.8. The sintered compact magnesium oxide target for sputtering according to claim 5 , wherein the variation in the transparence is within 1%.9. A method for producing a sintered compact magnesium oxide target for sputtering claim 5 , the method comprising: ...

Подробнее
18-01-2018 дата публикации

REFRACTORIES AND USE THEREOF

Номер: US20180016191A1
Принадлежит: Refratechnik Holding GmbH

A refractory has the form of a dry, mineral batch of fire-resistant mineral materials combined in such a way that refractories which are long-term resistant to fayalite-containing slags, sulfidic melts (mattes), sulfates and non-ferrous metal melts and are used for refractory linings in industrial non-ferrous metal melting furnaces can be manufactured. The refractory at least contains:—at least one coarse-grained magnesia raw material as the main component;—magnesia (MgO) meal;—at least one fire-resistant reagent which, during the melting process, acts (in situ) in a reducing manner on non-ferrous metal oxide melts and/or non-ferrous metal iron oxide melts and converts same into non-ferrous metal melts. 1. Refractory product in the form of a dry , mineral batch of refractory mineral materials , composed , in terms of materials , in such a manner that refractory products for fire-side lining of industrial non-ferrous metal smelting furnaces that are resistant to fayalite slags , sulfidic melts (mattes) , sulfates , and non-ferrous metal melts , over the long term , can be produced from them , and having:at least one coarse-grained magnesia raw material as the main component,magnesia meal (MgO meal),at least one refractory reagent that acts to reduce non-ferrous metal oxide melts and/or non-ferrous metal iron oxide melts during the smelting process (in situ) and to convert them to non-ferrous metal melts.2. Product according to claim 1 , whereinthe reagent is fine-grained carbon, particularly graphite and/or carbon black and/or anthracite and/or coke, but preferably graphite.3. Product according to claim 1 ,comprising the following dry substance compositions:30 to 74, particularly 40 to 60 wt.-% coarse-grained magnesia, particularly with more than 90, particularly more than 95 wt.-% MgO,25 to 50, particularly 35 to 45 wt.-% magnesia meal, particularly with >90, particularly >95 wt.-% MgO,1 to 20, particularly 5 to 15 wt.-% reagent.4. Product according to claim 1 , ...

Подробнее
12-02-2015 дата публикации

Electrically insulating material for thermal sprayed coatings matching the coefficient of thermal expansion of the underlying body

Номер: US20150044486A1
Принадлежит: Oerlikon Metco US Inc

Compositions and method for preparing thermally sprayed coatings are disclosed. The inventive compositions include at least one component that is electrically-insulating and/or non-subliming at thermal spray temperatures; and at least one component that has a high coefficient of thermal expansion. The invention also provides a compositions and methods for preparing a coating comprising a spinel, from materials that do not comprise a spinel; and also provides non-spinel materials used to prepare coatings comprising spinel. The invention includes coatings made from the materials and methods; and articles comprising the coatings.

Подробнее
07-02-2019 дата публикации

Melted magnesium aluminate grain rich in magnesium

Номер: US20190039956A1
Автор: Stéphane RAFFY

A fused grain is essentially composed of a matrix of a magnesium aluminum oxide of MgAl2O4 spinel structure and/or of the MgO—MgAl2O4 eutectic structure, and of inclusions essentially composed of magnesium oxide. The grain has the following overall chemical composition, as percentages by weight, expressed in the form of oxides: more than 5.0% and less than 19.9% of Al2O3, Al2O3 and MgO together represent more than 95.0% of the weight of the grain. The cumulative content of CaO and of ZrO2 is less than 4000 ppm, by weight.

Подробнее
06-02-2020 дата публикации

Refractory ceramic product, batch for the manufacture such a product and method for manufacturing such a product

Номер: US20200039885A1

The invention relates to a fire-resistant ceramic product, a batch for manufacturing a product of said type, and a process for manufacturing a product of said type.

Подробнее
23-02-2017 дата публикации

THERMOSET CERAMIC COMPOSITIONS, INORGANIC POLYMER COATINGS, INORGANIC POLYMER MOLD TOOLING, INORGANIC POLYMER HYDRAULIC FRACKING PROPPANTS, METHODS OF PREPARATION AND APPLICATIONS THERFORE

Номер: US20170050887A1
Принадлежит:

Thermoset ceramic compositions and a method of preparation of such compositions. The compositions are advanced organic/inorganic hybrid composite polymer ceramic alloys. The material combine strength, hardness and high temperature performance of technical ceramics with the strength, ductility, thermal shock resistance, density, and easy processing of the polymer. Consisting of a branched backbone of silicon, alumina, and carbon, the material undergoes sintering at 7 to 300 centigrade for 2 to 94 hours from water at a pH between 0 to 14, humidity of 0 to 100%, with or without vaporous solvents. 1. A composition of matter comprising:a polymer of aluminum, silicon, carbon, and oxygen wherein the aluminum, silicon, carbon, and oxygen are all in the polymer chain backbone.2. A composition of matter provided by the incipient materials:a. aluminum oxide,b. silicon oxide,c. carbon, and, a source ofd. divalent cations.3. A composition of matter as claimed in wherein the composition of matter is a gel.4. The composition as claimed in wherein the divalent cations are selected from the group consisting of calcium claim 2 , and magnesium.5. A composition of matter as claimed in wherein claim 2 , in addition claim 2 , metal claim 2 , is added.6. A composition of matter as claimed in wherein claim 2 , in addition claim 2 , fibers are added.7. A composition of matter as claimed in wherein claim 2 , in addition claim 2 , other metallic oxides are added.8. A method of preparation of a composition of claim 1 , said method comprising:a. providing a mixture of aluminum oxide and silicon oxide; i. water,', {'sup': '−', 'ii. a source of OH,'}, 'iii. carbon, and,', 'iv. a source of divalent cations;, 'b. providing a mixture, having a basic pH, in a slurry form, of'}c. mixing A. and B. together using shear force to form a stiff gel;d. exposing the product of C, to a temperature in the range of 140° F. to 250° F. for a period of time to provide a thermoset ceramic.9. The method as claimed in ...

Подробнее
13-02-2020 дата публикации

PHASE GRADIENT NANOCOMPOSITE WINDOW FABRICATION AND METHOD OF FABRICATING DURABLE OPTICAL WINDOWS

Номер: US20200049861A1
Принадлежит:

A unitary radome layer assembly is provided and includes a first nanocomposite formulation and a second nanocomposite formulation. The first and second nanocomposite formulations are provided together in a unitary radome layer with respective distribution gradients. 1. A unitary radome layer assembly method , comprising:designing a unitary radome layer with first and second portions, the first portions being more durable than the second portions and the second portions being more optically transparent than the first portions;providing first and second nanocomposite formulations together in a unitary radome layer mold, the second nanocomposite formulation having a hardener and a higher effective density than the first nanocomposite formulation; andgenerating respective distribution gradients for the first and second nanocomposite formulations prior to curing.2. The unitary radome layer assembly method according to claim 1 , wherein the generating of the respective distribution gradients comprises:defining the respective distribution gradients relative to a unitary radome layer axis;placing the unitary radome layer mold with the first and second nanocomposite formulations in a centrifuge; andactivating the centrifuge to rotate the unitary radome layer mold with the first and second nanocomposite formulations about the unitary radome layer axis.3. The unitary radome layer assembly method according to claim 1 , wherein the generating of the respective distribution gradients comprises:defining the respective distribution gradients relative to multiple unitary radome layer axes;placing the unitary radome layer mold with the first and second nanocomposite formulations in a centrifuge; andactivating the centrifuge to rotate the unitary radome layer mold with the first and second nanocomposite formulations about the multiple unitary radome layer axes.4. The unitary radome layer assembly method according to claim 1 , wherein the designing comprises designing the unitary ...

Подробнее
20-02-2020 дата публикации

ELABORATION OF AN ADVANCED CERAMIC MADE OF RECYCLED INDUSTRIAL STEEL WASTE

Номер: US20200055781A1
Принадлежит:

A ceramic and a method of forming a ceramic including milling steel slag exhibiting a diameter of 5 mm of less to form powder, sieving the powder to retain the powder having a particle size in the range of 20 to 400 removing free iron from the powder with a magnet, heat treating the powder at a temperature in the range of 700° C. to 1200° C. for a time period in the range of 1 hour to 10 hours and oxidizing retained iron in the powder, compacting the powder at a compression pressure in the range of 20 MPa to 300 MPA, and sintering the powder at a temperature in the range of 700° C. to 1400° C. for a time period in the range of 0.5 hours to 4 hours to provide a ceramic. 1. A method of forming a ceramic from steel slag , comprising:milling steel slag exhibiting a diameter of 5 mm of less to form powder;sieving said powder to retain said powder having a particle size in the range of 20 μm to 400 μm;removing free iron from said powder with a magnet;heat treating said powder at a temperature in the range of 700° C. to 1200° C. for a time period in the range of 1 hour to 10 hours and oxidizing retained iron in said powder;compacting said powder at a compression pressure in the range of 20 MPa to 300 MPa; andsintering said powder at a temperature in the range of 700° C. to 1400° C. for a time period in the range of 0.5 hours to 4 hours to provide a ceramic.2. The method of claim 1 , further comprising preheating said powder prior to sintering wherein said green compact is preheated at a rate of 1 K/min to 10 K/min.3. The method of claim 1 , wherein said sintering is performed after compacting claim 1 , wherein said compression pressure is in the range of 30 MPa to 300 MPa claim 1 , and said sintering temperature is in the range of 800° C. to 1100° C.4. The method of claim 3 , wherein said compression pressure in the range of 120 MPa to 180 MPa.5. The method of claim 1 , wherein sintering is performed concurrently with said compacting.6. The method of claim 5 , wherein said ...

Подробнее
04-03-2021 дата публикации

Multilayer electronic component

Номер: US20210065989A1
Принадлежит: Murata Manufacturing Co Ltd

A multilayer electronic component that includes a stacked body having therein a plurality of dielectric layers including a CZ-based perovskite phase and an element M1, a plurality of internal electrode layers including Cu, and an interface layer including the element M1 in at least a portion of an interface with the plurality of internal electrode layers. Element M1 is an element that has a binding energy between CZ and Cu via the element M1 of less than or equal to −9.8 eV by first-principles calculation using a pseudopotential method. When amounts of elements included in the dielectric layers are expressed as parts by mol, a ratio m1 of an amount of the element M1 to an amount of the Zr in the interface layer is 0.03≤m1≤0.25.

Подробнее
17-03-2022 дата публикации

THERMOSET CERAMIC COMPOSITIONS, INORGANIC POLYMER COATINGS, INORGANIC POLYMER MOLD TOOLING, INORGANIC POLYMER HYDRAULIC FRACKING PROPPANTS, METHODS OF PREPARATION AND APPLICATIONS THEREFORE

Номер: US20220081367A1
Принадлежит:

Thermoset ceramic compositions and a method of preparation of such compositions. The compositions are advanced organic/inorganic hybrid composite polymer ceramic alloys. The material combines strength, hardness and high temperature performance of technical ceramics with the strength, ductility, thermal shock resistance, density, and easy processing of the polymer. Consisting of a branched backbone of silicon, and alumina, with highly coordinated Si—O—Si or Al—O—Al bonds, the material undergoes sintering at 7 to 300 centigrade for 2 to 94 hours from water at a pH between 0 to 14, humidity of 0 to 100%, with or without vaporous solvents. 1. A composition of matter provided by the incipient materialsa) aluminum oxide,b) silicon oxide,c) solvent, and a source ofd) divalent cations.2. A composition of matter as claimed in wherein the composition of matter is a gel.3. The composition as claimed in wherein the divalent cations are selected from the group consisting of calcium claim 1 , and magnesium.4. A composition of matter as claimed in claim 2 , wherein claim 2 , in addition claim 2 , fibers are added.5. A method of preparation of composition of claim 1 , said method comprising:a) providing a mixture of aluminum oxide and silicon oxide; i. water,', 'ii. a source of OH,', 'iii. a solvent, and,', 'iv. a source of divalent cations;, 'b) providing a mixture, having a basic pH, in a slurry form, ofc) mixing A. and B.;d) exposing the product of C. to a temperature in the range of 160° F. to 250° F. for a period of time to provide a thermoset ceramic.6. The method as claimed in wherein the temperature range is from 175° F. to 225° F.7. The method as claimed in wherein the time period for heating is 2 to 6 hours.8. A product when prepared by the method as claimed in .9. A solid substrate when coated with a composition as claimed in .10. A composition of matter consisting of amorphous polymer comprising metal carbon bonds and metal oxide bonds.11. A composition as claimed in ...

Подробнее
10-03-2016 дата публикации

INORGANIC PHOSPHATE COMPOSITIONS AND METHODS

Номер: US20160068442A9
Принадлежит:

Disclosed and described are multi-component inorganic phosphate formulations of acidic phosphate components and basic oxide/hydroxide components. Also disclosed are high solids, atomizable compositions of same, suitable for spray coating. 1. An atomizable phosphate ceramic spray system comprising{'sup': 'm', 'sub': 2', '4', 'm', '2, 'a first component cartridge comprising an aqueous solution of an acid-phosphate of chemical formula A(HPO).nHO, where A is hydrogen ion, ammonium cation, metal cation, or mixtures thereof; where m=1-3, and n=0-6; the first component solution adjusted to a pH of about 2 to about 5;'}{'sup': '2m', 'sub': m', '2m, 'a second component cartridge comprising an aqueous solution of an alkaline oxide or alkaline hydroxide represented by BO, B(OH), or mixtures thereof, where B is an element of valency 2m (m=1, 1.5, or 2) the second component solution adjusted to a pH of between 9-14; and'}optionally, a rheology modifier/suspending agent in an amount capable of providing shear thinning of either the first component or the second component and further capable of suspending a high solids content of either the first component or the second component for atomization; andhigh shear dispersion blade; anda plural sprayer operably connected to a pump.2. The phosphate ceramic spray system of claim 1 , wherein the second component is at least one of magnesium hydroxide and calcium hydroxide claim 1 , and water.3. The phosphate ceramic spray system of claim 1 , wherein the first component comprises about 2 to about 10 wt % phosphoric acid claim 1 , water claim 1 , and at least one of mono potassium phosphate and mono calcium phosphate.4. The phosphate ceramic spray system of claim 1 , further comprising aluminum oxide present in an amount sufficient to increase the hardness of the phosphate ceramic.5. The phosphate ceramic spray system of claim 1 , wherein the rheology modifier/suspending agent is at least one of guar gum claim 1 , diutan gum claim 1 , welan ...

Подробнее
14-03-2019 дата публикации

Thermoset ceramic compositions, inorganic polymer coatings, inorganic polymer mold tooling, inorganic polymer hydraulic fracking proppants, methods of preparation and applications therefore

Номер: US20190077715A1
Принадлежит: Individual

Thermoset ceramic compositions and a method of preparation of such compositions. The compositions are advanced organic/inorganic hybrid composite polymer ceramic alloys. The material combines strength, hardness and high temperature performance of technical ceramics with the strength, ductility, thermal shock resistance, density, and easy processing of the polymer. Consisting of a branched backbone of silicon, alumina, and carbon, the material undergoes sintering at 7 to 300 centigrade for 2 to 94 hours from water at a pH between 0 to 14, humidity of 0 to 100%, with or without vaporous solvents.

