Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 16272. Отображено 200.
10-08-2016 дата публикации

КОНТЕЙНЕРЫ, ИЗГОТОВЛЕННЫЕ ИЗ ПЕРЕРАБОТАННОГО АЛЮМИНИЕВОГО ЛОМА МЕТОДОМ УДАРНОГО ПРЕССОВАНИЯ

Номер: RU2593799C2
Принадлежит: БОЛЛ КОРПОРЕЙШН (US)

Изобретение относится к алюминиевым сплавам для использования в производственной технологии ударного прессования для создания формованных контейнеров и других изделий промышленного производства. Алюминиевый сплав для формования металлического контейнера ударным прессованием содержит, мас.%: как минимум около 97 алюминия, как минимум около 0,10 кремния, как минимум около 0,25 железа, как минимум около 0,05 меди, как минимум около 0,07 марганца, как минимум около 0,05 магния. Способ формования металлической заготовки из алюминиевого сплава для изготовления металлического контейнера ударным прессованием включает плавление первичного алюминия с материалом на основе алюминиевого лома в печи с косвенным нагревом для получения переработанного алюминиевого сплава, литье с образованием сляба с предварительно заданной толщиной, горячую прокатку для создания горячекатаной полосы, охлаждение в водном растворе, холодную прокатку, штамповку, отжиг и последующее охлаждение, окончательную отделку заготовки ...

Подробнее
24-07-2024 дата публикации

ДЕТАЛЬ ИЗ ВЫСОКОПРОЧНОГО КОМПОЗИТНОГО МОДИФИЦИРОВАННОГО АЛЮМИНИЕВОГО СПЛАВА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ

Номер: RU2823557C2

Изобретение относится к металлургии, а именно к получению деталей из высокопрочного композитного алюминиевого сплава. Способ получения детали из модифицированного алюминиевого сплава включает стадии S1-S5. На стадии S1 и S2 обеспечивают расплав алюминиевого сплава и модификатор соответственно. Содержание модификатора составляет 0,4-0,6 мас.% от общего количества модифицированного алюминиевого сплава. Модификатор представляет собой комбинацию из алюминиевого сплава, содержащего редкоземельный металл, и лигатуры алюминий-титан или из алюминиевого сплава, содержащего редкоземельный металл, и лигатуры алюминий-титан-бор, при этом алюминиевый сплав, содержащий редкоземельный металл, содержит стронций, титан или титан и бор, причем массовое соотношение общего количества редкоземельного металла: стронция:титана или титана и бора составляет 1:(0,1-1,2):(0,1-1,2), редкоземельный металл в алюминиевом сплаве, содержащем редкоземельный металл, представляет собой один или более металлов, выбранных из ...

Подробнее
26-03-2018 дата публикации

ИЗДЕЛИЯ ИЗ АЛЮМИНИЕВОГО СПЛАВА И СПОСОБЫ ИХ ПОЛУЧЕНИЯ

Номер: RU2648422C2
Принадлежит: АРКОНИК ИНК. (US)

Изобретение относится к изделиям из алюминиевого сплава и способу их получения в виде полосы, которая, в частности, является заготовкой для корпусов банок или их торцов. Полоса из заэвтектического алюминиевого сплава, содержащего по меньшей мере 0,8 мас.% марганца и/или по меньшей мере 0,6 мас.% железа, имеет приповерхностную зону, расположенную от поверхности полосы алюминиевого сплава до глубины 37 микрометров, содержащую по меньшей мере 90% частиц от общего их количества в приповерхностной зоне, имеющих эквивалентный диаметр больше 0,22 и менее 3 микрометров, при их количестве на единицу площади по меньшей мере 0,01 частица на квадратный микрометр. По второму варианту частицы в приповерхностной зоне имеют эквивалентный диаметр больше 0,22 и менее 1 микрометра, при их объемной доле в приповерхностной зоне по меньшей мере 0,2 процента. Способ изготовления полосы включает непрерывное литье заэвтектического алюминиевого сплава, содержащего по меньшей мере 0,8 мас.% марганца и/или по меньшей ...

Подробнее
22-06-2020 дата публикации

СПОСОБ ТЕПЛОВОЙ ОБРАБОТКИ КОМПОНЕНТА, КОТОРЫЙ СОСТОИТ ИЗ МЕТАЛЛИЧЕСКОГО МАТЕРИАЛА И КОТОРЫЙ СОДЕРЖИТ ПО МЕНЬШЕЙ МЕРЕ ОДНУ СЕКЦИЮ ПОВЕРХНОСТИ, НА КОТОРУЮ НАНЕСЕНО ГЛАЗУРНОЕ ИЛИ ЭМАЛЕВОЕ ПОКРЫТИЕ

Номер: RU2724268C2
Принадлежит: НЕМАК, С.А.Б. ДЕ К.В. (MX)

Изобретение относится к тепловой обработке компонента (1), состоящего из металлического сплава, в котором или на котором, по меньшей мере, на одну секцию (7) поверхности нанесено глазурное или эмалевое покрытие (9). Способ включает нагрев компонента (1) с глазурным или эмалевым покрытием (9) до температуры, которая по меньшей мере равна минимальной температуре закалки и которая выше температуры сушки в печи, установленной для сушки в печи глазурного или эмалевого покрытия, так, что глазурное или эмалевое покрытие размягчается при достижении температуры нагрева, и закалку компонента (1) от температуры, которая по меньшей мере равна минимальной температуре закалки для получения в компоненте (1) высокопрочной микроструктуры. Причем глазурное или эмалевое покрытие (9) предварительно охлаждают до температуры предварительного охлаждения по меньшей мере на ее поверхности (9') перед закалкой, причем указанная температура предварительного охлаждения максимально соответствует температуре, при которой ...

Подробнее
02-02-2017 дата публикации

ЛЕНТА ИЗ АЛЮМИНИЕВОГО СПЛАВА С УЛУЧШЕННОЙ ПОВЕРХНОСТНОЙ ОПТИКОЙ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ

Номер: RU2609576C2

Изобретение относится к изготовлению ленты из алюминиевого сплава. Лента из алюминиевого сплава изготовлена путем горячей и/или холодной прокатки и состоит из алюминиевого сплава типа АА 5182, АА 6ххх или АА 8ххх, причем готовая, прошедшая прокатку лента из алюминиевого сплава после обезжиривания демонстрирует увеличение величины L* яркости (ΔL) по сравнению с необезжиренным состоянием более чем 5 при цветовом измерении поверхности в цветовом пространстве CIE L*a*b* при использовании стандартного источника света D65 и при угле наблюдения 10° с исключением прямых отражений в геометрии 45°/0°, которое достигается путем обезжиривания с использованием щелочного травильного раствора и последующей кислой промывки ленты из алюминиевого сплава. Предложенные ленты из алюминиевого сплава отличаются отчетливо улучшенной поверхностной оптикой с отчетливым визуальным восприятием более светлой поверхности по сравнению с обычными лентами из алюминиевого сплава, состоящими из того же алюминиевого сплава ...

Подробнее
10-07-2015 дата публикации

ИСХОДНЫЙ МАТЕРИАЛ ДЛЯ МЕТАЛЛИЧЕСКОГО ИЗДЕЛИЯ ИЗ ФОЛЬГИ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Номер: RU2556431C2
Принадлежит: АЛКОА ИНК. (US)

Изобретение относится к производству изделий из алюминиевых сплавов, в частности к изготовлению алюминиевой фольги, которая может быть использована в качестве бытовой фольги, для изготовления упаковочной тары и т.д. Фольгу из алюминиевого сплава получают путем литья полосы толщиной менее 6 мм, прокатки в горячем состоянии без промежуточных отжигов до толщины менее 1 мм и последующего полного отжига, при этом алюминиевый сплав представляет собой алюминиевый сплав серии 1ххх, 3ххх или 8ххх. В результате такой обработки получают алюминиевый сплав, свободный от интерметаллических частиц бета-фазы, при этом фольга имеет толщину от около 5 мкм до около 150 мкм и имеет структуру, по существу свободную от пор, вызванных осевой ликвацией интерметаллических частиц. Изобретение направлено на повышение предела прочности на разрыв, относительного удлинения и давление Муллена после полного отжига. 1 з.п. ф-лы, 4 ил.,2 табл., 2 пр.

Подробнее
27-11-2015 дата публикации

АЛЮМИНИЕВЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ С ВНУТРЕННИМ СЛОЕМ ИЗ СПЛАВА- ALMGSI

Номер: RU2569519C2

Изобретение относится к полосе, состоящей из алюминиевого композиционного материала для изготовления конструктивных элементов с высокими требованиями к пластическому формообразованию, способу изготовления полосы и применению листов, изготовленных из полосы по изобретению. Полоса имеет внутренний слой из AlMgSi-сплава и, по меньшей мере, расположенный с одной стороны или с обеих сторон наружный слой из не упрочняемого термически алюминиевого сплава. Один наружный слой из алюминиевого сплава в состоянии T4 имеет более низкую прочность при растяжении, чем слой AlMgSi-сплава, причем полоса в состоянии T4 имеет равномерное удлинение Aпоперек к направлению прокатки более 23%, а также при толщине от 1,5 до 1,6 мм достигает угла гибки при испытании на изгиб поперек направлению прокатки менее 40°. Изобретение обеспечивает полосу, состоящую из алюминиевого композиционного материала для изготовления элементов конструкции с высокими требованиями к пластическому формообразованию, которая имеет улучшенные ...

Подробнее
29-05-2020 дата публикации

КОМПОЗИТНЫЕ МАТЕРИАЛЫ С УЛУЧШЕННЫМИ МЕХАНИЧЕСКИМИ СВОЙСТВАМИ ПРИ ПОВЫШЕННЫХ ТЕМПЕРАТУРАХ

Номер: RU2722378C2

Настоящее изобретение относится к композитному материалу, содержащему матрицу из алюминиевого сплава и частицы наполнителя. Матрица содержит, мас.%: Si 0,05-0,30, Fe 0,04-0,6, Mn 0,80-1,50, Mg 0,80-1,50, остальное алюминий и неизбежные примеси, а частицы наполнителя диспергированы в матрице. Матрица может содержать Cu и/или Mo. В качестве наполнителя композитный материал содержит BC, а также одну или несколько добавок из группы: Ti, Cr, V, Nb, Zr, Sr, Sc и любой их комбинации. Техническим результатом является получение материала с повышенной прочностью при повышенных температурах. 5 н. и 15 з.п. ф-лы, 2 ил., 7 табл., 2 пр.

Подробнее
20-06-2012 дата публикации

АЛЮМИНИЕВЫЙ СПЛАВ И ЕГО ПРИМЕНЕНИЕ В СПОСОБАХ ЛИТЬЯ ПОД ДАВЛЕНИЕМ

Номер: RU2453622C2

Изобретение относится к алюминиевому сплаву, детали из которого получают литьем под давлением. Алюминиевый сплав содержит следующие компоненты: от 4,5 до 6,5% по весу магний, от 1,0 до 3,0% по весу кремний, от 0,3 до 1,0% по весу марганец, от 0,02 до 0,3% по весу хром, от 0,02 до 0,2% по весу титан, от 0,02 до 0,2% по весу цирконий, от 0,0050 до 1,6% по весу один или более редкоземельных металлов, макс. 0,2% железо и остальное - алюминий. Сплав обладает высокими прочностными свойствами и предусмотрен для применения в литье под давлением и родственных способах. 2 н. и 6 з.п. ф-лы, 1 табл.

Подробнее
20-04-2016 дата публикации

УСОВЕРШЕНСТВОВАННЫЕ АЛЮМИНИЕВЫЕ СПЛАВЫ 7ХХХ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ

Номер: RU2581544C2
Принадлежит: АЛКОА ИНК. (US)

Изобретение относится к получению изделий из алюминиевых сплавов 7ххх. Способ получения продуктов из деформируемого алюминиевого сплава 7ххх, содержащего 2,0-22 мас.% цинка и по меньшей мере 1,0 мас.% меди, включает приготовление изделия из алюминиевого сплава для послезакалочной холодной обработки давлением, холодную обработку давлением изделия на более чем 50% и термическую обработку с приданием формы во время этапа термической обработки, при этом упомянутое приготовление содержит этап закалки, а холодную обработку давлением и термическую обработку осуществляют для получения нерекристаллизованной микроструктуры, имеющей менее чем 50%-ю объемную долю зерен, имеющих разброс ориентации зерен не более 3°. Изобретение направлено на улучшение прочностных свойств сплавов 7ххх. 10 з.п. ф-лы, 3 пр., 17 табл., 31 ил.

Подробнее
07-12-2018 дата публикации

СПОСОБ ОБРАБОТКИ ЗЕРКАЛА ЦИЛИНДРА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

Номер: RU2674362C2

Изобретение относится к способу обработки зеркала цилиндра двигателя внутреннего сгорания, выполненного из алюминия или его сплава, включающему хонингование зеркала цилиндра в заготовке с образованием хонингованного зеркала цилиндра, имеющего в ненагруженном состоянии нецилиндрическую исходную форму, способного деформироваться под нагрузкой до цилиндрической формы, и нанесение покрытия на хонингованное зеркало цилиндра электролизом с образованием зеркала цилиндра с покрытием, причем часть покрытия врастает в основной материал, а другая его часть создается снаружи на поверхности основного материала, при этом часть покрытия, которая создается снаружи, имеет большую толщину, чем часть покрытия, вросшая в основной материал. Изобретение направлено на увеличение срока службы двигателя за счет устранения в процессе эксплуатации девиации и получения качественного покрытия. 8 з.п. ф-лы, 5 ил.

Подробнее
20-07-2012 дата публикации

БОКОВОЙ МАТЕРИАЛ И СПОСОБ ЕГО ПРОИЗВОДСТВА И СПОСОБ ПРОИЗВОДСТВА ПЛАКИРОВАННОГО ЭЛЕМЕНТА ДЛЯ ТЕПЛООБМЕННИКА

Номер: RU2456526C2

Изобретение может быть использовано при производстве теплообменников автомобильного транспортного средства. Плакированный элемент для теплообменника содержит материал сердцевины и один или более слоев бокового материала, ламинированного на одной из его сторон или обеих его сторонах. На поверхности бокового материала (А) сформировано множество периодических и дугообразных в продольном направлении бокового материала мелких канавок (В). Канавки простираются к внешнему периферийному краю бокового материала и имеют радиус кривизны 800-1500 мм и период (D) 1-8 мм в вышеупомянутом направлении. Шероховатость поверхности бокового материала (А) и составляет 1-15 мкм по средней по 10-ти точкам шероховатости (Rz). Боковой материал производят путем разрезания слитка на материал заданной толщины и выравнивания в горизонтальном положении с продольным направлением резаного материала. Центр вращающегося дискового устройства соответствует центру слитка по ширине. За счет контролирования состояния поверхности ...

Подробнее
31-05-2019 дата публикации

ЛИСТ ИЗ АЛЮМИНИЕВОГО СПЛАВА ДЛЯ КОНСТРУКЦИИ АВТОМОБИЛЬНОГО КУЗОВА

Номер: RU2690253C2

Изобретение относится к получению и применению листа из алюминиевого сплава для изготовления штампованной конструкции кузова или конструкционной детали кузова автомобиля, называемой еще «неокрашенный кузов», причем лист имеет предел текучести Rне ниже чем 60 МПа, и удлинение при одноосном растяжении Ag0, не ниже чем 34%.Способ получения листа из алюминиевого сплава для изготовления штампованной конструкции кузова или конструкционной детали кузова автомобиля, включает вертикальную непрерывную или полунепрерывную разливку сляба, имеющего состав, в мас.%: Si: 0,15-0,50; Fe: 0,3-0,7; Cu: 0,05-0,10; Mn: 1,0-1,5; другие элементы <0,05 каждый и <0,15 в общем, остальное алюминий, и обдирку сляба, гомогенизацию при температуре, по меньшей мере, 600°С в течение, по меньшей мере, 5 часов с последующим регулируемым охлаждением до температуры 550°С-450°С за по меньшей мере 7 часов, затем охлаждением до комнатной температуры за по меньшей мере 24 часа, нагрев до температуры 480°С-530°С с подъемом температуры ...

Подробнее
11-11-2019 дата публикации

ИЗДЕЛИЯ ИЗ АЛЮМИНИЕВОГО СПЛАВА

Номер: RU2705740C2
Принадлежит: АРКОНИК ИНК. (US)

Изделие из алюминиевого сплава включает пару внешних областей и внутреннюю область, расположенную между этими внешними областями. Первая концентрация эвтектикообразующих легирующих элементов во внутренней области меньше, чем вторая концентрация эвтектикообразующих легирующих элементов в каждой из внешних областей, при этом изделие из алюминиевого сплава имеет значение степени плоскостной анизотропии дельта r от 0 до 0,10. Значение дельта r вычисляется как абсолютное значение [(r_L+r_LT-2*r_45)/2], где r_L – значение r в продольном направлении изделия из алюминиевого сплава, r_LT – значение r в поперечном направлении изделия из алюминиевого сплава и r_45 – значение r в направлении 45 градусов изделия из алюминиевого сплава. Техническим результатом является создание изделия, имеющего низкую степень плоскостной анизотропии. 2 н. и 16 з.п. ф-лы, 5 табл., 10 пр.

Подробнее
20-02-2014 дата публикации

ОТЖИГ ХОЛОДНОКАТАНОЙ МЕТАЛЛИЧЕСКОЙ ПОЛОСЫ

Номер: RU2507299C2
Принадлежит: ЛИНДЕ АГ (DE)

Изобретение относится к области термообработки алюминиевых полос. Способ характеризуется тем, что холоднокатаная полоса из алюминия непрерывно транспортируется по маршруту транспортировки, где расположен, по меньшей мере, один горелочный мост с горелками прямого воздействия пламени (DFI) для нагревания полосы, причем горелочный мост расположен перпендикулярно к направлению движения полосы, горелки прямого воздействия пламени (DFI) взаимно расположены так, чтобы полоса нагревалась по всей ширине до одинаковой или, по существу, почти одинаковой температуры, при этом скорость прохождения полосы через горелочный мост и тепловую мощность горелок устанавливают такими, чтобы при тепловой обработке выполнялся отжиг полосы, и полоса могла наматываться в рулон. Изобретение позволяет сократить процесс термообработки алюминиевой полосы и одновременно повысить стабильность механических свойств и качество ее поверхности. 6 з.п. ф-лы, 6 ил.

Подробнее
10-01-2010 дата публикации

ПРИСАДОЧНАЯ ПРОВОЛОКА ДЛЯ СВАРКИ АЛЮМИНИЕВЫХ СПЛАВОВ

Номер: RU2378095C2
Принадлежит: АЛЮМИНИЮМ ПЕШИНЭ (FR)

Изобретение может быть использовано для любых технологий сварки плавлением, в частности для сварки в инертных газах плавящимся электродом, вольфрамовым электродом, для лазерной сварки. Присадочная проволока на алюминиевой основе содержит от 0,1 до 6 мас.% титана, часть которого представлена в виде частиц TiB2 и/или TiC, а другая часть - в виде свободного титана. В качестве необязательных элементов она может содержать магний, марганец, хром, железо, кремний, цинк, ванадий, цирконий, бериллий. Проволока может быть выполнена на основе сплава серии 5ххх или серии 4ххх. Ее применение приводит к получению сварного соединения с более мелкодисперсным зерном, обеспечивающим его высокую механическую прочность. 3 н. и 15 з.п. ф-лы, 3 табл.

Подробнее
27-01-2009 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ ЦЕЛЬНОЙ МОНОЛИТНОЙ АЛЮМИНИЕВОЙ КОНСТРУКЦИИ И АЛЮМИНИЕВОЕ ИЗДЕЛИЕ, ИЗГОТОВЛЕННОЕ ПУТЕМ МЕХАНИЧЕСКОЙ ОБРАБОТКИ РЕЗАНИЕМ ИЗ ТАКОЙ КОНСТРУКЦИИ

Номер: RU2345172C2

Настоящее изобретение относится к способу изготовления цельной монолитной алюминиевой конструкции и к алюминиевому изделию, изготовленному этим способом. Получают пластины из алюминиевого сплава с заданной толщиной. Профилируют или формуют упомянутые пластины из алюминиевого сплава для получения заданной профилированной конструкции. Упомянутая профилированная конструкция имеет толщину в диапазоне от 10 до 220 мм. Проводят термическую обработку упомянутой профилированной конструкции и механическую обработку резанием. Получают цельную монолитную алюминиевую конструкцию, обладающую улучшенными свойствами, такими как прочность, вязкость и коррозионная стойкость. 2 н. и 15 з.п. ф-лы, 3 ил.

Подробнее
03-09-2018 дата публикации

УЛУЧШЕННЫЕ АЛЮМИНИЙ-МАГНИЙ-ЛИТИЕВЫЕ СПЛАВЫ И СПОСОБЫ ИХ ИЗГОТОВЛЕНИЯ

Номер: RU2665655C2
Принадлежит: Арконик Инк. (US)

Изобретение относится к алюминий-магний-литиевым сплавам и может быть использовано в различных областях промышленности. Алюминиевый сплав содержит, мас.%: 2,0-3,9 Mg, 0,1-1,8 Li, 0,4-2,0 Zn, 0,35-1,5 Cu, до 1,0 Ag, до 1,5 Mn, до 0,5 Si, до 0,35 Fe, необязательно по меньшей мере один вспомогательный элемент, выбранный из группы, состоящей из Zr, Sc, Cr, Hf, V, Ti и редкоземельных элементов, в следующих количествах: до 0,20 Zr, до 0,30 Sc, до 0,50 Cr, до 0,25 каждого любого из Hf, V и редкоземельных элементов, до 0,10 Ti, остальное - алюминий. Способ получения заготовок из алюминиевого сплава включает разливку алюминиевого сплава, горячую прокатку, охлаждение полуфабриката до температуры не более чем 400°F, холодную прокатку до окончательной толщины, при этом толщину полуфабриката уменьшают на величину от 2% до 22%, или растяжение полуфабриката на 1-10 %, причем температуру сплава между охлаждением и холодной прокаткой или растяжением поддерживают при температуре не более чем 400°F. Изобретение ...

Подробнее
10-02-2007 дата публикации

СПОСОБ ОБРАБОТКИ НЕПРЕРЫВНО-ЛИТЫХ СЛЯБОВ ИЛИ ПОЛОСЫ, А ТАКЖЕ ПОЛУЧЕННЫЕ ТАКИМ ОБРАЗОМ ЛИСТ И ПОЛОСА

Номер: RU2292967C2

Изобретение относится к области обработки непрерывно-литых металлических слябов или полосы. Задачей изобретения является улучшение механических свойств, таких как прочность, вязкость и т.п., в получаемых изделиях. Изобретение включает пропускание сляба или полосы через группу вращающихся валков прокатной клети для их прокатки. Валки прокатной клети имеют различные окружные скорости, и различие между этими окружными скоростями составляет не менее 5% и не более 100%. Толщину сляба или полосы уменьшают за каждый проход не больше чем на 15%. Получаемые изделия могут быть изготовлены из алюминия, меди, стали, магния или титана или сплавов любого из этих металлов. Размер пор в сердцевине не должен превышать 20 мкм. Средняя длина зерна в 2-20 раз превышает его толщину. Степень рекристаллизации однородна по всей длине изделия. Изобретение обеспечивает закрытие пор в непрерывно-литом материале, измельчение зерна, разрушение эвтектических частиц. 5 н. и 18 з.п. ф-лы.

Подробнее
28-09-2018 дата публикации

ЛИСТ ИЗ АЛЮМИНИЕВОГО СПЛАВА ДЛЯ МЕТАЛЛИЧЕСКИХ БУТЫЛОК ИЛИ АЭРОЗОЛЬНЫХ БАЛЛОНОВ

Номер: RU2668357C2

Изобретение относится к способу изготовления листа из алюминиевого сплава, используемого для изготовления металлических бутылок или аэрозольных баллонов. Способ получения листа включает литье сляба из алюминиевого сплава, содержащего, мас.%: Si: 0,10-0,35, Fe: 0,30-0,55, Cu: 0,05-0,20, Mn: 0,70-1,0, Mg: 0,80-1,30, Zn: ≤0,25, Ti: <0,10, неизбежные примеси <0,05 каждая и <0,15 всего, остальное - алюминий, удаление поверхностного слоя и гомогенизацию сляба при температуре 550-630°С в течение по меньшей мере одного часа, горячую прокатку, первый этап холодной прокатки с коэффициентом обжатия 35-80%, рекристаллизационный отжиг, повторную холодную прокатку с коэффициентом обжатия 10-35% до толщины 0,35-1,0 мм, при этом рекристаллизационный отжиг осуществляют при температуре 300-400°С в течение по меньшей мере одного часа. Полученный лист имеет предел текучести после термообработки при 205°С в течение 10 минут, имитирующей сушку лаков, 170-210 МПа, а предел прочности при растяжении - 200-240 МПа ...

Подробнее
13-06-2017 дата публикации

Способ получения прутков из высокопрочного алюминиевого сплава

Номер: RU2622199C1

Изобретение относится к области металлургии высокопрочных материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок, таких как детали летательных аппаратов, автомобилей и других транспортных средств, детали спортинвентаря и др. Способ получения прутков из алюминиевых сплавов системы алюминий-цинк-магний-никель-железо-цирконий включает приготовление расплава на основе алюминия, полученного по технологии электролиза с инертным анодом и содержащего железо, введение в него цинка, магния, никеля, меди и циркония, получение цилиндрического слитка, его термическую и деформационную обработку методом радиально-сдвиговой прокатки при температуре от 270 до 300°C с суммарным обжатием от 65 до 85% и частоте вращения валков от 40 до 60 об/мин и упрочняющую термообработку полученного прутка, включающую закалку и искусственное старение. Изобретение направлено на получение высокопрочных калиброванных прутков со следующим уровнем механических ...

Подробнее
27-11-2020 дата публикации

Номер: RU2019115595A3
Автор:
Принадлежит:

Подробнее
09-09-2019 дата публикации

Номер: RU2017137742A3
Автор:
Принадлежит:

Подробнее
06-03-2018 дата публикации

Номер: RU2015143481A3
Автор:
Принадлежит:

Подробнее
05-09-2017 дата публикации

Способ получения слитков и тонколистового проката из бор-содержащего алюминиевого сплава

Номер: RU2630185C1

Изобретение относится к области металлургии, в частности к борсодержащим алюминиевым сплавам, к которым предъявляют требования по поглощению нейтронного излучения в сочетании с низким удельным весом и высокой прочностью. Способ получения тонколистового проката из слитков борсодержащего алюминиевого сплава включает приготовление алюминиевого расплава, содержащего медь, введение бора в количестве от 2 до 2,8 масс. % в виде боридных частиц, получение слитка путем кристаллизации расплава, горячую прокатку, промежуточный отжиг, холодную прокатку, при этом в алюминиевый расплав вводят от 1,8 до 2,5 масс. % меди и от 1,4 до 2,2% марганца, литой слиток подвергают горячей прокатке при температуре от 400 до 450°C, а после холодной прокатки проводят отжиг при температуре от 360 до 400°C. Способ позволяет реализовать структуру тонколистового проката, обеспечивающую наилучшее сочетание эксплуатационных свойств, в частности прочности и пластичности. В частном случае способ позволяет получить прокат толщиной ...

Подробнее
10-12-1998 дата публикации

ТЕРМООБРАБАТЫВАЮЩАЯ УСТАНОВКА ДЛЯ ДИФФУЗИОННОГО ОТЖИГА КОНСТРУКТИВНЫХ ЭЛЕМЕНТОВ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ В АВИАЦИОННОЙ ПРОМЫШЛЕННОСТИ

Номер: RU2123063C1

Изобретение относится к термообрабатывающей установке для диффузионного отжига конструктивных элементов из алюминиевых сплавов в авиационной промышленности. Техническим результатом является возможность бездефектно автоматически проводить диффузионный отжиг конструктивных элементов в соответствии с заданными техническими предписаниями с минимальной затратой времени на процесс при воспроизводимых технологических условиях, термообрабатывающая установка имеет следующие узлы: несколько транспортерных лент/лентопротяжных роликов, транспортную систему для транспортировки конструктивных элементов, печь непрерывного действия с транспортирующей конструктивные элементы через печь транспортерной лентой и с системой обогрева для нагревания конструктивных элементов до температуры отжига, а также расположенное после печи непрерывного действия устройство для закалки конструктивных элементов, содержащее жидкую закалочную среду, примыкающую к закалочному устройству систему очистки и сушки, через которую ...

Подробнее
18-12-2019 дата публикации

КОМПАКТНАЯ ЛИНИЯ ГОМОГЕНИЗАЦИИ НЕПРЕРЫВНЫМ ОТЖИГОМ

Номер: RU2709494C1
Принадлежит: НОВЕЛИС ИНК. (US)

Компактная линия термообработки может содержать короткую зону нагрева для быстрого нагрева металлической полосы до температуры солюционирования, применяя магнитные роторы, такие как магнитные роторы с постоянными магнитами. Быстрая и эффективная зона томления может быть достигнута за счет применения магнитных роторов, обеспечивающих левитирование металлической полосы внутри заполненной газом камеры. Магнитные роторы могут дополнительно обеспечивать левитирование металлической полосы в зоне закалки и могут дополнительно повторно нагревать металлическую полосу перед окончательным наматыванием. Магнитные роторы, применяемые для нагрева и/или левитирования металлической полосы, также могут обеспечивать управление натяжением, могут облегчить начальное заправление металлической полосы и могут отверждать покрытия и/или способствовать однородности покрытий/смазок, наносимых на металлическую полосу, без перегрева. Такая линия термообработки может обеспечить непрерывный отжиг и гомогенизацию в гораздо ...

