09-02-2012 дата публикации
Номер: US20120032311A1
An in-situ process is described incorporating plasma enhanced chemical vapor deposition comprising flowing at least one of a Si, Si+C, B, Si+B, Si+B+C, and B+C containing precursor, and a N containing precursors at first times and removing the N precursor at second times and starting the flow of an oxidant gas and a porogen gas into the chamber. A dielectric layer is described comprising a network having inorganic random three dimensional covalent bonding throughout the network which contains at least one SiCN, SiCNH, SiN, SiNH, BN, BNH, CBN, CBNH, BSiN, BSiNH, SiCBN and SiCBNH as a first component and a low k dielectric as a second component adjacent thereto. 1. A method for forming a dielectric structure comprising:placing a substrate in a chamber for performing one of plasma enhanced chemical vapor deposition and plasma enhanced atomic layer deposition,flowing a vapor including at least one of a Si, Si+C, B, Si+B, Si+B+C, and B+C containing precursor, a N containing precursor, and an inert gas into said chamber,heating said substrate in said chamber in the range from 100° C. to 450°,initiating a plasma in said chamber to form a first component comprising at least one of SiCN, SiCNH, SiN, SiNH, BN, BNH, CBN, CBNH, BSiN, BSiNH, SiCBN and SiCBNH on said substrate,while maintaining said plasma, reducing the flow of said N containing precursor to substantially zero while maintaining said flow of said at least one of a Si, Si+C, B, Si+B, Si+B+C, and B+C containing precursor and said inert gas, andflowing an oxidant gas into said chamber to form a second component adjacent said first component, said second component comprising at least one of SiCOH, p-SiCOH, p-SiCNH, p-BN, p-BNH, p-CBN and p-CBNH.2. The method of wherein said N containing precursor comprisesammonia, and said Si and C containing precursor is selected from the group consisting of trimethylsilane, tetramethylsilane, dimethylsilacyclopentane (DMSCP) and disilacyclobutane.3. The method of wherein said ...
Подробнее