Подробнее
05-04-2018 дата публикации

Phase gradient nanocomposite window fabrication and method of fabricating durable optical windows

Номер: US20180095191A1
Принадлежит: Raytheon Co

An optical window is provided and includes a core layer, a cladding layer and an electromagnetic interference (EMI) layer interposed between the core and cladding layers.

Подробнее
06-04-2017 дата публикации

DIELECTRIC COMPOSITION AND ELECTRONIC COMPONENT

Номер: US20170096371A1
Принадлежит: TDK Corporation

A dielectric composition containing a complex oxide represented by the formula of ABCO as the main component, wherein A represents Ba, B represents at least one element selected from the group consisting of Ca and Sr, C represents at least one element selected from the group consisting of Ta and Nb, and α, β and γ meet the following conditions, i.e., α+β+γ=1.000, 0.000<α≦0.375, 0.625≦β<1.000, 0.000≦γ≦0.375. 1. A dielectric composition characterized in comprising a complex oxide represented by a formula of ABCO as main component , wherein ,A represents Ba,B represents at least one element selected from the group consisting of Ca and Sr,C represents at least one element selected from the group consisting of Ta and Nb, andα, β and γ meet the following conditions,α+β+γ=1.000,0.000<α≦0.375,0.625≦β<1.000,0.000≦γ≦0.375.2. The dielectric composition of characterized in comprising the complex oxide as the main component claim 1 , wherein claim 1 ,in the formula, α, β and γ meet the following conditions,α+β+γ=1.000,0.000<α≦0.375,0.625≦β<1.000,0.000<γ≦0.375.3. The dielectric composition of characterized in comprising the complex oxide as the main component claim 1 , wherein claim 1 ,in the formula, α, ↑ and γ meet the following conditions,α+β+γ=1.000,0.100≦α≦0.375,0.625≦β≦0.900,0.000<γ≦0.275.4. The dielectric composition of characterized in comprisingthe complex oxide as the main component, wherein,in the formula, α, β and γ meet the following conditions,α+β+γ=1.000,0.000≦α≦0.180,0.770≦β<1.000,0.000<γ≦0.050.5. The dielectric composition of characterized in comprising the complex oxide as the main component claim 1 , wherein claim 1 ,in the formula, α, β and γ meet the following conditions,α+β+γ=1.000,0.000<α≦0.215,0.770≦β<1.000,0.000<γ≦0.015.6. The dielectric composition of characterized in comprising the complex oxide as the main component claim 1 , wherein claim 1 ,in the formula, α, β and γ meet the following conditions,α+β+γ=1.000,0.100≦α≦0.180,0.805≦β≦0.900,0.000<γ≦0.015. ...

Подробнее
16-04-2015 дата публикации

INORGANIC PHOSPHATE COMPOSITIONS AND METHODS

Номер: US20150104368A1
Принадлежит:

Disclosed and described are multi-component inorganic phosphate formulations of acidic phosphate components and basic oxide/hydroxide components. Also disclosed are high solids, atomizable compositions of same, suitable for spray coating. 1. An atomizable phosphate ceramic spray system comprising{'sup': 'm', 'sub': 4', 'm', '2, 'a first component cartridge comprising an aqueous solution of an acid-phosphate of chemical formula A(HPO).nHO, where A is hydrogen ion, ammonium cation, metal cation, or mixtures thereof; where m=1-3, and n=0-6; the first component solution adjusted to a pH of about 2 to about 5;'}{'sup': '2m', 'sub': m', '2m, 'a second component cartridge comprising an aqueous solution of an alkaline oxide or alkaline hydroxide represented by BO, B(OH), or mixtures thereof, where B is an element of valency 2m (m=1, 1.5, or 2) the second component solution adjusted to a pH of between 9-14; and'}optionally, a rheology modifier/suspending agent in an amount capable of providing shear thinning of either the first component or the second component and further capable of suspending a high solids content of either the first component or the second component for atomization; andhigh shear dispersion blade; anda plural sprayer operably connected to a pump.2. The phosphate ceramic spray system of claim 1 , wherein the second component is at least one of magnesium hydroxide and calcium hydroxide claim 1 , and water.3. The phosphate ceramic spray system of claim 1 , wherein the first component comprises about 2 to about 10 wt % phosphoric acid claim 1 , water claim 1 , and at least one of mono potassium phosphate and mono calcium phosphate.4. The phosphate ceramic spray system of claim 1 , further comprising aluminum oxide present in an amount sufficient to increase the hardness of the phosphate ceramic.5. The phosphate ceramic spray system of claim 1 , wherein the rheology modifier/suspending agent is at least one of guar gum claim 1 , diutan gum claim 1 , welan gum ...

Подробнее
29-04-2021 дата публикации

EXTRACTION OF DIGITALLY PRINTED BUILD MATERIAL

Номер: US20210122118A1

In example implementations, a method for extracting layers of build material into a carrier. The method includes providing a layer of build material onto a bed. Portions of the layer of build material on the bed are digitally printed with a liquid functional material (LFM). The method repeats providing the layer of build material and digitally printing without applying energy to the LFM to define a structure in layers of build material on the bed. The layers of build material are extracted into a carrier and the carrier is removed. 1. A method , comprising:successively forming layers of a build material on a bed;selecting dispensing a liquid functional material (LFM) on each layer of the build material in accordance with a cross-section of an object to be formed, wherein the LFM facilitates binding of the build material under an application of energy but does not, by itself, bind the build material; andextracting the layers of build material into a carrier prior to the application of energy to bind the build material that received the LFM.2. The method of claim 1 , further comprisingplacing the carrier into a furnace;with the furnace, applying the energy to the build material in the carrier to bind the build material that received the LFM in all the successive layers to form the object within the carrier.3. The method of claim 2 , wherein all the build material that received LFM in all of the layers is bound together at a same time by the application of energy from the furnace.4. The method of claim 1 , further comprising reacting the LFM with the build material that receives the LFM claim 1 , the reaction lowering an amount of energy required to bind the build material that has reacted with the LFM.5. The method of claim 2 , further comprising using the LFM as an energy susceptor to energy applied by the furnace to induce binding of the build material that received the LFM.6. The method of claim 1 , further comprising forming a bottom-most and top-most layer of ...

Подробнее
13-05-2021 дата публикации

Materials with hierarchical nanochemical bonding, manufacturing methods and applications of same

Номер: US20210139376A1
Автор: Zheng R. TIAN
Принадлежит: Qushell LLC

A method of manufacturing a composition with hierarchical nanochemical bonding includes making a powder of one or more oxygen containing materials; mixing the powder either with a water solution of organic and/or inorganic acid to form an acidic slurry, or with water to form a hydrated basic slurry; and curing the slurry to form a solid. The powder comprises nanoscale particles, or microscale particles, or a mixture of nanoscale particles and microscale particles.

Подробнее
27-05-2021 дата публикации

DIELECTRIC CERAMIC COMPOSITION AND CERAMIC ELECTRONIC COMPONENTS

Номер: US20210155547A1
Принадлежит:

Provided is a dielectric ceramic composition including a first component and a second component, wherein the first component comprises an oxide of Ca of 0.00 mol % to 35.85 mol % an oxide of Sr of 0.00 mol % to 47.12 mol %, an oxide of Ba of 0.00 mol % to 51.22 mol %, an oxide of Ti of 0.00 mol % to 17.36 mol %, an oxide of Zr of 0.00 mol % to 17.36 mol %, an oxide of Sn of 0.00 mol % to 2.60 mol %, an oxide of Nb of 0.00 mol % to 35.32 mol %, an oxide of Ta of 0.00 mol % to 35.32 mol %, and an oxide of V of 0.00 mol % to 2.65 mol %, and the second component includes at least (a) an oxide of Mn of 0.005% by mass to 3.500% by mass and (b) an oxide of Cu and/or an oxide of Ru. 1. A dielectric ceramic composition comprising:a first component; anda second component, wherein{'sub': 2', '2', '2', '2', '5', '2', '5', '2', '5, 'as a content ratio relative to a total number of moles of the first component when converted into following oxides, the first component comprises an oxide of Ca of 0.00 mol % to 35.85 mol % in terms of CaO, an oxide of Sr of 0.00 mol % to 47.12 mol % in terms of SrO, an oxide of Ba of 0.00 mol % to 51.22 mol % in terms of BaO, an oxide of Ti of 0.00 mol % to 17.36 mol % in terms of TiO, an oxide of Zr of 0.00 mol % to 17.36 mol % in terms of ZrO, an oxide of Sn of 0.00 mol % to 2.60 mol % in terms of SnO, an oxide of Nb of 0.00 mol % to 35.32 mol % in terms of NbO, an oxide of Ta of 0.00 mol % to 35.32 mol % in terms of TaO, and an oxide of V of 0.00 mol % to 2.65 mol % in terms of VO;'}{'sub': 2', '2', '2', '2', '5', '2', '5', '2', '5, 'the first component comprises at least one oxide selected from the oxide of Ca, the oxide of Sr, and the oxide of Ba, at least one oxide selected from the oxide of Ti and the oxide of Zr, and at least one oxide selected from the oxide of Nb and the oxide of Ta as essential components, and a total content ratio of the oxide of Ca in terms of CaO, the oxide of Sr in terms of SrO, and the oxide of Ba in terms of BaO is ...

Подробнее
31-05-2018 дата публикации

THERMALLY INSULATING MATERIAL

Номер: US20180148376A1
Автор: Ben-Nissan Besim
Принадлежит: BESIM PTY LTD

Provided are thermally insulating materials comprising 1 to 95 wt % ceramic oxide, 1 to 30 wt % inorganic binding agent, and treated at a temperature of less than about 1000° C.; processes for producing the insulating materials; and uses thereof. 1. A thermally insulating material comprising:(a) 1 to 80 wt % ceramic oxide;(b) 5 to 30 wt % inorganic binding agent; and(c) treated at a temperature of less than 1000° C.;wherein the insulating material does not comprise vermiculite.2. The insulating material according to claim 1 , comprising 5 to 80 wt % ceramic oxide and 10 to 80 wt % ceramic oxide.3. (canceled)4. The insulating material according to claim 1 , wherein the ceramic oxide has a mean particle size of less than 350 μm or a mean particle size from 30 to 300 μm.5. (canceled)6. The insulating material according to claim 1 , wherein the ceramic oxide is selected from the group consisting of sodium oxide claim 1 , magnesium oxide claim 1 , potassium oxide claim 1 , calcium oxide claim 1 , alumina claim 1 , silica claim 1 , sodium silicate claim 1 , magnesium silicate claim 1 , potassium silicate claim 1 , calcium silicate claim 1 , aluminium silicate claim 1 , zirconium silicate claim 1 , sodium aluminate claim 1 , magnesium aluminate claim 1 , calcium aluminate claim 1 , zirconium aluminate claim 1 , nickel aluminate claim 1 , sodium phosphate claim 1 , magnesium phosphate claim 1 , calcium phosphate claim 1 , aluminium phosphate claim 1 , ferrous oxide claim 1 , ferric oxide claim 1 , zirconium oxide claim 1 , magnesium zirconate claim 1 , calcium zirconate claim 1 , and combinations thereof.7. The insulating material according to claim 1 , comprising 5 to 30 wt % inorganic binding agent.8. (canceled)9. The insulating material according to claim 1 , wherein the inorganic binding agent has a mean particle size of less than 350 μm or a mean particle size from 30 to 300 μm.10. (canceled)11. The insulating material according to claim 1 , wherein the inorganic ...

Подробнее
06-06-2019 дата публикации

Purified ceramic materials and methods for making the same

Номер: US20190169073A1
Принадлежит: Corning Inc

Disclosed herein are ceramic materials comprising a ceramic phase and a glass phase and at least one of a reduced alkali content or a reduced iron content. Ceramic materials having relatively low creep rates are also disclosed herein, as well as glass forming bodies comprising such materials, and methods for making glass articles using such forming bodies. Refractory bricks for constructing glass manufacturing vessels are also disclosed. Methods for treating ceramic materials to reduce at least one of the alkali or iron content are further disclosed herein.

Подробнее
06-07-2017 дата публикации

FIRE-RESISTANT CERAMIC PRODUCT

Номер: US20170190625A1
Принадлежит:

The invention relates to a fire-resistant ceramic product. 1. A refractory ceramic product whose microstructure has the following features:a matrix composed of at least one first material;grains of at least one second material are embedded in the matrix;the grains of the second material have a coating composed of at least one third material on at least part of their surface;the first and second material have a different coefficient of thermal expansion;the third material is stable during use of the product.2. The product as claimed in in the form of a sintered product.3. The product as claimed in claim 1 , wherein the first material is based on one or more of the following oxides or compounds: MgO claim 1 , AlO claim 1 , FeO claim 1 , SiO claim 1 , CaO claim 1 , CrO claim 1 , ZrO claim 1 , MnO claim 1 , TiOor one or more of the compounds magnesia spinel claim 1 , hercynite claim 1 , galaxite or forsterite.4. The product as claimed in claim 1 , wherein the second material is based on one or more of the following oxides or compounds thereof: AlO claim 1 , MgO claim 1 , SiOor ZrO.5. The product as claimed in claim 1 , wherein the third material is based on at least one of the following materials: gahnite claim 1 , magnesia spinel claim 1 , forsterite claim 1 , mullite claim 1 , calcium zirconate or ABO(where A=Al claim 1 , Cr or Fe and B=Mg claim 1 , Zn claim 1 , Fe claim 1 , Mn or Ni).6. The product as claimed in claim 1 , wherein the thickness of the coating is in the range from 5 to 300 μm.7. The product as claimed in claim 1 , wherein the first material is in the form of grains sintered to one another.8. The product as claimed in claim 1 , wherein the coefficient of thermal expansion of the second material is at least 10% greater or less than the coefficient of thermal expansion of the first material claim 1 , based on the coefficient of thermal expansion of the first material.9. The product as claimed in claim 1 , wherein the particle size of the grains of the ...

Подробнее
06-07-2017 дата публикации

Layered double hydroxide-containing composite material

Номер: US20170194614A1
Принадлежит: NGK Insulators Ltd

Provided is a layered-double-hydroxide-containing composite material including a porous substrate and a functional layer disposed on and/or in the porous substrate, the functional layer containing a layered double hydroxide represented by the formula M 2+ 1−x M 3+ x (OH) 2 A n− x/n .mH 2 O, where M 2+ represents a divalent cation, M 3+ represents a trivalent cation, A n− represents an n-valent anion, n is an integer of 1 or more, and x is 0.1 to 0.4, and the functional layer further containing sulfur (S) at the interface between the functional layer and the porous substrate and in the vicinity of the interface. In the LDH-containing composite material of the present invention, the LDH-containing functional layer disposed on and/or in the porous substrate exhibits significantly improved conductivity.