Подробнее
29-05-2019 дата публикации

АЛЮМИНИЕВЫЙ СПЛАВ

Номер: RU2689825C1

Изобретение относится к области металлургии, в частности к алюминиевым сплавам, которые могут быть использованы, для получения термонагруженных деталей для автомобильной промышленности путем прессования выдавливанием, ковки или литья в многократные формы. Алюминиевый сплав содержит, мас.%: 0,2-1,8 Si, 0,2-1,8 Mg, 0,8-2,5 Mn, 0,2-1,5 Fe, 0,05-0,75 Zr, 0,03-0,18 Ti, необязательно, один или более из следующих элементов: макс. 0,1 Cr, макс. 0,05 Cu, 0,2-1,8 Zn, 0,02-0,5 Er; и, необязательно, 0,01-0,2 измельчающей зерно добавки, содержащей Ti и B; остальное - алюминий и неизбежные примеси. Изобретение направлено на получение сплава с повышенной термостойкостью при хороших значениях твердости. 3 н. и 18 з.п. ф-лы, 1 пр., 4 табл.

Подробнее
06-08-2019 дата публикации

Способ получения катанки из термостойкого алюминиевого сплава

Номер: RU2696794C1

Изобретение относится к области металлургии, а именно к способам получения изделий электротехнического назначения на основе алюминия, применяемых для изготовления электротехнической катанки и проводов высоковольтных линий электропередач. Способ включает приготовление расплава, содержащего, мас.%: 0,2-0,4 Zr, 0,2-0,4 Si, 0,6-0,8 Fe, Al – остальное, при температуре 800-900°С, кристаллизацию со скоростью 5 °С/с, получение катанки путем горячей деформации литой заготовки, намотку катанки в бухты, термическую обработку бухт катанки при температуре 200-600°С в течение не более 24 часов с последующим охлаждением на воздухе. Техническим результатом изобретения является повышение электропроводности катанки без потери оптимального уровня термостойкости и механических свойств. 3 пр., 3 табл.

Подробнее
10-06-2006 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ ЦЕЛЬНОЙ МОНОЛИТНОЙ АЛЮМИНИЕВОЙ КОНСТРУКЦИИ И АЛЮМИНИЕВОЕ ИЗДЕЛИЕ, ИЗГОТОВЛЕННОЕПУТЕМ МЕХАНИЧЕСКОЙ ОБРАБОТКИ ИЗ ТАКОЙ КОНСТРУКЦИИ

Номер: RU2005131942A
Принадлежит:

... 1. Способ изготовления цельной монолитной алюминиевой конструкции, включающий в себя стадии a) получения пластины (4) из алюминиевого сплава с заданной толщиной (у); b) профилирования или формования упомянутой пластины (4) из алюминиевого сплава для получения заданной профилированной конструкции (5); c) термической обработки упомянутой профилированной конструкции (5); d) необязательной механической обработки упомянутой профилированной конструкции (5) для получения цельной монолитной алюминиевой конструкции (6). 2. Способ по п.1, в котором упомянутая термическая обработка на стадии с) включает в себя естественное старение, искусственное старение или обработку отжигом. 3. Способ по п.1 или 2, в котором упомянутую профилированную конструкцию (5) подвергают искусственному старению до состояния Т6, Т79, Т78, Т77, Т76, Т74, Т73 или Т8. 4. Способ по п.1, в котором процесс профилирования или формирования во время стадии b) включает в себя холодное формование. 5. Способ по п.1, в котором упомянутая ...

Подробнее
10-05-2005 дата публикации

ТОНКИЕ ПОЛОСЫ ИЗ АЛЮМИНИЕВО-ЖЕЛЕЗНОГО СПЛАВА

Номер: RU2004127592A
Принадлежит:

... 1. Применение полос из алюминиевого сплава толщиной в пределах от 30 до 150 мкм с составом (в мас.%): Si<0,4; Fe:1,5-1, 9; Mn:0,04-0,15; другие элементы:<0,05 каждый и 0,15 в сумме, остальное составляет алюминий, для изготовления лотков и контейнеров для пищевых продуктов. 2. Способ изготовления лотков и контейнеров для пищевых продуктов, включающий в себя: а) получение сплава с составом (в мас.%): Si<0,4; Fe:1,5-1,9; Mn:0,04-0,15; другие элементы: <0,05 каждый и 0, 15 в сумме, остальное составляет алюминий; б) непрерывное литье между валками полосы толщиной в пределах от 2 до 10 мм; в) в случае необходимости гомогенизация этой полосы при температуре от 420 до 550°С; г) холодная прокатка этой полосы до конечной толщины от 30 до 150 мкм, в случае необходимости с промежуточным отжигом в течение от 1 до 4 ч при температуре от 300 до 350°С; д) конечный отжиг при температуре от 200 до 430°С в течение по меньшей мере 30 ч; е) конечное формование для получения лотков или контейнеров. 3. Способ ...

Подробнее
10-11-2011 дата публикации

РЕКРИСТАЛЛИЗОВАННЫЕ АЛЮМИНИЕВЫЕ СПЛАВЫ С ТЕКСТУРОЙ ЛАТУНИ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ

Номер: RU2010117372A
Принадлежит:

... 1. Рекристаллизованный алюминиевый сплав, имеющий текстуру латуни и текстуру Госса, причем количество текстуры латуни превышает количество текстуры Госса, и при этом рекристаллизованный алюминиевый сплав обладает по меньшей мере примерно таким же пределом текучести на растяжение и вязкостью разрушения, как и эквивалентный по составу нерекристаллизованный сплав того же вида продукта и сходных толщины и состояния. ! 2. Рекристаллизованный алюминиевый сплав по п.1, причем количество текстуры латуни по меньшей мере в 2 раза больше, чем количество текстуры Госса. ! 3. Рекристаллизованный алюминиевый сплав по п.1, причем рекристаллизованный алюминиевый сплав имеет отношение интенсивности текстуры латуни к интенсивности текстуры Госса по меньшей мере 2. ! 4. Рекристаллизованный алюминиевый сплав по п.1, причем доля площади зерен с ориентацией латуни составляет по меньшей мере примерно 10%, и при этом доля площади зерен с ориентацией Госса составляет не более чем примерно 5%. ! 5. Рекристаллизованный ...

Подробнее
27-12-2016 дата публикации

УСТРОЙСТВО И СПОСОБ ДЛЯ ПРИДАНИЯ ВЫБРАННЫХ ТОПОГРАФИЙ АЛЮМИНИЕВОМУ ЛИСТУ

Номер: RU2015121947A
Принадлежит:

... 1. Способ обработки поверхности рабочего валка для прокатки алюминиевого листа, содержащий следующие стадии:создание углублений на поверхности рабочего валка с использованием сферического средства с получением поверхности, которая от 60% до 100% покрыта углублениями, при этом углубления не имеют граней.2. Способ по п. 1, в котором углубления имеют утопленную центральную область относительно средней высоты поверхности и выступающий плавный периферийный выступ, имеющий в своей вершине бóльшую высоту, чем средняя высота поверхности.3. Способ по п. 2, в котором углубления имеют диаметр в диапазоне от 200 мкм до 400 мкм и глубину относительно вершины периферийного выступа в диапазоне от 0,5 мкм до 2,0 мкм.4. Способ по п. 1, в котором сферическое рабочее средство, используемое для создания углублений, представляет собой стальные подшипниковые шарики.5. Способ по п. 4, в котором подшипниковые шарики имеют диаметр ≤0,125 дюйма и твердость по Роквеллу ≥60.6. Способ по п. 1, в котором сферическое ...

Подробнее
02-03-2020 дата публикации

Придание шероховатости поверхности полимерных пленок

Номер: RU2715654C1
Принадлежит: НОВЕЛИС ИНК. (US)

Изобретение относится к металлообработке и, более конкретно, к улучшению шероховатости поверхности ламинированных металлических изделий, таких как алюминиевые банки для напитков. Шероховатость поверхности полимерной пленки, которой ламинирована металлическая подложка, может быть улучшена за счет применения достаточного нагрева после нанесения слоя воска на полимерную пленку. В некоторых случаях тонкую жидкую пленку или слой дисперсии воска на водной основе могут наносить на поверхность металлической подложки, ламинированной полимерной пленкой. После нагревания полимерной пленки и слоя воска до температуры, при которой полимерная пленка и слой воска начинают расплавляться, шероховатость поверхности полимерной пленки может улучшиться благодаря наличию воска. Изобретение обеспечивает создание банки для напитков, обладающей достаточной защитой между металлом банки для напитка и содержащимся в нем напитком, чтобы избежать повреждения металла агрессивными напитками, такими как газированные напитки ...

Подробнее
17-01-2020 дата публикации

СПЛАВ С ВЫСОКОЙ ПРОЧНОСТЬЮ И КОРРОЗИОННОЙ СТОЙКОСТЬЮ ДЛЯ ПРИМЕНЕНИЯ В СИСТЕМАХ ОВКВиО

Номер: RU2711394C1
Принадлежит: НОВЕЛИС ИНК. (US)

Изобретение относится к алюминиевым сплавам, которые могут быть использованы для производства компонентов систем отопления, вентиляции, кондиционирования воздуха и охлаждения (ОВКВиО) во внутренних и наружных блоках. Сплав алюминия содержит, мас.%: Cu 0,01-0,4, Fe 0,05-0,40, Mg 0,05-0,8, Mn 0,001-2,0, S 0,05-0,25, Ti 0,001-0,20, Zn 0,001-0,20, Cr 0-0,05, Pb 0-0,005, Ca 0-0,03, Cd 0-0,004, Li 0-0,0001, Na 0-0,0005, неизбежные примеси до 0,03 каждой и до 0,10 в сумме, остальное - алюминий. Способ изготовления сплава алюминия включает получение отливки из сплава алюминия, гомогенизацию отливки, горячую прокатку, холодную прокатку листа промежуточной толщины для получения листа конечной толщины и отжиг листа конечной толщины. Изобретение направлено на повышение долговечности компонентов ОВКВиО за счет получения сплавов с высокой прочностью и хорошей коррозионной стойкостью. 5 н. и 16 з.п. ф-лы, 4 пр., 4 табл., 11 ил.

Подробнее
22-06-2020 дата публикации

СИСТЕМЫ И СПОСОБЫ БЕСКОНТАКТНОГО НАТЯЖЕНИЯ МЕТАЛЛИЧЕСКОЙ ПОЛОСЫ

Номер: RU2724273C1
Принадлежит: НОВЕЛИС ИНК. (US)

Изобретение относится к области прокатки. Способы бесконтактного натяжения металлической полосы во время обработки металла включают пропускание металлической полосы рядом с магнитным ротором. Магнитный ротор расположен на первом расстоянии от металлической полосы, при этом создают натяжение металлической полосы посредством магнитного ротора путем вращения магнитного ротора. Вращение магнитного ротора приводит к возбуждению магнитного поля в металлической полосе, так что металлическая полоса испытывает натяжение в направлении вверх или вниз по технологической цепочке. В других аспектах вращение магнитного ротора возбуждает магнитное поле в металлической полосе, так что к металлической полосе прилагается усилие, нормальное к поверхности металлической полосы. Изобретение обеспечивает возможность регулирования усилия натяжения полосы при ее разматывании или сматывании в процессе прокатки без повреждения ее поверхности. 3 н. и 14 з.п. ф-лы, 8 ил.

Подробнее
27-05-2010 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ КОНСТРУКТИВНОГО ЭЛЕМЕНТА ДЛЯ АВИАСТРОЕНИЯ, СОДЕРЖАЩИЙ ДИФФЕРЕНЦИАЛЬНУЮ ХОЛОДНУЮ ПРОКОВКУ

Номер: RU2008145888A
Принадлежит:

... 1. Способ изготовления сваренного кузнечным способом изделия из алюминиевого сплава, содержащий этап горячей обработки давлением, отличающийся тем, что после горячей обработки давлением он содержит также, по меньшей мере, один этап холодной обработки давлением с помощью пластической деформации, на котором, по меньшей мере, две зоны упомянутого сваренного кузнечным способом изделия подвергают средним обобщенным пластическим деформациям, отличающимся, по меньшей мере, на 2% и предпочтительно отличающимся, по меньшей мере, на 3%. ! 2. Способ по п.1, содержащий, по меньшей мере, два этапа холодной обработки давлением с помощью пластической деформации, следующие за горячей обработкой давлением. ! 3. Способ по любому из пп.1 и 2, в котором упомянутым алюминиевым сплавом является термообрабатываемый сплав, причем упомянутый способ содержит между горячей обработкой давлением и первой холодной обработкой давлением с помощью пластической деформации этап растворения и этап закалки. ! 4. Способ по ...

Подробнее
27-11-2012 дата публикации

ИСХОДНЫЙ МАТЕРИАЛ ДЛЯ МЕТАЛЛИЧЕСКОГО ИЗДЕЛИЯ ИЗ ФОЛЬГИ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Номер: RU2011118459A
Принадлежит:

... 1. Изделие, содержащее:алюминиевый сплав, изготовленный способом бесслиткового литья,при этом алюминиевый сплав имеет толщину от около 5 мкм до около 150 мкм для изделия из фольги, причем алюминиевый сплав является свободным от интерметаллических частиц бета фазы.2. Изделие по п.1, содержащееалюминиевый сплав 8111, изготовленный способом бесслиткового литья, илиалюминиевый сплав 8921, изготовленный способом бесслиткового литья.3. Изделие по п.1, в которомизделие имеет предел прочности на разрыв после полного отжига, который по меньшей мере на 10% больше по сравнению со средними величинами того же сплава в отливке после полного отжига с использованием литья в сляб или валкового литья,при этом изделие имеет удлинение после полного отжига, которое по меньшей мере на 10% больше по сравнению со средними величинами того же сплава в отливке после полного отжига с использованием литья в сляб или валкового литья,причем изделие имеет давление Муллена после полного отжига, которое по меньшей мере ...

Подробнее
27-11-2009 дата публикации

АЛЮМИНИЕВЫЙ СПЛАВ И ЕГО ПРИМЕНЕНИЕ В СПОСОБАХ ЛИТЬЯ ПОД ДАВЛЕНИЕМ

Номер: RU2007147204A
Принадлежит:

... 1. Алюминиевый сплав, отличающийся тем, что он содержит: от 4,5 до 6,5% по весу магний, от 1,0 до 3,0% по весу кремний, от 0,3 до 1,0% по весу марганец, от 0,02 до 0,3% по весу хром, от 0,02 до 0,2% по весу титан, от 0,02 до 0,2% по весу цирконий, от 0,0050 до 1,6% по весу один или несколько редкоземельных металлов, макс. 0,2% железо и остальное алюминий. ! 2. Алюминиевый сплав по п.1, отличающийся тем, что он содержит: от 5,5 до 6,5% по весу магний, от 2,4 до 2,8% по весу кремний, от 0,4 до 0,6% по весу марганец, от 0,05 до 0,15% по весу хром. ! 3. Алюминиевый сплав по п.1 или 2, отличающийся тем, что он содержит цирконий в количестве от 0,05 до 0,2% по весу. ! 4. Алюминиевый сплав по п.1 или 2, отличающийся тем, что редкоземельный металл представлен самарием, церием или лантаном. ! 5. Алюминиевый сплав по п.1 или 2, отличающийся тем, что в качестве редкоземельного металла содержит церий и самарий. ! 6. Алюминиевый сплав по п.1 или 2, отличающийся тем, что в качестве редкоземельного металла ...

Подробнее
27-10-2012 дата публикации

СПОСОБ ФОРМИРОВАНИЯ ЛИСТОВЫХ КОМПОНЕНТОВ ИЗ АЛЮМИНИЕВОГО СПЛАВА

Номер: RU2011115214A
Принадлежит:

... 1. Способ формования листового компонента из алюминиевого сплава, включающий: ! (i) нагрев листовой заготовки из алюминиевого сплава до температуры термообработки на твердый раствор (SHT) на станции нагрева и в случае сплавов, не подвергаемых предварительной закалке с последующим старением, поддержание температуры SHT до завершения термообработки на твердый раствор, ! (ii) подачу листовой заготовки на ряд холодных штампов и начало формования в течение 10 с с момента ее извлечения из станции нагрева, так что потери тепла от листовой заготовки уменьшаются до минимума, ! (iii) закрывание холодных штампов для формования листовой заготовки в отформованный компонент, при этом формование происходит менее чем за 0,15 с и ! (iv) выдержку отформованного компонента в закрытых штампах во время охлаждения отформованного компонента. ! 2. Способ по п.1, в котором время выдержки отформованного компонента в закрытых штампах является достаточно долгим для достижения отформованным компонентом температуры ...

Подробнее
27-05-2014 дата публикации

ВЫСОКОПРОЧНЫЕ КОВАНЫЕ ИЗДЕЛИЯ ИЗ АЛЮМИНИЕВОГО СПЛАВА

Номер: RU2012149117A
Принадлежит:

... 1. Кованое изделие из алюминиевого сплава, имеющее кристаллическую микроструктуру с зернами, причем зерна включают зерна первого типа и зерна второго типа, при этом кристаллическая микроструктура содержит от примерно 5 об.% до примерно 50 об.% зерен первого типа, при этом зерна первого типа по меньшей мере включают характерные первые зерна, и при этом характерные первые зерна имеют среднее отношение размеров, составляющее по меньшей мере примерно 3,5:1 в плоскости LT-ST.2. Кованое изделие из алюминиевого сплава по п.1, при этом характерные первые зерна имеют среднее отношение размеров, составляющее по меньшей мере примерно 5:1 в плоскости L-ST.3. Кованое изделие из алюминиевого сплава по п.1, при этом кованое изделие из алюминиевого сплава реализует максимальную интенсивность ODF, составляющую по меньшей мере примерно 30.4. Кованое изделие из алюминиевого сплава по п.1, при этом полюсная фигура (111) кованого изделия из алюминиевого сплава содержит множество представлений максимальной интенсивности ...

Подробнее
27-05-2013 дата публикации

АЛЮМИНИЕВАЯ ЛЕНТА С ВЫСОКИМ СОДЕРЖАНИЕМ МАРГАНЦА И МАГНИЯ

Номер: RU2011147703A
Принадлежит:

... 1. Подложка для офсетных печатных форм, состоящая из алюминиевого сплава, характеризующаяся тем, что алюминиевый сплав содержит следующие компоненты, мас.%:0,2%≤Fe≤0,5%,0,41%≤Mg≤0,7%,0,05%≤Si≤0,25%,0,31%≤Mn≤0,6%,Cu≤0,04%,Ti<0,1%,Zn≤0,1%,Cr≤0,1%,остальное Al и неизбежные примеси, каждая из которых присутствует в количестве не более 0,05%, а в целом они составляют максимум 0,15%.2. Подложка для офсетных печатных форм по п.1, характеризующаяся тем, что алюминиевый сплав содержит Mn в количестве, мас.%:0,5%≤Mn≤0,6%.3. Подложка для офсетных печатных форм по п.1 или 2, характеризующаяся тем, что алюминиевый сплав содержит Mg в количестве, мас.%:0,5% Подробнее

20-10-2014 дата публикации

УЛУЧШЕННЫЕ АЛЮМИНИЕВЫЕ СПЛАВЫ 6ХХХ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ

Номер: RU2013115413A
Принадлежит:

... 1. Способ, включающий:(а) приготовление изделия из алюминиевого сплава с 0,1-2,0% масс. кремния и 0,1-3,0% масс. магния для послезакалочной холодной обработки давлением;(i) причем стадия приготовления включает закалку изделия из алюминиевого сплава;(ii) причем по меньшей мере один из кремния и магния является преобладающим легирующим элементом изделия из алюминиевого сплава помимо алюминия; и(iii) причем изделие из алюминиевого сплава содержит достаточно растворенных веществ, чтобы способствовать по меньшей мере одной из характеристики деформационного упрочнения и характеристики дисперсионного упрочнения, для достижения предела текучести при растяжении в длинном поперечном направлении по меньшей мере 60 ksi; и(b) после стадии приготовления (а), холодную обработку давлением изделия из алюминиевого сплава на по меньшей мере 50%;(с) после стадии холодной обработки давлением (b), термическую обработку изделия из алюминиевого сплава;при этом стадии холодной обработки давлением и термической ...

Подробнее
13-12-2019 дата публикации

ЛИСТ ДЛЯ ВЫСОКОТЕМПЕРАТУРНОЙ ПАЙКИ

Номер: RU2018121040A
Принадлежит:

Подробнее
10-05-2012 дата публикации

БОКОВОЙ МАТЕРИАЛ И СПОСОБ ЕГО ПРОИЗВОДСТВА И СПОСОБ ПРОИЗВОДСТВА ПЛАКИРОВАННОГО ЭЛЕМЕНТА ДЛЯ ТЕПЛООБМЕННИКА

Номер: RU2010144072A
Принадлежит:

... 1. Боковой материал, используемый в плакированном элементе для теплообменника, содержащем материал сердцевины и один или более слоев бокового материала, ламинированного на одной его стороне или обеих его сторонах, отличающийся тем, что ! в поверхности по меньшей мере одной стороны бокового материала сформировано множество периодических конфигураций мелких канавок, которые становятся дугообразными по одному направлению бокового материала, причем эти периодические конфигурации мелких канавок простираются до внешнего периферийного края бокового материала с радиусом кривизны 800-1500 мм и имеют период 1-8 мм в упомянутом направлении бокового материала, и ! шероховатость поверхности бокового материала в упомянутом направлении составляет 1-15 мкм по средней по десяти точкам шероховатости (Rz). ! 2. Боковой материал по п.1, отличающийся тем, что плоскостность бокового материала на метр в упомянутом направлении составляет 1 мм или менее. ! 3. Боковой материал по п.1, отличающийся тем, что толщина ...

Подробнее
10-04-2015 дата публикации

ПОЛУФАБРИКАТ ИЗ АЛЮМИНИЕВОГО СПЛАВА С УЛУЧШЕННОЙ МИКРОПОРИСТОСТЬЮ И СПОСОБ ИЗГОТОВЛЕНИЯ

Номер: RU2013142428A
Принадлежит:

... 1. Способ изготовления недеформованного полуфабриката из алюминиевого сплава, такого как сляб под прокатку или заготовка для прессования, включающий этапы:(i) приготовление ванны жидкого металла из сплава состава,вес.%:Si<0,5Fe<0,5необязательно, по меньшей мере(ii) обработка ультразвуком упомянутой ванны жидкого металла в печи и/или в сосуде с помощью погружного устройства, содержащего по меньшей мере один источник ультразвука,(iii) перенос упомянутой ванны жидкого металла, обработанной таким образом, в устройство кристаллизации,(iv) полунепрерывная вертикальная разливка с прямым охлаждением упомянутой обработанной ванны жидкого металла.2. Способ по п. 1, в котором упомянутую обработку ультразвуком осуществляют при полной мощности ультразвука P в течение длительности t, таких, чтобы энергия P×t была по меньшей мере равна минимальной энергии на единицу массы Eв 1 кДж/кг, причем минимальная длительность обработки единицы массы, обозначенная t=E/P.3. Способ по 2, в котором P по меньшей мере ...

Подробнее
10-10-2014 дата публикации

ТЕРМОСТОЙКИЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ПОЛУЧЕНИЯ ИЗ НЕГО ДЕФОРМИРОВАННЫХ ПОЛУФАБРИКАТОВ

Номер: RU2013102128A
Принадлежит:

... 1. Сплав на основе алюминия, содержащий медь, марганец, цирконий, кремний, железо и хром при следующем соотношении компонентов, мас.%:при этом сплав содержит цирконий в своей структуре в виде наночастиц фазы AlZr размером не более 20 нм, а марганец преимущественно образует вторичные выделения фазы AlCuMnразмером не более 500 нм в количестве не менее 2 об.%.2. Способ получения деформированного полуфабриката из сплава на основе алюминия по п.1, включающий приготовление расплава упомянутого сплава и получение литой заготовки путем кристаллизации расплава, которые проводят при температуре, превышающей температуру ликвидуса не менее чем на 50°С, получение промежуточного деформированного полуфабриката путем деформирования литой заготовки при температуре, не превышающей 350°С, которое проводят в два этапа с промежуточным отжигом при 340-350°С, последующий отжиг промежуточного деформированного полуфабриката при температуре 340-450°С, получение готового деформированного полуфабриката путем деформирования ...

Подробнее
27-08-2015 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ АЛЮМИНИЕВЫХ ДЕТАЛЕЙ

Номер: RU2014102632A
Принадлежит:

... 1. Способ изготовления алюминиевых деталей, в котором формируют деталь из заготовки, на поверхность которой предварительно нанесен подготовительный слой и смазочное покрытие; наносят клей на участок детали поверх подготовительного слоя и смазочного покрытия; наносят очиститель на деталь для удаления с поверхности подготовительного слоя и смазочного покрытия, за исключением участка, где нанесен клей; после чего наносят на деталь конверсионное покрытие.2. Способ по п.1, в котором подготовительный слой и смазочное покрытие наносят на рулон перед формированием заготовок.3. Способ по п.1, в котором подготовительный слой представляет собой слой гидроксида алюминия, связанный со слоем винилфосфоновой или винилфосфиновой кислоты.4. Способ по п.1, в котором смазочное покрытие представляет собой сухую смазку.5. Способ по п.4, в котором сухая смазка представляет собой смесь минерального масла и парафиновой смазки.6. Способ по п.1, в котором клей наносят на участок детали в области подогнутой кромки ...

Подробнее
27-02-2006 дата публикации

СПОСОБ ПОВЫШЕНИЯ УДАРНОЙ ВЯЗКОСТИ АЛЮМИНИЕВО-ЛИТИЕВЫХ СПЛАВОВ ПРИ КРИОГЕННЫХ ТЕМПЕРАТУРАХ

Номер: RU2004116870A
Принадлежит:

... 1. Способ (60) старения алюминиево-литиевого сплава С458, заключающийся в том, что алюминиево-литиевый сплав С458, находящийся в состоянии Т3, подвергают двухступенчатому старению (45), в результате чего указанный сплав приобретает свойства (51, 52), соответствующие упрочненному состоянию Т8, и повышенную ударную вязкость (53) при криогенных температурах по сравнению с ударной вязкостью при комнатной температуре, причем первую стадию двухступенчатого старения (45) сплава проводят в интервале температур примерно 175-250°F в течение примерно 12-192 ч, а вторую стадию (64) - в интервале температур примерно 275-310°F в течение примерно 12-96 ч. 2. Способ по п.1, в котором сплав имеет следующий номинальный состав, 15 мас.%: 1,8 Li, 2,7 Cu, 0,3 Mg, 0,08 Zr, 0,3 Mn и 0,6 Zn, остальное Al. 3. Способ по п.1, в котором сплав используют в виде изделия, имеющего форму пластины, листа, выдавленного профиля или кольца. 4. Способ по п.2, в котором сплав используют в виде изделия, имеющего форму пластины ...

Подробнее
20-05-2016 дата публикации

СПОСОБ ОБРАБОТКИ ЗЕРКАЛА ЦИЛИНДРА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

Номер: RU2014142556A
Принадлежит:

... 1. Способ обработки зеркала цилиндра двигателя внутреннего сгорания, в котором зеркало цилиндра в заготовке подвергают предварительному хонингованию для получения исходной формы, имеющей в состоянии без нагрузки отклонения от требуемой формы, и наносят на зеркало цилиндра покрытие путем электролиза.2. Способ по п. 1, в котором зеркало цилиндра подвергают предварительному фасонному хонингованию.3. Способ по п. 1, в котором при предварительной обработке заготовку подвергают хонингованию таким образом, чтобы в состоянии без нагрузки оно имело нецилиндрическую поверхность, которая во время эксплуатации способна деформироваться таким образом, чтобы была достигнута требуемая цилиндрическая форма.4. Способ по п. 1, в котором заготовку подвергают хонингованию практически до конечных размеров, причем при предварительной обработке учитывают нанесение слоя покрытия электролизом и последующую окончательную обработку.5. Способ по п. 1, в котором покрытие наносят методом плазменного электролитического ...

Подробнее
30-05-1987 дата публикации

Способ ускоренного охлаждения плоского проката (его варианты)

Номер: SU1314950A3

Изобретение относится к области охлаждения плоского проката. Цель изобретения - повьппение качества проката за счет снижения его деформации при охлаждении. Способ заключается в том, что охлаждают изделие 1 смесью жидкостей, имеющей температуру Т и содержащей по меньшей мере одну испаряющуюся жидкость. Модулируют охлаждение в направлении, перпендикулярном направлению перемещения изделия 1. В результате получают различные скорости охлаждения между краями и осью и двумя краями изделия 1. Способ позволяет обеспечить быстрое охлаждение и свести до минимума при этом деформацию плоского проката. 2 с.п. и 4 з.п. ф-лы, 8 ил. фиг. 2 САЭ. ;р :л /г 5 I 8 ГО 5 2 см ...

