24-01-2019 дата публикации
Номер: US20190027644A1
Gallium nitride based devices and, more particularly to the generation of holes in gallium nitride based devices lacking p-type doping, and their use in light emitting diodes and lasers, both edge emitting and vertical emitting. By tailoring the intrinsic design, a wide range of wavelengths can be emitted from near-infrared to mid ultraviolet, depending upon the design of the adjacent cross-gap recombination zone. The innovation also provides for novel circuits and unique applications, particularly for water sterilization. 1. A solid-state device , comprising:a bottom n-type layer;a top n-type layer;a middle layer inserted between the top layer and bottom layer, where the middle layer comprises at least two materials provided between the top and bottom layers which serve as heterojunction tunnel barriers;and where the top layer and the middle layer form an interband tunnel barrier to generate holes by Zener tunneling across the potential barrier of the forbidden energy gap, and where the middle layer forms at least one intraband tunnel barrier to control electron flow.2. The device of claim 1 , wherein the top claim 1 , middle and bottom layers are comprised of gallium nitride claim 1 , aluminum nitride claim 1 , indium nitride or alloys and combinations of III-nitride semiconductors or III-nitride compatible semiconductors.3. The device of claim 2 , wherein the heterojunction interband tunnel barrier is formed by the polarization effects at III-nitride heterojunctions.4. The device of claim 1 , wherein the middle layer forms at least two intraband tunnel barriers claim 1 , wherein the at least two intraband tunnel barriers form a quantum well within the middle layer.5. The device of claim 1 , wherein the middle layer forms at least two intraband tunnel barriers claim 1 , wherein the at least two intraband tunnel barriers form a double barrier resonant tunneling diode.6. The device of claim 1 , wherein the middle layer is either undoped or doped less than the top ...
Подробнее