Подробнее
13-08-2015 дата публикации

Ceramic material and sputtering target member

Номер: US20150225298A1
Принадлежит: NGK Insulators Ltd

A ceramic material of the present invention contains magnesium, zirconium, lithium, and oxygen as main components. The crystal phase of a solid solution obtained by dissolving zirconium oxide and lithium oxide in magnesium oxide is a main phase. The XRD peak of a (200) plane of the solid solution with CuKα rays preferably appears at 2θ=42.89° or less which is smaller than an angle at which a peak of a cubic crystal of magnesium oxide appears. The XRD peak more preferably appears at 2θ=42.38° to 42.89° and further preferably at 2θ=42.82° to 42.89°. In the ceramic material, the molar ratio Li/Zr of Li to Zr is preferably in the range of 1.96 or more and 2.33 or less.

Подробнее
27-08-2015 дата публикации

CALCIUM OXIDE-BASED CERAMIC CORE AND PREPARATION METHOD THEREOF

Номер: US20150239037A1
Принадлежит:

This invention publishes a method to prepare CaO-based ceramic cores used in investment casting applications. This method claims to use the rare earth oxide to coat the CaO core surface; later the coated cores are shaped then sintered to get the final products. CaO based core was made by 5˜15 wt % plasticizer, 0.001˜20 wt % mineralizer and the rare earth-coated CaO powders to balance for total 100%. This preparation method can solve the CaO core water absorption problems during core manufacturing, shipping and storage process while improve the core chemical inertness and mechanical properties. 1. A CaO-based ceramic core , consisting materials as follows: 5˜15 wt % plasticizer with the rare earth oxides-coated CaO powders for balance.2. The CaO-based ceramic core according to claim 1 , further consisting of 0.01˜20 wt % mineralizer in the raw material.3. The CaO-based ceramic core according to claim 2 , characterized in that the mineralizers are made of zirconia claim 2 , yttiria claim 2 , or zirconia and yttiria mixed in any weight ratio.4. The CaO-based ceramic core according to claim 1 , characterized in that the plasticizer consists of 50˜80 wt % paraffin wax claim 1 , 10˜40 wt % beeswax and 5˜10 wt % oleic acid.5. The CaO-based ceramic core according to claim 1 , characterized in that the rare earth oxides-coated CaO powders are CaO coated on the outside with rare earth oxides zirconia claim 1 , yttiria claim 1 , or zirconia mixed with yttiria.6. A method of making the CaO-based ceramic core according to claim 1 , characterized in that the method includes the following steps:Step 1: prepare rare earth oxides coated CaO powder;Step 2: stirring while heating the rare earth oxides-coated CaO powders with plasticizer to 50˜130° C. to make rare earth oxides-coated CaO-based ceramic cores; stirring while heating rare earth oxides-coated CaO powders, plasticizer and mineralizer to 50˜130° C. to make rare earth oxides-coated CaO-based ceramic cores;Step 3: shaping then ...

Подробнее
08-08-2019 дата публикации

Ceramic Composition

Номер: US20190241474A1
Автор: LEE Ying-Chieh
Принадлежит:

A ceramic composition which can be used as a sintering aid includes 1-2 mol % of magnesium oxide (MgO), 5-15 mol % of aluminum oxide (AlO), 25-40 mol % of silicon dioxide (SiO), 40-55 mol % of calcium oxide (CaO), 0.1-8 mol % of ferric oxide (FeO), 0.1-2 mol % of sulfur trioxide (SO) and 0.1-2 mol % of titanium oxide (TiO). Alternatively, the ceramic composition includes 1-8 mol % of MgO, 5-15 mol % of AlO, 25-40 mol % of SiO, 40-55 mol % of CaO, 0.1-8 mol % of FeO, 0.1-2 mol % of SOand 0.9-2 mol % of TiO. 1. A ceramic composition comprising 1-8 mol % of magnesium oxide , 5-15 mol % of aluminum oxide , 25-40 mol % of silicon dioxide , 40-55 mol % of calcium oxide , 0.1-8 mol % of ferric oxide , 0.1-2 mol % of sulfur trioxide and 0.1-2 mol % of titanium oxide.2. The ceramic composition as claimed in claim 1 , wherein sum of mole percentages of magnesium oxide and ferric oxide is larger than 4 mol %.3. The ceramic composition as claimed in claim 1 , wherein the ceramic composition comprises 0.1-5 mol % of an alkali metal oxide.4. The ceramic composition as claimed in claim 3 , wherein the alkali metal oxide is selected from potassium oxide claim 3 , sodium oxide claim 3 , rubidium oxide claim 3 , or cesium oxide.5. A ceramic composition comprising 1-8 mol % of magnesium oxide claim 3 , 5-15 mol % of aluminum oxide claim 3 , 25-40 mol % of silicon dioxide claim 3 , 40-55 mol % of calcium oxide claim 3 , 0.1-8 mol % of ferric oxide claim 3 , 0.1-2 mol % of sulfur trioxide and 0.9-2 mol % of titanium oxide.6. The ceramic composition as claimed in claim 5 , wherein sum of mole percentages of magnesium oxide and ferric oxide is larger than 4 mol %.7. The ceramic composition as claimed in claim 5 , wherein the ceramic composition comprises 0.1-5 mol % of an alkali metal oxide.8. The ceramic composition as claimed in claim 7 , wherein the alkali metal oxide is selected from potassium oxide claim 7 , sodium oxide claim 7 , rubidium oxide claim 7 , or cesium oxide. The ...

Подробнее
06-09-2018 дата публикации

SINTERED COMPACT MAGNESIUM OXIDE TARGET FOR SPUTTERING, AND METHOD FOR PRODUCING SAME

Номер: US20180251889A1
Принадлежит:

A sintered compact magnesium oxide target for sputtering has a purity of 99.99 wt % or higher excluding C, a density of 3.57 g/cmor higher, and a whiteness of 60% or less. To uniformly deposit a magnesium oxide film, a magnesium oxide target having a higher purity and a higher density is demanded. An object is to provide a target capable of realizing the above and a method for producing such a target. While a magnesium oxide sintered compact sputtering target is produced by hot-pressing a raw material powder, there is a problem in that color shading occurs in roughly φ60 (within a circle having a diameter of 60 mm) at the center part of the target. Conventionally, no particularly attention was given to this problem. However, in recent years, it has become necessary to investigate and resolve this problem in order to improve the deposition quality. 1{'sub': 3', '3, 'adding raw material powder of MgCOin an amount of 5 wt % or more and less than 30 wt % to raw material powder of magnesium oxide (MgO), the raw material powders of magnesium oxide (MgO) and MgCOhaving a purity of 99.99 wt % or higher excluding C and an average grain size of 0.5 μm or less;'}{'sub': '3', 'mixing the raw material powder of MgCOwith the raw material powder of magnesium oxide (MgO) to produce a mixture; and'}{'sup': 2', '3, 'hot pressing the mixture at a temperature of 1500° C. or less and an applied pressure of 300 kgf/cmor more to obtain a sintered compact of magnesium oxide having a purity of 99.99 wt % or higher excluding C, a density of 3.57 g/cmor higher, and a whiteness of 60% or less.'}. A method for producing a sputtering target comprising a sintered compact of magnesium oxide, comprising the steps of: This application is a divisional of co-pending U.S. application Ser. No. 14/356,395 which is a 371 National Stage of International Application No. PCT/JP2012/083391, filed Dec. 25, 2012, which claims the benefit under 35 USC 119 of Japanese Application No. 2011-285757, filed Dec. 27, ...

Подробнее
15-09-2016 дата публикации

LOW TEMPERATURE CO-FIRED CERAMIC MATERIAL AND PREPARATION METHOD THEREFOR

Номер: US20160264470A1
Автор: LI Yongxiang, Liu Zhifu
Принадлежит:

A low temperature co-fired ceramic powder has a chemical composition of xRO-yR′O-zMO-wM′O, wherein R is Li, Na and/or K, R′ is Mg, Ca, Sr, Ba, Zn and/or Cu, M is B, Al, Ga, In, Bi, Nd, Sm, and/or La, M′ is Si, Ge, Sn, Ti, and/or Zr, x≧0, y≧0, z≧20%, w≧15%, and x+y+z+w=1. The preparation method comprises: weighing constituent powders according to the composition of the ceramic powder, and uniformly mixing these powders as a raw material powder; and presintering the raw material powder in a muffle furnace followed by grinding, the presintering comprising gradiently heating the raw material powder to a maximum temperature of 950° C. by first rising to 350-450° C. and staying thereat for a period, then staying at intervals of 50-100° C. for a period. 1. A preparation method for a low temperature co-fired ceramic powder which has a chemical composition of xRO-yR′O-zMO-wM′O , wherein R is selected from at least one of Li , Na , and K , R′ is selected from at least one of Mg , Ca , Sr , Ba , Zn , and Cu , M is selected from at least one of B , Al , Ga , In , Bi , Nd , Sm , and La , M′ is selected from at least one of Si , Ge , Sn , Ti , and Zr , x , y , z , and w represent weight percentages , x≧0 , y≧0 , z≧20% , w≧15% , and x+y+z+w=1 , the preparation method comprising the steps of:{'sub': 2', '2', '3', '2, '1) weighing RO powder, r′O powder, MOpowder, and M′Opowder according to the composition of the low temperature co-fired ceramic powder, and uniformly mixing these powders as a raw material powder; and'}2) presintering the raw material powder in a muffle furnace followed by grinding to give the low temperature co-fired ceramic powder, the presintering comprising gradiently heating the raw material powder to a maximum temperature of not higher than 950° C., during which a furnace temperature first rises to 350-450° C. and stays thereat for a period, then, as the temperature rises, stays at each interval of 50-100° C. thereabove for a period.2. The preparation method ...

Подробнее
15-08-2019 дата публикации

HIGH PERFORMANCE CERAMICS FROM COLD SINTERED NANOSCALE POWDERS

Номер: US20190248707A1
Принадлежит: ETH Zurich

The invention relates to a process for making a ceramic body that comprises providing particles of a metal salt precursor material wetted by a liquid medium. The particles are characterized by a grain size of below 600 nm, and the precursor material has a solubility in the liquid medium of at least 10mol/L. A pressure of ≥100 MPa is applied at a temperature of below 100° C., rendering a material of high theoretical density values previously unattainable at low temperatures. The invention further relates to a calcium carbonate ceramic material of the vaterite isomorph having a density of the material ≥1.76 g/cm3 and a Modulus of rupture ≥30 MPa, and to a calcium phosphate ceramic material consisting of the monetite isomorph with ≥2.5 g/cm3 density and a Modulus of rupture ≥18 MPa. 1. A process for making a ceramic body , comprising the steps of i. said precursor material is a metal salt;', 'ii. said particles are characterized by a grain size of below 600 nm, even more particularly below 100 nm, or even at 50 nm or less, and', {'sup': '−5', 'iii. said precursor material has a solubility in said liquid medium of at least 10mol/L;'}], 'a. providing a precursor composition consisting of particles of a precursor material wetted by a liquid medium, wherein'} i. a pressure of ≥100 MPa, particularly ≥150 MPa, ≥200 MPa, ≥300 MPa, ≥400 MPa, or even more particularly ≥500 MPa,', 'ii. at a temperature of ≤100° C., particularly at a temperature below 80° C., even more particularly below 60° C. or even at room temperature (approx. 25° C.), 'b. applying'}to said precursor composition, resulting in a product ceramic body.2. The process of claim 1 , wherein said particles are characterized by a grain size of below 100 nm.3. The process of claim 1 , wherein said particles are characterized by a grain size of 50 nm or less.4. The process of claim 1 , wherein the pressure is applied at room temperature.5. The process of claim 1 , wherein said pressure is applied for longer than 300 s ...

Подробнее
28-09-2017 дата публикации

DIELECTRIC FILM AND ELECTRONIC COMPONENT

Номер: US20170275174A1
Принадлежит: TDK Corporation

A dielectric film containing an alkaline earth metal oxide having a NaCl type crystal structure as a main component, wherein the dielectric film has a (111)-oriented columnar structure in a direction perpendicular to the surface of the dielectric film, and in a Cu—Kα X-ray diffraction chart of the dielectric film, a half width of the diffraction peak of (111) is in a range of from 0.3° to 2.0°. 1. A dielectric film , comprising an alkaline earth metal oxide having a NaCl type crystal structure as a main component , whereinthe dielectric film has a (111)-oriented columnar structure in a direction perpendicular to the surface of the dielectric film, andin a Cu—Kα X-ray diffraction chart of the dielectric film, a half width of the diffraction peak of (111) is in a range of from 0.3° to 2.0°.2. The dielectric film according to claim 1 , whereinthe dielectric film contains at least one element selected from the group consisting of Ta, Nb, V, Hf, Zr, Ti and Zn as a subcomponent.3. The dielectric film according to claim 2 , whereinwhen the total content of the subcomponents is set as x, the x is in the range of 0 mol % Подробнее

25-12-2014 дата публикации

AMORPHOUS DIELECTRIC FILM AND ELECTRONIC COMPONENT

Номер: US20140378295A1
Принадлежит:

The present invention aims to provide an amorphous dielectric film and an electronic component in which the relative permittivity and the temperature coefficient of electrostatic capacitance can be maintained and the withstand voltage can be increased even if the dielectric film is further thinned. The amorphous dielectric film of the present invention is characterized in that it is a dielectric film composed of an amorphous composition with A-B—O as the main component, wherein A contains at least two elements selected from the group consisting of Ba, Ca and Sr, and B contains Zr. When the main component of the dielectric film is represented by (BaCaSr)—B—O, x, y and z meet the conditions of 0≦x≦1, 0≦y≦1, 0≦z≦1, respectively, x+y+z=1 and at least any two of x, y and z are 0.1 or more. When A/B is represented by α, 0.5≦α≦1.5. 1. An amorphous dielectric film consisting of an amorphous composition with A-B—O as the main component , wherein ,{'sub': x', 'y', 'z', 'σ, 'A contains at least two elements selected from the group consisting of Ba, Ca and Sr, B contains Zr, when the main component of said dielectric film is represented by (BaCaSr)—B—O, x, y and z meet the condition of 0≦x≦1, 0≦y≦1, 0≦z≦1, respectively, x+y+z=1, and at least any two of x, y and z are 0.1 or more,'}and when A/B is represented by α, 0.5≦α≦1.5.2. The amorphous dielectric film of claim 1 , wherein claim 1 ,{'sub': x', 'y', 'z', 'α', '1-w', 'w, 'B which contains Zr further contains Ti, and when the main component of said dielectric film is represented by (BaCaSr)-(TiZr)—O, 0.4≦w≦1.'}3. An electronic component comprising the amorphous dielectric film of .4. An electronic component comprising the amorphous dielectric film of . The present invention relates to an amorphous dielectric film and an electronic component.As an example of the electronic component which uses dielectric films, the thin film capacitor, the thin film filter for high frequency or the like can be listed. These components are ...