Подробнее
01-09-2016 дата публикации

Vorrichtung und Verfahren zur kontinuierlichen Behandlung eines Metallbandes

Номер: DE102012110010B4

Vorrichtung zur kontinuierlichen Behandlung eines Metallbandes (1), mit zumindest einer Temperiervorrichtung, welche als Bandschwebeofen (2) ausgebildet ist, durch den das Metallband (1) schwebend hindurchgeführt wird und mit einer Bandlageregeleinrichtung (7), mit der die Lage des Metallbandes (1) in der Bandlaufebene und quer zur Bandlaufrichtung steuerbar oder regelbar ist, wobei der Bandschwebeofen (2) zumindest eine einlaufseitige Heizstrecke (3) und eine auslaufseitige Kühlstrecke (4) aufweist, dadurch gekennzeichnet, dass die Bandlageregeleinrichtung (7) innerhalb der Kühlstrecke (4) angeordnet ist.

Подробнее
28-07-2011 дата публикации

Improving a mechanical property of a heat treatable aluminum alloy by heat treating the aluminum alloy, cooling the heated aluminum alloy, pre-aging the cooled aluminum alloy, and aging the pre-aged aluminum alloy

Номер: DE102011007946A1
Принадлежит:

Improving a mechanical property of a heat treatable aluminum alloy comprises: (a) heat treating the aluminum alloy at a solution treatment temperature for the aluminum alloy for a first period of time; (b) heating the heat treated aluminum alloy to a temperature of 5-30[deg] C above the solution treatment temperature; (c) cooling the heated aluminum alloy; (d) pre-aging the cooled aluminum alloy at room temperature to 100[deg] C; and (e) aging the pre-aged aluminum alloy at an aging temperature above the pre-aging temperature.

Подробнее
17-12-2015 дата публикации

Verfahren zur Herstellung eines Kraftfahrzeugbauteils aus Aluminium

Номер: DE102014108113A1
Принадлежит:

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Kraftfahrzeugbauteils (1), welches folgende Verfahrensschritte aufweist: Bereitstellen einer kaltverfestigten Platine aus einer 5000er Aluminiumlegierung, Partielles Erwärmen der Platine in einem ersten Bereich (5) auf eine Temperatur größer 350°C, insbesondere größer 400°C und in einem zweiten Bereich (6) auf eine Temperatur zwischen 150°C und 350°C, bevorzugt auf 300°C in weniger als 20 s, bevorzugt weniger als 10 s und insbesondere in 2 bis 5 s, Transfer in Kühlwerkzeug und Abkühlen in weniger als 20 s, bevorzugt weniger als 10 s und insbesondere in 2 bis 5 s, Einstellen einer Dehngrenze in dem ersten Bereich kleiner 250 MPa und größer 120 MPa und in dem zweiten Bereich kleiner 450 MPa und größer 200 MPa.

Подробнее
14-03-1985 дата публикации

PRODUCTION OF ALUMINIUM ALLOY SHEET

Номер: DE0003168588D1
Принадлежит: ALCAN INT LTD, ALCAN INTERNATIONAL LIMITED

Подробнее
15-11-2018 дата публикации

Ofensystem mit Heißluftbeheizung

Номер: DE102017110273A1
Принадлежит:

Die vorliegende Erfindung beschreibt ein Ofensystem zur Temperierung eines Metallbauteils (101), insbesondere eines Aluminiumbandes. Das Ofensystem weist einen ersten Temperierabschnitt (110) zum Temperieren des Metallteils mit einer ersten Temperatur, einen zweiten Temperierabschnitt (120) aufweisend zum Temperieren des Metallteils mit einer zweiten Temperatur und eine Temperiervorrichtung (102) zum Temperieren eines Temperierfluids auf. Der erste Temperierabschnitt (110) und der zweite Temperierabschnitt (120) sind derart eingerichtet, dass das Metallbauteil (101) zwischen dem ersten Temperierabschnitt (110) und dem zweiten Temperierabschnitt (120) beförderbar ist. Der erste Temperierabschnitt (110) weist einen ersten Fluideingang mit einem ersten Steuerventil (111) zum Steuern eines Fluidstromes des Temperierfluids in den ersten Temperierabschnitt (110) auf. Der zweite Temperierabschnitt (120) weist einen zweiten Fluideingang mit einem zweiten Steuerventil (121) zum Steuern eines Fluidstromes ...

Подробнее
24-12-2015 дата публикации

Verfahren zur Herstellung eines partiell gehärteten Achshilfsrahmens

Номер: DE102014108838A1
Принадлежит:

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Achshilfsrahmens (1) für ein Kraftfahrzeug, wobei der Achshilfsrahmen (1) als Schweißbauteil aus einzelnen Leichtmetallgussbauteilen hergestellt ist und Anbindungspunkte (7) zur Koppelung mit einer Kraftfahrzeugkarosserie aufweist, dadurch gekennzeichnet, dass die Oberfläche (11) im Bereich (10) der Anbindungspunkte (7) und/oder in belastungskritischen Bereichen mittels Laserstrahlen oder Elektronenstrahlen thermisch behandelt wird und direkt folgend abgekühlt wird, so dass die Dehngrenze gegenüber der Ausgangsdehngrenze erhöht wird.

Подробнее
09-05-2018 дата публикации

Verfahren und Anordnung zur Wärmebehandlung von metallischen Gussteilen

Номер: DE102015009213B4
Принадлежит: AUDI AG

Verfahren zur Wärmebehandlung von metallischen Gussteilen, wobei die Wärmebehandlung den Prozessteil des Lösungsglühens mit einem anschließenden Abkühlen enthält und unter Zuhilfenahme eines Granulates erfolgt, wobei das Lösungsglühen in einem aufgeheizten, vollständig ruhenden heißen Granulat (4) erfolgt, wobei das heiße Granulat (4) das zu behandelnde Gussteil (1) vollständig umschließt und abstützt, derart, dass Granulatkörner mit der gesamten Außenfläche des Gussteils (1) in einem, einen direkten Wärmeübergang bewirkenden Kontakt sind und dass das Gussteil (1) nach einer vorgegebenen Zeit abgekühlt wird, wobei- eine vorbestimmte Menge Granulat mit einer vorbestimmten Wärmemenge aufgeheizt wird,- das heiße Granulat (4) zusammen mit dem Gussteil (1) in einem Behandlungsgefäß (2) derart platziert wird, dass das heiße Granulat (4) das Gussteil (1) vollständig umschließt und abstützt,- nach Verstreichen einer vorgegebenen Zeitdauer das heiße Granulat (4) von dem Gussteil (1) getrennt wird ...

Подробнее
29-01-2009 дата публикации

Aluminum-matrix material for building contains concentration gradient of magnesium silicide

Номер: DE102007035115A1
Принадлежит:

The aluminum-matrix material contains reinforcing components embedded in it, which include a magnesium silicide content of 8-30 wt.%. A concentration gradient of magnesium silicide is present in the material. The magnesium silicide is in the form of embedded particles of increasing concentration from bottom to top over the cross section of the material.

Подробнее
31-03-2005 дата публикации

BLECH AUS ALUMINIUM-LEGIERUNG FÜR WÄRMETAUSCHER

Номер: DE0002790555T1

Bänder aus Aluminiumlegierung mit einer Dicke < 0,3 mm zur Herstellung gelöteter Wärmetauscher mit der Zusammensetzung (Gew.-%): Si < 1,5 Fe < 2,5 Cu < 0,8 Mg < 1,0 Mn < 1,8 Zn < 2,0 In < 0,2 Sn < 0,2 Bi < 0,2 Ti < 0,2 Cr < 0,25 Zr < 0,25 Si + Fe + Mn + Mg > 0,8, weitere Elemente jeweils < 0,05 und insgesamt < 0,15, welche Bänder zwischen Oberfläche und halber Dicke eine Korrosionspotentialdifferenz, gemessen gegen eine gesättigte Kalomelelektrode gemäß Norm ASTM G69, von mindestens 10 mV aufweisen.

Подробнее
05-11-2015 дата публикации

Herstellen einer Bohrung in einem Bauteil aus einer porösen Legierung und Bauteil

Номер: DE102011108424B4
Принадлежит: DAIMLER AG

Verfahren zum Herstellen eines Bauteils aus einer porösen Legierung mit zumindest einer Bohrung (3) und/oder einer Gewindebohrung (3), umfassend die Schritte: Gießen des Bauteils aus einer Aluminium- oder Magnesium-Legierung, wobei Poren mit Größen oberhalb von 80 bis 100 m gebildet werden, Einführen eines rotierenden Bolzens (6) in das Bauteil an einer für die Bohrung (3) und/oder die Gewindebohrung (3) vorgesehenen Stelle und hierdurch Reibungserwärmen des angrenzenden Bauteilmaterials auf eine Temperatur innerhalb des Schmelzintervalls der Legierung, dabei Erzeugen eines breiigen Bereichs (4) um den rotierenden Bolzen (6), wobei der breiige Bereich (4) einen flüssigen Anteil von etwa 20 bis 40% und einen festen, kristallinen Anteil von etwa 60 bis 80% aufweist, Herausführen des Bolzens (6) aus dem Bauteil und erstarren Lassen des breiigen Bereichs (4), wobei sich ein Bereich reduzierter Porosität ausbildet, dann Einbringen der Bohrung (3) und/oder der Gewindebohrung (3) in den erstarrten ...

Подробнее
19-07-2006 дата публикации

A method of controlling the microstructure of a metal article

Номер: GB0000611585D0
Автор:
Принадлежит:

Подробнее
05-05-1971 дата публикации

Номер: GB0001231090A
Автор:
Принадлежит:

Подробнее
23-08-1972 дата публикации

IMPROVEMENTS IN OR RELATING TO THE MANUFACTURE OF DUCTILE HIGH STRENGTH ELECTRICAL CONDUCTOR STOCK

Номер: GB0001286720A
Автор:
Принадлежит:

... 1286720 Heat-treating aluminium-iron alloys KAISER ALUMINIUM & CHEMICAL CORP 17 June 1970 [18 June 1969] 29384/70 Heading C7A A melt of aluminium containing 0.7 to 3% iron is cast so that the Fe-Al precipitate phase will not exceed 0.0002 inch maximum dimension, and the alloy is then heated at 500‹-900‹F. for sufficient time to precipitate residual iron from solution. Cold working may precede or follow the heating, or working may be combined with it. The product is used for electrical conductors.

Подробнее
24-01-1968 дата публикации

Improvements in or relating to the heat treatment of aluminium and its alloys

Номер: GB0001100072A
Автор:
Принадлежит:

... Ingots of aluminium or its alloys are heattreated in a direct fired furnace in contact with combustion product gases after first pre-heating them out of contact with these gases until at least their surface temperature is above the dew point of water vapour (between 130 and 150 DEG F.) in these gases to prevent water staining and heavy surface oxidation. Fig.2 shows ingots 11 being charged into a circular furnace, loaded on to a circular endless conveyer 16, passing through first a preheat or warming zone 17 heated by induction or a radiant tube or initially warmed by direct firing from burners 18, then a direct fired zone 20 heated in contact with combustion product gases from burners 21 preferably natural gas fired, and a holding zone 22 with heating means 24, the zones being separated, preferably by air curtains 19, 23. Examples of known alloys which may be heated for hot-rolling at 850 DEG F. or homogenized by soaking at 950 or 1125 DEG F. are specified.

Подробнее
14-09-1988 дата публикации

BONDING METAL COMPONENTS

Номер: GB0008818989D0
Автор:
Принадлежит:

Подробнее
31-10-2001 дата публикации

Precipitation hardening of aluminium castings

Номер: GB0002361710A
Принадлежит:

An aluminium casting is solution heat treated at a temperature in the range of about 480 {C to about 515 {C for a time in the range of about 1 to about 3 hours, cooled at a rate of at least about 0.6 {C/second and aged at a temperature in the range of about 220 {C to about 260 {C for a time in the range of about 1 to about 2.5 hours. Alternatively, the casting heat treated simultaneously with removing the sand casting core by solution heat treating at a temperature above the combustion temperature of binder and below the temperature at which incipient melting of the aluminium begins for no more then about 3 hours, cooling and aging for no more than about 2.5 hours at a temperature sufficient to obtain a hardness in the range of about 80 to about 120 on the 500 kg Brinnell hardness scale. The cooling may be performed using a water-based, an air-based or a synthetic quenchant. The aluminium casting may be made from an Al-Si-Cu alloy of the 319 or 320 type.

Подробнее
30-12-2009 дата публикации

Method for manufacturing a workpiece by friction welding to reduce the occurence of abnormal grain growth

Номер: GB2461208A
Принадлежит:

A method of manufacturing a workpiece is provided. The method generally includes friction stir welding at least one structural member, selectively-removing material (48, 50) from the surfaces (38, 40) of the workpiece at the location of a friction stir weld joint (20), and thereafter subjecting the workpiece to a solution treat, quench, and age treatment. By selectively removing regions from the surfaces of the workpiece that are defined by nonuniform material properties adapted to nucleate nonuniform grain growth during' the solution treat, quench, and age treatment, a subsequent grain growth during the thermal treatment can be at least partially prevented.

Подробнее
30-12-2009 дата публикации

Aluminium alloy for lithographic sheet

Номер: GB2461240A
Принадлежит:

An aluminium alloy suitable for processing into a lithographic sheet comprises (by weight): Fe up to 0.40 %, Si up to 0.25 %, Cu up to 0.03, Mn up to 0.05 %, Ti up to 0.03 %, Mg up to 0.10 %, Zn up to 0.07 %, other components up to 0.03 each, with the balance which is a minimum of 99.3 % aluminium. The ratio of zinc to magnesium is preferably 0.1-2.3 and the ratio of manganese to magnesium is preferably 0.08-1.63.

Подробнее
23-04-1937 дата публикации

Improvements in or relating to the thermal treatment of light metals and light metal alloys

Номер: GB0000464697A
Автор:
Принадлежит:

Light metals and alloys, particularly aluminium and its alloys are heat-treated in molten baths which contain as their main constituent alkali halides or a mixture of a plurality of alkali halides and basic-reacting substances in such quantities, not exceeding 30 per cent, that the metals &c. are protected from attack by the halides. The bath may also contain one or more alkaline earth halides. As basic-reacting compounds the oxides, carbonates or hydroxides of alkaline or alkaline earth metals, basic-reacting phosphates, tungstates or borates as well as oxides such as aluminium or magnesium oxide may be used, or compounds such as aluminium or magnesium oxide may be produced in the bath from the corresponding light metal or alloy, the formation of the basic-reacting compounds being promoted by temporarily raising the bath temperature, blowing oxygen, e.g. as air through the bath or adding peroxides such as calcium peroxide. The temperatures used are 300-550 DEG C. In an example aluminium ...

Подробнее
02-01-1986 дата публикации

PROCESSING ALUMINIUM ALLOY SHEET FOR GOOD FORMABILITY

Номер: GB0002160894A
Принадлежит:

A method of manufacturing an aluminum alloy sheet excellent in hot formability. A hot rolled plate of an aluminum alloy is cold rolled into a cold rolled sheet with a reduction ratio of at least 20%. The cold rolled sheet thus obtained is subjected to intermediate heat treatment wherein it is heated to a temperature of 420 DEG to 560 DEG C., at a heating rate of at least 2 DEG C. per second while it is heated from 150 DEG to 350 DEG C., and the sheet is then cooled to room temperature, at a cooling rate of at least 1 DEG C. per second while it is cooled from 420 DEG to 150 DEG C. The resulting heat treated sheet is subjected to final cold rolling with a reduction ratio of 15 to 60%.

Подробнее
31-10-2012 дата публикации

Method and apparatus of forming a wrought material having a refined grain structure

Номер: GB0002490467A
Принадлежит:

A method of forming a wrought material having a refined grain structure is provided. The method comprises providing a metal alloy material having a depressed solidus temperature and a low temperature eutectic phase transformation. The metal alloy material is molded and rapidly solidified to form a fine grain precursor that has fine grains surrounded by a eutectic phase with fine dendritic arm spacing. The fine grain precursor is plastic deformed at a high strain rate to cause recrystallization without substantial shear banding to form a fine grain structural wrought form. The wrought form is then thermally treated to precipitate the eutectic phase into nanometer sized dispersoids within the fine grains and grain boundaries and to define a thermally treated fine grain structure wrought form having grains finer than the fine grains and the fine dendritic arm spacing of the fine grain precursor.

Подробнее
02-04-1964 дата публикации

Improved method of producing aluminium bodies capable of taking a high gloss

Номер: GB0000953816A
Автор:
Принадлежит:

A method of forming aluminium bodies, e.g. sheet, strip, wire &c., from an aluminium billet comprises homogenizing the billet at a temperature above 550 DEG C. and below the melting point, quenching the billet to a temperature of at least 500 DEG C. and thereafter shaping the billet into a body in a temperature range of 420-500 DEG C. The billet may be formed into an intermediate shape at 420-500 DEG C., quenched to a temperature below 200 DEG C. and finally cold rolled into its final shape. The optimum homogenizing temperature is given as 600 DEG C. for 8/9 hours. The quenching medium may be water to which is added 1-2% nitric acid or oil. The final product may be temper-annealed at a temperature of 100-200 DEG C. In a modification the billet is quenched to room temperature and subsequently induction reheated to 420-500 DEG C. prior to working as above. Aluminium having an aluminium content of 99.7-99.99% or alloys thereof containing from 0.2-2.8% magnesium may be used and the billets ...

Подробнее
06-03-2013 дата публикации

Application of aluminium-zirconium-titanium-carbon intermediate alloy in deformation process of magnesium and magnesium alloys

Номер: GB0002494353A
Принадлежит:

An application of an aluminum-zirconium-titanium-carbon (Al-Zr-Ti-C) intermediate alloy in the deformation process of magnesium and magnesium alloys. The chemical composition of said Al-Zr-Ti-C intermediate alloy in weight percentage is: 0.01% to 10% of Zr, 0.01% to 10% of Ti, 0.01% to 0.3% of C, and Al accounting for the rest; said deformation process is a plastic molding method; said application is the refinement of magnesium crystal grains or magnesium alloy crystal grains. Also provided is an application method of the Al-Zr-Ti-C intermediate alloy in the continuous casting and rolling of magnesium and magnesium alloy. The aluminum-zirconium-titanium-carbon (Al-Zr-Ti-C) intermediate alloy has a strong nucleation capability and crystal grain refinement effects in magnesium and magnesium alloys, and enables the continuous, scalable production of deformed material of magnesium and magnesium alloy.

Подробнее
20-12-2006 дата публикации

Process for forming metal alloy sheet components

Номер: GB0000622632D0
Автор:
Принадлежит:

Подробнее
31-07-2019 дата публикации

Method of forming components from sheet material

Номер: GB0002549565B

Подробнее
01-01-2020 дата публикации

Mounting member for a vehicle body

Номер: GB0002557687B

Подробнее
09-04-1986 дата публикации

ALUMINIUM ALLOY HEAT TREATMENT

Номер: GB0002137656B
Принадлежит: ALCAN INT LTD, * ALCAN INTERNATIONAL LIMITED

Подробнее
16-11-1983 дата публикации

A method of making products of aluminium alloy suitable for drawing

Номер: GB0002119294A
Принадлежит:

The invention relates to a method of making sheets of aluminium suitable for drawing. The method according to the invention comprises subjecting the product issuing from a continuous casting machine to a mechanical cleaning treatment and then to a controlled heat treatment in air at elevated temperature. The method according to the invention is applicable in every case where aluminium products, such as strips etc. are subjected to drawing or reducing operations and in cases where it is desired to eliminate galling phenomena and to guarantee aesthetic qualities. The method according to the invention is used in particular in the manufacture of cans from blanks obtained by casting between cylinders.

Подробнее
23-02-2012 дата публикации

Use of aluminum-zirconium-carbon intermediate alloy in wrought processing of magnesium and magnesium alloys

Номер: US20120043050A1

The present invention relates to the field of magnesium and magnesium alloy processing, and discloses a use of aluminum-zirconium-carbon (Al—Zr—C) intermediate alloy in wrought processing of magnesium and magnesium alloys, wherein the aluminum-zirconium-carbon intermediate alloy has a chemical composition of: 0.01% to 10% Zr, 0.01% to 0.3% C, and Al in balance, based on weight percentage; the wrought processing is plastic molding; and the use is to refine the grains of magnesium or magnesium alloys. The present invention further discloses the method for using the aluminum-zirconium-carbon (Al—Zr—C) intermediate alloy in casting and rolling magnesium and magnesium alloys. The present invention provides an aluminum-zirconium-carbon (Al—Zr—C) intermediate alloy and the use thereof in the plastic wrought processing of magnesium or magnesium alloys as a grain refiner. The aluminum-zirconium-carbon intermediate alloy has the advantages of great ability in nucleation and good grain refining effect, and achieves the continuous and large-scale production of wrought magnesium and magnesium alloy materials.

Подробнее
08-03-2012 дата публикации

7xxx aluminum alloys, and methods for producing the same

Номер: US20120055588A1
Принадлежит: Alcoa Inc

New 7xxx aluminum alloy bodies and methods of producing the same are disclosed. The new 7xxx aluminum alloy bodies may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new 7xxx aluminum alloy bodies may realize improved strength and other properties.

Подробнее
15-03-2012 дата публикации

Weldable Metal Article

Номер: US20120064367A1
Принадлежит: Individual

The invention relates to an extruded or rolled clad metal article having a core metal layer and a cladding metal layer on at least one surface of the core layer, wherein the metals of the core metal layer and the cladding metal layer are each aluminium alloys, preferably an aluminium-magnesium alloy, having at least Sc in a range of 0.05% to 1%, and wherein the Sc-content in the core metal layer is lower than in the cladding metal layer. This further relates to a welded structure incorporating such a metal article.

Подробнее
26-04-2012 дата публикации

Process for production of roughly shaped material for engine piston

Номер: US20120100385A1
Принадлежит: Showa Denko KK

A production method of a roughly shaped material for an engine piston includes a continuous casting step for obtaining a cast rod ( 31 ) having a diameter of 85 mm or less by continuously casting a molten aluminum alloy ( 30 ) at a molten alloy temperature of 720° C. or higher, and a forging step for obtaining a roughly shaped material ( 11 ) for an engine piston by forging a forging material ( 32 ) obtained by homogenizing the cast bar ( 31 ) at 370 to 500° C. A composition of the molten alloy ( 30 ) includes Si: 11.0 to 13.0 mass %, Fe: 0.6 to 1.0 mass %, Cu: 3.5 to 4.5 mass %, Mn: 0.25 mass % or less; Mg: 0.4 to 0.6 mass %, Cr: 0.15 mass % or less, Zr: 0.07 to 0.15 mass %, P: 0.005 to 0.010 mass %, Ca: 0.002 mass % or less, and the balance being Aluminum and inevitable impurities.

Подробнее
31-05-2012 дата публикации

Method of Manufacturing a Sputtering Target and Sputtering Target

Номер: US20120132523A1
Принадлежит: Ulvac Inc

[Object] To provide a method of manufacturing a sputtering target and a sputtering target that are capable of achieving refinement and uniformity of crystal grains. [Solving Means] A method of manufacturing a sputtering target according to an embodiment of the present invention includes forging an ingot formed of metal by applying a stress in a first axis direction (z-axis direction) and a plane direction (xy-plane direction) orthogonal to the first axis direction. The ingot is additionally forged by applying a stress in a second axis direction (axial directions c 11, c 12, c 21, c 22 ) obliquely intersecting with a direction parallel to the first axis direction. The ingot is heat-treated at a temperature equal to or higher than a recrystallization temperature thereof. In such a manner, since slip deformation can be caused not only in the first axis direction and the plane direction orthogonal thereto but also in the second axis direction, the high density and uniformity of an internal stress can be achieved.

Подробнее
13-09-2012 дата публикации

Aluminum-alloy sheet and method for producing the same

Номер: US20120227871A1
Принадлежит: Kobe Steel Ltd

An aluminum-alloy sheet includes 0.10 to 0.40 mass % of Si, 0.35 to 0.80 mass % of Fe, 0.10 to 0.35 mass % of Cu, 0.20 to 0.80 mass % of Mn, and 1.5 to 2.5 mass % of Mg, the balance being Al and unavoidable impurities, wherein a content ratio (Si/Fe) of the Si to the Fe is 0.75 or less, the area fraction of Mg 2 Si intermetallic compound grains having a maximum length of 1 μm or more is 0.10% or more in a region of a section of the aluminum-alloy sheet, the region being a central region in the thickness direction of the aluminum-alloy sheet, and the aluminum-alloy sheet has a proof stress of 225 to 270 N/mm 2 after having been baked at 270° C. for 20 seconds.

Подробнее
13-09-2012 дата публикации

Aluminium foil alloy

Номер: US20120230862A1
Принадлежит: Novelis Inc Canada

An aluminium alloy product having a gauge below 200 μm and a composition, in weight %, of Fe 1.0-1.8, Si 0.3-0.8, Mn up to 0.25, other elements less than or equal to 0.05 each and less than or equal to 0.15 in total, balance aluminium. A process of manufacturing the product includes the steps of continuous casting an aluminium alloy melt of the above composition, cold rolling the cast product without an interanneal step to a gauge below 200 μm and final annealing the cold rolled product. The product may be a deep drawn container.

Подробнее
22-11-2012 дата публикации

Aluminum magnesium lithium alloy with improved fracture toughness

Номер: US20120291925A1
Автор: Bernard Bes, Frank Eberl
Принадлежит: Constellium France SAS

Wrought product made of aluminum alloy composed as follows, as a percentage by weight Mg: 4.0-5.0; Li: 1.0-1.6; Zr: 0.05-0.15; Ti: 0.01-0.15; Fe: 0.02-0.2; Si: 0.02-0.2; Mn: ≦0.5; Cr≦0.5; Ag: ≦0.5; Cu≦0.5; Zn≦0.5; Sc≦0.01; other elements <0.05; the rest aluminum.

Подробнее
24-01-2013 дата публикации

Method of manufacturing high strength and high ductility titanium alloy

Номер: US20130019999A1
Принадлежит: Academy Industry Foundation of POSTECH

Disclosed is a method of manufacturing a high strength and high ductility titanium alloy. The method comprises: providing a titanium alloy having a martensite structure; and partially dynamically spheroidizing a microstructure through a thermal and mechanical treatment of the titanium alloy having the martensite structure. According to the present invention, a titanium alloy having a partially dynamically spheroidized microstructure can be manufactured to have excellent yield strength (YS) and uniform elongation (U.EL). A microstructure having lamellar structures is controlled to a microstructure where fine equiaxed structures and lamellar structures are simultaneously present by regulating a rolling direction and a deformation amount. According to the present invention, a titanium alloy can be manufactured to have an improved product (YS×U.EL) of yield strength and uniform elongation as compared with conventional heat treatment.

Подробнее
07-02-2013 дата публикации

Homogenization and heat-treatment of cast metals

Номер: US20130032305A1
Принадлежит: Novelis Inc Canada

A method of casting a metal ingot with a microstructure that facilitates further working, such as hot and cold rolling. The metal is cast in a direct chill casting mold, or the equivalent, that directs a spray of coolant liquid onto the outer surface of the ingot to achieve rapid cooling. The coolant is removed from the surface at a location where the emerging embryonic ingot is still not completely solid, such that the latent heat of solidification and the sensible heat of the molten core raises the temperature of the adjacent solid shell to a convergence temperature that is above a transition temperature for in-situ homogenization of the metal. A further conventional homogenization step is then not required. The invention also relates to the heat-treatment of such ingots prior to hot working.

Подробнее
21-03-2013 дата публикации

Multi-alloy composite sheet for automotive panels

Номер: US20130068351A1
Принадлежит: Alcoa Inc

Multi-alloy composite sheets and methods of producing the composite sheets for use in automotive applications are disclosed. The automotive application may include an automotive panel having a bi-layer or a tri-layer composite sheet with 3xxx and 6xxx aluminum alloys. The composite sheets may be produced by roll bonding or multi-alloy casting, among other techniques. Each of the composite sheets may demonstrate good flat hem rating and mechanical properties, long shelf life, and high dent resistance, among other properties.

Подробнее
09-05-2013 дата публикации

FORMABLE ALUMINUM ALLOY SHEET

Номер: US20130112323A1

The present invention provides an aluminum alloy sheet for forming which is a high-Mg-content Al—Mg alloy sheet reduced in β-phase precipitation and improved in press formability. This aluminum alloy sheet for forming comprises an Al—Mg alloy containing 6.0-15.0 mass % Mg. In each of square regions, each side of which has the dimension of the whole sheet width (W), that are set in a surface of the alloy sheet, the concentration of Mg is measured at width-direction measurement points, Px, set at given intervals a and b respectively in the sheet-width direction and the sheet-length direction, and the average of the values of Mg concentration measured at the plurality of width-direction measurement points (Px) is taken as a width-direction average Mg concentration (Co). The concentration of Mg is measured at a plurality of thickness-direction measurement points (Py) set at a given interval in the sheet-thickness direction throughout the whole sheet thickness with respect to the plurality of width-direction measurement points (Px), and the average of the values of Mg concentration measured at the plurality of thickness-direction measurement points (Py) is taken as a thickness-direction average Mg concentration (Ci). The absolute value of the degree of regional Mg segregation (X) defined by the difference (Ci−Co) between the thickness-direction average Mg concentration (Ci) and the width-direction average Mg concentration (Co) is 0.5 mass % or less at most and is 0.1 mass % or less on average. 1. An aluminum alloy sheet , comprising Mg in a content of 6.0 percent by mass or more and 15.0 percent by mass or less and further comprising Al and an impurity , the aluminum alloy sheet having:a width-direction average Mg concentration of Co, wherein the width-direction average Mg concentration, Co, is an average of Mg concentrations measured at a plurality of width-direction measurement points, wherein the plurality of width-direction measurement points is arranged at ...