Подробнее
12-10-2017 дата публикации

Sintering-free inorganic ceramic brick-plate and its preparation method

Номер: US20170291854A1
Автор: He Xinqiao
Принадлежит:

A sintering-free inorganic ceramic brick-plate and its preparation method are disclosed. The sintering-free inorganic ceramic brick-plate includes following components by mass parts: 25-40 parts of magnesium oxide; 20-35 parts of magnesium chloride; 20-30 parts of fumed silica; 10-20 parts straw powders; 0.1-0.3 parts of graphene powders with a particle size of 2000 meshes; and 0.2-0.4 parts of airgel powders with a particle size of 100 nm. Compared with the prior art, the present invention utilizes a variety of raw natural non-toxic natural mineral raw materials, namely, the graphene powders with the particle size of 2000 meshes and the airgel powders with the particle size of 100 nm for mixing, and then the mixed raw materials can be solidified at room temperature and form sheets, and then the surface of the sheets is processed through printing or spraying glaze, so as to achieve the effect of high-grade tiles and natural marble. 2. The sintering-free inorganic ceramic brick-plate claim 1 , as recited in claim 1 , wherein: the sintering-free inorganic ceramic brick-plate comprises following components by mass parts: 32 parts of the magnesium oxide claim 1 , 28 parts of the magnesium chloride claim 1 , 25 parts of the fumed silica claim 1 , 14.5 parts of the straw powders claim 1 , 0.2 parts of the graphene powders with the particle size of 2000 meshes claim 1 , and 0.3 parts of the airgel powders with the particle size of 100 nm.3. A preparation method of a sintering-free inorganic ceramic brick-plate claim 1 , comprising steps of:(S1) stirring after placing magnesium chloride and water in a blending tank, completely dissolving the magnesium chloride, obtaining a mixed solution, and then pumping the mixed solution through a first water pump into a first sealing iron can;(S2) pumping magnesium oxide into a second sealing iron can through a second water pump;(S3) evenly stirring graphene powders with a particle size of 2000 meshes, airgel powders with a particle ...

Подробнее
24-09-2020 дата публикации

Salt Inert/Resistant Barrier Compositions and Their Industrial Application

Номер: US20200299195A1
Принадлежит:

The present invention provides for a solid body composition that is able to withstand penetration and/or reaction with salts or salt compositions in one or more states of matter (solid, liquid, gas). The composition comprises at least one aggregate and at least one binder. The aggregate may be chosen based on its thermodynamic stability compared to a salt composition. The binder comprises a resol resin or a novolac resin, or a combination of one or more of a resol resin and one or more of a novolac resin. The resin binder sets to provide initial strength then is pyrolized to form a glassy carbon which acts as a barrier to a salt phase or phases of an industrial process. 1. A composition comprising at least one aggregate and at least one phenolic resin , wherein said phenolic resin is pyrolyzed to result in the formation of a condensed ring glassy carbon , wherein said glassy carbon is a bonding matrix of the resulting composition.2. The composition of wherein said aggregate is at least one selected from the group consisting of LiF claim 1 , ZrF claim 1 , MgF claim 1 , KF claim 1 , MnF claim 1 , NaF claim 1 , YF claim 1 , BaF claim 1 , CaF claim 1 , BaO claim 1 , AlO claim 1 , SiO2 claim 1 , CaO claim 1 , TiO claim 1 , TiO claim 1 , TiO claim 1 , TiO claim 1 , ZrO claim 1 , YO claim 1 , MgO carbon compounds claim 1 , graphite claim 1 , SiC claim 1 , BC (BC) claim 1 , WC claim 1 , AlN claim 1 , BN claim 1 , a rare earth oxide claim 1 , an alkali halide claim 1 , and an alkaline halide claim 1 , and combinations thereof.3. The composition of including wherein said aggregate is CaO plus AlO.4. The composition of including wherein said aggregate is one of CaO-2AlO(CaAlO) claim 2 , CaO—AlO claim 2 , or CaO-6AlO claim 2 , or combinations of one or more of CaO-2AlO(CaAlO) claim 2 , CaO—AlO claim 2 , and CaO-6AlO.5. The composition of wherein said aggregate is a mixture of at least two or more of said aggregates.6. The composition of wherein said alkali halide is at least ...

Подробнее
01-10-2020 дата публикации

Spinel-reinforced magnesium oxide-based foam ceramic filter and preparation method therefor

Номер: US20200306675A1

A spinel-reinforced magnesium oxide-based foam ceramic filter that is obtained by by coating onto a polyurethane foam carrier a slurry of light calcined magnesium oxide-based ceramic comprising a nanometer lanthanum oxide sintering aid, and then drying and sintering. A method for preparing the foam ceramic filter comprising: 1) preparing a ceramic slurry having a solid content of 60%-70% by dosing 15%-25% by mass of a nanometer alumina sol, 0.8%-1.5% by mass of a rheological agent, and the balance magnesium oxide ceramic powder comprising a nanometer lanthanum oxide sintering aid, and then adding absolute ethanol and ball milling to mix until uniform; 2) soaking a polyurethane foam template into the ceramic slurry, squeezing by a roller press the polyurethane foam template to remove redundant slurry therein to make a biscuit, and then removing the ethanol solvent in a ventilation chamber at a temperature of 40° C.-50° C. to dry the biscuit; 3) putting the dried biscuit into a sintering furnace, elevating the temperature to 1350° C.-1550° C. and performing a high temperature sintering, cooling to the room temperature with the furnace to obtain the magnesium oxide-based ceramic foam filter.

Подробнее
01-10-2020 дата публикации

Magnesium oxide based dielectric ceramics with ultrahigh dielectric breakdown strength and its preparation method

Номер: US20200308054A1
Принадлежит: Shanghai Institute of Ceramics of CAS

The present application relates to a magnesium oxide based dielectric ceramics with ultrahigh dielectric breakdown strength and a preparation method thereof. The composition of the magnesium oxide based dielectric ceramic material comprises: (1−x)MgO-xAl2O3, wherein 0<x≤0.12 and x is a mole percentage. The material has a specific composite structure with magnesium aluminate spinel acting as a second phase surrounding a principal crystalline phase, MgO.

Подробнее
30-11-2017 дата публикации

REFRACTORIES AND USE THEREOF

Номер: US20170341984A1
Принадлежит: Refratechnik Holding GmbH

A refractory has the form of a dry, mineral batch of fire-resistant mineral materials combined in such a way that refractories which are long-term resistant to fayalite-containing slags, sulfidic melts (mattes), sulfates and non-ferrous metal melts and are used for refractory linings in industrial non-ferrous metal melting furnaces can be manufactured. The refractory at least contains: —at least one coarse-grained olivine raw material as the main component; —magnesia (MgO) meal; —at least one fire-resistant reagent which, during the melting process, acts (in situ) in a reducing manner on non-ferrous metal oxide melts and/or non-ferrous metal iron oxide melts and converts same into non-ferrous metal melts. 1. Refractory product in the form of a dry , mineral batch of refractory mineral materials , composed , in terms of materials , in such a manner that refractory products for fire-side lining of industrial non-ferrous metal smelting furnaces that are resistant to fayalite slags , sulfidic melts (mattes) , sulfates , and non-ferrous metal melts , over the long term , can be produced from them , and having:at least one coarse-grained olivine raw material as the main component,magnesia meal (MgO meal),at least one refractory reagent that acts to reduce non-ferrous metal oxide melts and/or non-ferrous metal iron oxide melts during the smelting process (in situ) and to convert them to non-ferrous metal melts.2. Product according to claim 1 , whereinthe reagent is fine-grained carbon, particularly graphite and/or carbon black and/or anthracite and/or coke, but preferably graphite.3. Product according to claim 1 , 15 to 74, particularly 30 to 65 wt.-% olivine raw material, particularly with more than 70, particularly more than 75 wt.-% forsterite,', '25 to 55, particularly 30 to 50 wt.-% magnesia meal, particularly with >90, particularly >95 wt.-% MgO,', '1 to 30, particularly 5 to 20 wt.-% reagent., 'comprising the following dry substance compositions4. Product according ...

Подробнее
12-12-2019 дата публикации

HIGH-PURITY CALCIUM CARBONATE SINTERED BODY AND PRODUCTION METHOD THEREOF, AND HIGH-PURITY CALCIUM CARBONATE POROUS SINTERED BODY AND PRODUCTION METHOD THEREOF

Номер: US20190375687A1
Принадлежит:

A high-purity calcium carbonate sintered body containing less impurities and available for biological and like applications, a production method, a high-purity calcium carbonate porous sintered body containing less impurities and available for biological and like applications, and a production method. A method for producing a high-purity calcium carbonate sintered body includes the steps of: compaction molding calcium carbonate with a purity of 99.7% by mass or more to make a green body; and sintering the green body to produce a calcium carbonate sintered body. A method for producing a high-purity calcium carbonate porous sintered body according to the present invention includes the steps of: preparing a dispersion liquid containing calcium carbonate with a purity of 99.7% by mass or more; adding a foaming agent to the dispersion liquid, followed by stirring until foamy to make a foam; and sintering the foam to produce a calcium carbonate porous sintered body. 1. A high-purity calcium carbonate sintered body containing 99.7% by mass or more calcium carbonate and having a relative density of 90% or more.2. A method for producing a high-purity calcium carbonate sintered body , the method comprising the steps of:compaction molding calcium carbonate with a purity of 99.7% by mass or more to make a green body; andsintering the green body to produce a calcium carbonate sintered body.3. The method for producing a high-purity calcium carbonate sintered body according to claim 2 , wherein the green body contains calcium carbonate only.4. The method for producing a high-purity calcium carbonate sintered body according to claim 2 , wherein the green body is sintered at 420 to 600° C.5. The method for producing a high-purity calcium carbonate sintered body according to claim 2 , wherein the compaction molding is uniaxial molding.6. The method for producing a high-purity calcium carbonate sintered body according to claim 2 , wherein the green body is sintered in air.7. A high- ...

Подробнее
10-11-2022 дата публикации

Oxide sintered body

Номер: US20220356118A1
Принадлежит: Idemitsu Kosan Co Ltd

An oxide sintered body may include zinc, magnesium, a positive trivalent or positive tetravalent metal element X, and oxygen as constituent elements. The atomic ratio of the metal element X to the sum of the zinc, the magnesium, and the metal element X [X/(Zn+Mg+X)] may be 0.0001 or more and 0.6 or less. The atomic ratio of the magnesium to the sum of the zinc and the magnesium [Mg/(Zn+Mg)] may be 0.25 or more and 0.8 or less.

Подробнее
24-09-2014 дата публикации

制备超纯氢氧化镁和氧化镁的方法

Номер: CN104066685A
Принадлежит: BASF SE

本发明涉及一种通过沉淀制备镁化合物的方法,其中:(1)将镁化合物的水溶液或悬浮液与选自碱、喔星、无机磷酸盐和碳酸的无机盐的沉淀剂混合,并使相应的镁化合物沉淀,(2)任选地,将获自步骤(1)的混合物与絮凝助剂混合,(3)任选地,由步骤(1)和任选步骤(2)的混合物将固体与液体分离,(4)在存在或不存在絮凝助剂的情况下,将移除的固体与水混合,(5)任选地,由步骤(4)的混合物将固体与液体分离,(6)任选地,重复步骤(4)和(5)一次或多次,(7)和任选地,任选在添加其他化合物之后干燥移除的固体,其特征在于通过如下程序获得步骤(1)的中的镁化合物的水溶液或悬浮液:(i)使有机镁化合物与醛或酮或其他亲电试剂反应,随后在至多为10的pH值下对反应混合物进行水预处理,或者(ii)由具有相对于所用的镁盐各自为200ppm的最高钙含量和/或钾含量的镁盐获得。

Подробнее
28-12-2018 дата публикации

Composition for FDM 3D printer

Номер: KR101912839B1
Принадлежит: 주식회사 바이오알파

The present invention relates to a paste-type composition for a fused deposition modeling (FDM) 3D printer including a binder and a ceramic powder containing CaO and SiO_2 as main components. The composition is injected into the FDM 3D printer in the form of a paste, so that a molded article can be rapidly formed without melting, and a variety of geometrical structures can be precisely implemented, thereby being utilized as a bio-substitute for medical use.

Подробнее
13-05-2009 дата публикации

Recycled composite material

Номер: EP1950253A4
Принадлежит: Mitsui and Co Ltd

Disclosed is a recycled composite material made from a waste product of an original composite material. In the recycled composite material, the original composite material comprises a matrix and a carbon fiber structure contained in the matrix, wherein the carbon fiber structure has a three-dimensional network structure formed with carbon fibers having an outer diameter of 15 to 100 nm and has a particulate part which binds up the carbon fibers in such a state where the carbon fibers are extended from the particulate part, and the particulate part is formed in the growing process of the carbon fibers. The recycled composite material is produced by supplementing the waste product of the original composite material with a matrix which is same as the matrix contained in the waste material and/or a matrix which is different from the matrix contained in the waste material and then kneading the resulting mixture. The recycled composite material has properties on the similar levels as those of the original composite material, and can be produced in a simple manner at low cost.

Подробнее
25-08-2017 дата публикации

无机宽波远红外复合环保材料

Номер: CN107089827A
Автор: 刘华文
Принадлежит: Individual

本发明属于远红外复合材料,具体地是一种无机宽波远红外复合环保材料。现有的远红外材料的缺点是:材料单一、远红外波段狭窄,功能局限性大;有的复合材料配方不合理,含有对人体有害成分。本发明由和田玉25重量份、泗水砭石25重量份、磁石25重量份、托玛琳25重量份组成。制备步骤为:将各原料分别粉碎至6000目,混合、加适量水搅拌均匀;压制成型;常温晾干;高温1000℃煅烧24小时;常温冷却。压制的型状为粉状、粒状、片状、圆柱状。本发明优点是:选用的材料全部为中药材,无毒;远红外波段宽、功能多、应用广泛;能持久发射宽波远红外线;一次使用,长期受益,使用成本低。

Подробнее
23-03-2021 дата публикации

一种750-1500mm的分层抗折裂瓷砖及生产工艺

Номер: CN112537946A
Принадлежит: Hunan Hongkang Ceramic Co ltd

本发明公开了一种750‑1500MM的分层抗折裂瓷砖及生产工艺,包括环保高质量外表涂层、高密度抗折裂层和成型层一,所述环保高质量外表涂层下端设有高密度抗折裂层,高密度抗折裂层下端设有成型层一,成型层一下端设有中部支撑层,中部支撑层下端设有成型层二,成型层二下端设有水泥砂浆黏结层。本发明使用时,设置的环保高质量外表涂层提高了瓷砖的耐磨性,设置的高密度抗折裂层提高了瓷砖的抗折裂性,从而提高了瓷砖的质量,适用与不同环境下使用,设置的中部支撑层对瓷砖内部起到支撑的作用,设置的成型层一和成型层二则对瓷砖内部起到了上下成型固定的作用,本发明中使用的生产工艺烧结效率较高,提高了瓷砖的成型质量。

Подробнее
06-07-2021 дата публикации

Phase gradient nanocomposite window fabrication and method of fabricating durable optical windows

Номер: US11054549B2
Принадлежит: Raytheon Co

An optical window is provided and includes a core layer, a cladding layer and an electromagnetic interference (EMI) layer interposed between the core and cladding layers.

Подробнее
25-03-2021 дата публикации

Method for producing high-temperature co2 sorbents

Номер: RU2745486C1

FIELD: composite materials.SUBSTANCE: invention relates to the production of composite materials based on calcium oxide and zirconium dioxide and can be used to obtain high-temperature CO2sorbents for cleaning the exhaust gases of industrial enterprises from carbon dioxide. Disclosed is a method of obtaining a powder composite material using a zirconium-containing mineral raw material - baddeleyite concentrate including mixing calcium carbonate with baddeleyite concentrate in the ratio, wt%: baddeleyite concentrate - 11-27, calcium carbonate - 73-89, followed by grinding the mixture to a nanosized state in a bead mill in an aqueous medium using stabilized zirconia beads and heat treatment. As a result of heat treatment in a nitrogen atmosphere at a temperature of 800 °C, a high-temperature regenerating chemisorbent is obtained consisting of calcium oxide and calcium zirconate.EFFECT: preservation of the sorption capacity of the material during high-cycle use.3 cl, 2 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 745 486 C1 (51) МПК C04B 35/057 (2006.01) B01J 20/04 (2006.01) B01J 20/30 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК C04B 35/057 (2021.01); B01J 20/0211 (2021.01); B01J 20/043 (2021.01); C04B 2235/3208 (2021.01); C04B 2235/3244 (2021.01); C04B 2235/5454 (2021.01) (21)(22) Заявка: 2020118599, 27.05.2020 27.05.2020 25.03.2021 Приоритет(ы): (22) Дата подачи заявки: 27.05.2020 2 7 4 5 4 8 6 R U Адрес для переписки: 392000, г. Тамбов, ул. Интернациональная, 33, Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина" (56) Список документов, цитированных в отчете о поиске: US 2010/0196259 A1, 05.08.2010. RU 2167128 С2, 20.05.2001. RU 2451542 C2, 27.05.2012. RU 2229335 C1, 27.05.2004. UA 17417 A, 06.05.1997. EP 1629886 A1, 01.03.2006. US 2010/ 0158791 A1, 24.06.2010. (54) СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНЫХ ...

Подробнее
22-08-2013 дата публикации

Chromium oxide powder

Номер: KR20130093609A

본 발명은 미립자 파우더에 관한 것으로서, 상기 파우더는 0.87을 초과하는 원형도 및 9.0wt% 미만의 100㎛보다 큰 사이즈를 갖는 입자를 갖는다. 파우더 및 적어도 80wt%의 입자들은, 옥사이드를 기반으로 하며 총 합이 100%에 이르는 wt%로, 다음과 같은 화학적 조성을 갖는다: Cr 2 O 3 + Al 2 O 3 + ZrO 2 + MgO + Fe 2 O 3 + SiO 2 + TiO 2 ≥ 90%; Cr 2 O 3 + Al 2 O 3 + MgO ≥ 60%; Cr 2 O 3 ≥ 9%; 20% ≥ SiO 2 ≥ 0.5%; 및 10% 이하의 다른 옥사이드들. 본 발명은 유리 용해로에 사용될 수 있다.

Подробнее
08-08-2018 дата публикации

Phosphate coated inorganic fiber and methods of preparation and use

Номер: EP1910595B1
Принадлежит: Unifrax Corp

Подробнее
27-07-2016 дата публикации

Method of producing ceramic gradient material

Номер: RU2592652C2

FIELD: metallurgy. SUBSTANCE: invention relates to production of gradient ceramic materials based on powders of metal oxides. Method comprises obtaining polydispersed ceramic powder metal oxide or mixture of powders of metal oxides by spraying aqueous solutions of metal salts or mixtures of metal salts into high-frequency discharge plasma through slot nozzle of variable cross-section from 0.1 to 100 mcm, then adding organic binder to said powder, mixing moulding mixture, poured into a mould, holding moulding mixture for demixing thereof into fractions and sintering obtained workpiece with isothermal holding. Polydispersed ceramic powder may be powder of following oxides: Al 2 O 3 , ZrO 2 , CaO, Y 2 O 3 , MgO. Moulding mixture can have following ratio of components: powder of metal oxide or mixture of powders of metal oxides 80-85 wt%, organic binder - balance. Organic binder used can be paraffin, or wax, or a mixture of paraffin and wax in ratio of 9:1. EFFECT: obtaining ceramic gradient material with a structure ensuring uniform change of mechanical properties along section of article and having high resistance to thermal effects - not less than 200 cycles at temperature 1,600 °C. 8 cl, 4 ex РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 592 652 C2 (51) МПК B22F 3/10 (2006.01) C22C 29/12 (2006.01) C04B 35/64 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ИЗОБРЕТЕНИЯ К ПАТЕНТУ 2014151346/02, 29.03.2013 (24) Дата начала отсчета срока действия патента: 29.03.2013 (43) Дата публикации заявки: 10.07.2016 Бюл. № 19 (45) Опубликовано: 27.07.2016 Бюл. № 21 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 17.12.2014 (86) Заявка PCT: 2 5 9 2 6 5 2 (56) Список документов, цитированных в отчете о поиске: RU 2454297 C1, 27.06.2012. RU 2164260 C1, 20.03.2001. RU 2252817 C1, 27.05.2005. JP 2002180107 A, 26.06.2002. CN 101418391 A, 29.04.2009. (73) Патентообладатель(и): Федеральное государственное бюджетное учреждение науки ...

Подробнее
04-06-2004 дата публикации

Insulative ceramic compact

Номер: KR100434415B1

절연성 세라믹 조성물은 (A) MgAl 2 O 4 , Mg 3 B 2 O 6 및/또는 Mg 2 B 2 O 5 세라믹 분말, 및 (B) 산화 실리콘을 SiO 2 환산으로 약 13 내지 50중량 %, 산화 붕소를 B 2 O 3 환산으로 8 내지 60중량 %, 산화 알루미늄을 Al 2 O 3 환산으로 약 20중량 %이하, 및 산화 마그네슘을 MgO 환산으로 10 내지 55중량 %을 함유한 유리(glass) 분말의 소성 합성물로 구성되어 있다. 절연성 세라믹 조성물은 약 1000℃이하의 저온에서 소성하여 얻을 수 있고, Ag 또는 Cu로 소결하여서 얻을 수도 있으며, 유전율이 낮고 Q값이 높으며, 그리고 고주파 용도에 적합하다. The insulating ceramic composition comprises (A) MgAl 2 O 4 , Mg 3 B 2 O 6 and / or Mg 2 B 2 O 5 ceramic powder, and (B) about 13 to 50% by weight of silicon oxide in terms of SiO 2 , boron oxide Firing of glass powder containing 8 to 60% by weight in terms of B 2 O 3 , about 20% by weight or less in terms of Al 2 O 3 , and 10 to 55% by weight of magnesium oxide in terms of MgO It is composed of composites. The insulating ceramic composition may be obtained by firing at a low temperature of about 1000 ° C. or lower, or may be obtained by sintering with Ag or Cu, has a low dielectric constant, a high Q value, and is suitable for high frequency applications.

Подробнее
07-05-2021 дата публикации

Nanocomposite for Infrared Laser Ceramic materials with High Power and Manufacturing method of the Same

Номер: KR102249369B1
Автор: 김도경, 마호진
Принадлежит: 한국과학기술원

본 발명은 고출력 적외선 레이저 세라믹 소재용 나노복합체 및 그의 제조방법에 관한 것으로, 보다 상세하게는 높은 도핑 농도에도 불구하고 우수한 기계적, 열적 특성을 나타내어 고출력 레이저로 활용 가능한 산화 이트륨-산화 마그네슘 나노복합체 및 이를 제조하는 방법에 관한 것이다. The present invention relates to a nanocomposite for a high-power infrared laser ceramic material and a manufacturing method thereof, and more particularly, to a yttrium oxide-magnesium oxide nanocomposite that can be used as a high-power laser by showing excellent mechanical and thermal properties despite a high doping concentration. It relates to a method of manufacturing.

Подробнее
15-01-2019 дата публикации

A kind of calcium oxide-based ceramic-mould fast preparation method for complex parts manufacture

Номер: CN105732007B
Принадлежит: Xian Jiaotong University

本发明公开了一种用于复杂零件制造的氧化钙基陶瓷铸型快速制备方法,属于快速精密铸造领域。采用碳酸钙粉体和适量矿化剂为原料制造陶瓷铸型素坯,将素坯脱脂后,和适量金属钙一起放入真空烧结炉中进行反应烧结,最后再将铸型放入大气烧结炉中终烧。金属钙单质与碳酸钙分解产生的二氧化碳反应生成氧化钙,提高了陶瓷铸型的致密度。适量的矿化剂促进了陶瓷铸型的烧结,提高了陶瓷铸型的抗水化性。使用上述方法制得的氧化钙基整体式陶瓷铸型具有优良的高温综合性能,解决了氧化铝基陶瓷铸型脱芯难、废品率高的技术难题,尤其适用于复杂零件的快速制造。

Подробнее
27-01-2009 дата публикации

Anisotropic thermal and electrical applications of composites of ceramics and carbon nanotubes

Номер: US7481267B2
Принадлежит: UNIVERSITY OF CALIFORNIA

Ceramic materials are converted to materials with anisotropic thermal properties, electrical properties, or both, by forming the ceramics into composites with carbon nanotubes dispersed therein and uniaxially compressing the composites in a direction in which a lower thermal or electrical conductivity is desired.

Подробнее
20-12-2005 дата публикации

Anisotropic thermal applications of composites of ceramics and carbon nanotubes

Номер: US6976532B2
Принадлежит: UNIVERSITY OF CALIFORNIA

Ceramic materials are converted to materials with anisotropic thermal properties by forming the ceramics into composites with carbon nanotubes dispersed therein and uniaxially compressing the composites in a direction in which a lower thermal conductivity is desired.

Подробнее
20-06-2016 дата публикации

Method of making lining in industrial furnace of large volume, as well as industrial furnace with lining, refractory brick for such lining

Номер: RU2587194C2

FIELD: manufacturing technology. SUBSTANCE: invention relates to unburned, not containing carbon compacted refractory products as refractory lining facing flame of industrial furnaces of large volume for producing cement, lime, magnesium oxide and doloma. For production of refractory lining mixture of granulate refractory materials is produced, which form ceramic binder at temperatures higher than 900 °C, at least one of first temporary binder, which provides binding particles granulate in range of temperatures from room temperature to 500 °C, and at least one second temporary binder, which provides binding particles granulate in temperature range from 300 up to 1,000 o C. Compacted from mixture bricks have compression strength in cold state of more than 20 MPa and represent magnesium chromite bricks, magnesium-spinel and spinel bricks, bricks from zirconium dioxide stabilised with magnesium oxide and zirconium, stabilised with magnesium oxide, bricks from magnesia herzynite and magnesia galaxite, dolomite, dolomite-magnesite and lime bricks, forsterite and olivine bricks, bricks from magnesia forsterite, bricks from magnesia pleonaste, magnesite bricks. As first temporary binder lignosulfonate, synthetic resin, pitch, dextrin, organic acids are used in amount of 0.5-8 wt%, and as second binder - metallic Al, Mg, Si, Fe, fine-grained oxides, calcium aluminate, clay, etc. in amount of 0.5-15 wt%. EFFECT: production of refractory products with lower thermal conductivity in ensuring maintenance of given dimensions, as well as with high strength at industrial furnace operation regardless of temperature. 21 cl, 1 tbl, 1 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК F27B 7/28 C04B 35/63 C04B 35/03 C04B 35/42 C04B 35/443 (13) 2 587 194 C2 (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ИЗОБРЕТЕНИЯ К ПАТЕНТУ 2014116646/03, 26.11.2013 (24) Дата начала отсчета срока действия патента: 26.11. ...

Подробнее
07-04-2017 дата публикации

Porous thermal insulation coating layer and preparing method for the same

Номер: KR101724487B1
Принадлежит: 현대자동차 주식회사

The present invention relates to a method for manufacturing a porous thermal insulation coating layer, and a porous thermal insulation coating layer securing low thermal conductivity, securing a low volume thermal capacity, and applied to an internal combustion engine to have increased durability. The present invention comprises: a ceramic-based binder; and a porous ceramic composite.

Подробнее
02-06-2020 дата публикации

Magnesium-calcium material and preparation method thereof

Номер: CN111217613A
Автор: 李炳蓉, 肖俊李, 魏耀武

本发明涉及一种镁钙材料及其制备方法。其技术方案是:将60~70wt%的镁钙砂颗粒、20~30wt%的镁钙砂细粉、2~5wt%的磷酸铈和3~6wt%的磷钛酸酯混合,搅拌均匀,压制成形,自然干燥20~30小时;再于110℃条件下干燥8~16小时,然后在1500~1700℃条件下烧成2~5小时,冷却,制得镁钙材料。其中:所述镁钙砂的MgO含量均≥40wt%,镁钙砂颗粒的粒径为0.2~11mm,所述镁钙砂细粉的粒径为3~200μm;所述磷酸铈的粒径为3~200μm;所述磷钛酸脂中的P 2 O 5 含量≥1wt%,TiO 2 的含量≥1wt%。本发明工艺简单、成本低和环境友好,所制备的镁钙材料抗水化能力优异和净化金属熔体效果显著,适合于纯净化冶炼用耐火材料。

Подробнее
21-08-2002 дата публикации

MgO-Al2O3-Fe2O3-ZrO2 Based Refractory Composition Containing Metallic Powder

Номер: KR100349177B1
Автор: 엄창중, 이상욱, 전웅

본 발명은 합금철을 함유한 MgO-Al 2 O 3 -Fe 2 O 3 -ZrO 2 계 내화조성물에 관한 것이며, 그 목적하는 바는 MgO, Al 2 O 3 , Fe 2 O 3 , 및 ZrO 2 를 적절한 비율로 함유시킴과 동시에 적정량의 합금철성분을 함유시킴으로서, 열간강도가 60MPa이상, 내화도가 1700℃이상인 동시에, 열충격저항이 500℃이상인 MgO-Al 2 O 3 -Fe 2 O 3 -ZrO 2 계 내화재료를 제공하는데 있다. The present invention relates to MgO-Al 2 O 3 -Fe 2 O 3 -ZrO 2 -based refractory composition containing iron alloy, the object of the present invention is MgO, Al 2 O 3 , Fe 2 O 3 , and ZrO 2 The MgO-Al 2 O 3 -Fe 2 O 3 -ZrO 2 system having a hot strength of 60 MPa or more, a fire resistance of 1700 ° C. or more, and a thermal shock resistance of 500 ° C. or more by containing an appropriate amount of ferroalloy component at the same time. To provide a refractory material. 상기 목적을 달성하기 위한 본 발명은 중량%로, MgO가 57-92%, Al 2 O 3 가 3-20%, Fe 2 O 3 가 1-20%, ZrO 2 가 1-20%로 함유되고, Fe-Cr, Fe-Mn, Fe-Si의 합금철 중에서 선택된 1종 또는 2종이상의 합금철이 0∠합금철≤5%의 범위로 함유됨을 특징으로 하는 합금철을 함유한 MgO-Al 2 O 3 -Fe 2 O 3 -ZrO 2 계 내화조성물에 관한 것을 그 요지로 한다. The present invention for achieving the above object by weight, MgO is contained 57-92%, Al 2 O 3 3-20%, Fe 2 O 3 1-20%, ZrO 2 is contained 1-20% MgO-Al 2 O containing ferroalloy characterized in that one or two or more ferroalloys selected from ferroalloys of Fe, Cr, Fe-Mn, and Fe-Si are contained in the range of 0∠ alloy iron ≤5%. Regarding the 3 -Fe 2 O 3 -ZrO 2 -based refractory composition, the gist thereof.