Подробнее
09-05-2013 дата публикации

Aluminum alloy excellent in high temperature strength and heat conductivity and method of production of same

Номер: US20130115129A1
Принадлежит: Nippon Light Metal Co Ltd

An aluminum alloy which is excellent in high temperature strength and heat conductivity by adjusting the composition to one keeping down the drop in high temperature strength and making the Mn content as small as possible to reduce the formation of a solid solution in the aluminum, which aluminum alloy having a composition of ingredients which contains Si: 12 to 16 mass %, N: 0.1 to 2.5 mass %, Cu: 3 to 5 mass %, Mg: 0.3 to 1.2 mass %, Fe: 0.3 to 1.5 mass %, and P: 0.004 to 0.02 mass % and furthermore 0 to 0.1 mass % of Mn and further contains, as necessary, at least one of V: 0.01 to 0.1 mass %, Zr: 0.01 to 0.6 mass %, Cr: 0.01 to 0.2 mass %, and Ti: 0.01 to 0.2 mass %. Also described is a method for producing the aluminum alloy melt.

Подробнее
16-05-2013 дата публикации

Apparatus and method for imparting selected topographies to aluminum sheet metal

Номер: US20130122327A1

A method for surface treating work rolls to produce isotropic textured aluminum sheet features shot-peening the surface of the working rolls that produce the sheet. The media may be steel balls, such as ball bearings or other media, such as glass or ceramic balls, depending upon the optical properties desired for the aluminum sheet, e.g., in terms of diffuseness or brightness of reflection. The various parameters of shot-peening can be varied to accommodate given properties of the roll, such as hardness and existing surface texture to achieve a given desired surface texture. A sheet surface with target properties and the work roll processing needed to produce it may be generated by computer modeling.

Подробнее
23-05-2013 дата публикации

ALUMINUM ALLOY CONDUCTOR

Номер: US20130126051A1
Принадлежит:

An aluminum alloy conductor, which has a specific aluminum alloy composition of Al—Fe—Mg—Si—Cu—(TiN), Al—Fe, Al—Fe—Mg—Si, or Al—Fe—Mg—Si—Cu, which has a recrystallized texture of 40% or more of an area ratio of grains each having a (111) plane and being positioned in parallel to a cross-section vertical to a wire-drawing direction of a wire, and which has a grain size of 1 to 30 μm on the cross-section vertical to the wire-drawing direction of the wire; and a production method thereof. 1. An aluminum alloy conductor , which has a composition consisting of: 0.01 to 0.4 mass % of Fe , 0.1 to 0.3 mass % of Mg , 0.04 to 0.3 mass % of Si , 0.1 to 0.5 mass % of Cu , and 0.001 to 0.01 mass % of Ti and V in total , with the balance being Al and inevitable impurities ,which has a recrystallized texture of 40% or more of an area ratio of grains each having a (111) plane and being positioned in parallel to a cross-section vertical to a wire-drawing direction of a wire, andwhich has a grain size of 1 to 30 μm on the cross-section vertical to the wire-drawing direction of the wire.2. The aluminum alloy conductor according to claim 1 , which has the recrystallized texture of 25% or more of the area ratio of grains each having a (111) plane and being positioned in parallel to the cross-section vertical to the wire-drawing direction of the wire claim 1 , and of 25% or more of an area ratio of grains each having a (112) plane and being positioned in parallel to the cross-section vertical to the wire-drawing direction of the wire claim 1 , in an area formed by removing claim 1 , from the entirety of the wire claim 1 , a portion included in a circle with a radius of (9/10)R from the center of the wire on the cross-section vertical to the wire-drawing direction of the wire claim 1 , in which R is a radius of the wire.3. A method of producing an aluminum alloy conductor claim 1 , comprising:subjecting an aluminum alloy material which has a composition consisting of: 0.01 to 0.4 mass % ...

Подробнее
23-05-2013 дата публикации

Aluminum alloy conductor and method of producing the same

Номер: US20130126055A1

An aluminum alloy conductor, having a specific aluminum alloy composition of Al—Fe—Cu—Mg—Si—(TiN) or Al—Fe—(Cu/Mg/Si)—(TiN), in which, on a cross-section vertical to a wire-drawing direction, a grain size is 1 to 20 μm, and a distribution density of a second phase with a size of 10 to 200 nm is 1 to 10 2 particles/μm 2 ; and a production method thereof.

Подробнее
23-05-2013 дата публикации

Aluminum alloy wire

Номер: US20130126231A1

An aluminum alloy, an aluminum alloy wire, an aluminum alloy stranded wire, a covered electric wire, and a wire harness that are of high toughness and high electrical conductivity, and a method of manufacturing an aluminum alloy wire are provided. The aluminum alloy wire contains not less than 0.005% and not more than 2.2% by mass of Fe, and a remainder including Al and an impurity. It may further contain not less than 0.005% and not more than 1.0% by mass in total of at least one additive element selected from Mg, Si, Cu, Zn, Ni, Mn, Ag, Cr, and Zr. The Al alloy wire has an electrical conductivity of not less than 58% IACS and an elongation of not less than 10%. The Al alloy wire is manufactured through the successive steps of casting, rolling, wiredrawing, and softening treatment. The softening treatment can be performed to provide an excellent toughness such as elongation and impact resistance and thereby reduce fracture of the electric wire in the vicinity of a terminal portion when the wire harness is installed.

Подробнее
13-06-2013 дата публикации

HIGH STRENGTH WELDABLE AL-MG ALLOY

Номер: US20130146186A1
Принадлежит: Aleris Aluminum Koblenz GmbH

An aluminium alloy product having high strength, excellent corrosion resistance and weldability, having the following composition in wt.%: Mg 3.5 to 6.0, Mn 0.4 to 1.2, Fe<0.5, Si<0.5, Cu<0.15, Zr<0.5, Cr<0.3, Ti 0.03 to 0.2, Sc<0.5, Zn<1.7, Li<0.5, Ag<0.4, optionally one or more of the following dispersoid forming elements selected from the group consisting of erbium, yttrium, hafnium, vanadium, each<0.5 wt. %, and impurities or incidental elements each<0.05, total<0.15, and the balance being aluminium. 1. A method of manufacturing an aluminium rolled product having high strength , excellent corrosion resistance and weldability , the method comprising the steps of: Mg 3.5 to 6.0', 'Mn 0.4 to 1.2', 'Fe<0.5', 'Si<0.5', 'Cu<0.15', 'Zr 0.05 to <0.5', 'Cr 0.03 to <0.3', 'Ti 0.03 to 0.2', 'Sc 0.1 to 0.3', 'Zn 0.2 to 0.65', 'Ag <0.4,', 'and impurities or incidental elements each<0.05, total<0.15, and the balance being aluminium,, 'casting an aluminium alloy consisting of the following composition in wt. %pre-heating at a temperature in a range of 280° C. to 500° C. prior to hot rolling,hot rolling the cast alloy;cold rolling the hot rolled alloy to form a cold rolled product;annealing the cold rolled product at a temperature in the range of 100° C. to 500° C.2. A method according to claim 1 , wherein the Ti content is in the range 0.03 to 0.12 wt. %.3. A method according to claim 1 , wherein the Ti content is in the range 0.05 to 0.1 wt. %.4. A method according to claim 1 , wherein the Cr content is in the range 0.03 to 0.12 wt. %.5. A method according to claim 1 , wherein the Cr content is in the range 0.05 to 0.1 wt. %.6. A method according to claim 1 , wherein the Zr content is in the range 0.05 to 0.25 wt. %.7. A method according to claim 1 , wherein Mn is in the range of 0.6 to 1.0 wt. %.8. A method according to claim 1 , wherein Mn is in the range of 0.65 to 0.9 wt. %.9. A method according to claim 1 , wherein the combined amount of Cr and Zr is in the range 0.06 to ...

Подробнее
13-06-2013 дата публикации

Method of manufacturing aluminum-containing composition and product made from such composition

Номер: US20130146188A1
Автор: Zi Shen Lei
Принадлежит: Individual

The present invention is concerned with a method of manufacturing an aluminum-containing composition, wherein the composition having substantially 0.4 wt % silicon, 0.7 wt % iron, 0.2 wt % copper, 0.1 wt % manganese, 1.1-1.8 wt % magnesium, 0.1 wt % chromium, 0.25 wt % zinc and 96.45-97.15 wt % aluminum, or being Aluminum 5050 as defined by the International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys of the Aluminum Association. The method comprises a casting step, an extrusion step, and an anodizing step.

Подробнее
25-07-2013 дата публикации

Used beverage container aluminum composition and method

Номер: US20130186905A1
Принадлежит: Golden Aluminum Inc

An aluminum alloy and recycle method are provided in which the recycled used beverage containers form an alloy composition useful with relatively minor compositional adjustments for body stock.

Подробнее
08-08-2013 дата публикации

Aluminum Die Casting Alloy

Номер: US20130199680A1
Принадлежит: Rheinfelden Alloys GmbH and Co KG

Aluminum die casting alloy comprising 2 to 6% by weight nickel, 0.1 to 0.4% by weight zirconium, 0.1 to 0.4% by weight vanadium, optionally up to 5% by weight manganese, optionally up to 2% by weight iron, optionally up to 1% by weight titanium, optionally total max. 5% by weight transition elements including scandium, lanthanum, yttrium, hafnium, niobium, tantalum, chromium and/or molybdenum, and aluminum as the remainder with further elements and impurities due to production total max. 1% by weight.

Подробнее
22-08-2013 дата публикации

Magnesium-Alloy Member, Compressor for Use in Air Conditioner, and Method for Manufacturing Magnesium-Alloy Member

Номер: US20130213528A1
Принадлежит:

A magnesium alloy member capable of achieving a mechanical strength and a high-temperature fatigue strength sufficient for a compressor for in automotive air conditioners The magnesium alloy member is formed by subjecting a cast material of a magnesium alloy containing, on the basis of mass %, from 0.3% to 10% calcium (Ca), from 0.2% to 15% aluminum (Al), and from 0.05% to 1.5% manganese (Mn), and containing calcium (Ca) and aluminum (Al) at a calcium/aluminum mass ratio of from 0.6 to 1.7, with the balance being magnesium (Mg) and inevitable impurities to plastic working (extrusion processing) at from 250° C. to 500° C. This makes it possible to obtain a magnesium alloy member having a room-temperature 0.2% proof stress of 300 MPa or more and a 150° C. fatigue strength of 100 MPa or greater. 1. A magnesium alloy member obtained by subjecting a cast material of a magnesium alloy containing , on the basis of mass % , from 0.3% to 10% calcium , from 0.2% to 15% aluminum , and from 0.05% to 1.5% manganese , and containing calcium and aluminum at a calcium/aluminum mass ratio of from 0.6 to 1.7 , with the balance being magnesium and inevitable impurities to plastic working at from 250° C. to 500° C.2. The magnesium alloy member according to claim 1 , wherein the plastic working is followed by solution heat treatment and artificial aging treatment.3. The magnesium alloy member according to claim 2 , wherein after the plastic working claim 2 , the magnesium alloy member is subjected to solution heat treatment to retain the magnesium alloy member for at least 0.08 hour at a treatment temperature of from 450° C. to 510° C. claim 2 , and then claim 2 , the resulting member is subjected to artificial aging treatment to retain the resulting member for at least 0.3 hour at a treatment temperature of from 150° C. to 250° C.4. A magnesium alloy member obtained by subjecting a cast material of a magnesium alloy containing claim 2 , on the basis of mass % claim 2 , from 0.3% to 10% ...

Подробнее
05-09-2013 дата публикации

METHOD FOR MANUFACTURING ALUMINUM BASED ALLOY-MADE FASTENING PART AND ALUMINUM BASED ALLOY-MADE FASTENING PART

Номер: US20130230366A1
Автор: Miyamoto Kouhei
Принадлежит: Topura Co., Ltd.

By changing the timing of applying a heat treatment, a high-strength aluminum based alloy-made fastening part having an unprecedented tensile strength or other strength property and a method for manufacturing of the same are provided. The method is characterized in that an aluminum based alloy-made material is subjected to a solution treatment and is then age-hardened; work hardening is further applied to a shaft portion by drawing thereof in a heading process; and the shaft portion is thereafter subjected to a process of rolling male threads. 1. A method for manufacturing an aluminum based alloy-made fastening part , the method comprising enhancing strength by applying a heat treatment to a material made of an aluminum based alloy , and then further enhancing the strength through work hardening when deforming the material into a predetermined shape in a heading process.2. The method for manufacturing an aluminum based alloy-made fastening part according to claim 1 , wherein the fastening part has a shaft portion to which a tensile force is applied when fastened claim 1 , and the shaft portion is subjected to drawing processing in a heading process.3. The method for manufacturing an aluminum based alloy-made fastening part according to claim 2 , wherein the fastening part is a male thread part claim 2 , and the shaft portion is subjected to a process of rolling threads after the shaft portion is subjected to drawing processing.4. The method for manufacturing an aluminum based alloy-made fastening part according to claim 1 , wherein claim 1 , as the heat treatment claim 1 , a solution treatment is implemented and then an ageing treatment is implemented.5. The method for manufacturing an aluminum based alloy-made fastening part according to claim 1 , wherein the heading process is cold forging.6. An aluminum based alloy-made fastening part provided with a fastening shaft portion claim 1 , whereinthe shaft portion has a configuration in which an aluminum based alloy- ...

Подробнее
19-09-2013 дата публикации

HEAT TREATABLE L12 ALUMINUM ALLOYS

Номер: US20130240095A1
Автор: Pandey Awadh B.
Принадлежит: UNITED TECHNOLOGIES CORPORATION

High temperature heat treatable aluminum alloys that can be used at temperatures from about −420° F. (−251° C.) up to about 650° F. (343° C.) are described. The alloys are strengthened by dispersion of particles based on the L1intermetallic compound AlX. These alloys comprise aluminum; silicon; at least one of scandium, erbium, thulium, ytterbium, and lutetium; and at least one of gadolinium, yttrium, zirconium, titanium, hafnium, and niobium. Magnesium and copper are optional alloying elements. 1. A method of forming a heat treatable aluminum alloy , the method comprising: about 4.0 to about 25.0 weight percent silicon;', 'about 0.2 to about 3.0 weight percent magnesium;', 'about 0.5 to about 5.0 weight percent copper;', 'at least one first element selected from the group comprising about 0.1 to about 0.5 weight percent scandium, about 0.1 to about 6.0 weight percent erbium, about 0.1 to about 10 weight percent thulium, about 0.1 to about 15.0 weight percent ytterbium, and about 0.1 to about 12 weight percent lutetium;', 'at least one second element selected from the group comprising about 0.1 to about 4.0 weight percent gadolinium, about 0.1 to about 4.0 weight percent yttrium, about 0.05 to about 1.0 weight percent zirconium, about 0.05 to about 2.0 weight percent titanium, about 0.05 to about 2.0 weight percent hafnium, and about 0.05 to about 1.0 weight percent niobium; and', 'the balance substantially aluminum;, '(a) forming a melt comprising(b) solidifying the melt to form a solid body; and(c) heat treating the solid body.2. The method of further comprising:refining the structure of the solid body by deformation processing including at least one of: extrusion, forging and rolling.3. The method of claim 1 , wherein solidifying comprises a casting process.4. The method of claim 1 , wherein solidifying comprises a rapid solidification process in which the cooling rate is greater than about 10° C./second including at least one of: powder processing claim 1 , ...

Подробнее
19-09-2013 дата публикации

Aluminum alloy brazing sheet for heat exchanger

Номер: US20130244055A1
Принадлежит: Kobe Steel Ltd

An aluminum alloy brazing sheet for heat exchangers has a core, a sacrificial material formed on one side of the core, and a brazing filler metal formed on the other side of core. The core is made of an aluminum alloy containing predetermined amounts of Si, Cu, and Mn, the balance being Al and unavoidable impurities. The sacrificial material is made of an aluminum alloy containing predetermined amounts of Si, Zn, and Mg with the balance of Al and unavoidable impurities. The brazing filler metal is made of an aluminum alloy. The aluminum alloy brazing sheet for heat exchangers has a work hardening exponent n of not less than 0.05. The aluminum alloy brazing sheet for heat exchangers has excellent strength and corrosion resistance even when it is formed into a thin material and also has excellent high frequency weldability and weld cracking resistance during electric resistance welding (high frequency welding properties).

Подробнее
26-09-2013 дата публикации

METHOD OF REFINING METAL ALLOYS

Номер: US20130248050A1
Принадлежит: BRUNEL UNIVERSITY

Method of refining metal alloys A method of refining the grain size of (i) an alloy comprising aluminium and at least 3% w/w silicon or (ii) an alloy comprising magnesium, comprises the steps of (a) adding sufficient niobium and boron to the alloy in order to form niobium diboride or AlNb or both, or (b) adding niobium diboride to the alloy, or (c) adding AlNb to the alloy, or (d) any combination thereof. 111.-. (canceled)12. A method of refining the grain size of (i) an alloy comprising aluminum and at least 3% w/w silicon or (ii) an alloy comprising magnesium , comprising the steps of{'sub': '3', '(a) adding sufficient niobium and boron to the alloy in order to form niobium diboride or AlNb or both, or'}(b) adding niobium diboride to the alloy, or{'sub': '3', '(c) adding AlNb to the alloy, or'}(d) any combination thereof.13. The method as claimed in claim 12 , wherein the alloy which is being refined comprises aluminum and silicon and wherein at least some of the niobium diboride reacts to form AlNb.14. The method as claimed in claim 12 , wherein the alloy which is being refined comprises magnesium and aluminum.15. The method as claimed in claim 12 , wherein the amount of niobium diboride is at least 0.001% by weight of the alloy.16. The method as claimed in claim 12 , wherein said amount of niobium diboride is no more than 10% by weight of the alloy.17. The method as claimed in claim 12 , wherein the alloy comprises aluminum and from 3 to 25 wt % silicon.18. A method of refining the grain size of (i) an alloy comprising aluminum and at least 3% w/w silicon or (ii) an alloy comprising magnesium claim 12 , comprising the steps of{'sub': '3', '(a) adding sufficient niobium and boron to a portion of a first alloy in order to form niobium diboride or AlNb or both, and'}(b) adding the product of step (a) to a portion of a second alloy, wherein the first and second alloy are the same or different.19. The method as claimed in claim 18 , wherein the alloy which is being ...

Подробнее
03-10-2013 дата публикации

ALUMINUM ALLOY FORGED MATERIAL FOR AUTOMOBILE AND METHOD FOR MANUFACTURING THE SAME

Номер: US20130255841A1

It is an object to provide an aluminum alloy forged material for an automobile excellent in tensile strength while maintaining excellent corrosion resistance, and a method for manufacturing the same. Provided are the aluminum alloy forged material for an automobile and a method for manufacturing the same, the aluminum alloy forged material being composed of an aluminum alloy including Si: 0.7-1.5 mass %, Fe: 0.1-0.5 mass %, Mg: 0.6-1.2 mass %, Ti: 0.01-0.1 mass % and Mn: 0.3-1.0 mass %, further including at least one element selected from Cr: 0.1-0.4 mass % and Zr: 0.01-0.2 mass %, restricting Cu: 0.1 mass % or less and Zn: 0.05 mass % or less, and a hydrogen amount: 0.25 ml/100 g-Al or less, the remainder being Al and unavoidable impurities, in which the depth of recrystallization from the surface is 5 mm or less. 1. An aluminum alloy forged material for an automobile composed of an aluminum alloy comprising:Si: 0.7-1.5 mass %;Fe: 0.1-0.5 mass %;Mg: 0.6-1.2 mass %;Ti: 0.01-0.1 mass %; andMn: 0.3-1.0 mass %; further comprising at least one element selected from Cr: 0.1-0.4 mass % and Zr: 0.01-0.2 mass %; restrictingCu: 0.1 mass % or less; andZn: 0.05 mass % or less; anda hydrogen amount: 0.25 ml/100 g-Al or less; the remainder being Al and unavoidable impurities, whereinthe depth of recrystallization from the surface is 5 mm or less.2. The aluminum alloy forged material for an automobile according to composed of an aluminum alloy comprising:Si: 1.0-1.3 mass %;Fe: 0.2-0.4 mass %;Mg: 0.7-1.1 mass %;Ti: 0.01-0.08 mass %; andMn: 0.5-0.9 mass %; further comprising at least one element selected from Cr: 0.1-0.3 mass % and Zr: 0.05-0.2 mass %; restrictingCu: 0.1 mass % or less; andZn: 0.05 mass % or less; anda hydrogen amount: 0.25 ml/100 g-Al or less; the remainder being Al and unavoidable impurities, whereinthe depth of recrystallization from the surface is 5 mm or less.3. The aluminum alloy forged material for an automobile according to or claim 1 , whereinthe depth of ...

Подробнее
10-10-2013 дата публикации

Electrical Conductor for Transporting Electrical Energy and Corresponding Production Method

Номер: US20130264093A1
Принадлежит: La Farga Lacambra SA

An electrical conductor for transmission of electrical power, having a total cross-section equal to or above 10 mm 2 and comprising a plurality of stranded filamentary members, where at least one of the filamentary members is made from microalloyed copper or microalloyed aluminium having annealing temperatures higher than 250° C., and has the side surface thereof totally coated with a fluorinated polymer. The conductor has a better behavior relative to the skin effect and allows operation at high temperatures. Furthermore, if the electrical conductor is suspended, it has a smaller sag and prevents or reduces the accumulation of ice and/or snow.

Подробнее
10-10-2013 дата публикации

Aluminum alloy wire, and aluminum alloy twisted wire, covered electrical wire and wire harness using the same

Номер: US20130264115A1

An aluminum (Al) alloy wire, which is an extra fine wire having a wire diameter of 0.5 mm or less, contains, in mass %, Mg at 0.03% to 1.5%, Si at 0.02% to 2.0%, at least one element selected from Cu, Fe, Cr, Mn and Zr at a total of 0.1% to 1.0% and the balance being Al and impurities, and has an electrical conductivity of 40% IACS or more, a tensile strength of 150 MPa or more, and an elongation of 5% or more. By producing the extra fine wire from an Al alloy of a specific composition containing Zr, Mn and other specific elements, though the extra fine wire is extra fine, it has a fine structure with a maximum grain size of 50 μm or less and is superior in elongation.

Подробнее
17-10-2013 дата публикации

METHOD FOR HEAT-TREATING A CAST COMPONENT

Номер: US20130269843A1
Принадлежит: MAGNA BDW TECHNOLOGIES GMBH

A method for heat-treating a cast component composed of an aluminum base alloy, in which method the cast component is annealed at a predetermined annealing temperature for a predetermined annealing period in a first heat transfer medium and then transferred into a water bath. Between being annealed and transferred into the water bath, the cast component is transferred into a second heat transfer medium at a predetermined intermediate cooling temperature, where it is held for a predetermined intermediate cooling period. 113-. (canceled)14. A method for heat-treating a cast component composed of an aluminum base alloy , the method comprising:annealing the cast component at a predetermined first temperature for a predetermined first time period in a first heat transfer medium;quenching the annealed cast component by transferring the annealed cast component into a second heat transfer medium at a predetermined second intermediate temperature for a predetermined second time period; and then transferring the cast component into a water bath.15. The method of claim 14 , wherein the predetermined second temperature is in a range of between 150° C. to 380° C.16. The method of claim 14 , wherein the predetermined second temperature is in a range of between 240° C. to 280° C.1713. The method of claim claim 14 , wherein the predetermined second time period is in a range of between 3 sec to 10 min.1813. The method of claim claim 14 , wherein the predetermined second time period is in a range of between 3 sec to 10 s.1913. The method of claim claim 14 , wherein a cooling rate of the cast component while in the second heat transfer medium is less than −40 K/sec.2013. The method of claim claim 14 , wherein a cooling rate of the cast component while in the second heat transfer medium is less than a range of between −55 to −65 K/sec.2113. The method of claim claim 14 , wherein the cast component is transferred from the first heat transfer medium into the second heat transfer medium ...

Подробнее
17-10-2013 дата публикации

CRASHWORTHY STRUCTURES FORMED OF MULTILAYERED METALLIC MATERIALS

Номер: US20130270859A1
Принадлежит:

An automobile component including an aluminum alloy product having a base aluminum alloy layer and a first additional aluminum alloy layer disposed directly on the base layer. The base aluminum alloy layer includes 2.0 to 22 wt. % zinc and the zinc is a predominate alloying element of the base layer other than aluminum and the first additional aluminum alloy layer includes 0.20 to 8.0 wt. % magnesium and the magnesium is a predominate alloying element of the first additional aluminum alloy layer other than aluminum. The automobile component may include outer panel sections, high form inner sections, reinforcement sections, crash sections, large flat panel sections, and high strength sections and, when tested in a static axial crush test, a peak load of the automobile component increases at least 20% when compared to alloy 6014 in the T6 temper. 1. An automobile component comprising:an aluminum alloy product, wherein the aluminum alloy product comprises:a base aluminum alloy layer and at least a first additional aluminum alloy layer disposed directly on the base layer;wherein the base layer has a first aluminum alloy composition;wherein the first aluminum alloy composition includes 2.0 to 22 wt. % zinc and the zinc is a predominate alloying element of the base layer other than aluminum;wherein the first additional aluminum alloy layer has a second aluminum alloy composition;wherein the second aluminum alloy composition includes 0.20 to 8.0 wt. % magnesium and the magnesium is a predominate alloying element of the first additional aluminum alloy layer other than aluminum;wherein the automobile component is selected from the group consisting of outer panel sections, high form inner sections, reinforcement sections, crash sections, large flat panel sections, and high strength sections; andwherein, when tested in a static axial crush test, a peak load of the automobile component increases at least 20% when compared to alloy 6014 in the T6 temper.2. The automobile ...

Подробнее
07-11-2013 дата публикации

ALUMINUM ALLOY FOR SMALL-BORE HOLLOW SHAPE USE EXCELLENT IN EXTRUDABILITY AND INTERGRANULAR CORROSION RESISTANCE AND METHOD OF PRODUCTION OF SAME

Номер: US20130292012A1
Принадлежит: NIPPON LIGHT METAL COMPANY, LTD.

Provided as an aluminum alloy for finely hollow shapes is an aluminum alloy that is reduced in the content of Cu, which is problematic with respect to intergranular corrosion resistance, and that can be kept having a noble self-potential and has excellent extrudability. The alloy has a chemical composition which contains 0.05-0.15 mass % Fe, up to 0.10 mass % Si, 0.03-0.07 mass % Cu, 0.30-0.55 mass % Mn, 0.03-0.06 mass % Cr, and 0.08-0.12 mass % Ti and which optionally further contains up to 0.08 mass % V so as to satisfy the relationship Ti+V=0.08 to 0.2 mass %. Also provided is a process for producing a finely hollow aluminum alloy shape.

Подробнее
21-11-2013 дата публикации

Monolithic aluminum alloy target and method of manufacturing

Номер: US20130306467A1
Принадлежит: Tosoh SMD Inc

Aluminum or aluminum alloy sputter targets and methods of making same are provided. The pure aluminum or aluminum alloy is mechanically worked to produce a circular blank, and then the blank is given a recrystallization anneal to achieve desirable grain size and crystallographic texture. A 10-50% additional strain is provided to the blank step after the annealing to increase the mechanical strength. Further, in a flange area of the target, the strain is greater than in the other target areas with the strain in the flange area being imparted at a rate of about 20-60% strain. The blank is then finished to form a sputtering target with desirable crystallographic texture and adequate mechanical strength.

Подробнее
21-11-2013 дата публикации

HIGH ELECTRIC RESISTANCE ALUMINUM ALLOY

Номер: US20130307383A1
Принадлежит: NIPPON LIGHT METAL COMPANY, LTD.