Подробнее
10-01-2017 дата публикации

Slurry for casting under pressure and made of refractory ceramics for gas-turbine plants

Номер: RU2606739C2

FIELD: metallurgy. SUBSTANCE: invention relates to slurry for casting under pressure for production of refractory ceramics for use as thermal protection shield in gas turbine plants high temperature loop. Slurry contains mixture of grains of at least two materials with different thermal expansion factors, as well as xanthan as organic binder and thickener. Grain mixture has multimodal grains distribution by size, which looks as follows: 10–20 wt% of large-size grains with diameter of 1–5 mm, 10–20 wt% of average size grains with diameter of 0.5–1 mm and 60–80 wt% of small-sized grains with diameter of up to 0.5 mm. Distribution of grains by weight is selected such that total quantity of grains in mixture makes 100 wt%, and average size grains fraction at least by 20% consists of material with much low expansion factor. EFFECT: technical effect consists in making refractory ceramics with high resistance to thermal shock. 6 cl, 1 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 606 739 C2 (51) МПК C04B 35/636 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ФОРМУЛА (21)(22) Заявка: ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 2014109925, 01.08.2012 (24) Дата начала отсчета срока действия патента: 01.08.2012 Дата регистрации: Приоритет(ы): (30) Конвенционный приоритет: 16.08.2011 EP 11177668.8 (73) Патентообладатель(и): СИМЕНС АКЦИЕНГЕЗЕЛЛЬШАФТ (DE) (56) Список документов, цитированных в отчете о поиске: EP 2168935 A1, 31.03.2010. SU (45) Опубликовано: 10.01.2017 Бюл. № 1 749816 A, 23.07.1980. EP 2329195 A1, 08.06.2011. RU 2267469 C1, 10.01.2006. RU 2122534 C1, 27.11.1998. (85) Дата начала рассмотрения заявки PCT на национальной фазе: 17.03.2014 (86) Заявка PCT: EP 2012/065002 (01.08.2012) (87) Публикация заявки PCT: 2 6 0 6 7 3 9 (43) Дата публикации заявки: 27.09.2015 Бюл. № 27 R U 19.12.2016 (72) Автор(ы): АНЕЗИРИС Христос (DE), ГРОТЕ Хольгер (DE), ЛАНГЕ Фридерике (DE), ГЕРЛАХ Нора (DE), КЛИППЕЛЬ Уве (FR), ШАФФЁНЕР Стефан (DE), ШПАЙХЕР Харм (DE) 2 6 0 6 ...

Подробнее
26-08-2022 дата публикации

Preparation method of ceramic flat tube support type solid oxide fuel cell/electrolytic cell with self-sealing end

Номер: CN114940625A
Принадлежит: Xian Jiaotong University

本发明提供了一端自密封的陶瓷扁管支撑型固体氧化物燃料电池/电解池的制备方法,该方法通过在陶瓷扁管支撑体坯体表面直接制备电池体系得到一端自密封的陶瓷扁管支撑型固体氧化物燃料电池/电解池坯体,然后对得到的一端自密封的陶瓷扁管支撑型固体氧化物燃料电池/电解池坯体进行烧制,得到一端自密封的陶瓷扁管支撑型固体氧化物燃料电池/电解池。本发明通过向陶瓷扁管支撑体的模具内分层、分区域铺设不同粒度配比的填充粉末,使得制备出的陶瓷扁管支撑体的两侧以及自密封口端的端头为致密陶瓷支撑体区,其余区域为多孔陶瓷支撑体区。并且通过在多孔陶瓷支撑体区的表面制备电极功能层实现自密封,实现降低制备成本的目的。

Подробнее
16-08-2019 дата публикации

A kind of preparation method of magnesia synthetic material

Номер: CN106518022B

本发明公开一种镁质合成材料的制备方法,包括如下步骤:将轻烧镁钙粉充分细磨,得到轻烧钙镁粉细粉,另外将铁红充分细磨;将得到的细粉与细磨铁红粉进行共磨,在共磨过程中均匀添加活性纳米碳酸钙;向共磨细粉加水,放入碾压机中搅拌轮碾,待搅拌均匀、压起热温度≥40℃;将湿粉加入压球机压密、压球过程制成球坯;将得到的球坯,自然干燥;将得到的干坯放入窑中进行烧制,烧成温度为1600~1700℃,保温2~6小时,得到镁质合成材料。本发明的制备方法可以在相对较低的烧成温度、较短的烧成时间内制得镁质合成料,既有效地降低煤耗、控制生产成本,又保证镁质合成料的充分烧结,提高镁质合成料烧结致密性。

Подробнее
18-05-2018 дата публикации

The production method of fused alumina/titanium oxide composite material

Номер: CN108046772A

本发明涉及一种耐火材料和热喷涂材料的生产方法,具体涉及一种电熔氧化铝/氧化钛复合材料的生产方法。所述的电熔氧化铝/氧化钛复合材料的生产方法,采用高纯度Al 2 O 3 和高纯度TiO 2 作为熔料,进行高温电弧熔化,控制电极与熔料面不接触,电极与熔料面的距离为:0cm<距离≤2cm,高温电弧熔化后自然冷却形成低碳黑色晶体状熔块,经破碎形成粒度砂。本发明采用电弧为长弧操作,避免电极与氧化粉体接触,避免了碳的引入;生产的氧化铝/氧化钛纯度高,气孔率低,体积密度高,具有较高的高温强度及耐磨度,耐腐蚀、高温体积稳定性好;能在热喷涂行业得到广泛应用,有利于获得更好的热喷涂设备和配件,提高设备和配件的使用寿命。

Подробнее
05-12-1974 дата публикации

INSULATING CERAMICS WITH CONTROLLED POROSITY AND SINTER MANUFACTURING PROCESS

Номер: DE2422416A1
Принадлежит: ACTIVITE ATOM AVANCE

Подробнее
07-09-1995 дата публикации

Finely divided oxide powder and use of the same

Номер: DE4306234C2
Принадлежит: Veitsch Radex GmbH and Co OG

Подробнее
01-05-2020 дата публикации

Magnesium aluminate spinel reinforced magnesium oxide base foamed ceramic filter and preparation method thereof

Номер: CN108516803B
Автор: 刘子利, 刘希琴, 刘思雨

本发明公开了一种能在低温下实现烧结的、化学稳定性和抗热震性优异的镁铝尖晶石增强氧化镁基泡沫陶瓷过滤器及其制备方法,制备方法包括:(1)将10%~20%纳米铝溶胶,0.8%~1.5%流变剂,其余为含纳米氧化铝烧结助剂的氧化镁陶瓷粉料进行配料,添加去离子水经球磨混合均匀,然后经真空排气制成固含量为60%~70%的陶瓷浆料;(2)将聚氨酯泡沫塑料模版浸入到上述的陶瓷浆料中,通过辊压机挤压聚氨酯泡沫塑料模版去除多余的浸挂浆料后制成素坯,然后将素坯在加热到80℃~120℃进行烘干;(3)将干燥的素坯放入烧结炉内,升温至1400℃~1600℃温度下进行高温烧结,随炉冷却至室温得到氧化镁基泡沫陶瓷过滤器。

Подробнее
31-01-2020 дата публикации

Refractory materials and use thereof

Номер: RU2712870C2

Изобретение относится к огнеупорным продуктам в виде сухой минеральной шихты из огнеупорных минеральных материалов, которая может быть использована для получения формованного огнеупорного кирпича или монолитной футеровки печей для выплавки цветных металлов. Технический результат изобретения – повышение устойчивости огнеупоров к фаялитовым шлакам, сульфидным расплавам (штейнам), сульфатам и расплавам цветных металлов. Сухая минеральная шихта содержит 30-74 вес.% по меньшей мере одного крупнозернистого магнезитового сырья крупностью более 1 мм с содержанием MgO более 90 мас.%, более 25 до 50 вес.% порошка MgO, содержащего менее 10 вес.% Fe 2 O 3 и менее чем 2,5 силикатных примесных фаз, и по меньшей мере один жаропрочный реагент в виде тонкодисперсного углерода, действующий в процессе плавки (in situ) как восстановитель на расплавы оксида цветного металла и/или расплава оксида железа-цветного металла. Шихта может дополнительно содержать SiC или тонкодисперсную кремниевую кислоту, а также связующее. 6 н. и 12 з.п. ф-лы. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 712 870 C2 (51) МПК C04B 35/043 (2006.01) C04B 35/035 (2006.01) C04B 35/66 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК C04B 35/043 (2019.08); C04B 35/013 (2019.08); C04B 35/6316 (2019.08); C04B 35/66 (2019.08); C04B 2235/3206 (2019.08); C04B 2235/422 (2019.08); C04B 2235/9676 (2019.08) (21)(22) Заявка: 2017126131, 30.11.2015 30.11.2015 Дата регистрации: (73) Патентообладатель(и): РЕФРАТЕХНИК ХОЛДИНГ ГМБХ (DE) 31.01.2020 22.12.2014 DE 10 2014 019 347.0 (43) Дата публикации заявки: 24.01.2019 Бюл. № 3 (56) Список документов, цитированных в отчете о поиске: SU 1759814 A1, 07.09.1992. US 5250479 A, 05.10.1993. WO 2005/001359 A1, 06.01.2005. DE 202012012495 U1, 25.04.2013. SU 1335552 A1, 07.09.1987. (45) Опубликовано: 31.01.2020 Бюл. № 4 (86) Заявка PCT: EP 2015/078079 (30.11.2015) C 2 C 2 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 24. ...

Подробнее
29-12-2021 дата публикации

Sintering process for electrical feedthroughs

Номер: EP3929170A1
Принадлежит: Heraeus Deutschland GmbH and Co KG

The invention relates to a process for producing a sintered workpiece, which comprises sintering of a ceramic material at a temperature of at least 1000°C and in an atmosphere, in the case of which the partial pressure of atmospheric air is reduced to less than 10 -6 -times, based on the ambient air at the same temperature under equilibrium conditions.

Подробнее
30-12-2021 дата публикации

Sintering process for electrical feedthroughs

Номер: DE102020116805A1
Принадлежит: Heraeus Deutschland GmbH and Co KG

Die Erfindung betrifft ein Verfahren zur Herstellung eines gesinterten Werkstücks, welches Sintern eines keramischen Materials bei einer Temperatur von mindestens 1000 °C und in einer Atmosphäre, bei dem der Partialdruck atmosphärischer Luft auf weniger als das 10-6-fache, bezogen auf die Umgebungsluft bei derselben Temperatur unter Gleichgewichtsbedingungen, reduziert wird, umfasst. The invention relates to a method for producing a sintered workpiece, which sinters a ceramic material at a temperature of at least 1000° C. and in an atmosphere in which the partial pressure of atmospheric air is less than 10-6 times that of the ambient air same temperature under equilibrium conditions.

Подробнее
20-05-2008 дата публикации

Cured without heating binding agent composition and method of moulding piece production with its use

Номер: RU2324706C2

Изобретение относится к отверждающейся без нагрева композиции связующего, способной смешиваться и отверждаться в условиях без нагрева. Описана отверждающаяся без нагрева композиция связующего, содержащая в качестве ее главных компонентов трифункциональный или тетрафункциональный фенол, несущий одну или две электронодонорные группы на бензольном кольце фенола, сшивающий агент и катализатор, причем у трифункционального или тетрафункционального фенола три или четыре углеродных положения бензольного кольца способны взаимодействовать с сшивающим агентом, где сшивающим агентом является альдегид или ксиленгликоль, и содержание катализатора составляет от примерно 10 -5 до 0,3 молей на моль трифункционального или тетрафункционального фенола. Также описан набор для получения отверждающегося без нагрева связующего (варианты); описан способ получения формованного изделия из фенольной смолы, содержащую указанную выше отверждающуюся без нагрева композицию; формованное изделие из фенольной смолы, получаемое указанным выше способом; способ получения песочной формы для литья, содержащий стадии: (А) смешения формовочного песка, растворителя и указанной выше отверждающейся без нагрева композиции связующего, и (В) литья полученной смеси в формовочную форму и формования и отверждения в условиях без нагревания; песочная форма для литья, получаемая указанным выше способом; способ получения пористого керамического формованного изделия, содержащий стадии: (С) смешения керамического порошка, поверхностно-активного вещества, растворителя, фосфата и указанной выше отверждающейся без нагрева композиции связующего, (D) литья полученной смеси в формовочную форму и формования и отверждения в условиях без нагревания, и (Е) отжига полученного отвержденного изделия при температуре 600-1900°С; пористое керамическое формованное изделие, получаемое указанным выше способом: способ получения керамического формованного изделия, содержащий стадии: (F) смешения керамического порошка, фосфата (или его гидрата ...