An aluminum alloy casting having high electric resistance, high toughness and high corrosion resistance and optimally usable in manufacturing of electric motor housings, and a method of manufacturing said aluminum alloy casting are provided. The aluminum alloy casting has a composition including Si: 11.0-13.0 mass %, Fe: 0.2-1.0 mass %, Mn: 0.2-2.2 mass %, Mg: 0.7-1.3 mass %, Cr: 0.5-1.3 mass % and Ti: 0.1-0.5 mass %, with the balance consisting of Al and unavoidable impurities, wherein the content of Cu as an unavoidable impurity is limited to 0.2 mass % or less. In some cases, heat treatments such as solution heat treatment or artificial aging hardening treatment are performed after casting. 1. An aluminum alloy casting , comprising 11.0 to 13.0 mass % of Si , 0.2 to 1.0 mass % of Fe , 0.2 to 2.2 mass % of Mn , 0.7 to 1.3 mass % of Mg , 0.5 to 1.3 mass % of Cr and 0.1 to 0.5 mass % of Ti ,wherein the aluminum alloy casting has a balance of Al and unavoidable impurities, in which an amount of Cu as an unavoidable impurity is 0.2 mass % or less.2. The aluminum alloy casting of claim 1 , wherein the aluminum alloy casting is cast by a process comprising gravity casting claim 1 , low-pressure casting claim 1 , die casting or squeeze casting.3. The aluminum alloy casting of claim 2 , wherein the aluminum alloy casting is not subjected to a heat treatment after the casting.4. The aluminum alloy casting of claim 2 , wherein after the casting claim 2 , the aluminum alloy casting is subjected to a solution heat treatment at a temperature of from 510 to 530° C. for 2 to 5 hours claim 2 , followed by artificial ageing at a temperature of from 160 to 200° C. for 4 to 8 hours.5. An electric motor housing obtained by the aluminum alloy casting of .6. A method for producing an aluminum alloy casting claim 1 , the method comprising casting an aluminum alloy melt comprising 11.0 to 13.0 mass % of Si claim 1 , 0.2 to 1.0 mass % of Fe claim 1 , 0.2 to 2.2 mass % of Mn claim 1 , 0.7 ...

Подробнее
28-11-2013 дата публикации

Process for Producing an ALSCCA Alloy and also an AISCCA Alloy

Номер: US20130312876A1
Автор: PALM Frank
Принадлежит: EADS DEUTSCHLAND GmbH

A method for adding calcium to an aluminum-scandium alloy to produce an aluminum-scandium-calcium alloy involves combining aluminum, scandium, and calcium in a melt and the common melt is quenched at a high velocity. 112-. (canceled)13. A method for adding calcium to an aluminum-scandium alloy for producing an aluminum-scandium-calcium alloy , the method comprising the steps:a) combining aluminum, scandium and calcium together in a common melt; andb) quenching the common melt,{'sup': '3', 'wherein the calcium is added to the alloy in a ratio so that a density less than 2.6 g/cmis achieved.'}14. The method according to claim 13 , wherein the calcium is added to the alloy at a ratio of more than 0.5 wgt.-%.15. The method according to claim 13 , wherein the common melt is quenched by a rapid solidification process at a speed of more than 100 K/s.16. The method according to claim 13 , wherein the common melt is sprayed onto a substrate as a nozzle jet by a nozzle claim 13 , wherein the substrate is cooled and rotated during the application of the common melt.17. The method according to claim 16 , wherein the substrate is rotated so quickly that the quenched common melt is spun off from the substrate from an impact region of the nozzle jet on the substrate.18. The method according to claim 13 , wherein the method is carried out under atmospheric conditions.19. The method according to claim 13 , wherein step a) comprises the step of:combining an aluminum-magnesium master alloy, an aluminum-scandium pre-alloy, or an aluminum-calcium pre-alloy into the common melt.20. An aluminum-scandium-calcium alloy having a calcium ratio of more than 0.5 wgt.-% claim 13 , wherein the alloy has a density of less than 2.6 g/cm.21. The alloy according to claim 20 , wherein the alloy comprises 0.2 wgt-% to 3 wgt.-% scandium.22. The alloy according to claim 20 , wherein the alloy comprises:0.1 wgt.-% to 1.5 wgt.-% zirconium;1.0 wgt.-% to 8.0 wgt.-% magnesium; oradmixtures and undesired ...

Подробнее
28-11-2013 дата публикации

METHOD OF PRODUCING A SHAPED AL ALLOY PANEL FOR AEROSPACE APPLICATIONS

Номер: US20130312881A1
Принадлежит: ALERIS ROLLED PRODUCTS GERMANY GMBH

A method of producing a shaped aluminium alloy panel, preferably for aerospace or automotive applications, from 5000-series alloy sheet. The method includes: providing a sheet made of 5000-series alloy having a thickness of about 0.05 to 10 mm and a length in the longest dimension of at least 800 mm; and stretch forming the sheet at a forming temperature between −100° C. and −25° C., to obtain a shaped aluminium alloy panel. A shaped article formed by the above method is also provided. 1. A method of producing a shaped aluminium alloy panel from 5000-series aluminium alloy sheet , the method comprising:providing a sheet made of 5000-series alloy having a thickness of about 0.05 to 10 mm and a length in the longest dimension of at least 800 mm;stretch forming the sheet at a forming temperature between −100° C. and −25° C., to obtain the shaped aluminium alloy panel.3. The method according to claim 1 , wherein the stretch forming is performed at a strain rate between 0.1 and 10s.4. The method according to claim 1 , wherein the strain rate is above 1×10s.5. The method according to claim 1 , wherein the sheet is stretched claim 1 , at least in some positions claim 1 , by a total strain of to 8%.6. The method according to claim 1 , wherein the target forming temperature is below −40° C.7. The method according to claim 1 , wherein the temperature during forming is held constant to within ±10° C. of the target forming temperature claim 1 , during the stretch forming.8. The method according to claim 1 , wherein the sheet is cooled down prior to the stretch forming by use of dry ice and no further cooling is done during the stretch forming.9. The method according to claim 1 , wherein the sheet made of 5000-series alloy has been produced bycasting an ingot;hot rolling;cold rolling;annealing.10. The method according to claim 1 , comprising a step of annealing the shaped aluminium alloy panel at a temperature of 250-350° C. claim 1 , or of inter-annealing the aluminium alloy ...

Подробнее
19-12-2013 дата публикации

PUNCH FOR COLD BACKWARD EXTRUSION FORGING

Номер: US20130333813A1
Автор: Natsui Masayuki
Принадлежит: SHOWA DENKO K.K.

A punch includes a forming land portion formed in parallel with a punch axis , a forming R-portion having an arc-shaped cross-section and formed continuously with the forming land portion on a tip end side with respect to the forming land portion , and a recess portion formed on a base end side with respect to the forming land portion and having a diameter smaller than a diameter of the forming land portion . A Rockwell hardness HRF of the blank is within a range of 65 to 105. The curvature radius R of the forming R-portion of the punch is set to be larger than the thickness L of a cylindrical peripheral wall portion of the forged product . The length B of the forming land portion of the punch is set within a range of 0.05 to 0.15 mm. The recess width C of the recess portion with respect to the forming land portion of the punch is set within a range of 0.15 to 1.0 mm. 1. A punch for cold backward extrusion forging for use in producing a closed-end cylindrical forged product by subjecting a metal blank to cold backward extrusion forging , comprising:a forming land portion formed in parallel with a punch axis;a forming R-portion having an arc-shaped cross-section and formed continuously with the forming land portion on a tip end side with respect to the forming land portion; anda recess portion formed on a base end side with respect to the forming land portion and having a diameter smaller than a diameter of the forming land portion,wherein a Rockwell hardness HRF of the blank is within a range of 65 to 105,wherein a curvature radius of the forming R-portion is set to be larger than a thickness of a cylindrical peripheral wall portion of the forged product,wherein a length of the forming land portion is set within a range of 0.05 to 0.15 mm, andwherein a recess width of the recess portion with respect to the forming land portion is set within a range of 0.15 to 1.0 mm.2. A cold backward extrusion forging device equipped with the punch as recited .3. A production ...

Подробнее
19-12-2013 дата публикации

ALUMINUM ALLOYS AND METHODS FOR PRODUCING THE SAME

Номер: US20130334091A1
Принадлежит: ALCOA INC.

Heat treatable aluminum alloy strips and methods for making the same are disclosed. The heat treatable aluminum alloy strips are continuously cast and quenched, with optional rolling occurring before and/or after quenching. After quenching, the heat treatable aluminum alloy strip is neither annealed nor solution heat treated. 2. The method of claim 1 , wherein the heat treatable aluminum alloy strip includes from 0.05 wt. % Mn to 3.5 wt. % Mn.3. The method of claim 1 , comprising:after the quenching step (c), artificially aging the heat treatable aluminum alloy strip.4. The method of claim 3 , comprising:after the quenching step (c) and prior to the artificially aging step, cold rolling the heat treatable aluminum alloy strip.512.-. (canceled)14. The aluminum alloy strip of claim 13 , wherein the aluminum alloy strip includes from 0.10 to 1.4 wt. % Si.15. The aluminum alloy strip of claim 1 , wherein the aluminum alloy strip includes from 0.20 to 1.3 wt. % Si.16. The aluminum alloy strip of claim 1 , wherein the aluminum alloy strip includes from 0.10 to 1.7 wt. % Cu.17. The aluminum alloy strip of claim 1 , wherein the aluminum alloy strip includes from 0.20 to 1.5 wt. % Cu.18. The aluminum alloy strip of claim 1 , wherein the aluminum alloy strip includes from 0.10 to 1.7 wt. % Mg.19. The aluminum alloy strip of claim 1 , wherein the aluminum alloy strip includes from 0.20 to 1.6 wt. % Mg.20. The aluminum alloy strip of claim 1 , wherein the aluminum alloy strip includes at least 0.75 wt. % Mg.21. The aluminum alloy strip of claim 1 , wherein the aluminum alloy strip includes at least 0.05 wt. % Mn.22. The aluminum alloy strip of claim 1 , wherein the aluminum alloy strip includes at least 0.35 wt. % Mn.23. The aluminum alloy strip of claim 1 , wherein the aluminum alloy strip includes at least 0.50 wt. % Mn.24. The aluminum alloy strip of claim 1 , wherein the aluminum alloy strip includes at least 0.70 wt. % Mn.25. The aluminum alloy strip of claim 1 , wherein ...

Подробнее
20-02-2014 дата публикации

ALUMINUM ALLOY MATERIAL FOR USE IN THERMAL CONDUCTION APPLICATION

Номер: US20140048186A1
Принадлежит:

An aluminum alloy material for use in thermal conduction to which improved castability has been imparted by silicon addition. It has improved thermal conductivity and improved strength. The material has a composition containing 7.5-12.5 mass % Si and 0.1-2.0 mass % Cu, the remainder being Al and unavoidable impurities, wherein the amount of copper in the state of a solid solution in the matrix phase is regulated to 0.3 mass % or smaller. The composition may further contain at least 0.3 mass % Fe and/or at least 0.1 mass % Mg, provided that the sum of (Fe content) and (content of Mg among the impurities)×2 is 1.0 mass % or smaller and the sum of (Cu content), (content of Mg among the impurities)×2.5, and (content of Zn among the impurities) is 2.0 mass % or smaller. 1. A manufacturing method of an aluminum alloy material for use in a thermal conduction application ,comprising subjecting an aluminum alloy with the composition comprising 7.5 to 12.5 mass % of Si, 0.1 to 2.0 mass % of Cu, less than 0.05 mass % of Mg as an impurity, less than 0.05 mass % of Ti as an impurity, and Al and unavoidable impurities as the remainder, wherein an amount of unavoidable impurities is 0.1 mass % or less, to an ageing treatment within the range of at 160-370° C. for 1-20 hours as T5 temper.2. A manufacturing method of an aluminum alloy material for use in a thermal conduction application ,comprising subjecting an aluminum alloy with the composition comprising 7.5 to 12.5 mass % of Si, 0.1 to 2.0 mass % of Cu, at least 0.3 mass % of Fe, less than 0.05 mass % of Mg as an impurity, less than 0.05 mass % of Ti as an impurity, and Al and unavoidable impurities as the remainder, wherein an amount of unavoidable impurities is 0.1 mass % or less and the relationship between the Fe content and the content of Mn included as an unavoidable impurity is such that the total of (Fe content)+(Mn content) times 2 is 1.0 mass % or less, to an ageing treatment within the range of at 160-370° C. for 1- ...

Подробнее
27-02-2014 дата публикации

HEAT TREATMENT PROCESS OF HIGH-MG ER-MICROALLOYED ALUMINUM ALLOY COLD-ROLLED PLATES RESISTANT TO INTERGRANULAR CORROSION

Номер: US20140053959A1
Принадлежит: BEIJING UNIVERSITY OF TECHNOLOGY

A heat treatment process of high-Mg Er-containing aluminum alloy cold-rolled plates resistant to intergranular corrosion is disclosed, which belongs to the field of non-ferrous metals. The mass percentage of each component of high-Mg Er-containing aluminum alloy heat-rolled plates is, respectively, 5.8%-6.8% of Mg, 0.4%-0.8% of Mn, 0.15%-0.25% of Er, 0.15%-0.25% of Zr, the unavoidable impurities content being less than 4%, the balance being Al. The alloy hot-rolled plates are cold-rolled until the final cold deformation being 75%-90% after the intermediate annealing; the aluminum alloy cold-rolled plates undergo a stabilization annealing at the annealing temperature of 235° C. to 245° C. for 3.5-4 hours, and then is cooled in air to room temperature. This process significantly improves the resistance to intergranular corrosion while it does not reduce the strength of the alloy significantly. 1. A heat treatment process of high-Mg Er-containing aluminum alloy cold-rolled plates resistant to intergranular corrosion , the mass percentage of each component of high-Mg Er-containing aluminum alloy heat-rolled plates being , respectively , 5.8%-6.8% of Mg , 0.4%-0.8% of Mn , 0.15%-0.25% of Er , 0.15%-0.25% of Zr , the unavoidable impurities content being less than 4% , the balance being Al , the process is characterized by including the following steps:(1) the high-Mg Er-containing aluminum alloy hot-rolled plates are cold-rolled after an intermediate annealing, and the final cold deformation of the plates being 75%-90%;(2) the high-Mg Er-containing aluminum alloy cold-rolled plates obtained from step (1) undergo a stabilization annealing at the temperature of 235° C. to 245° C. for 3.5-4 hours, and then are cooled in air to room temperature.2. The process according to claim 1 , characterized in that the cold rolling follows the intermediate annealing preferably at 350° C. for 2 hours claim 1 , and the cold rolling is preferably controlled so that a compression deformation ...

Подробнее
13-03-2014 дата публикации

Structural Automotive Part Made From an Al-Zn-Mg-Cu Alloy Product and Method of its Manufacture

Номер: US20140069557A1
Принадлежит:

A method of manufacturing a formed aluminium alloy body-in-white (“BIW”) part of a motor vehicle, the BIW part having a yield strength of more than 500 MPa after being subjected to a paint-bake cycle. The method includes providing a rolled aluminium sheet product of an AlZnMgCu alloy and having a gauge in a range of 0.5 to 4 mm and subjected to a solution heat treatment (SHT) and quenched following SHT, and wherein the SHT and quenched aluminium sheet product has a substantially recrystallized microstructure, forming the aluminium alloy sheet to obtain a formed BIW part, assembling the formed BIW part with one or more other metal parts to form an assembly forming a motor vehicle component, subjecting the motor vehicle component to a paint bake cycle, wherein the aluminium alloy sheet in the formed BIW part has a yield strength of more than 500 MPa. 1. Method of manufacturing a formed aluminium alloy body-in-white (BIW) part of a motor vehicle , the BIW part having a yield strength of more than 500 MPa after being subjected to a paint-bake cycle , the method comprising: Zn 6.9 to 8.0,', 'Mg 1.2 to 2.4,', 'Cu 1.3 to 2.4,', 'Mn <0.3,', 'either 0.05 to 0.25 of Cr or Zr,', 'Si <0.3,', 'Fe <0.35,', 'Ti <0.1,', 'impurities and others each <0.05, total <0.2, balance aluminium;, 'a. providing a rolled aluminium sheet product having a gauge in a range of 0.5 to 4 mm and comprising an aluminium alloy being subjected to a solution heat treatment (SHT) and having been quenched following said SHT, and wherein the SHT and quenched aluminium alloy of the sheet product has a substantially recrystallised microstructure, and a chemical composition of, in weight percent,'}b. forming the aluminium alloy sheet to obtain a formed BIW part,c. assembling the formed BIW part with one or more other metal parts to form an assembly forming a motor vehicle component;d. subjecting said motor vehicle component to a paint bake cycle, wherein the paint bake cycle comprises at least one heat ...

Подробнее
13-03-2014 дата публикации

Lamination, conductive material, and method for manufacturing lamination

Номер: US20140069700A1
Принадлежит: NHK Spring Co Ltd

A lamination includes: a substrate formed of aluminum or aluminum alloy; an intermediate layer formed of any one metal or nonmetal selected from the group consisting of silver, gold, chromium, iron, germanium, manganese, nickel, silicon, and zinc, or an alloy containing the any one metal, on a surface of the substrate; and a film layer formed by accelerating powder material of copper or copper alloy together with gas heated to a temperature lower than a melting point of the powder material and spraying and depositing a solid-phase powder material onto a surface of the intermediate layer.

Подробнее
27-03-2014 дата публикации

Aluminum alloy composition and method

Номер: US20140083569A1
Принадлежит: Rio Tinto Alcan International Ltd

An aluminum alloy composition includes, in weight percent: 0.7-1.10 manganese; 0.05-0.25 iron; 0.21-0.30 silicon; 0.005-0.020 nickel; 0.10-0.20 titanium; 0.014 max copper; and 0.05 max zinc, with the balance being aluminum and unavoidable impurities. The alloy may tolerate higher nickel contents than existing alloys, while providing increased corrosion resistance, as well as similar extrudability, strength, and performance. Billets of the alloy may be homogenized at 590-640° C. and controlled cooled at less than 250° C. per hour. The homogenized billet may be extruded into a product, such as an aluminum alloy heat exchanger tube.

Подробнее
10-04-2014 дата публикации

HIGH-STRENGTH ALUMINUM ALLOY EXTRUDED MATERIAL AND METHOD FOR MANUFACTURING THE SAME

Номер: US20140096878A1
Принадлежит: SUMITOMO LIGHT METAL INDUSTRIES, LTD.

A high-strength aluminum alloy extruded material contains Si: 0.70 to 1.3 mass %; Mg: 0.45 to 1.2 mass %; Cu: 0.15 to less than 0.40 mass %; Mn: 0.10 to 0.40 mass %; Cr: more than 0 to 0.06 mass %; Zr: 0.05 to 0.20 mass %; Ti: 0.005 to 0.15 mass %, Fe: 0.30 mass % or less; V: 0.01 mass % or less; the balance being Al and unavoidable impurities Crystallized products in the alloy have a particle diameter of a is 5 μm or less. Furthermore, an area ratio of a fibrous structure in a cross section parallel to an extruding direction during hot extrusion is 95% or more. 1. A high-strength aluminum alloy extruded material comprising:Si: 0.70 to 1.3 mass %;Mg: 0.45 to 1.2 mass %;Cu: 0.15 to less than 0.40 mass %;Mn: 0.10 to 0.40 mass %;Cr: more than 0 to 0.06 mass %;Zr: 0.05 to 0.20 mass %;Ti: 0.005 to 0.15 mass %,Fe: 0.30 mass % or less;V: 0.01 mass % or less; andthe balance being Al and unavoidable impurities,wherein crystallized products in the alloy have a particle diameter of 5 μm or less, andwherein an area ratio of a fibrous structure in a cross section parallel to an extruding direction during hot extrusion is 95% or more.2. A structural member for vehicle comprising the high-strength aluminum alloy extruded material according to .3. A method for manufacturing a high-strength aluminum alloy extruded material claim 1 , comprising:producing an ingot which comprises:Si: 0.70 to 1.3 mass %;Mg: 0.45 to 1.2 mass %;Cu: 0.15 to less than 0.40 mass %;Mn: 0.10 to 0.40 mass %;Cr: more than 0 to 0.06 mass %;Zr: 0.05 to 0.20 mass %;Ti: 0.005 to 0.15 mass %,Fe: 0.30 mass % or less;V: 0.01 mass % or less; andthe balance being Al and unavoidable impurities;subjecting the ingot to a homogenization treatment that includes holding the ingot at a temperature of not lower than 450° C. and lower than 500° C. for 2 to 30 hours;subjecting the homogenized ingot to hot extrusion in a state where the temperature of the ingot at the start of the hot extrusion is held at 480° C. to 540° C. so as ...

Подробнее
10-04-2014 дата публикации

ALUMINUM ALLOY COMPOSITION AND HEAT TREATMENT METHOD OF THE ALUMINUM ALLOY COMPOSITION

Номер: US20140096879A1
Автор: Kim Nak-Young
Принадлежит: HYUNDAI MOTOR COMPANY

Disclosed herein is an aluminum alloy composition and a method of heat treating the aluminum alloy, to improve process control and strength of the aluminum alloy for a rear safety plate mounted on a truck, etc., complying with safety regulations wherein the aluminum alloy composition includes Silicon (Si) about 0.8 to 1.3% by weight, Iron (Fe) up to about 0.5% by weight, Copper (Cu) about 0.15 to 0.4% by weight, Manganese (Mn) up to about 0.15% by weight, Magnesium (Mg) about 0.8 to 1.2% by weight, Chromium (Cr) up to about 0.25% by weight, Zinc (Zn) up to about 0.2% by weight, Titanium (Ti) up to about 0.1% by weight and the remaining percent by weight of Aluminum (Al) of the entire composition. 1. An aluminum alloy composition comprising Silicon (Si) about 0.8 to 1.3% by weight , Iron (Fe) up to about 0.5% by weight , Copper (Cu) about 0.15 to 0.4% by weight , Manganese (Mn) up to about 0.15% by weight , Magnesium (Mg) about 0.8 to 1.2% by weight , Chromium (Cr) up to about 0.25% by weight , Zinc (Zn) up to about 0.2% by weight , Titanium (Ti) up to about 0.1% by weight and the remaining percent by weight of Aluminum(Al) of the entire composition.2. The aluminum alloy composition of claim 1 , further comprising Beryllium (Be) and Zirconium (Zr).3. The aluminum alloy composition of claim 2 , wherein the Beryllium (Be) is about 0.04 to 0.07% by weight and the Zirconium (Zr) is about 0.2 to 0.3% by weight of the entire composition.4. A heat treatment method of an aluminum alloy composition claim 2 , comprising:heat treating the aluminum alloy; andafter heat treating the aluminum alloy, age heat treating the aluminum alloy at about 205° C. to 215° C. for 4 to 5 hours.5. The heat treatment method of claim 4 , wherein the aluminum alloy composition comprises Silicon (Si) about 0.8 to 1.3% by weight claim 4 , Iron (Fe) up to about 0.5% by weight claim 4 , Copper (Cu) about 0.15 to 0.4% by weight claim 4 , Manganese (Mn) up to about 0.15% by weight claim 4 , Magnesium (Mg ...

Подробнее
10-04-2014 дата публикации

Electrode material for aluminum electrolytic capacitor, and process for producing same

Номер: US20140098460A1
Принадлежит: Toyo Aluminum KK

The present invention provides an electrode material for an aluminum electrolytic capacitor, which does not require any etching treatment and which has improved bending strength. Specifically, the present invention provides an electrode material for an aluminum electrolytic capacitor, which comprises, as constituent elements, a sintered body of a powder of at least one member selected from the group consisting of aluminum and aluminum alloys and an aluminum foil substrate that supports the sintered body thereon, which is characterized in that (1) the powder has an average particle size D 50 of 0.5 to 100 μm, (2) the sintered body is formed on one surface or both surfaces of the aluminum foil substrate and has a total thickness of 20 to 1,000 μm, and (3) the aluminum foil substrate has a thickness of 10 to 200 μm and an Si content of 10 to 3,000 ppm.

Подробнее
06-01-2022 дата публикации

Strip of aluminium alloy for manufacturing brazed heat exchangers

Номер: US20220002843A1
Принадлежит: Constellium Neuf Brisach SAS

A strip intended for the manufacture of brazed heat exchangers, having a core made of an alloy with the composition (weight %):Si: 0.10-0.30%, preferably 0.15-0.25%Fe<0.25%, preferably 0.1-0.2%Cu: 0.85-1.1%, preferably 0.9-1.0%Mn: 1.2-1.7%, preferably 1.2-1.4%Mg: 0.1-0.3%, preferably 0.1-0.21%Zn<0.1%Ti 0.05-0.20%, preferably 0.06-0.15%, more preferably 0.06-0.1%optionally up to 0.15% of Bi and/or Yother elements <0.05% each and <0.15% in total,remainder aluminium.

Подробнее
07-01-2016 дата публикации

Value stream process for forming vehicle rails from extruded aluminum tubes

Номер: US20160001345A1
Принадлежит: FORD GLOBAL TECHNOLOGIES LLC

A value stream process or method for forming vehicle rails from extruded aluminum tubes includes the steps of extruding an aluminum tube and hydroforming the extruded aluminum tube into a vehicle rail. More specifically, the method includes extruding the aluminum tube, bending the aluminum tube, preforming the aluminum tube, hydroforming the aluminum tube into a vehicle rail, trimming the vehicle rail to length and then artificially aging the rail followed by batch chemical pretreatment. In an alternative embodiment the artificial aging and batch chemical pretreatment processes are performed in reverse order. In either of the embodiments, localized induction annealing to recover formability may be performed between bending and preforming, between preforming and hydroforming or both.

Подробнее
01-01-2015 дата публикации

SUSPENSION ARM FOR AUTOMOBILE

Номер: US20150001826A1
Автор: HOSOI Hiroaki

An L-shape vehicular suspension arm includes a unitary body forged from an aluminum alloy. The unitary body includes a web and ribs. The web is substantially planar, and the ribs extend from surfaces of the web at peripheral edges of the web. In cross-section, at least one part of the unitary body has a U-shape, an H-shape, or an inverted U-shape, such that dimensions of the unitary body satisfy expression (1) or (2): 2. The suspension arm of claim 1 , wherein claim 1 , when viewed in a cross-section perpendicular to the longitudinal direction at a location L/4 or less from the tip of the first arm section or L/4 or less from the tip of the second arm section claim 1 , excepting locations along the longitudinal direction where a rib is interrupted by the ball joint support section or the first bushing support section claim 1 , dimensions of the unitary body satisfy expression (3):{'br': None, 'i': H−Hr', 'Hr=, '()/1\u2003\u2003(3).'}3. The suspension arm of claim 1 , wherein claim 1 , when viewed in the cross-section perpendicular to the longitudinal direction at the location L/4 or greater from the tip of the first arm section and L/4 or greater from the tip of the second arm section claim 1 , excepting locations along the longitudinal direction where a rib is interrupted by the second bushing support section claim 1 , dimensions of the unitary body satisfy expression (1):{'br': None, 'i': H−Hr', 'Hr≦, '0.05≦()/0.25\u2003\u2003(1).'}4. The suspension arm of claim 1 , wherein claim 1 , when viewed in the cross-section perpendicular to the longitudinal direction at the location L/4 or greater from the tip of the first arm section and L/4 or greater from the tip of the second arm section claim 1 , excepting locations along the longitudinal direction where a rib is interrupted by the second bushing support section claim 1 , dimensions of the unitary body satisfy expression (2):{'br': None, 'i': H−Hr', 'Hr≦, '4≦()/19\u2003\u2003(2).'}5. The suspension arm of claim 1 , ...

Подробнее
02-01-2020 дата публикации

CONTROL OF RECRYSTALLIZATION IN COLD-ROLLED AlMn(Mg)ScZr SHEETS FOR BRAZING APPLICATIONS

Номер: US20200001407A1
Принадлежит:

A method for fabricating an article from an aluminum alloy is provided. The method includes providing an aluminum alloy containing at least 0.04 wt % Sc, at least 0.5 wt % Mn, at least 0.5 wt % Zr, at least 0.05 wt % Mg, and at least 90 wt % Al; casting the alloy into a sheet; subjecting the cast alloy to a thermal cycle which includes raising the temperature of the alloy along a first temperature gradient, holding the temperature of the alloy at a temperature T for a period of time t, and reducing the temperature of the alloy along a second temperature gradient; and utilizing the sheet in a brazing operation. 1A. A method for fabricating an article from an aluminum alloy , comprising: (a) at least 0.04 wt % Sc,', '(b) at least 0.5 wt % Mn,', '(c) at least 0.05 wt % Zr,', '(d) at least 0.05 wt % Mg, and', '(e) at least 90 wt % Al;, 'providing an aluminum alloy containing'}casting the alloy into a sheet;subjecting the cast alloy to a thermal cycle which includes raising the temperature of the alloy along a first temperature gradient, holding the temperature of the alloy at a temperature T for a period of time t, and reducing the temperature of the alloy along a second temperature gradient; andutilizing the sheet in a brazing operation.21A. The method of claim A , wherein T is at least 250° C.31A. The method of claim A , wherein T is at least 300° C.41A. The method of claim A , wherein T is at least 350° C.51A. The method of claim A , wherein T is at least 400° C.61A. The method of claim A , wherein T is at least 450° C.71A. The method of claim A , wherein T is within the range of 250° C. to 450° C.81A. The method of claim A , wherein T is within the range of 300° C. to 400° C.91A. The method of claim A , wherein t is 30 minutes.101A. The method of claim A , wherein t is 1 hour.111A. The method of claim A , wherein t is 2 hours.121A. The method of claim A , wherein t is 4 hours.131A. The method of claim A , wherein utilizing the sheet in a brazing operation exposes ...