Подробнее
26-06-2018 дата публикации

A kind of method that calcium oxide-based ceramic-mould is prepared by chemical vapor deposition means

Номер: CN106082997B
Автор: 李涤尘, 杨强, 陈义, 鲁中良
Принадлежит: Xian Jiaotong University

本发明公开了一种通过化学气相沉积手段制备氧化钙基陶瓷铸型的方法,属于基于光固化成型技术快速铸造领域。采用的技术方案为:从基体材料氧化钙粉末着手,采用水基凝胶配方,通过在氧化钙粉末表面化学沉积C涂层,防止氧化钙在水基凝胶配方中发生水解,完成浆料的配制。同时,通过对铸型进行化学气相渗透,降低氧化钙基陶瓷铸型的孔隙率,提高铸型的强度,制得完整的氧化钙基陶瓷铸型。本发明针对氧化钙基陶瓷铸型,从陶瓷铸型材料前处理以及铸型强度提高两方面着手,方法设计合理,操作简便,大大提高了铸型制造的效率,适用于实际生产。

Подробнее
27-09-2015 дата публикации

SLIDING FOR PRESSURE CASTING AND FIRE-RESISTANT CERAMICS PRODUCED FROM IT FOR GAS TURBINE INSTALLATIONS

Номер: RU2014109925A

1. Шликер для литья под давлением для изготовления огнеупорной керамики, применяемой в качестве теплозащитного экрана в контуре высокотемпературного газа газотурбинных установок, содержащий смесь зерен, по меньшей мере, из двух материалов с различными коэффициентами теплового расширения, а также органическое и/или неорганическое связующее вещество и загуститель, причем смесь зерен имеет мультимодальное распределение зерен по размеру, отличающийся тем, что мультимодальное распределение зерен по размеру выглядит следующим образом:- 10-20 вес. процентов - зерна большого размера диаметром 1-5 мм,- 10-20 вес. процентов - зерна среднего размера диаметром 0,5-1 мм и- 60-80 вес. процентов - зерна малого размера диаметром до 0,5 мм, и причем- распределение зерен по весу выбирается таким образом, что суммарное количество зерен в смеси составляет 100 весовых процентов.2. Шликер по п. 1, отличающийся тем, что доля зерен среднего размера предпочтительно состоит, по меньшей мере, на 20 весовых процентов из материала с более низким коэффициентом теплового расширения.3. Шликер по п. 1 или 2, отличающийся тем, что в качестве связующего вещества и загустителя предусмотрен ксантан, в особенности, ксантан в концентрации макс. 0,05 весового процента от шликера для литья под давлением.4. Шликер по п. 1 или 2, отличающийся тем, что в качестве связующего вещества предусмотрена система связующих веществ из двух полисахаридов.5. Шликер по п. 4, отличающийся тем, что система связующих веществ состоит из ксантана и раствора гуаровой камеди.6. Шликер по п. 1 или 2, отличающийся тем, что в качестве связующего вещества предусмотрено силикатное связующее вещество или ко� РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК C04B 35/505 (13) 2014 109 925 A (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2014109925/03, 01.08.2012 (71) Заявитель(и): СИМЕНС АКЦИЕНГЕЗЕЛЛЬШАФТ (DE) Приоритет(ы): (30) Конвенционный приоритет: 16.08.2011 EP 11177668.8 (85) ...

Подробнее
10-07-2016 дата публикации

A method of obtaining a ceramic gradient material

Номер: RU2014151346A

1. Способ получения керамического градиентного материала, заключающийся в формовании заготовки и ее спекании, отличающийся тем, что сначала получают полидисперсный керамический порошок оксида металла или смесь порошков оксидов металлов плазмохимическим методом посредством распыления водных растворов солей металла или смесей солей металлов в плазму высокочастотного разряда через щелевую форсунку переменного сечения от 0,1 до 100 мкм, затем в полученный упомянутый порошок добавляют органическую связку, перемешивают формовочную смесь, далее заливают ее в форму, выдерживают формовочную смесь для расслоения ее по фракциям и спекают полученную заготовку с изотермической выдержкой.2. Способ по п. 1, отличающийся тем, что полидисперсный керамический порошок оксида металла или смесь порошков оксидов металлов получают с морфологией частиц - от отдельных нанокристаллитов размером 20-50 нм до сферических пустотелых частиц размером до 250 мкм.3. Способ по п. 1, отличающийся тем, что формовочная смесь имеет следующее соотношение компонентов, вес. %:4. Способ по любому из пп. 1-3, отличающийся тем, что полидисперсный керамический порошок оксида металла или смесь порошков оксидов металлов представляет собой порошки оксидов: AlO, ZrO, CaO, YO, MgO.5. Способ по любому из пп. 1 или 3, отличающийся тем, что в качестве органической связки используют парафин, или воск, или смесь парафина и воска в соотношении 9:1.6. Способ по п. 1, отличающийся тем, что перемешивают формовочную смесь при температуре 85-90°C в течение 25-50 часов.7. Способ по п. 1, отличающийся тем, что выдерживают формовочную смесь в форме для расслоения ее по фракциям в течение 1-10 часа при температуре 75-90°C.8. Способ по п. 1, отличающийся тем, что спекают получен РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (51) МПК B22F 3/10 (11) (13) 2014 151 346 A (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2014151346, 29.03.2013 Приоритет(ы): (22) Дата подачи заявки: 29.03.2013 (43) ...

Подробнее
22-10-2008 дата публикации

Deposition film

Номер: KR100864612B1
Принадлежит: 도판 인사츠 가부시키가이샤

고분자재료로 실질적으로 이루어지는 기재와 세라믹으로 실질적으로 이루어지는 증착층을 갖고, 기재는, 증착층을 증착하기 전에, 홀로 애노드 플라즈마 처리기를 사용하여 플라즈마 전처리되어 있는 증착 필름. 가스 배리어성, 플라즈마, 레토르트 처리, 홀로 애노드, 냉각 드럼, 무기 산화물, 금속 알콕시드. The vapor deposition film which has a base material which consists of a polymeric material substantially, and a vapor deposition layer which consists of ceramics, and a base material is plasma preprocessed using an anode plasma processor alone before depositing a vapor deposition layer. Gas barrier properties, plasma, retort treatment, holo anodes, cooling drums, inorganic oxides, metal alkoxides.

Подробнее
19-04-2018 дата публикации

CERAMIC REFRACTORY MATERIAL

Номер: RU2016140703A

РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2016 140 703 A (51) МПК C04B 35/043 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2016140703, 21.04.2015 (71) Заявитель(и): РИФРЭКТОРИ ИНТЕЛЛЕКТЧУАЛ ПРОПЕРТИ ГМБХ УНД КО. КГ (AT) Приоритет(ы): (30) Конвенционный приоритет: 26.06.2014 EP 14174575.2 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 17.10.2016 R U (43) Дата публикации заявки: 19.04.2018 Бюл. № 11 (72) Автор(ы): НИЛИКА Роланд (AT), ПЛАТЦЕР Александер (AT), ПИРИБАУЭР Кристоф (AT) (86) Заявка PCT: (87) Публикация заявки PCT: WO 2015/197220 (30.12.2015) R U (54) КЕРАМИЧЕСКИЙ ОГНЕУПОРНЫЙ МАТЕРИАЛ (57) Формула изобретения 1. Керамический огнеупорный материал, структура которого характеризуется следующими признаками: - наличием матрицы из по меньшей мере одного первого вещества, - в матрицу внедрены зерна из по меньшей мере одного второго вещества, - зерна из второго вещества имеют на своей поверхности присутствующее по меньшей мере на отдельных ее участках покрытие из по меньшей мере одного третьего вещества, - первое и второе вещества имеют различающиеся между собой коэффициенты теплового расширения, - третье вещество стабильно при практическом применении огнеупорного материала. 2. Огнеупорный материал по п. 1 в виде спеченного огнеупора. 3. Огнеупорный материал по меньшей мере по одному из предыдущих пунктов с первым веществом на основе одного или нескольких следующих оксидов или соединений: MgO, Al2O3, Fe2O3, SiO2, CaO, Cr2O3, ZrO2, Mn2O3, TiO2, или на основе одного или нескольких соединений из числа магнезиальной шпинели, герценита, галаксита и форстерита. 4. Огнеупорный материал по меньшей мере по одному из предыдущих пунктов со вторым веществом на основе одного или нескольких следующих оксидов или их соединений: Al2O3, MgO, SiO2 или ZrO2. 5. Огнеупорный материал по меньшей мере по одному из предыдущих пунктов с Стр.: 1 A 2 0 1 6 1 4 0 7 0 3 A Адрес для переписки: 105082, Москва, ...

Подробнее
10-03-1992 дата публикации

Electromagnetic wave absorbing material

Номер: US5094907A
Принадлежит: UBE Industries Ltd

This invention provides an electromagnetic wave absorbing material composed of a composite material comprising a fiber having a specific resistance of 10 -2 to 10 2 Ω.cm and a matrix, wherein the fiber is composed of an inorganic substance selected from the group consisting of i) an amorphous substance substantially composed of Si, M, C and O, ii) crystalline ultrafine particles substantially composed of β-SiC, C, MC, a solid solution of ⊕-SiC and MC and/or MC 1-x , and having a particle diameter of not more than 500 Å, or optionally, an aggregate of the crystalline ultrafine particles, amorphous SiO 2 and amorphous MO 2 , and iii) a mixture of the above i) amorphous substance with the above ii) crystalline ultrafine particles or aggregate in which M denotes Ti or Zr, and X is more than 0 but less than 1.

Подробнее
01-12-2017 дата публикации

A kind of preparation technology of low sodium corundum

Номер: CN107417261A
Автор: 王泽铭, 王�忠, 韩露
Принадлежит: 王泽铭

一种低钠刚玉的制备工艺,属于刚玉生产工艺和设备领域。其特征在于所需原料按照质量计包括如下组分:工业氧化铝、醋酸或硼酸、氯化铵和氧化铝。本发明能够通过合理的工艺设计,科学降低刚玉产品中的钠含量,提升其各项性能;本发明可以在保持生产效率的同时,降低刚玉生产过程中混料环节对环境造成的污染。

Подробнее
06-08-2021 дата публикации

Preparation method of calcium carbonate-bismuth oxide composite solid electrolyte ceramic chip

Номер: CN110165268B
Принадлежит: Hefei University

一种碳酸钙‑氧化铋复合固体电解质陶瓷片的制备方法,涉及固体电解质陶瓷材料制备技术领域。利用乙二醇润湿,将碳酸钙和氧化铋进行固相湿法球磨共混复合,得到碳酸钙‑氧化铋复合固体电解质。碳酸钙与氧化铋的复合重量比为4:6。固相湿法球磨共混时间为2小时。本发明制备的复合电解质材料对合成温度要求较低、比较容易烧结成功、成本相比而言比较低,通过SEM图片可以看出,Bi 2 O 3 基的气孔很少,较为容易烧结成功。利用固相湿法球磨共混法成功的制备出了立方结构的掺杂Bi 2 O 3 粉末,基本完成从高温区稳定到低温区。抑制Bi 2 O 3 的晶型发生转变,防止了立方向菱方相变的出现,这就使复合电解质材料能够具有良好的电导率。

Подробнее
15-02-2023 дата публикации

Oxide sintered body and method for producing oxide sintered body

Номер: JP2023022339A
Принадлежит: Asahi Glass Co Ltd

【課題】比較的良好な耐プラズマ性を有するとともに、比較的低コストで製造することが可能な酸化物焼結体を提供する。【解決手段】酸化物焼結体であって、導電性マイエナイト化合物を含み、平均結晶粒径が5μm~40μmの範囲であり、相対密度が98%以上である、酸化物焼結体。また、酸化物焼結体の製造方法であって、(1)酸化カルシウムと酸化アルミニウムとを、13:6~11:8(CaO:Al2O3に換算したモル比)の割合で含む仮焼粉を準備する工程と、(2)前記仮焼粉を含む被処理体を、還元剤とともに容器内に入れ、前記被処理体を50kgf/cm2以上のプレス圧力で加圧する工程と、(3)前記容器内を減圧した状態で、前記被処理体を1280℃~1330℃の範囲に保持し、熱処理を実施する工程を有する、製造方法。【選択図】図1

Подробнее
16-11-2016 дата публикации

Calx lightweight through hole haydite

Номер: CN106116683A
Принадлежит: Individual

本发明公开了一种石灰轻质通孔陶粒,其技术方案的要点是,石灰轻质通孔陶粒由石灰、高粘凹凸棒石粘土、粉状石灰发泡剂、活性白土废渣、漂珠、轻质氧化镁、硫酸亚铁、膨胀珍珠岩和膨胀蛭石组成。将石灰轻质通孔陶粒的配料进行搅拌混合、挤压造粒、烘干、焙烧、保温、筛分后密封包装为石灰轻质通孔陶粒。石灰轻质通孔陶粒具有比表面积大、堆积密度小、吸水率高、透气性能优越、外观造型美观无异味、轻质强度好、微孔和大孔为一体的特点。用于培育或种植各种苗木、花草和蔬菜时,植物的根部将会从石灰轻质通孔陶粒里吸收水或液态肥的营养成分,确保植物生长发育好,成活率高和寿命更长,石灰轻质通孔陶粒适用于配制无土栽培基质和营养土。

Подробнее
28-02-2018 дата публикации

Use of unfired refractory products as a lining in large-volume industrial furnaces, as well as an industrial furnace lined with said unfired refractory products

Номер: KR101832945B1

본 발명은 하기의 제조를 위한 비소성 내화물의 용도에 관한 것으로, 탄소 운반체가 없고, 특히 압력을 이용하여 성형되거나 비성형되며, 결합제를 포함하고, 각각의 경우, 내화성 물질의 과립물이 900℃ 초과의 온도에서 세라믹 결합이 시작된다: 마그네시아 크로마이트 벽돌, 마그네시아 스피넬 및 스피넬 벽돌, 마그네시아 지르코니아 및 마그네시아 지르콘 벽돌, 마그네시아 허시나이트 및 마그네시아 갈락사이트 벽돌, 돌로마이트, 돌로마이트-마그네시아, 및 석회 벽돌, 고토감람석 및 감람석 벽돌, 마그네시아 고토감람석 벽돌, 마그네시아 플레오나스트 벽돌, 마그네시아 벽돌, 압축된 벽돌 또는 비성형된 덩어리 형태의 시멘트, 석회, 마그네시아, 및 돌로마의 제조를 위한, 산화 또는 기본적 산화 분위기로 작동되는 소성변(fire-side)으로서, 대용량 공업용 로(industrial furnaces)의 내화성 라이닝으로, 상기 벽돌은 20 MPa 초과의 냉각 압력 강도를 가지며, 생성물은 실온 내지 500℃의 온도 범위에서 과립 입자의 결합을 보장하는 최소한 제1의 임시 결합제, 및 300 내지 1000의 온도 범위에서 과립 입자의 결합을 보장하는 최소한 제2의 임시 결합제를 포함한다. The present invention relates to the use of non-calcined refractories for the production of the following, which are free of carbon carriers, in particular molded or unformed using pressure, and comprise binders, in each case the granules of refractory material having a temperature Ceramic bonding begins at temperatures above: Magnesia chromite bricks, Magnesia spinel and spinel brick, Magnesia zirconia and magnesia zircon bricks, Magnesia Hersheyite and magnesia galactic site bricks, Dolomite, dolomite-magnesia, and lime brick, Goto olivine and olivine brick, Magnesia goto olivine brick, Magnesia flonast brick, Magnesia brick, As a fire-side operating in an oxidizing or basic oxidizing atmosphere, for the production of cement, lime, magnesia, and stone Rome in the form of pressed bricks or unformed lumps, the fire resistance of large industrial furnaces Wherein the brick has a cooling pressure strength of greater than 20 MPa and the product has at least a first temporary binder to ensure bonding of the granular particles at a temperature ranging from room temperature to 500 DEG C, Lt; RTI ID = 0.0 &gt; a &lt; / RTI &gt; second temporary binder.