Подробнее
04-01-2018 дата публикации

ALUMINUM-ALLOY-CLAD PLATE AND ALUMINUM-ALLOY-CLAD STRUCTURAL MEMBER

Номер: US20180001596A1

An aluminum-alloy-clad plate in which a plurality of aluminum alloy layers are layered and diffusion heat treatment is performed thereon, wherein aluminum alloy layers having a specific composition are layered so as to each have a different content Mg or Zn, the structure of the aluminum alloy clad plate after diffusion heat treatment thereof has a minute crystal grain diameter and a predetermined amount of a specific Mg and Zn inter-diffusion region in which Mg and Zn of layered aluminum alloy layers are diffused with each other, and increased strength and high moldability are obtained at the same time. 1. An aluminum alloy clad plate as a laminate of a plurality of aluminum alloy layers ,wherein each of the aluminum alloy layers laminated inside of an aluminum alloy layer on an outermost layer side of the aluminum alloy clad plate contains one or both of Mg: 3 to 10 mass % and Zn: 5 to 30 mass %,the aluminum alloy layer on the outermost layer side has a composition containing Mg in a range from 3 to 10 mass % and Zn that is limited to 2 mass % or less (including 0 mass %),the aluminum alloy layers are laminated such that aluminum alloy layers having different contents of one of Mg and Zn are adjacently bonded to each other, the total number of laminated layers is 5 to 15, and total thickness is 1 to 5 mm,the aluminum alloy clad plate has an average content of Mg in a range from 2 to 8 mass % and an average content of Zn in a range from 3 to 20 mass %; the average content being an average of the contents of each of Mg and Zn of the laminated aluminum alloy layers,when the aluminum alloy clad plate is subjected to diffusion heat treatment, the aluminum alloy clad plate has a microstructure having an average grain size of 200 μm or less, the average grain size being an average of grain sizes of the laminated aluminum alloy layers, and having Mg—Zn interdiffusion regions each containing Mg and Zn that interdiffuse between the laminated aluminum alloy layers, andsome ...

Подробнее
07-01-2016 дата публикации

METHOD OF MANUFACTURING AN AL-MG-SI ALLOY ROLLED SHEET PRODUCT WITH EXCELLENT FORMABILITY

Номер: US20160002761A1
Автор: DE SMET Peter
Принадлежит: Aleris Aluminum Duffel BVBA

A method of manufacturing aluminium alloy rolled sheet with excellent formability and suitable for an automotive body, the method including: casting an ingot of aluminium alloy of, in wt. %: Si 0.5 to 1.5, Mg 0.2 to 0.7, Fe 0.03 to 0.30, Cu up to 0.30, optionally one or more elements selected from the group of: (Mn, Zr, Cr, V), Zn up to 0.3, Ti up to 0.15, impurities and aluminium; homogenising the cast ingot at 450° C. or more; hot rolling the ingot to a hot-rolled product; cold rolling the hot-rolled product to a cold-rolled product of intermediate gauge; continuous intermediate annealing the cold-rolled product of intermediate gauge in the range of 360-580° C.; cold rolling the intermediate annealed cold-rolled product to a sheet of final gauge up to 2.5 mm; solution heat treating the sheet; and quenching the solution heat treated sheet. 1. A method of manufacturing an aluminium alloy rolled sheet product with excellent formability and paint bake hardenability and particularly suitable for use for an automotive body , the method comprising: Si 0.5 to 1.5,', 'Mg0.2 to 0.7,', 'Fe 0.03 to 0.30,', 'Cu up to 0.30,', 'optionally one or more elements selected from the group consisting of:', 'Mn 0.01 to 0.5, Zr 0.01 to 0.15, Cr 0.01 to 0.15, V 0.01 to 0.2,', 'Zn up to 0.3,', 'Ti up to 0.15,', 'impurities each <0.05, total <0.20, balance aluminium;, '(a) casting an ingot of an aluminium alloy having a composition consisting of, in wt. %(b) homogenising the cast ingot at a temperature of 450° C. or more;(c) hot rolling the ingot to a hot-rolled product;(d) cold rolling of the hot-rolled product to a cold-rolled product of intermediate gauge;(e) continuous intermediate annealing of the cold-rolled product of intermediate gauge at a temperature in the range of 360° C. to 580° C.;(f) cold rolling of the intermediate annealed cold-rolled product to a sheet product of final gauge up to 2.5 mm;(g) solution heat treating said sheet product at a temperature range of 500° C. or ...

Подробнее
05-01-2017 дата публикации

ALUMINUM ALLOY COMBINING HIGH STRENGTH AND EXTRUDABILITY, AND LOW QUENCH SENSITIVITY

Номер: US20170002448A1
Принадлежит:

An aluminum alloy includes, in weight percent, 0.70-0.85 Si, 0.14-0.25 Fe, 0.25-0.35 Cu, 0.02-0.08 Mn, 0.75-0.90 Mg, 0.04-0.08 Cr, 0.05 max Zn, and 0.04 max Ti, the balance being aluminum and unavoidable impurities. The minimum Mn content may be 0.03 wt. %, and/or the maximum Mn content may be 0.06 wt. %, in various configurations. The alloy may be suitable for extruding, and may be formed into an extruded alloy product. 2. The alloy of claim 1 , wherein the Si content of the alloy is 0.74-0.82 weight percent.3. The alloy of claim 1 , wherein the Fe content of the alloy is 0.14-0.20 weight percent.4. The alloy of claim 1 , wherein the Cu content of the alloy is 0.25-0.30 weight percent.5. The alloy of claim 1 , wherein the Mg content of the alloy is 0.78-0.86 weight percent.6. The alloy of claim 1 , wherein the Ti content of the alloy is 0.003-0.04 weight percent.7. The alloy of claim 1 , wherein the unavoidable impurities may each be present at a maximum weight percent of 0.05 claim 1 , and the maximum total weight percent of the unavoidable impurities is 0.15.8. The alloy of claim 1 , wherein the Mn content of the alloy is 0.03-0.08 weight percent.9. The alloy of claim 1 , wherein the Mn content of the alloy is 0.03-0.06 weight percent.10. (canceled)11. An extruded aluminum alloy product formed of the alloy of .1216.-. (canceled)18. The method of claim 17 , wherein at least 90% of the extruded product undergoes recrystallization after the extrusion.19. The method of claim 18 , wherein the extruded product has a tensile yield strength of at least about 260 MPa and a tensile elongation of at least about 8%.20. The method of claim 19 , wherein 100% of the extruded product undergoes recrystallization after the extrusion.21. The method of claim 17 , wherein the extrusion is performed to create a smallest cross-sectional thickness of up to 6.3 mm in the extruded product.22. The method of claim 17 , further comprising homogenizing the alloy prior to extruding.23. The ...

Подробнее
05-01-2017 дата публикации

Aluminum alloy fin material for heat exchangers, and method of producing the same, and heat exchanger

Номер: US20170003085A1
Принадлежит: UACJ Corp

A heat exchanger aluminum alloy fin material, comprising Si 0.5 to 1.5 mass %; Fe 0.1 to 1.0 mass %; Mn 0.8 to 2.2 mass %; Zn 0.4 to 2.5 mass %; and further at least one selected from Cu, Ti, Zr, Cr, and V each in 0.02 to 0.3 mass %, with the balance being Al and unavoidable impurities, wherein a metallographic microstructure before braze-heating is such that a density of second phase particles having a circle-equivalent diameter of less than 0.1 μm is less than 1×10 7 particles/mm 2 , and that a density of second phase particles having a circle-equivalent diameter of 0.1 μm or more is 5×10 4 particles/mm 2 or more, wherein a tensile strength before braze-heating, TS B , a tensile strength after braze-heating, TS A , and a sheet thickness of the fin material, t, satisfy: 0.4≦(TS B −TS A )/t≦2.1, and wherein the sheet thickness is 150 μm or less.

Подробнее
04-01-2018 дата публикации

ALUMINUM ALLOY WIRE ROD, ALUMINUM ALLOY STRANDED WIRE, COATED WIRE, WIRE HARNESS AND MANUFACTURING METHOD OF ALUMINUM ALLOY WIRE ROD

Номер: US20180002792A1
Принадлежит:

An aluminum alloy wire rod having a composition comprising Mg: 0.10-1.00 mass %, Si: 0.10-1.00 mass %, Fe: 0.01-1.40 mass %, Ti: 0.000-0.100 mass %, B: 0.000-0.030 mass %, Cu: 0.00-1.00 mass %, Ag: 0.00-0.50 mass %, Au: 0.00-0.50 mass %, Mn: 0.00-1.00 mass %, Cr: 0.00-1.00 mass %, Zr: 0.01-0.50 mass %, Hf: 0.00-0.50 mass %, V: 0.00-0.50 mass %, Sc: 0.00-0.50 mass %, Co: 0.00-0.50 mass %, and Ni: 0.00-0.50 mass %. Mg/Si ratio is greater than 1. A dispersion density of compound particles having a particle size of 20 nm to 1000 nm is greater than or equal to 1 particle/μm. In a distribution of the compound particles in the aluminum alloy wire rod, a maximum dispersion density of the compound particles is less than or equal to five times a minimum dispersion density of the compound particles. 1. An aluminum alloy wire rod having a composition comprising Mg: 0.10 mass % to 1.00 mass % , Si: 0.10 mass % to 1.00 mass % , Fe: 0.01 mass % to 1.40 mass % , Ti: 0.000 mass % to 0.100 mass % , B: 0.000 mass % to 0.030 mass % , Cu: 0.00 mass % to 1.00 mass % , Ag: 0.00 mass % to 0.50 mass % , Au: 0.00 mass % to 0.50 mass % , Mn: 0.00 mass % to 1.00 mass % , Cr: 0.00 mass % to 1.00 mass % , Zr: 0.01 mass % to 0.50 mass % , Hf: 0.00 mass % to 0.50 mass % , V: 0.00 mass % to 0.50 mass % , Sc: 0.00 mass % to 0.50 mass % , Co: 0.00 mass % to 0.50 mass % , and Ni: 0.00 mass % to 0.50 mass % , a Mg/Si ratio being greater than 1 ,{'sup': '2', 'wherein a dispersion density of compound particles having a particle size of 20 nm to 1000 nm is greater than or equal to 1 particle/μmand'}in a distribution of the compound particles in the aluminum alloy wire rod, a maximum dispersion density of the compound particles is less than or equal to five times a minimum dispersion density of the compound particles.2. The aluminum alloy wire rod according to claim 1 , wherein the composition contains at least one element selected from a group consisting of Ti: 0.001 mass % to 0.100 mass % and B: 0.001 ...

Подробнее
02-01-2020 дата публикации

ALUMINUM ALLOYS

Номер: US20200002788A1
Автор: Hu Bin
Принадлежит: GM GLOBAL TECHNOLOGY OPERATIONS LLC

An aluminum alloy consisting essentially of from greater than 6 wt % to about 12.5 wt % silicon; iron present in an amount up to 0.15 wt %; from about 0.1 wt % to about 0.4 wt % chromium; from about 0.1 wt % to about 3 wt % copper; from about 0.1 wt % to about 0.5 wt % magnesium; from about 0.05 wt % to about 0.1 wt % titanium; less than 0.01 wt % of strontium; and a balance of aluminum and inevitable impurities. The aluminum alloy contains no vanadium. A method for increasing ductility and strength of an aluminum alloy without using vacuum and a T7 heat treatment, the method comprising: casting the molten aluminum alloy by a high pressure die-cast process to form a cast structure. The structural castings formed of the aluminum alloy composition disclosed herein exhibit desirable mechanical properties, such as high strength and high ductility/elongation. 1. An aluminum alloy , consisting essentially of:from greater than 6 wt % to about 12.5 wt % silicon;iron present in an amount up to 0.15 wt %;from about 0.1 wt % to about 0.4 wt % chromium;from about 0.1 wt % to about 3 wt % copper;from about 0.1 wt % to about 0.5 wt % magnesium;from about 0.05 wt % to about 0.1 wt % titanium;less than 0.01 wt % strontium; anda balance of aluminum and inevitable impurities;wherein the aluminum alloy contains no vanadium.2. The aluminum alloy as defined in claim 1 , wherein the inevitable impurities are selected from the group consisting of:less than 0.01 wt % zinc;less than 0.003 wt % phosphorous;less than 0.01 wt % zirconium; andcombinations thereof.3. The aluminum alloy as defined in wherein an as-cast and T5 treated structure of the aluminum alloy has a percent elongation ranging from about 7% to about 10% and a yield strength ranging from about 200 MPa to about 250 MPa.4. The aluminum alloy as defined in wherein the as-cast and T5 treated structure is a thin-wall casting.5. A chassis component for an automobile claim 3 , the chassis component comprising an aluminum alloy ...

Подробнее
02-01-2020 дата публикации

Aluminum alloy wire, electric wire, and wire harness using the same

Номер: US20200002789A1
Принадлежит: Fujikura Ltd

An aluminum alloy wire that includes unavoidable impurities, the aluminum alloy wire including: aluminum; and an added element that includes at least Si and Mg. An exothermic peak of the aluminum alloy wire is in a temperature range of 200 to 300° C. on a differential scanning thermal analysis curve.

Подробнее
02-01-2020 дата публикации

SURFACE MODIFICATION METHOD FOR LIGHT METAL CASTING

Номер: US20200002795A1
Принадлежит: TOYOTA JIDOSHA KABUSHIKI KAISHA

There is provided a surface modification method for a light metal casting that enables, with Friction Stir Processing, to further refine a surface at a portion at which the strength is especially required. A surface modification method for a light metal casting with Friction Stir Processing in which a rotating shaft and a rotator are rotated and fed while the rotating shaft and the rotator are being pressed against a surface of a casting to modify the surface of the casting, the method includes feeding the rotating shaft and the rotator while rotating the rotating shaft and the rotator in a manner such that a side at which a rotating direction of the rotating shaft and the rotator coincides with a feeding direction is positioned at a portion at which increase in the strength is desired with modification of the light metal casting. 1. A surface modification method for a light metal casting with Friction Stir Processing in which a rotating shaft and a rotator are rotated and fed while the rotating shaft and the rotator are being pressed against a surface of a casting to modify the surface of the casting , the method comprising feeding the rotating shaft and the rotator while rotating the rotating shaft and the rotator in a manner such that a side at which a rotating direction of the rotating shaft and the rotator coincides with a feeding direction is positioned at a portion at which increase in the strength is desired with modification of the light metal casting.2. The surface modification method for the light metal casting according to claim 1 , further comprising:performing the feeding in the same feeding direction a plurality of times; andperforming each feeding by shifting, in parallel, a next feeding path from a previous feeding path by a predetermined width equal to or less than a diameter of the rotator.3. The surface modification method for the light metal casting according to claim 1 , further comprising feeding the rotating shaft and the rotator according to ...

Подробнее
01-01-2015 дата публикации

Method and System for Using an Irreversible Thermo-Chromatic Indicator for Quality Assurance of a Part Subjected to Heat Treating

Номер: US20150004305A1
Принадлежит:

A system and method of verifying that a part is heat treated to strengthen the part. The part is marked with a thermo-chromatic composition before heat treating. The part is then heat treated to strengthen the part and change the color of the thermo-chromatic composition to indicate successful completion of the heat treating process. A detector may act to prevent the inclusion of a non-heat treated part in an assembly by disabling an assembly tool. A controller may also provide data related to the completion of the heat treating process to be recorded in a database. 1. A method of manufacturing a part that is strengthened by heat treating , comprising:forming the part;marking the part in a predetermined location with an irreversible thermo-chromatic composition;heating the part to increase the strength of the part and to change the irreversible thermo-chromatic composition from a first color to a second color;detecting whether the thermo-chromatic composition is the first color or the second color after the heating step; andcontrolling a subsequent manufacturing process based upon whether the thermo-chromatic composition is the first color or the second color.2. The method of wherein the thermo-chromatic composition is an irreversible thermo-chromatic ink that has a first color that is white and a second color that is a darker color.3. The method of wherein the step of marking the part is performed by spraying the part in a location that is visible during the detecting step.4. The method of wherein the step of heating the part is performed by exposing the parts to convective air at 170° C.-240° C. for more than 20 minutes.5. The method of wherein the step of forming the part is selected from a group consisting of:stamping the part in a sheet metal forming process,extruding the part,forging, andhydro-forming the part.6. The method of wherein the step of detecting whether the irreversible thermo-chromatic composition is the first color or the second color further ...

Подробнее
13-01-2022 дата публикации

ALUMINUM ALLOY, AND CONDUCTIVE MEMBER, BATTERY MEMBER, FASTENING COMPONENT, SPRING COMPONENT, STRUCTURAL COMPONENT AND CABTIRE CABLE USING SAME

Номер: US20220010411A1
Автор: Kaneko Hiroshi
Принадлежит: FURUKAWA ELECTRIC CO., LTD.

An aluminum alloy that has high yield strength enabling use as a substitute for iron- and copper-based metal materials, and has a constant break elongation even at narrow diameters. The aluminum alloy has an alloy composition containing 0.20-1.80 mass % of Mg, 0.20-2.00 mass % of Si, and 0.01-1.50 mass % of Fe, with a balance being Al and inevitable impurities. The aluminum alloy material has a fibrous metallic microstructure in which a plurality of crystal grains extend so as to be aligned in one direction, and in a cross section parallel to the one direction, an average value of a maximum dimension in a direction perpendicular to the longitudinal direction of a plurality of the crystal grains is no more than 400 nm, and viewing the cross section in a thickness direction, when observing at a central part, specific voids having a maximum dimension in a direction perpendicular to the longitudinal direction of no less than 1.0 μm are not present, or an existence number of the specific voids is no more than 15 per 10000 μm. 1. An aluminum alloy material having an alloy composition containing 0.20 to 1.80 mass % of Mg , 0.20 to 2.00 mass % of Si , and 0.01 to 1.50 mass % of Fe , with a balance being Al and inevitable impurities ,wherein the aluminum alloy material has a fibrous metallic microstructure in which a plurality of crystal grains extend so as to be aligned in one direction, andwherein, in a cross section parallel to the one direction,an average value of a maximum dimension in a direction perpendicular to the longitudinal direction of a plurality of the crystal grains is no more than 400 nm, and{'sup': '2', 'viewing the cross section in a thickness direction, when observing at a central part, specific voids having a maximum dimension in a direction perpendicular to the longitudinal direction of no less than 1.0 μm are not present, or an existence number of the specific voids is no more than 15 per 10000 μm.'}2. An aluminum alloy material having an alloy ...

Подробнее
07-01-2021 дата публикации

Aluminum alloy wire rod and producing method therefor

Номер: US20210005342A1
Принадлежит: Hitachi Metals Ltd

A wire rod made of an aluminum alloy. The aluminum alloy includes Al crystal grains, an Al—Zr compound, and an Al—Co—Fe or Al—Ni—Fe compound. The aluminum alloy includes high-angle tilt crystal grain boundaries, each of which has a difference between crystal orientations in both its sides of 15 degrees or more, and low-angle tilt crystal grain boundaries, each of which has a difference between crystal orientations in both its sides of 2 degrees or more and less than 15 degrees. An average grain diameter of ones of the Al crystal grains surrounded by the high-angle boundaries is 12 μm or more. An average grain diameter of the ones of the Al crystal grains surrounded by the high-angle boundaries, ones of the Al crystal grains surrounded by the high-angle boundaries and the low-angle boundaries, and ones of the Al crystal grains surrounded by the low-angle boundaries, is 10 μm or less.

Подробнее
03-01-2019 дата публикации

Toroidal Plasma Chamber

Номер: US20190006154A1
Автор: Hu Chaolin
Принадлежит:

An apparatus and methods for forming a toroidal plasma chamber includes metallic material, material forming process, heat treatment, anodization and a feature to form an ideal gas flow pattern in the plasma chamber. The gas passing through the plasma chamber that functions as a secondary wiring in a transformer will be dissociated when coupled with the current induced through a magnetic core by a primary wiring that is a semiconductor switching power source. 1. A method of making a toroidal plasma chamber comprising the steps of:melting a quantity of metal, the quantity of metal being a metal or metal alloy;obtaining a mold configured to form at least part of the toroidal plasma chamber;conveying the melted quantity of metal to the mold;allowing the melted quantity of metal to solidify in the mold;removing the solidified quantity of metal from the mold, wherein the solidified quantity of metal defining at least part of the toroidal plasma chamber, and defining at least one of a gas inlet and gas outlet; andmachining the solidified quantity of metal to form required features such as fittings, cooling channels, mounting holes or surface finish required that a metal casting process alone cannot provide.2. The method of wherein the quantity of metal is an alloy selected from the group consisting of Al—Mg; Al—Zn; and Al—Mg—Zn.3. The method of wherein the quantity of metal may be an Al—Mg alloy having a quantity of Mg of approximately 5-7%.4. The method of wherein the quantity of metal may be either an Al—Zn alloy having a quantity of Zn of approximately 0.5-13%.5. The method of further comprising the step of heating the at least part of the toroidal plasma chamber to a temperature between 300 and 450° C.6. The method of further comprising the step of holding the at least part of the toroidal plasma chamber for a predetermined period of time.7. The method of further comprising the step of rapidly cooling the at least part of the toroidal plasma chamber to a room ...

Подробнее
12-01-2017 дата публикации

Aluminum alloy and corresponding heat treatment process applied to manufacture aluminum/steel cladding plates resistant to high temperature brazing

Номер: US20170008132A1
Принадлежит: BEIJING UNIVERSITY OF TECHNOLOGY

A kind of aluminum alloy and corresponding heat treatment process applied to manufacturing aluminum/steel cladding plates which are resistant to high temperature brazing belong to alloy materials technology field. In the aluminum/steel cladding plates, the aluminum part was alloyed with 0.76%˜0.78% Si and 0.055˜0.10% Er in weight percent and the rest was Al and some unavoidable impurity. The Steel part was 08Al steel. After cladding cold rolling with deformation of 55%±2%, the aluminum/steel cladding plates were annealed at 510˜535° C. for different times. Then simulated brazing process was performed to optimize the range of annealing time and temperature. The so produced Al/St cladding plates could not only effectively solve the low interface strength in Al/St cladding plates, but also meet the mechanical properties which were necessary for further processing of Al/St cladding plates. It was provided a kind of aluminum alloy and corresponding heat treatment process which could effectively solve the low bonding strength under the condition of high temperature brazing because of the existence of brittle Fe—Al phases.

Подробнее
12-01-2017 дата публикации

PROCESS TO MANUFACTURE LARGE FORMAT ALUMINUM BOTTLES

Номер: US20170008656A1
Принадлежит: Novelis Inc.

A high speed manufacturing process for large format aluminum bottles (up to 750 ml) based on the DWI process that uses 3xxx can body stock with high recycled content. The process can include forming a bottle preform by redrawing, drawing and ironing, and doming a cup. The bottle preform formed by the process has a diameter of about 2.5″ to about 3.0″, a height of about 10.0″ to about 12.5″, a wall thickness of about 0.006″ to about 0.020″, and a dome depth of between about 0.400″ to about 1.00″. 1. A method of making an aluminum bottle comprising the sequential steps of:obtaining an aluminum sheet of a series 3xxx alloy having a gauge thickness ranging from about 0.0150″ to about 0.0250″;blanking out a disk having a diameter ranging from about 7.0″ to about 10.0″;forming the disk into a cup;forming a bottle preform by redrawing, drawing and ironing, and doming the cup; a diameter of about 2.5″ to about 3.0″;', 'a height of about 10.0″ to about 12.5″;', 'a wall thickness of about 0.006″ to about 0.020″; and', 'a dome depth of between about 0.400″ to about 1.00″., 'wherein the bottle preform comprises2. The method of claim 1 , wherein the wall thickness comprises a constant wall thickness of about 0.010″ to about 0.020″.3. The method of claim 1 , wherein the wall thickness comprises a variable wall thickness with a thicker portion at the top of about 0.010″ to about 0.020″ and a thinner portion in the middle of about 0.006″ to about 0.012″.4. The method of claim 1 , further comprising an annealing step at a temperature of about 100° C. to about 400° C. prior to necking and finishing operations.5. The method of claim 1 , further comprising a bottle shape forming operation claim 1 , wherein the bottle shape forming operation comprises at least one of necking or blow forming to produce a final bottle shape.6. The method of claim 5 , further comprising mechanically shaping a threaded claim 5 , corked claim 5 , or crowned bottle closure after the bottle shape forming ...

Подробнее
11-01-2018 дата публикации

ALUMINUM SHEET WITH ENHANCED FORMABILITY AND AN ALUMINUM CONTAINER MADE FROM ALUMINUM SHEET

Номер: US20180009022A1
Принадлежит: Alcoa USA Corp.

In some embodiments of present disclosure, a method includes: obtaining an aluminum sheet comprising a 3xxx or a 5xxx alloy having a tensile yield strength as measured in the longitudinal direction of 27-33 ksi and an ultimate tensile strength; wherein the ultimate tensile strength minus the tensile yield strength is less than 3.30 ksi (UTS-TYS<3.30 ksi); and forming a container having a dome from the aluminum sheet. 1. A method comprising:obtaining an aluminum sheet comprising a 3xxx or a 5xxx alloy having a tensile yield strength as measured in the longitudinal direction of 27-33 ksi and an ultimate tensile strength; wherein the ultimate tensile strength minus the tensile yield strength is less than 3.30 ksi (UTS-TYS<3.30 ksi); andforming a container having a dome from the aluminum sheet.2. The method of claim 1 , wherein the tensile yield strength as measured in the longitudinal direction is 28-32 ksi.3. The method of claim 1 , wherein the tensile yield strength as measured in the longitudinal direction is 28.53-31.14 ksi.4. The method of claim 1 , wherein the ultimate tensile strength minus the tensile yield strength is 2.90-3.30 ksi.5. The method of claim 1 , wherein the ultimate tensile strength minus the tensile yield strength is 2.99-3.30 ksi.6. The method of claim 1 , wherein the aluminum sheet comprises one of AA: 3x03 claim 1 , 3x04 or 3x05.7. The method of claim 1 , wherein the aluminum sheet comprises AA 3104.8. The method of claim 1 , wherein the container is a bottle.9. The method of claim 1 , further comprising expanding a section of the portion of the container having a reduced diameter.10. The method of claim 9 , wherein the section has a length and the length is at least 0.3 inches.11. The method of claim 10 , wherein the length is at least 0.4 inches. This patent application is a continuation of U.S. Non-Provisional patent application No. 14/701,154 filed Apr. 30, 2015, which claims priority to U.S. Provisional Patent Application No. 61/986,692 ...

Подробнее
12-01-2017 дата публикации

METHOD FOR THE MANUFACTURING OF PRODUCTS WITH ANODIZED HIGH GLOSS SURFACES FROM EXTRUDED PROFILES OF AL-MG-SI OR AL-MG-SI CU EXTRUSION ALLOYS

Номер: US20170009322A1
Автор: REISO Oddvin, TUNDAL Ulf
Принадлежит: NORSK HYDRO ASA

Method for the manufacturing of products with anodized high gloss surfaces from extruded profiles of Al—Mg—Si or AS-Mg—Si—Cu, where the alloys initially are cast to extrusion billets), containing in wt. % Si: 0.25-1.00 Mg. 0.25-1.00 Fe: 0.00-0.15 Cu: 0.00-0.30 Mn: 0.00-0.20 Cr: 0.00-0.10 Zr: 0.00-0.10 Se: 0.00 -0.10 Zn: 0.00-0.10 Ti: 0.00-0.05., and including incidental impurities and balance A.L a) where the billet is homogenised at a holding temperature between 480° C. and 620° C. and soaked at this temperature for 0-12 hours, where after the billet is subjected to cooling from the homogenisation temperature at a rate of 150° C./h or faster, b) the billet is preheated to a temperature between 400 and 540° C. and extruded preferably to a solid shape profile and cooled rapidly down to room temperature, c) optionally artificially ageing the profile, d) deforming the profile more than 10% by a cold roiling operation, whereafter e) the profile is flash annealed with a healing time of maximum two minutes to a temperature of between 450-530° C. for not more than 5 minutes and subsequently quenched, and f) optionally the profile after flash annealing is further subjected to a cold deforming operation to remove residual stresses from cooling and adjusting dimensional tolerances, and g) the profile is finally aged. 112-. (canceled)13. Method for the manufacturing of products with anodized high gloss surfaces from extruded profiles of Al—Mg—Si or Al—Mg—Si—Cu alloys , where the alloys initially are cast to extrusion billet(s) , containing in wt. %Si: 0.25-1.00Mg: 0.25-1.00Fe: 0.00-0.15Cu: 0.00-0.30Mn: 0.00-0.20Cr: 0.00-0.10Zr: 0.00-0.10Sc: 0.00-0.10Zn: 0.00-0.10Ti: 0.00-0.05, and a) where the billet is homogenised at a holding temperature between 480° C. and 620° C. and soaked at this temperature for 0-12 hours, whereafter the billet subjected to cooling from the homogenization temperature at a rate of 150° C./h or faster,', 'b) the billet is preheated to a temperature ...

Подробнее
12-01-2017 дата публикации

Highly formable, medium-strength aluminium alloy for the manufacture of semi-finished products or components of motor vehicles

Номер: US20170009323A1
Принадлежит: Hydro Aluminium Rolled Products GmbH

An aluminium alloy for the manufacture of semi-finished products or components of motor vehicles, a method for the manufacture of a strip made of an aluminium alloy according to the invention, a corresponding aluminium alloy strip or sheet as well as a structural component of a motor vehicle consisting of an aluminium alloy sheet which includes the following alloy components in % by weight: 0.6%≦Si≦0.9%, 0.6%≦Fe≦1.0%, Cu≦0.1%, 0.6%≦Mn≦0.9%, 0.5%≦Mg≦0.8%, Cr≦0.05%, the remainder Al and impurities, individually up to a maximum of 0.05% by weight, in total up to a maximum of 0.15% by weight. 1. An aluminium alloy for the manufacture of semi-finished products or components of motor vehicles , which comprises the following alloy components in % by weight:0.7%≦Si≦0.9%,0.7%≦Fe≦1.0%,Cu≦0.05%,0.7%≦Mn≦0.9%,0.6%≦Mg≦0.8%,Cr≦0.05%,the remainder Al and impurities, individually up to a maximum of 0.05% by weight, in total up to a maximum of 0.15% by weight.2. The aluminium alloy according to claim 1 , characterised in that the alloy components Si claim 1 , Fe claim 1 , Mn and Mg have the following contents in % by weight:0.7%≦Si≦0.8%,0.7%≦Fe≦0.8%,0.7%≦Mn≦0.8% and0.6%≦Mg≦0.7%.3. The aluminium alloy according to claim 1 , characterised in that the aluminium alloy has the following Cr content in % by weight:Cr≦0.01%.4. The aluminium alloy according to claim 1 , characterised in that the aluminium alloy has the following Cu content in % by weight:Cu≦0.01%.5. A method for the manufacture of a strip made of an aluminium alloy claim 1 , which comprises the following alloy components in % by weight:0.6%≦Si≦0.9%,0.6%≦Fe≦1.0%,Cu≦0.05%,0.6%≦Mn≦0.9%,0.5%≦Mg≦0.8%,Cr≦0.05%,the remainder Al and impurities, individually up to a maximum of 0.05% by weight, in total up to a maximum of 0.15% by weight, casting of a rolling ingot,', 'homogenisation at a temperature of between 500° C. and 600° C. for at least 0.5 h,', 'hot rolling of the rolling ingot at temperatures of 280° C. to 500° C. to a ...

Подробнее
12-01-2017 дата публикации

METHODS OF OFF-LINE HEAT TREATMENT OF NON-FERROUS ALLOY FEEDSTOCK

Номер: US20170009325A1
Принадлежит:

The present invention, in some embodiments, is a method of forming an O temper or T temper product that includes obtaining a coil of a non-ferrous alloy strip as feedstock; uncoiling the coil of the feedstock; heating the feedstock to a temperature between a recrystallization temperature of the non-ferrous alloy and 10 degrees Fahrenheit below a solidus temperature of the non-ferrous alloy; and quenching the feedstock to form a heat-treated product having am O temper or T temper. The non-ferrous alloy strip used in the method excludes aluminum alloys having 0.4 weight percent silicon, less than 0.2 weight percent iron, 0.35 to 0.40 weight percent copper, 0.9 weight percent manganese, and 1 weight percent magnesium. 1. A method comprising:obtaining a coil of a non-ferrous alloy strip as feedstock;uncoiling the coil of the feedstock;heating the feedstock to a temperature between a recrystallization temperature of the non-ferrous alloy and 10 degrees Fahrenheit below a solidus temperature of the non-ferrous alloy; andquenching the feedstock to form a heat-treated product having a temper;wherein the temper is O temper or T temper; and 0.4 weight percent silicon,', 'less than 0.2 weight percent iron,', '0.35 to 0.40 weight percent copper,', '0.9 weight percent manganese, and', '1 weight percent magnesium., 'wherein the non-ferrous alloy strip excludes aluminum alloys having all of the following2. The method of claim 1 , wherein the heating is selected from the group consisting of infrared claim 1 , radiant-tube claim 1 , gas-fired furnace claim 1 , direct resistance claim 1 , induction heating claim 1 , and combinations thereof.3. The method of claim 1 , wherein the non-ferrous alloy is selected from the group consisting of aluminum alloys claim 1 , magnesium alloys claim 1 , titanium alloys claim 1 , copper alloys claim 1 , nickel alloys claim 1 , zinc alloys and tin alloys.4. The method of claim 3 , wherein the non-ferrous alloy is an aluminum alloy selected from the ...

Подробнее
14-01-2021 дата публикации

Extrusion Material

Номер: US20210008671A1
Принадлежит:

An aluminium extrusion material for use in a hybrid metal extrusion and bonding process is provided. The composition of the extrusion material comprises: 0 to 0.25 wt % iron; at least 0.05 wt % dispersoid-forming elements, wherein the dispersoid-forming elements comprise 0 to 1.2 wt % manganese, 0 to 0.25 wt % chromium, 0 to 0.25 wt % zirconium and 0 to 0.25 wt % scandium; and, except when the aluminium alloy of the aluminium extrusion material is in the 2xxx series, 0 to 0.05 wt % copper. The microstructure of the extrusion material is a deformed microstructure; and the nanostructure of the extrusion material comprises an aluminium matrix with dislocations and dispersoids, and wherein the majority of the alloying elements are in solid solution in the aluminium matrix. An aluminium rod for manufacturing the extrusion material, a joint comprising a extrudate made from the extrusion material a method of manufacturing the extrusion material and the aluminium rod and a method of joining two aluminium components using the extrusion material are also provided. 1. An aluminium extrusion material for use in a hybrid metal extrusion and bonding process , 0 to 0.25 wt % iron;', 'at least 0.05 wt % dispersoid-forming elements, wherein the dispersoid-forming elements comprise 0 to 1.2 wt % manganese, 0 to 0.25 wt % chromium, 0 to 0.25 wt % zirconium and 0 to 0.25 wt % scandium; and,', 'except when the aluminium alloy of the aluminium extrusion material is in the 2xxx series, 0 to 0.05 wt % copper,, 'wherein the composition of the extrusion material compriseswherein the microstructure of the extrusion material is a deformed microstructure; andwherein the nanostructure of the extrusion material comprises an aluminium matrix with dislocations and dispersoids, and wherein the majority of the alloying elements are in solid solution in the aluminium matrix.2. An aluminium extrusion material according to claim 1 , wherein the nanostructure of the extrusion material comprises small ...

Подробнее
14-01-2016 дата публикации

Ultrathin Alloys

Номер: US20160010170A1
Принадлежит: ARCANUM ALLOY DESIGN INC.

Herein is described a process for preparing an alloy that includes defining a product composition, thickness, and homogeneity; providing a base that has a thickness less than the product thickness and has a base composition; depositing an alloying material onto at least one surface of the base to yield a coated base that has a composition equal the product composition but has a different homogeneity; and then full thickness annealing the base and the alloying material to provide the product homogeneity. The process can be used to provide ultrathin foils, for example, ultrathin foils of ferrous or aluminum alloys. 1. (canceled)2. The process of claim 15 , wherein the product composition is selected from the group consisting of a chromium-iron alloy claim 15 , a nickel-iron alloy claim 15 , a chromium-nickel-iron alloy claim 15 , a manganese-iron alloy claim 15 , a chromium-manganese-iron alloy claim 15 , and a chromium-manganese-nickel-iron alloy.3. The process of claim 2 , wherein the product is a stainless steel.4. A process for preparing an thin claim 2 , preferably ultrathin claim 2 , ferrous-alloy or aluminum-alloy product comprising: a thickness of less than 250 μm, and', 'comprises a base composition that includes a majority (wt. %) of iron or aluminum;, 'providing a rolled iron or aluminum base that has'}depositing an alloying material onto a major surface of the base thereby providing a coated base, the coated base having a coated base thickness; and thenannealing the base and alloying material to provide the ferrous-alloy or aluminum-alloy product;wherein the process is free of any cold rolling that reduces the coated base thickness by greater than about 5%.5. The process of claim 4 , wherein the base composition includes at least 85 wt. % iron; and wherein the base composition includes less than about 10 wt. % of any one of the elements selected from the group consisting of carbon claim 4 , silicon claim 4 , boron claim 4 , aluminum claim 4 , phosphorous ...

Подробнее
11-01-2018 дата публикации

HIGH-PERFORMANCE 5000-SERIES ALUMINUM ALLOYS AND METHODS FOR MAKING AND USING THEM

Номер: US20180010215A1
Принадлежит:

5000 series aluminum wrought alloys with high strength, high formability, excellent corrosion resistance, and friction-stir weldability, and methods of making those alloys. 1. An aluminum alloy comprising:about 3% to about 5% by weight magnesium;about 0.1% to about 4% by weight zinc;about 0.6% to about 1% by weight manganese;about 0.1% to about 0.3% by weight chromium;about 0.4% to about 0.8% by weight zirconium;aluminum as the remainder; and{'sub': 3', '2', '3, 'sup': 20', '3, 'a dispersion of coherent AlZr nanoscale precipitates with an Llcrystal structure in an aluminum matrix, the AlZr nanoscale precipitates having an average radius of no more than about 20 nm and having an average number density of no less than about 5×10per m.'}2. The aluminum alloy of claim 1 , further comprising scandium at a concentration of no more than about 0.15% by weight.3. The aluminum alloy of claim 1 , further comprising copper at a concentration of no more than about 1% by weight.4. The aluminum alloy of claim 1 , further comprising a dispersion of the incoherent AlMn dispersoids having an average radius in the range of about 50 nm to about 200 nm.5. The aluminum alloy of claim 1 , further comprising a dispersion of AlMn claim 1 , AlCr or AlCrintermetallic phases in the range of about 50 nm to about 800 nm in size.6. The aluminum alloy of claim 5 , further comprising a dispersion of the incoherent AlMn dispersoids having an average radius in the range of about 50 nm to about 200 nm.7. The aluminum alloy of claim 1 , wherein the alloy has mechanical strength comparable to commercial high-strength AA7039-T6 and AA7075-T6 alloys.8. The aluminum alloy of claim 1 , wherein the alloy has the same or better corrosion resistance compared to commercial AA5083 alloy.9. The aluminum alloy of claim 1 , wherein the alloy has better creep resistance compared to commercial AA5083 alloy at a temperature range from about 25° C. to about 450° C.10. The An aluminum alloy of claim 1 , wherein the ...

Подробнее
11-01-2018 дата публикации

CONCURRENT, ADJACENT HEAT TREATMENT AND COOLING IN METAL ANNEALING

Номер: US20180010223A1
Автор: Newton Gregory
Принадлежит:

The present invention is a system of concurrent, adjacent heat treatment and vigorous cooling in section-annealing of metal workpieces. The invention process is especially advantageous in induction heating for annealing of one section of a workpiece while maintaining relatively non-annealed properties in an adjacent section. 1. A heating and cooling process for a metal workpiece of substantially the same metal composition comprising simultaneously heating an upper heat treating zone to substantially above ambient temperature and cooling a lower cooling zone to substantially below ambient temperature so that a crystal structure of the metal of the upper heat treating zone is modified and a crystal structure of the lower cooling zone is less modified.2. The process of wherein a transition zone is formed between the upper heat treating zone and the lower cooling zone.3. The process of wherein the transition zone is relatively narrow compared to a height of the upper heat treating zone.4. The process of wherein the transition zone is relatively narrow compared to a height of the lower cooling zone.5. The process of wherein the transition zone is less than six inches of the workpiece.6. The process of wherein the transition zone is less than four inches of the workpiece.7. The process of wherein the transition zone is from one fourth inch to one inch of the workpiece.8. The process of wherein the metal workpiece comprises a metal or metals whose line slope of on a plot of thermal conductivity to temperature curve is equal to or less than that of pure aluminum.9. The process of wherein the metal workpiece comprises a metal or metals whose line slope of on a plot of thermal conductivity to temperature curve is equal to or greater than 0.004 watts/inch-degree F per degree F.10. The process of wherein the metal workpiece comprises aluminum or its alloys.11. The process of wherein the upper heat treating zone is heated to above 600 degrees F.12. The process of wherein the ...

Подробнее
14-01-2021 дата публикации

Al-Si-Mg ALUMINUM ALLOY

Номер: US20210010108A1
Принадлежит:

An Al—Si—Mg aluminum alloy is provided. The Al—Si—Mg aluminum alloy includes: 5 mass % or larger and 10 mass % or smaller of Si; 0.2 mass % or larger and 1.0 mass% or smaller of Mg, 0.03 mass % or larger and 0.5 mass % or smaller of Sb; 0.0004 mass % or larger and 0.0026 mass % or smaller of Be; and a remainder having an alloy composition including Al and unavoidable impurities. In L*a*b* color system, a value of L* that indicates lightness of a surface thereof is 55 or larger. 1. An Al—Si—Mg aluminum alloy comprising:5 mass % or larger and 10 mass % or smaller of Si;0.2 mass % or larger and 1.0 mass % or smaller of Mg, 0.03 mass % or larger and 0.5 mass % or smaller of Sb;0.0004 mass % or larger and 0.0026 mass % or smaller of Be; anda remainder having an alloy composition including Al and unavoidable impurities, whereinin L*a*b* color system, a value of L* that indicates lightness of a surface thereof is 55 or larger.2. The Al—Si—Mg aluminum alloy according to claim 1 , whereinIn the L*a*b* color system, a color difference from a standard color that is represented by (77.41, 0.39, −0.78) is 25 or smaller. The present invention relates to an Al—Si—Mg aluminum alloy. The present invention is particularly suitable for a large casting material such as those used for an automobile component.Casting alloys are known (such as alloy A356 specified by the American Society for Testing and Materials (ASTM)), which are aluminum (Al) alloys containing silicon (Si) and having added magnesium (Mg) for improving mechanical properties of an Al—Si aluminum alloy with favorable castability. The Mg added for improved strength may be oxidized and depleted in a molten state, thereby promoting oxide production and gas absorption. The addition of beryllium (Be) to the Al—Si—Mg aluminum alloy is known to inhibit Mg depletion.The addition of antimony (Sb) to the Al—Si—Mg aluminum alloy AC4C or AC4A specified in Japanese Industrial Standards (JIS) H 5202, for example, is known to improve ( ...

Подробнее
14-01-2021 дата публикации

High-Strength Aluminum Alloy Extruded Material That Exhibits Excellent Formability And Method For Producing The Same

Номер: US20210010121A1
Автор: Karin Shibata
Принадлежит: Aisin Keikinzoku Co Ltd

An aluminum alloy is provided that is used to produce a high-strength aluminum alloy extruded material that exhibits excellent formability. The aluminum alloy consists of 0.30 to 1.00 mass % of Mg, 0.6 to 1.40 mass % of Si, 0.10 to 0.40 mass % of Fe, 0.10 to 0.40 mass % of Cu, 0.005 to 0.1 mass % of Ti, 0.3 mass % or less of Mn, 0.01 to 2.0 mass % of Zn, and 0.10 mass % or less of Zr, with the balance being aluminum and unavoidable impurities, the aluminum alloy having a stoichiometric Mg2Si content of 0.60 to 1.30 mass % and an excess Si content of 0.30 to 1.00 mass %.

Подробнее
10-01-2019 дата публикации

Method of manufacturing press formed product

Номер: US20190010570A1
Принадлежит: Toa Industries Co Ltd

The invention provides manufacturing a partially reinforced press formed product with high corrosion resistance and weldability. First and second steel plates having aluminum-based plating films are heated to an austenite range temperature by first and second furnaces, respectively, to transform the bodies of the first and second steel plates into austenite and form Fe—Al alloy layers on the surfaces of the first and second steel plates. Hot press forming is then performed to the first and second steel plates formed with the Fe—Al alloy layers, the first and second steel plates being superposed. The first and second steel plates, which are hot press formed, are then welded.

Подробнее
10-01-2019 дата публикации

Aluminum alloy plate having excellent moldability and bake finish hardening properties

Номер: US20190010581A1
Принадлежит: Kobe Steel Ltd

An aluminum alloy sheet excellent in terms of formability and bake hardenability is provided. The aluminum alloy sheet contains, in terms of mass %, Mg: 0.2 to 2.0%, Si: 0.3 to 2.0% and Sn: 0.005 to 0.3%, with the remainder being Al and unavoidable impurities. A differential scanning calorimetry curve of the aluminum alloy sheet has an endothermic peak in a temperature range of 150 to 230° C. and an exothermic peak in a temperature range of 240 to 255° C. The endothermic peak corresponds to a dissolution of a Mg—Si cluster and has a peak height of 8 μW/mg or less, including 0 μW/mg. The exothermic peak corresponds to a formation of a Mg—Si cluster and has a peak height of 20 μW/mg or larger.

Подробнее
10-01-2019 дата публикации

HIGH-STRENGTH CORROSION-RESISTANT ALUMINUM ALLOYS AND METHODS OF MAKING THE SAME

Номер: US20190010591A1
Автор: AHMED HANY, Das Sazol, WEN Wei
Принадлежит: Novelis Inc.

Disclosed are high-strength aluminum alloys and methods of making and processing such alloys. The aluminum alloys described herein exhibit improved mechanical strength, deformability, and corrosion resistance properties. In addition, the aluminum alloys can be prepared from recycled materials. The aluminum alloy products prepared from the alloys described herein include precipitates to enhance strength, such as MgZn/Mg(Zn,Cu), MgSi, and AlMgSiCu. 1. An aluminum alloy comprising about 0.25-1.3 wt. % Si , 1.0-2.5 wt. % Mg , 0.5-1.5 wt. % Cu , up to 0.2 wt. % Fe , up to 3.0 wt. % Zn , up to 0.15 wt. % impurities , with the remainder as Al.2. The aluminum alloy of claim 1 , comprising about 0.55-1.1 wt. % Si claim 1 , 1.25-2.25 wt. % Mg claim 1 , 0.6-1.0 wt. % Cu claim 1 , 0.05-0.17 wt. % Fe claim 1 , 1.5-3.0 wt. % Zn claim 1 , up to 0.15 wt. % impurities claim 1 , with the remainder as Al.3. The aluminum alloy of claim 1 , comprising about 0.65-1.0 wt. % Si claim 1 , 1.5-2.25 wt. % Mg claim 1 , 0.6-1.0 wt. % Cu claim 1 , 0.12-0.17 wt. % Fe claim 1 , 2.0-3.0 wt. % Zn claim 1 , up to 0.15 wt. % impurities claim 1 , with the remainder as Al.4. The aluminum alloy of claim 1 , further comprising Zr.5. The aluminum alloy of claim 4 , wherein Zr is present in an amount of up to about 0.15 wt. %.6. The aluminum alloy of claim 5 , wherein Zr is present in an amount of from about 0.09-0.12 wt. %.7. The aluminum alloy of claim 1 , further comprising Mn.8. The aluminum alloy of claim 7 , wherein Mn is present in an amount of up to about 0.5 wt. %.9. The aluminum alloy of claim 8 , wherein Mn is present in an amount of from about 0.05-0.3 wt. %.10. The aluminum alloy of claim 1 , wherein a ratio of Mg to Si (Mg/Si ratio) is from about 1.5 to 1 to about 3.5 to 1.11. The aluminum alloy of claim 10 , wherein the Mg/Si ratio is from about 2.0 to 1 to about 3.0 to 1.12. The aluminum alloy of claim 10 , wherein a ratio of Zn to the Mg/Si ratio (Zn/(Mg/Si) ratio) is from about 0.75 to 1 ...

Подробнее
10-01-2019 дата публикации

HIGH PERFORMANCE ALUMINUM ALLOYS HAVING HIGH AMOUNTS OF RECYCLED MATERIAL AND METHODS OF MAKING THE SAME

Номер: US20190010592A1
Принадлежит: Novelis Inc.

Provided herein are high performance aluminum alloy products having desirable mechanical properties and methods of making the same. The high performance aluminum alloy products described herein contain a high content of recycled material and are prepared by casting an aluminum alloy to form a cast aluminum alloy product and processing the cast aluminum alloy product. The method of processing the cast aluminum alloy product can include two hot rolling steps. 1. A method of producing an aluminum alloy product , comprising:providing a molten aluminum alloy comprising recycled content in an amount of at least 30%;casting the molten aluminum alloy to produce a cast aluminum alloy product;hot rolling the cast aluminum alloy product in a first hot rolling step to produce an aluminum alloy hot band;preheating the aluminum alloy hot band; andhot rolling the aluminum alloy hot band in a second hot rolling step to a gauge that is at least a 50% reduction in thickness as compared to a gauge of the cast aluminum alloy product.2. The method of claim 1 , wherein the recycled content in the molten aluminum alloy is at least 50%.3. The method of claim 1 , wherein the recycled content in the molten aluminum alloy is at least 70%.4. The method of claim 1 , wherein the casting comprises continuous casting.5. The method of claim 4 , wherein the casting comprises direct chill casting.6. The method of claim 5 , further comprising homogenizing the cast aluminum alloy product prior to the first hot rolling step.7. The method of claim 1 , wherein the providing comprises melting an aluminum alloy claim 1 , aluminum scrap claim 1 , or a combination of these.8. The method of claim 1 , wherein the molten aluminum alloy comprises iron.9. The method of claim 8 , wherein the iron is present in an amount of at least 0.25 wt. % based on the weight of the molten aluminum alloy.10. The method of claim 9 , wherein the iron is present in an amount from 0.25 wt. % to 0.50 wt. % based on the weight of the ...

Подробнее
09-01-2020 дата публикации

Process for low-cost tempering of aluminum casting

Номер: US20200010933A1
Автор: Randolf Scott BEALS
Принадлежит: Individual

A thermally stable component formed of a tempered aluminum alloy casting which reduced costs is provided. The aluminum alloy typically has an elongation of at least 8% after casting, which is preferred for self-piercing rivet processes. The aluminum alloy leaves a casting facility in the as-cast (F temper) condition. The cast aluminum alloy is then shipped to another entity, such as an OEM, and is subjected to an artificial aging process, such as on the OEM's existing paint line, rather than at the casting facility. The artificial aging process typically includes electrodeposition coating and curing. The components that can be formed by the reduced cost method include lightweight automotive vehicle components, including structural, body-in-white, suspension, or chassis components, such as front shock towers, front body hinge pillars, tunnels, and rear rails.

Подробнее
09-01-2020 дата публикации

ALUMINUM ALLOY THICK PLATE

Номер: US20200010934A1
Принадлежит: UACJ Corporation

An aluminum alloy thick plate is formed of an aluminum alloy including Mg of 2.0 to 5.0 mass %. The aluminum alloy thick plate has a plate thickness of 300 to 400 mm. A is 160 pieces/cmor less and B is 1.15 times or more as large as A, where (i) A (pieces/cm) is a maximum value in numbers of porosities with an equivalent circle diameter of 50 μm or more in each of positions located at a center portion in a plate thickness direction and at positions of 0.39 Wa to 0.48 Wa in a plate width direction; and (ii) B (pieces/cm) is a maximum value in numbers of porosities with an equivalent circle diameter of 50 μm or more in each of positions located at the center portion in the plate thickness direction and at positions of 0.12 Wa to 0.30 Wa in the plate width direction. 1. An aluminum alloy thick plate comprising an aluminum alloy including Mg of 2.0 to 5.0 mass % , whereinthe aluminum alloy thick plate has a plate thickness of 300 to 400 mm, and{'sup': 2', '2', '2, 'A is 160 pieces/cmor less and B is 1.15 times or more as large as A, when Wa is a plate width of the aluminum alloy thick plate in a section perpendicular to a casting direction, a 0 position is a center in a plate width direction, a 0.50 Wa position is a plate end in the plate width direction, where (i) A (pieces/cm) is a maximum value in numbers of porosities with an equivalent circle diameter of 50 μm or more per unit area in each of positions located at a center portion in a plate thickness direction and at positions of 0.39 Wa, 0.40 Wa, 0.42 Wa, 0.44 Wa, 0.46 Wa, and 0.48 Wa in the plate width direction; and (ii) B (pieces/cm) is a maximum value in numbers of porosities with an equivalent circle diameter of 50 μm or more per unit area in each of positions located at the center portion in the plate thickness direction and at positions of 0.12 Wa, 0.16 Wa, 0.21 Wa, 0.25 Wa, and 0.30 Wa in the plate width direction.'}2. The aluminum alloy thick plate according to claim 1 , wherein the aluminum alloy ...

Подробнее
09-01-2020 дата публикации

NON-UNIFORM HEAT TREATMENT FOR CUSTOM SPATIAL STRENGTH AND FORMABILITY

Номер: US20200010941A1
Принадлежит: Novelis Inc.

Described are metal products having spatially non-uniform strength and formability profiles. The spatial non-uniformity of these properties may be achieved by heat-treating the metal product in a spatially non-uniform fashion, such that different portions of the metal product exhibit different strength and formability characteristics. The metal products may be formed into stamped products, with strength and formability characteristics customized to allow for suitable drawing during the stamping process. 1. A method , comprising:subjecting a metal product to a spatially non-uniform heat treatment process to generate a heat treated metal product having a custom spatially non-uniform strength profile and a custom spatially non-uniform formability profile, wherein the spatially non-uniform heat treatment process comprises heating or cooling different regions of the metal product using an array of heating elements, cooling elements, quenching elements, or any combination of these.2. The method of claim 1 , wherein the spatially non-uniform heat treatment process comprises heating a first region of the metal product to achieve a first temperature profile in the first region of the metal product and heating a second region of the metal product to achieve a second temperature profile in the second region of the metal product that is different from the first temperature profile.3. The method of claim 1 , wherein the spatially non-uniform heat treatment process comprises cooling a first region of the metal product to achieve a first temperature profile in the first region of the metal product and cooling a second region of the metal product to achieve a second temperature profile in the second region of the metal product that is different from the first temperature profile.4. The method of claim 1 , wherein the spatially non-uniform heat treatment process comprises heating a first region of the metal product to achieve a first temperature profile in the first region of the ...

Подробнее
09-01-2020 дата публикации

ALUMINUM ALLOY SHEET AND PRODUCTION METHOD THEREFOR

Номер: US20200010942A1
Принадлежит:

An aluminum alloy sheet according to the present disclosure includes 0.05 to 0.60% by mass of Si, 0.05 to 0.80% by mass of Fe, 0.05 to 0.25% by mass of Cu, 0.80 to 1.50% by mass of Mn, 0.80 to 1.50% by mass Mg, Al, and inevitable impurities. In this aluminum alloy sheet, a 45° caring ratio of a cup formed by a first drawing of the aluminum alloy sheet is 2.0% or less, and a value obtained by subtracting the 45° caring ratio from a 0-180° caring ratio of the cup formed by the first drawing of the aluminum alloy sheet is −1.0% or more and 2.0% or less. 1. An aluminum alloy sheet comprising:0.05 to 0.60% by mass of Si;0.05 to 0.80% by mass of Fe;0.05 to 0.25% by mass of Cu;0.80 to 1.50% by mass of Mn;0.80 to 1.50% by mass of Mg;Al; andinevitable impurities,wherein a 45° earing rate of a cup formed by a first drawing of the aluminum alloy sheet is 2.0% or less, andwherein a value obtained by subtracting the 45° earing rate from a 0-180° earing rate of the cup formed by the first drawing of the aluminum alloy sheet is −1.0% or more and 2.0% or less.2. A production method for an aluminum alloy sheet comprising:homogenizing treatment of an aluminum alloy ingot including 0.05 to 0.60% by mass of Si, 0.05 to 0.80% by mass of Fe, 0.05 to 0.25% by mass of Cu, 0.80 to 1.50% by mass of Mn, 0.80 to 1.50% by mass of Mg, Al, and inevitable impurities; an ending temperature is 400 to 550° C.;', 'a reduction ratio at a last pass is 5.0 to 40%; and', {'sup': '−1', 'a strain rate at the last pass is 5.0 to 30 s,'}], 'hot rough rolling of the aluminum alloy ingot with a reversing mill under a condition wherehot finishing rolling of the aluminum alloy ingot with a tandem hot rolling machine; andcold rolling of the aluminum alloy ingot under a condition where the reduction ratio is 80 to 90%.3. The production method for an aluminum alloy sheet according to claim 2 , wherein the homogenizing treatment is performed at a temperature of 580 to 610° C. for 2 to 48 hours.4. The production ...

Подробнее
14-01-2021 дата публикации

CONTINUOUS FURNACE FOR ALUMINIUM STRIPS

Номер: US20210010754A1
Принадлежит: EBNER INDUSTRIEOFENBAU GMBH

The present invention relates to a continuous furnace system for heat treating a metal component, in particular an aluminium strip. The continuous furnace system has a first heating unit, in which the metal component is heatable for solution annealing up to a first temperature in the range of from 350° C. to 700° C., a cooling unit, in which the metal component is coolable from 300° C. to 750° C. down to 70° C. to 250° C., and a second heating unit, in which the metal component is heatable up to from 150° C. to 290° C. The first heating unit, the cooling unit, and the second heating unit both have a common support structure, on which the first heating unit, the cooling unit, and the second heating unit are fixed together. Furthermore, the continuous furnace system has a common conveyor track, which extends through the first heating unit, the cooling unit, and the second heating unit, wherein the conveyor track is configured in such a way that the metal component is passable along the conveyor track in the conveying direction through the first heating unit, the cooling unit, and the second heating unit for heat treatment. 115-. (canceled)16. A continuous furnace system for heat treating a metal component , the continuous furnace system comprising:a first heating unit, in which the metal component is heatable for solution annealing up to a first temperature in a range from 300° C. to 750° C.;a cooling unit, in which the metal component is coolable from 300° C. to 750° C. down to 70° C. to 250° C.;a second heating unit, in which the metal component is heatable up to 150° C. to 290° C.;wherein the first heating unit, the cooling unit, and the second heating unit have a common support structure, to which the first heating unit, the cooling unit, and the second heating unit are fixed together; anda common conveyor track, which extends through the first heating unit, the cooling unit, and the second heating unit,wherein the conveyor track is configured in such a way that ...