Подробнее
28-11-2012 дата публикации

Inorganic fibers for fiber bundles, process for production of the inorganic fibers, inorganic fiber bundles for composite material produced using the inorganic fibers, and ceramic-based composite material reinforced by the fiber bundles

Номер: CN102803589A
Автор: 清水和敏, 铃木道之
Принадлежит: UBE Industries Ltd

本发明涉及一种纤维束用无机纤维及其制造方法,该纤维束用无机纤维能够抑制在复合材料用无机纤维束的制造过程中由于纤维的损伤而使纤维的强度下降,并且能够避免复合材料制造过程中纤维束中的纤维彼此间的接触,能够在纤维的表面整体形成其与基质的界面层,并且本发明能够提供以由这种纤维束用无机纤维构成的复合材料用无机纤维束作为强化纤维,以陶瓷作为基质,拥有足够的强度及破坏能,以及高温·氧化气氛下受应力作用时表现出优异的耐久性的陶瓷基复合材料。本发明涉及一种纤维束用无机纤维及其制造方法,该纤维束用无机纤维的特征在于,构成复合材料用无机纤维束的纤维束用无机纤维在长度方向蛇行弯曲,弯曲节距为3~40mm,弯曲幅宽为0.1~5mm。

Подробнее
27-11-2017 дата публикации

Filling for the manufacture of a green body to manufacture a carbon-bonded refractory product, a procedure for manufacturing such a green body as well as a green body manufactured by it

Номер: ES2644077T3

Relleno para la fabricación de un cuerpo verde para fabricar un producto refractario unido por carbono, que comprende los siguientes componentes: 1.1 al menos una materia prima refractaria, 1.2 al menos un soporte de carbono, así como 1.3 al menos un aglutinante, que comprende 10 1.3.1 una resina así como 1.3.2 al menos un iniciador que inicia una reacción de curado de la resina por radiación ionizante. Filler for the manufacture of a green body for manufacturing a carbon-bonded refractory product, comprising the following components: 1.1 at least one refractory raw material, 1.2 at least one carbon support, as well as 1.3 at least one binder, comprising 10 1.3.1 a resin as well as 1.3.2 at least one initiator that initiates a curing reaction of the resin by ionizing radiation.

Подробнее
10-01-2010 дата публикации

Sintered body and use thereof

Номер: RU2378226C2
Принадлежит: Х.К. Штарк Гмбх

FIELD: chemistry. ^ SUBSTANCE: invention relates to chemically stable materials, particularly used for lining reaction vessels, reactors, mills, die moulds etc, which are used in making anodes of electrolytic capacitors with solid electrolyte. Described is a sintered body which contains from 30 to 100 mol % NbOx, where 0.5<x<1.5, and up to 70 mol % MgO, characterised by porosity of less than 30 vol. %. The sintered body preferably consists of microstructures which include homogeneous regions rich in niobium superoxide or magnesium oxide with maximum size of 1.5 mcm and preferable maximum size of 1.0 mcm. ^ EFFECT: improved mechanical properties and chemical stability of the material. ^ 8 cl, 1 ex РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 2 378 226 (13) C2 (51) МПК C04B 35/495 (2006.01) C04B 35/053 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (21), (22) Заявка: 2004129683/03, 14.10.2004 (24) Дата начала отсчета срока действия патента: 14.10.2004 (72) Автор(ы): ШНИТТЕР Кристоф (DE), ВЕТТИНГ Герхард (DE) R U (73) Патентообладатель(и): Х.К. Штарк ГмбХ (DE) (30) Конвенционный приоритет: 14.10.2003 DE 10347702.0 (43) Дата публикации заявки: 27.03.2006 2 3 7 8 2 2 6 (45) Опубликовано: 10.01.2010 Бюл. № 1 Адрес для переписки: 105064, Москва, а/я 88, ООО "Квашнин, Сапельников и партнеры", пат.пов. В.П.Квашнину, рег.№ 4 C 2 C 2 (56) Список документов, цитированных в отчете о поиске: US 6592740 B2, 15.07.2003. US 6416730 B1, 09.07.2002. RU 2002128349 A1, 27.02.2004. DE 19831280 A1, 20.01.2000. GB 1505920 A, 05.04.1978. (57) Реферат: Изобретение относится к химически устойчивым материалам, в частности, применяемым для облицовки реакционных сосудов, реакторов, мельниц, пресс-форм и т.п., которые используют при производстве анодов для электролитических конденсаторов с твердым электролитом. Технический результат изобретения повышение механических свойств и химической устойчивости материала. Описано ...

Подробнее
04-06-2021 дата публикации

Sintered body

Номер: CN112912355A
Принадлежит: Idemitsu Kosan Co Ltd

烧结体,其包含锌、镁和氧作为构成元素,锌相对于锌和镁的总计的原子比[Zn/(Zn+Mg)]为0.20~0.75,镁相对于锌和镁的总计的原子比[Mg/(Zn+Mg)]为0.25~0.80,X射线衍射测定的结果是包含单一的晶体结构。

Подробнее
27-06-2013 дата публикации

Inorganic fiber for fiber bundle and method for producing the same, inorganic fiber bundle for composite material composed of inorganic fiber for fiber bundle, and ceramic matrix composite material reinforced with the fiber bundle

Номер: JPWO2011114810A1
Принадлежит: UBE Industries Ltd

複合材料用無機繊維束の製造中の繊維の損傷による繊維強度の低下を抑制し、かつ、複合材料製造中の繊維束中の繊維同士の接触を回避して、繊維の表面全体にマトリックスとの界面層を形成できる繊維束用無機繊維及びその製造方法、並びにその繊維束用無機繊維から構成される複合材料用無機繊維束を強化繊維とし、セラミックスをマトリックスとした、十分な強度と破壊エネルギー、および高温・酸化雰囲気下で応力を受けた際に優れた耐久性を示すセラミックス基複合材料セラミックス基複合材料を提供する。本発明は、複合材料用無機繊維束を構成する繊維束用無機繊維において、長手方向に蛇行し、蛇行ピッチが3〜40mmであり、蛇行巾が0.1〜5mmであることを特徴する繊維束用無機繊維及びその製造方法などに関する。 Suppressing the decrease in fiber strength due to fiber damage during manufacture of inorganic fiber bundles for composite materials, and avoiding contact between fibers in fiber bundles during manufacture of composite materials, Inorganic fibers for fiber bundles capable of forming an interface layer, a method for producing the same, and inorganic fiber bundles for composite materials composed of the inorganic fibers for fiber bundles as reinforcing fibers and ceramics as a matrix, sufficient strength and fracture energy, A ceramic matrix composite material exhibiting excellent durability when subjected to stress in a high temperature / oxidizing atmosphere is provided. The present invention relates to an inorganic fiber for a fiber bundle constituting an inorganic fiber bundle for a composite material, wherein the fiber is meandering in the longitudinal direction, the meandering pitch is 3 to 40 mm, and the meandering width is 0.1 to 5 mm The present invention relates to a bundle inorganic fiber and a method for producing the same.

Подробнее
26-02-2021 дата публикации

Preparation method of ceramic mold

Номер: CN109279875B
Принадлежит: TSINGHUA UNIVERSITY

本发明公开了一种陶瓷型的制备方法。该方法包括以下步骤:制备陶瓷浆料;使用三维建模软件设计出结构模型,所述结构模型包括复型面壳体和与所述复型面壳体连接的背衬,所述背衬是具有梯度结构的背衬;以陶瓷浆料为原料,使用结构模型用光固化打印机输出打印出生坯;生坯经过清洗、干燥,在400℃~600℃下进行脱脂,在1000℃~1600℃下烧结2~6小时,获得具有梯度结构背衬的陶瓷型。本发明增强了陶瓷型的力学性能和透气性能,显著提高了陶瓷型的尺寸精度与表面光洁度,可缩短了陶瓷型生产周期,大大提高了生产效率,节约了制备成本,既满足陶瓷型上下型合型装配精度要求,同时又保证了陶瓷型铸件的质量。

Подробнее
19-01-2017 дата публикации

Filaments based on a coated core material

Номер: WO2017009190A1
Принадлежит: BASF SE

The invention relates to a filament comprising a core material (CM) comprising an inorganic powder (IP) and the core material (CM) is coated with a layer of shell material (SM) comprising a thermoplastic polymer. Further, the invention relates to a process for the preparation of said filament, as well as to three-dimensional objects and a process for the preparation thereof.

Подробнее
30-08-2021 дата публикации

Fire-proof ceramic product, charge for manufacture of such product, as well as method for manufacture of such product

Номер: RU2754151C2

FIELD: metallurgy. SUBSTANCE: invention relates to a fire-proof ceramic product, which can be used for fire-proof lining of metallurgical industry aggregates, glass-making furnaces and furnaces of non-metallurgical industry. The fire-proof ceramic product has MgO fraction of at least 75% by weight, as well as ceramic bond, while it has a sulfur fraction in the range from 0.01 to 0.20% by weight and has a SiO 2 fraction of less than 1.5%. The product is manufactured by sintering a charge, in which the main component contains one or several of the following raw materials based on magnesium oxide: sintered magnesium oxide, fused magnesium oxide, sintered calcined dolomite or fused calcined dolomite, as well as one or several components containing aluminum oxide, aluminum-magnesium spinel, sintered corundum, fused corundum, calcined alumina, galaxite, hercynite or pleonast. The specified sulfur amount is provided by introducing sulfur-containing compounds into the charge, including crushing the lining of concrete furnaces. EFFECT: obtaining products resistant to hydration without worsening fire-proof properties. 14 cl, 2 ex РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 754 151 C2 (51) МПК C04B 35/04 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК C04B 35/443 (2021.05); C04B 35/04 (2021.05); C04B 2235/3206 (2021.05); C04B 2235/448 (2021.05); C04B 2235/726 (2021.05) (21)(22) Заявка: 2019107504, 23.08.2017 23.08.2017 Дата регистрации: 30.08.2021 17.11.2016 EP 16199243.3 (43) Дата публикации заявки: 17.12.2020 Бюл. № 35 (45) Опубликовано: 30.08.2021 Бюл. № 25 (86) Заявка PCT: EP 2017/071200 (23.08.2017) C 2 C 2 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 17.06.2019 (56) Список документов, цитированных в отчете о поиске: US 3879208 A1, 22.04.1975. US 5001092 A1, 19.03.1991. DE 1571601 B1, 15.04.1971. RU 2443657 C1, 27.02.2012. JP 1038072 B, 10.08.1989. SU 530014 A1, 30.09.1976. SU 1038321 A1, 30.08. ...

Подробнее
01-11-2021 дата публикации

Phase Gradient Nanocomposite Window Fabrication and Method of Fabricating Durable Optical Windows

Номер: KR102319653B1
Принадлежит: 레이던 컴퍼니

광학 윈도우가 제공되고, 광학 윈도우는 코어층, 클래딩층, 및 상기 코어층과 클래딩층 사이에 삽입되는 전자기 간섭(EMI) 층을 포함한다. An optical window is provided, the optical window comprising a core layer, a cladding layer, and an electromagnetic interference (EMI) layer interposed between the core layer and the cladding layer.

Подробнее
22-10-2021 дата публикации

Light-cured resin-based ceramic composite material for providing smooth contour and blank degreasing method

Номер: CN108249930B
Автор: 章赣阳
Принадлежит: Shenzhen Longer 3d Technology Co ltd

本发明公开了一种可提供光洁成型件轮廓的光固化树脂基陶瓷复合材料及陶瓷胚体的脱脂方法。通过优化设计树脂体系,使得能够在保持体系反应活性的同时,提高陶瓷浆料体系透射深度,减少成型尺寸误差;使得陶瓷胚体层间结合力及其与打印平台之间粘结力增加,减少陶瓷胚体与平台的脱离和陶瓷胚体表面的裂纹;同时改善粉体颗粒沿模型表面排列的规则性,使该材料能够提供具有改善的轮廓光洁度的模型。

Подробнее
22-12-2022 дата публикации

Preparation of ceramic doughs through coagulation, for green machining

Номер: WO2022265610A1
Принадлежит: Sabanci Universitesi

The present invention proposes a mixture comprising a linear copolymer comprising acrylic acid and 2-acrylamido-2-methyl propane sulfonic acid, water and one or more metal oxide ceramic nanoparticles with a mean particle size of up to 100 nanometers, preferably up to 60 nanometers, more preferably within the range between 20 nanometers and 60 nanometers, e.g., 40 nm. The mixture can be used in formation of doughs which are suitable for green machining. Molar ratio between acrylic acid and 2-acrylamido-2-methyl propane sulfonic acid in the copolymer can optionally be within the range between 0.8:1 and 1:0.8. In the mixture, the linear copolymer can be present at a concentration within an optional range between 1 wt.% and 2 wt.% based on total solid content. In the mixture, the one or more metal oxide ceramic nanoparticles can be present at a concentration within an optional range between 60 wt.% and 70 wt.%. The present invention further proposes a method for obtaining such mixture.

Подробнее
06-02-2003 дата публикации

Vapor-deposited film

Номер: CA2453596A1
Принадлежит: Individual

A vapor-deposited film having a substrate consisting essentially of a polymer material and a vapor-deposited layer consisting essentially of a ceramic, the substrate being subjected to plasma pre-treatment using a hollow anode plasma treatment device, prior to vapor deposition of the vapor-deposited layer.

Подробнее
13-12-1974 дата публикации

Insulating ceramic having controlled porosity - prepd. by sinter process comprising final sintering without over-pressure

Номер: FR2229663A1
Автор: [UNK]
Принадлежит: ACTIVITE ATOM AVANCE

Insulating ceramics passive to molten corrosive metals, e.g. Al and steel, and resistant to repeated heat-shocks, are prepd. by (1) mixing finely powdered oxides of Gp. III and Gp. IV elements, (2) sintering pt. of powder mixt. under high temp. and press., (3) comminuting sintered matl., (4) mixing comminuted matl. with balance of powder, (5) stirring after adding 0.1-6 wt.% Gp. IA fluoride, and (6) quickly vibrating in a mould, followed by (7) sintering vibrated mixt. without over-press. for 1 to several hrs. at 850-1350 degrees C under a controlled atmos. pref. H2 or a neutral atmos. Porosity of ceramic can be increased by admixing finely powdered mixt. before sintering with >35 wt.% (w.r.t. total mixt) compact grains of Gp. III and IV oxides. Specif. grains and fine powder consists of same oxide, pref. Al2O3, have French standard screen mesh sizes 22 and 17 resp. and are sintered in air at 1350 degrees C.

Подробнее
25-06-1971 дата публикации

Refractory block casting process

Номер: FR2062102A5
Автор: [UNK]
Принадлежит: Electro Refractaire SA

Casting of high temp. refractory blocks for furnace linings etc. is effected through a funnel on top of a water cooled collapsible metal mould. The melt has a compn. which gives off gases during solidification. During the casting operation a fixed proportion of broken up solid refractory of the same compn. as the melt is introduced into the casting jet and mixed with the melt. The addition of the solid is carried out as long as the mould proper is being filled up. The cast block is removed from the mould whilst still hot, when only the surface has solidified and subjected to a controlled rate cooling cycle outside the mould. The process is intended particularly for MgO refractory pieces containing some Cr2O3. Both the gas formation on solidification and addition of solid material even out the cooling of the block after casting and prevent the formation of a central pipe type core hole.

Подробнее