Подробнее
15-01-2015 дата публикации

Age-hardenable aluminum alloy and method for improving the ability of a semi-finished or finished product to age artificially

Номер: US20150013857A1
Принадлежит: AMAG ROLLING GMBH

An aluminum alloy and a method for improving the ability of a semi-finished or finished product to age artificially, includes an age-hardenable aluminum alloy on an Al—Mg—Si, Al—Zn, Al—Zn—Mg or Al—Si—Mg basis, wherein the aluminum alloy is transformed to a solid solution state, in particular by solution heat treatment ( 1 ), is quenched and subsequently forms precipitations by a process of natural aging ( 3 ), the method involving at least one measure for reducing a negative effect of natural aging ( 3 ) of the aluminum alloy on artificial aging ( 4 ) thereof. In order to achieve advantageous method conditions, a measure for reducing the negative effect involves an addition of at least one alloy element which can be associated with quenched-in vacancies for the solid solution of the aluminum alloy with a proportion of under 500, in particular under 200, atomic ppm in the aluminum alloy, whereby the number of vacancies that are not associated with precipitations at the beginning of artificial aging ( 4 ) increases in order to reduce the negative effect of natural aging ( 3 ) of the aluminum alloy on the further artificial aging ( 4 ) thereof by mobilizing these unassociated vacancies.

Подробнее
03-02-2022 дата публикации

DIE CASTING METHOD FOR FILTERING CAVITY

Номер: US20220032364A1
Принадлежит:

A die casting method includes stirring an aluminum alloy liquid in a stirrer under an airtight vacuum condition. The stirrer includes an electromagnetic inductor and a stirring rod. The aluminum alloy liquid is simultaneously subjected to an electromagnetic stirring in a direction of a magnetic field generated by the electromagnetic inductor and a mechanical stirring under a rotation action of the stirring rod. The aluminum alloy liquid is stirred for 20-80 minutes until the aluminum alloy liquid becomes semisolid to obtain a semisolid aluminum alloy slurry. The method further includes injecting the semisolid aluminum alloy slurry into a filter die to perform die casting molding at an injection speed of 1.5-2.5 m/s, an injection specific pressure of 30-80 MPa, a pressurization pressure of 60-80 MPa, and a temperature of the filter die of 250-400° C., and maintaining pressure for 7-30 seconds to obtain the filtering cavity. 110.-. (canceled)11. A die casting method for a filtering cavity comprising: an electromagnetic inductor; and', 'a stirring rod arranged across an inside of the stirrer;, 'transferring an aluminum alloy liquid to a stirrer includingcovering the stirrer and evacuating air inside the stirrer; an electromagnetic stirring in a direction of a magnetic field generated by the electromagnetic inductor; and', 'a mechanical stirring under a rotation action of the stirring rod;, 'starting the stirrer to stir the aluminum alloy liquid under an airtight vacuum condition, the aluminum alloy liquid being simultaneously subjected tocontinuing stirring the aluminum alloy liquid for 20-80 minutes until the aluminum alloy liquid becomes semisolid to obtain a semisolid aluminum alloy slurry, a temperature of the semisolid aluminum alloy slurry being 550-650° C.; andinjecting the semisolid aluminum alloy slurry into a filter die to perform die casting molding at an injection speed of 1.5-2.5 m/s, an injection specific pressure of 30-80 MPa, a pressurization pressure ...

Подробнее
14-01-2021 дата публикации

MAGNETIC DISC, ALUMINUM ALLOY SUBSTRATE FOR MAGNETIC DISC, AND PRODUCTION METHOD FOR ALUMINUM ALLOY SUBSTRATE

Номер: US20210012801A1
Принадлежит:

Provided are a magnetic disk and a method of fabricating the magnetic disk. The magnetic disk includes an aluminum alloy plate fabricated by a process involving a CC method and a compound removal process, and an electroless Ni—P plating layer disposed on the surface of the plate. The aluminum alloy plate is composed of an aluminum alloy containing 0.4 to 3.0 mass % (hereinafter abbreviated simply as “%”) of Fe, 0.1% to 3.0% of Mn, 0.005% to 1.000% of Cu, 0.005% to 1.000% of Zn, with a balance of Al and unavoidable impurities. In the magnetic disk, the maximum amplitude of waviness in a wavelength range of 0.4 to 5.0 mm is 5 nm or less, and the maximum amplitude of waviness in a wavelength range of 0.08 to 0.45 mm is 1.5 nm or less. 1. (canceled)2. (canceled)3. An aluminum alloy substrate for a magnetic disk , the substrate comprising:an aluminum alloy provided with electroless Ni—P plating, whereinthe aluminum alloy comprises 0.4 to 3.0 mass % of Fe, 0.1 to 3.0 mass % of Mn, 0.005 to 1.0 mass % of Cu, and 0.005 to 1.0 mass % of Zn, with a balance of Al and unavoidable impurities,a maximum amplitude of waviness in a wavelength range of 0.4 to 5.0 mm is 5.0 nm or less, and a maximum amplitude of waviness in a wavelength range of 0.08 to 0.45 mm is 1.5 nm or less on a surface of the aluminum alloy substrate, anda yield stress after retention at 300° C. for three hours is 100 MPa or more.4. (canceled)5. (canceled)6. The aluminum alloy substrate for a magnetic disk according to claim 3 , wherein the aluminum alloy further comprises one or more elements selected from a group comprising 0.1 to 0.4 mass % of Si claim 3 , 0.1 to 3.0 mass % of Ni claim 3 , 0.01 to 1.00 mass % of Cr claim 3 , and 0.01 to 1.00 mass % of Zr.7. The aluminum alloy substrate for a magnetic disk according to claim 3 , wherein the aluminum alloy further comprises one or more elements selected from a group comprising Ti claim 3 , B claim 3 , and V at a total content of 0.005 to 0.5 mass %.8. A method ...

Подробнее
03-02-2022 дата публикации

METHOD AND SYSTEM FOR HEAT TREATMENT OF METAL ALLOY SHEET

Номер: US20220033945A1
Принадлежит:

A method and system solution heat treat, at an elevated first temperature, a coil of aluminum alloy sheet to form a heat-treated coil and while at least a portion of the heat-treated coil is being solution heat treated, uncoil a heat-treated portion of the aluminum alloy sheet from the heat-treated coil and continuously quenching the uncoiled heat-treated portion to form a quenched sheet. 1. A method of manufacturing aluminum alloy sheet comprising:heating, in a heat-treatment furnace and at an elevated first temperature, a coil of aluminum alloy sheet to form a heat-treated coil; uncoiling a heat-treated portion of the aluminum alloy sheet from the heat-treated coil;', 'passing the uncoiled heat-treated portion of the aluminum alloy sheet through an outlet of the heat-treatment furnace; and', 'continuously quenching, by a quenching unit, the uncoiled heat-treated portion to form a quenched sheet., 'while at least a portion of the heat-treated coil remains in the heat-treatment furnace2. The method of claim 1 , wherein the first temperature is selected so that the aluminum alloy approximates a first desired (equilibrium) metallurgical state claim 1 , wherein the heat-treated portion comprises heat-treated portions successively uncoiled from the heated coil claim 1 , wherein claim 1 , the uncoiled heat-treated portion claim 1 , immediately before quenching claim 1 , has a temperature within about 10° C. of the elevated first temperature claim 1 , wherein the uncoiled heat-treated portion claim 1 , immediately before quenching claim 1 , has a temperature at least about 20° C. below a solidus temperature of the uncoiled heat-treated portion and further comprising:pre-heating the coil in a second furnace in a second temperature range prior to inserting the coil into the heat-treatment furnace; andwhile the pre-heat-treated coil is fully coiled, transferring the pre-heat-treated coil from the second furnace to the first furnace.3. The method of claim 2 , wherein the heat ...

Подробнее
03-02-2022 дата публикации

COMPOSITION DESIGN OPTIMIZATION METHOD OF ALUMINUM ALLOY FOR SELECTIVE LASER MELTING

Номер: US20220033946A1
Автор: CAI Zhiyong, WANG Richu
Принадлежит:

A composition design optimization method of aluminum alloy for selective laser melting, including the following steps: S1: making alloy ingots with different composition; S2: pre-treating and processing the alloy ingots to obtain alloy sample blocks with different composition; S3: twice laser surface scanning treatment; S4: treating the alloy sample blocks by induction heating and quenching; S5: inspecting surface morphology, microstructure and properties of second laser melting layer of each alloy sample block, to determine whether the alloy sample blocks are suitable for selective laser melting process and optimize alloy composition. 1. A composition design optimization method of aluminum alloy for selective laser melting , comprising the following steps:S1: preparing raw materials according to different designed formulas, and making alloy ingots with different composition;S2: pre-treating and processing the alloy ingots to obtain alloy sample blocks with different composition;S3: using high-energy laser beam perform on surface of each alloy sample block for first laser scanning to form a first laser melting layer on the surface thereof, then using high-energy laser beam again to perform on area of the first laser melting layer for second laser scanning to form a second laser melting layer;S4: treating the alloy sample blocks from the step S3 by induction heating and quenching;S5: inspecting surface morphology, characterizing and testing microstructure and properties of the second laser melting layer of each alloy sample block from the step S4, to determine whether the alloy sample blocks are suitable for selective laser melting process and optimize composition of the alloy sample blocks.2. The composition design optimization method of claim 1 , wherein in the step S3 claim 1 , when the alloy sample blocks are completely cooled after the first laser scanning claim 1 , the second laser scanning is performed.3. The composition design optimization method of claim 2 , ...

Подробнее
03-02-2022 дата публикации

ALUMINUM ALLOY PRODUCTS AND A METHOD OF PREPARATION

Номер: US20220033947A1
Принадлежит: Novelis Inc.

The present invention relates to aluminum alloy products that can be riveted and possess excellent ductility and toughness properties. The present invention also relates to a method of producing the aluminum alloy products. In particular, these products have application in the automotive industry. 1. A method of producing a metal sheet , comprising:casting an aluminum alloy to form an ingot, wherein the aluminum alloy comprises Cu 0.40-0.80 wt. %, Fe 0-0.40 wt. %, Mg 0.40-0.90 wt. %, Mn 0-0.40 wt. %, Si 0.40-0.7 wt. %, Cr 0-0.2 wt. %, Zn 0-0.1 wt. % and Ti 0-0.20 wt. % with trace element impurities 0.10 wt. % maximum, and Al;homogenizing the ingot;hot rolling the ingot to produce a hot band; andcold rolling the hot band to a sheet having a final gauge thickness.2. The method of claim 1 , further comprising subjecting the sheet to a solution heat treatment temperature from 450° C. to 575° C.3. The method of claim 2 , wherein the solution heat treatment temperature ranges from 500° C. to 550° C.4. The method of claim 2 , wherein the sheet is artificially aged to a T6 claim 2 , T8 claim 2 , or T9 temper.5. The method of claim 2 , further comprising quenching the sheet to a temperature from 25° C. to 50° C. following solution heat treatment.6. The method of claim 5 , wherein quenching comprises quenching the sheet at a quench rate from 100° C./s to 450° C./s.7. The method of claim 1 , wherein homogenizing the ingot comprises heating the ingot to a peak metal temperature of from 500° C. to 580° C.8. The method of claim 7 , wherein the ingot is soaked at the peak metal temperature for up to 15 hours.9. The method of claim 7 , further comprising cooling the ingot to room temperature after homogenization.10. The method of claim 1 , wherein hot rolling the ingot comprises hot rolling the ingot to a range from 250° C. to 530° C.11. The method of claim 1 , wherein the aluminum alloy comprises Cu 0.45-0.75 wt. % claim 1 , Fe 0.1-0.35 wt. % claim 1 , Mg 0.45-0.85 wt. % claim 1 , ...

Подробнее
03-02-2022 дата публикации

COMPRESSOR ASSEMBLY WITH NONSTICK COATING AND METHOD OF MANUFACTURING SAME

Номер: US20220034235A1
Принадлежит: GM GLOBAL TECHNOLOGY OPERATIONS LLC

A compressor assembly may include a compressor housing and a compressor impeller disposed within the compressor housing. The compressor housing may have an internal aerodynamic surface that defines a circumferentially extending volute, and the compressor impeller may have an external aerodynamic surface that faces toward at least a portion of the internal aerodynamic surface of the compressor housing. A nonstick coating may be formed on the internal aerodynamic surface of the compressor housing or on the external aerodynamic surface of the compressor impeller. The nonstick coating may prevent foreign material introduced into the compressor assembly from collecting on the internal aerodynamic surface of the compressor housing or on the external aerodynamic surface of the compressor impeller. 1. A compressor assembly configured to pressurize an airflow for delivery to an internal combustion engine having one or more cylinders , the compressor assembly comprising:a compressor housing having an internal aerodynamic surface that defines a circumferentially extending volute;a compressor impeller disposed within the compressor housing and having an external aerodynamic surface that faces toward at least a portion of the internal aerodynamic surface of the compressor housing; anda nonstick coating formed on the internal aerodynamic surface of the compressor housing or on the external aerodynamic surface of the compressor impeller,wherein the nonstick coating comprises a polymeric material, a ceramic material, or a combination thereof.2. The assembly of wherein the nonstick coating comprises a fluoropolymer claim 1 , a polysiloxane claim 1 , or a combination thereof.3. The assembly of wherein the nonstick coating comprises polytetrafluoroethylene claim 1 , polyvinylidene fluoride claim 1 , a perfluoroalkoxy polymer claim 1 , fluorinated ethylene-propylene claim 1 , or polyethylenetetrafluoroethylene.4. The assembly of wherein the nonstick coating has a thickness in a range ...

Подробнее
18-01-2018 дата публикации

Method of Making Machine Component with Aluminum Alloy Under Temperature-Limited Forming Conditions

Номер: US20180015545A1
Принадлежит: CATERPILLAR INC.

A method of making a machine component includes extruding a supply of an aluminum alloy to produce an extrusion. The extrusion is formed under temperature-limited forming conditions of 275° C. or less to produce a blank. The blank is machined to at least one predetermined tolerance to produce the machine component. 1. A method of making a machine component , the method comprising:extruding a supply of an aluminum alloy to produce an extrusion;forming the extrusion under temperature-limited forming conditions of 275° C. or less to produce a blank;machining the blank to at least one predetermined tolerance to produce the machine component.2. The method of claim 1 , further comprising:producing the supply of the aluminum alloy via a rapid solidification process.3. The method of claim 2 , wherein the rapid solidification process comprises melt spinning.4. The method of claim 2 , wherein the rapid solidification process includes producing a ribbon of the aluminum alloy and chopping the ribbon of the aluminum alloy to form a plurality of flakes claim 2 , and wherein the plurality of flakes is extruded to produce the extrusion.5. The method of claim 1 , wherein the aluminum alloy includes aluminum and at least one strengthening metal.6. The method of claim 1 , wherein the aluminum alloy includes aluminum and up to 3.5 percent by weight of at least one element of a first group of elements claim 1 , the first group of elements consisting of Si claim 1 , Sc claim 1 , Ti claim 1 , V claim 1 , Cr claim 1 , Mn claim 1 , Fe claim 1 , Ni claim 1 , Cu claim 1 , Y claim 1 , Zr claim 1 , Mo claim 1 , Ce claim 1 , Nd claim 1 , Er claim 1 , Yb claim 1 , Ta claim 1 , W.7. The method of claim 6 , wherein the aluminum alloy includes between 3.5 percent and 9 percent by weight of at least one element of a second group of elements claim 6 , the second group of elements consisting of Ti and V.8. The method of claim 7 , wherein the aluminum alloy includes between 3.5 percent and 8.5 percent ...

Подробнее
19-01-2017 дата публикации

HIGH PERFORMANCE AlSiMgCu CASTING ALLOY

Номер: US20170016092A1
Автор: Lin Jen C., Yan Xinyan
Принадлежит:

New aluminum casting alloys having 8.5-9.5 wt. % silicon, 0.8-2.0 wt. % copper (Cu), 0.20-0.53 wt. % magnesium (Mg), and 0.35 to 0.8 wt. % manganese are disclosed. The alloy may be solution heat treated, treated in accordance with T5 tempering and/or artificially aged to produce castings, e.g., for cylinder heads and engine blocks. In one embodiment, the castings are made by high pressure die casting. 1. An aluminum casting alloy consisting of:8.5-9.5 wt. % silicon; 'wherein 2.5≦ (Cu+10Mg)≦5.8;', '0.8-2.0 wt. % copper (Cu);'}0.20-0.53 wt. % magnesium (Mg);0.35 to 0.8 wt. % manganese;up to 5.0 wt. % zinc;up to 1.0 wt. % silver;up to 1.0 wt. % nickel;up to 1.0 wt. % hafnium;up to 1.0 wt. % iron;up to 0.30 wt. % titanium;up to 0.30 wt. % zirconium;up to 0.30 wt. % vanadium;up to 0.10 wt. % of one or more of strontium, sodium and antimony;other elements being ≦0.04 wt. % each and ≦0.12 wt. % in total;the balance being aluminum.2. The alloy of claim 1 , wherein the ratio of iron to manganese is ≦0.5.3. The alloy of claim 2 , wherein the alloy includes from 1.0 to 1.5 wt. % Cu.4. The alloy of claim 3 , wherein the alloy includes from 0.4 to 0.45 wt. % Mg claim 3 , and wherein 4.7≦(Cu+10Mg)≦5.8.5. The alloy of claim 4 , wherein the alloy includes from 0.10 to 0.30 wt. % Fe.6. The alloy of claim 5 , wherein the alloy includes from 0.45-0.70 wt. % Mn.7. The alloy of claim 6 , wherein the alloy includes of at least 0.05 wt. % V and at least 0.05 wt. % Zr claim 6 , and wherein the total amount of Zr+V is from 0.10 wt. to 0.50 wt. %.8. A method comprising:{'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, '(a) introducing the molten aluminum alloy of into a mold;'}(b) removing a defect-free shape cast article from the mold; and(c) tempering the shape cast article to one of a T5, T6 or T7 temper.9. The method of claim 8 , wherein the mold is a high pressure die casting mold and the step of introducing is by high pressure die casting. This patent application claims priority to U.S ...

Подробнее
19-01-2017 дата публикации

Aluminum Alloy with Additions of Scandium, Zirconium and Erbium

Номер: US20170016101A1
Принадлежит:

An aluminum alloy including additions of scandium, zirconium, erbium and, optionally, silicon. 1. A method for forming an aluminum alloy comprising the steps of:forming a molten mass of aluminum comprising additions of scandium, zirconium, erbium and, optionally, silicon;cooling said molten mass to form a solid mass;during a first heat treating step, maintaining said solid mass at a temperature ranging from about 275 to about 325° C. for a first predetermined amount of time; andafter said first heat treating step, maintaining said solid mass at a temperature ranging from about 375 to about 425° C. for a second predetermined amount of time.2. The method of wherein said first predetermined amount of time is about 2 to about 8 hours.3. The method of wherein said second predetermined amount of time is about 4 to about 12 hours.4. The method of wherein said first predetermined amount of time is about 2 to about 8 hours and said second predetermined amount of time is about 4 to about 12 hours.5. The method of wherein said molten mass consists essentially of said aluminum claim 1 , said scandium claim 1 , said zirconium claim 1 , said erbium and claim 1 , optionally claim 1 , said silicon.6. The method of wherein iron is present in said molten mass as an impurity.7. The method of wherein said iron is present at a concentration of at most about 0.0025 at. %.8. The method of wherein:said scandium comprises at most about 0.1 at. % of said molten mass;said zirconium comprises at most about 0.1 at. % of said molten mass;said erbium comprises at most about 0.05 at. % of said molten mass; andsaid silicon comprises from 0 to about 0.1 at. % of said molten mass.9. The method of wherein:said scandium comprises at most about 0.08 at. % of said molten mass;said zirconium comprises at most about 0.08 at. % of said molten mass; andsaid erbium comprises at most about 0.04 at. % of said molten mass.10. The method of wherein said molten mass is substantially free of said silicon.11. The ...

Подробнее
21-01-2016 дата публикации

METHOD FOR TREATING SHEET METAL

Номер: US20160017457A1
Принадлежит: GM GLOBAL TECHNOLOGY OPERATIONS LLC

A method for treating sheet metal is disclosed. An amorphous mass containing an alloying element is applied onto a first area of a surface of the metal sheet. A second area of the surface is kept free of the amorphous mass. The amorphous mass and at least the first area of the metal sheet are heated in order to alloy the alloying element into the first area of the metal sheet while the second area remains unalloyed.

Подробнее
18-01-2018 дата публикации

Aluminum Alloy Composition and Method

Номер: US20180016665A1
Принадлежит:

An aluminum alloy composition includes, in weight percent: 1. An aluminum alloy intermediate product formed of an aluminum alloy having a composition comprising , in weight percent:0.5-0.7 manganese;0.05-0.15 iron;0.3-0.5 silicon;0.020 max nickel;0.05-0.15 titanium;0.01 max copper; and0.10 max zinc,with the balance being aluminum and unavoidable impurities, wherein the alloy includes manganese and silicon in a Mn/Si ratio of 2.25 or less,wherein the intermediate product has been homogenized in a single homogenization step at a homogenization temperature of 500° C. to 595° C.2. The aluminum alloy intermediate product of claim 1 , wherein the combined amount of manganese and silicon in the alloy is at least 0.8 wt. %.3. The aluminum alloy intermediate product of claim 1 , wherein the unavoidable impurities in the alloy have a content claim 1 , in weight percent claim 1 , of no more than 0.05 per impurity and 0.15 total.4. The aluminum alloy intermediate product of claim 1 , wherein the manganese content of the alloy is 0.60-0.70 wt. %.5. The aluminum alloy intermediate product of claim 1 , wherein the silicon content of the alloy is 0.35-0.50 wt. %.6. The aluminum alloy intermediate product of claim 1 , wherein the alloy includes at least 0.005 wt. % nickel.7. (canceled)8. The aluminum alloy intermediate product of claim 1 , wherein the product has a segregated microstructure with alternating areas of higher titanium content separated by areas of lower titanium content.9. The aluminum alloy intermediate product of claim 8 , wherein the areas of higher titanium content are spaced from each other by 20-80 microns.10. An extruded aluminum alloy product formed of an aluminum alloy having a composition comprising:0.5-0.7 manganese;0.05-0.15 iron;0.3-0.5 silicon;0.020 max nickel;0.05-0.15 titanium;0.01 max copper; and0.10 max zinc,with the balance being aluminum and unavoidable impurities, wherein the alloy includes manganese and silicon in a Mn/Si ratio of 2.25 or less, ...

Подробнее
18-01-2018 дата публикации

METHOD OF MANUFACTURING METAL CASTINGS

Номер: US20180016666A1
Принадлежит:

A method of manufacturing an aluminum alloy cylinder head includes providing a mold assembly including a gating system, a head deck mold, and a mold cavity. Liquid aluminum alloy is pumped at low pressure into the gating system of the mold assembly filling the mold cavity. Next, the head deck mold is removed from the mold assembly and the head deck and combustion chambers of the cylinder head are quenched. 1. A method of manufacturing an aluminum alloy cylinder head , the method comprising;providing a mold assembly including a gating system, a head deck mold, and a mold cavity;pumping liquid aluminum alloy into the gating system of the mold assembly and filling the mold cavity;removing the head deck mold from the mold assembly;quenching a head deck and combustion chamber surface of the cylinder head formed by the head deck mold of the cylinder head.2. The method of manufacturing an aluminum alloy cylinder head of claim 1 , wherein providing a mold assembly including a gating system claim 1 , a head deck mold claim 1 , and a mold cavity further comprises providing a mold assembly including a cope mold claim 1 , and a drag mold claim 1 , and wherein the gating system is included in the cope mold claim 1 , the head deck mold is included in the drag mold claim 1 , and the mold assembly is inverted.3. The method of manufacturing an aluminum alloy cylinder head of claim 1 , wherein providing a mold assembly including a gating system claim 1 , a head deck mold claim 1 , and a mold cavity further comprises providing a mold assembly made of predominantly sand cores and including a head deck mold made of metal.4. The method of manufacturing an aluminum alloy cylinder head of claim 2 , wherein pumping liquid aluminum alloy into the gating system of the mold assembly and filling the mold cavity further comprises pumping liquid aluminum alloy into the gating system of the cope mold and completely filling the mold cavity.5. The method of manufacturing an aluminum alloy cylinder ...

Подробнее
17-01-2019 дата публикации

Abnormal Grain Growth Suppression in Al Alloys

Номер: US20190017157A1
Принадлежит:

The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment (“TAT”) after the welding step on the article. The TAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget. 1. A method of making a welded article comprising ,(a) providing an article comprising an aluminum alloy;(b) friction-stir-welding the article under effective friction-stir-welding conditions;(c) inserting an intermediate annealing treatment (“IAT”) after the welding step on the article under effective intermediate annealing conditions comprising an effective time period and an IAT temperature lower than a solidus line on a phase diagram for the aluminum alloy;(d) conducting solution heat treatment on the article under effective solution heat treatment conditions at a temperature greater than the IAT temperature; and(e) recovering the article characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.2. The method of claim 1 , further comprising conducting deformation on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions.3. The method of claim 1 , wherein the aluminum alloy is selected from the group consisting of 2xxx series claim 1 , 5xxx series claim 1 , 6xxx series claim 1 , 7xxxx series claim 1 , and combinations thereof.4. The method of ...

Подробнее
17-04-2014 дата публикации

High strength forged aluminum alloy products

Номер: US20140102602A1
Принадлежит: Alcoa Inc

High strength forged aluminum alloys and methods for producing the same are disclosed. The forged aluminum alloy products may have grains having a high aspect ratio in at least two planes, generally the L-ST and the LT-ST planes. The forged aluminum alloy products may also have a high amount of texture. The forged products may realize increased strength relative to conventionally prepared forged products of comparable product form, composition and temper.

Подробнее
16-01-2020 дата публикации

Delaying Recovery in Al-Fe-Si-Mn-Mg Impact Extrusion Alloys Using Zirconium

Номер: US20200017936A1
Принадлежит: Ball Corp

A method of delaying the process of recovery of metals, a method to make an aluminum alloy comprising zirconium, and an apparatus comprising an aluminum alloy and zirconium are provided. In some embodiments, the aluminum alloy of can be formed from recycled aluminum alloys.

Подробнее
16-01-2020 дата публикации

ALUMINUM ALLOY MATERIAL, AND CONDUCTIVE MEMBER, CONDUCTIVE COMPONENT, SPRING MEMBER, SPRING COMPONENT, SEMICONDUCTOR MODULE MEMBER, SEMICONDUCTOR MODULE COMPONENT, STRUCTURAL MEMBER AND STRUCTURAL COMPONENT INCLUDING THE ALUMINUM ALLOY MATERIAL

Номер: US20200017938A1
Автор: Kaneko Hiroshi
Принадлежит: FURUKAWA ELECTRIC CO., LTD.

An object of the present disclosure is to provide a high strength aluminum alloy material having a ribbon shape, which can be an alternative to copper-based materials and iron-based materials having a ribbon shape, and a conductive member, a conductive component, a spring member, a spring component, a semiconductor module member, a semiconductor module component, a structural member and a structural component including the aluminum alloy material. The aluminum alloy material of the present disclosure has an alloy composition containing Mg: 0.2% to 1.8% by mass, Si: 0.2% to 2.0% by mass, and Fe: 0.01% to 1.50% by mass, with the balance being Al and inevitable impurities, wherein the aluminum alloy material has a Vickers hardness (HV) of 90 or more and 190 or less and has a ribbon shape. 1. An aluminum alloy material having an alloy composition comprising Mg: 0.2% to 1.8% by mass , Si: 0.2% to 2.0% by mass , and Fe: 0.01% to 1.50% by mass , with the balance being Al and inevitable impurities ,wherein the aluminum alloy material has a Vickers hardness (HV) of 90 or more and 190 or less and has a ribbon shape.2. An aluminum alloy material having an alloy composition comprising Mg: 0.2 to 1.8% by mass , Si: 0.2 to 2.0% by mass , Fe: 0.01 to 1.50% by mass , and at least one element selected from Ti , B , Cu , Ag , Zn , Ni , Co , Au , Mn , Cr , V , Zr and Sn: 0.00 to 2% by mass in total , with the balance being Al and inevitable impurities ,wherein the aluminum alloy material has a Vickers hardness (HV) of 90 or more and 190 or less and has a ribbon shape.3. An aluminum alloy material having an alloy composition comprising Mg: 0.2 to 1.8% by mass , Si: 0.2 to 2.0% by mass , Fe: 0.01 to 1.50% by mass , and at least one element selected from Ti , B , Cu , Ag , Zn , Ni , Co , Au , Mn , Cr , V , Zr and Sn: 0.02 to 2% by mass in total , with the balance being Al and inevitable impurities ,wherein the aluminum alloy material has a Vickers hardness (HV) of 90 or more and 190 or ...

Подробнее