Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 1297. Отображено 199.
13-09-2017 дата публикации

Способ формирования полых монокристаллических цилиндрических трубок

Номер: RU2630811C1

FIELD: electricity. SUBSTANCE: method of forming hollow single-crystal cylindrical tubes includes growing melt-cylindrical single crystals by pulling up with a single-crystal seed of the required orientation, separating two blanks of the required length from the single crystal, their mechanical and electrochemical machining, resulting in two hollow polyhedron cylinders with a predetermined geometry, determining the location of the desired crystallographic directions on the surfaces of the said cylinders, spark cutting and removing portions of cylinders with an intermediate crystallographic orientation, after which the remaining cylinders are rotated relative to each other about the longitudinal axis, joined, the cylinders are matched by electron beam welding, then the technological areas are separated by spark cutting from the workpiece, and electrochemical processing of welded mono-faceted single-crystal cylinder is performed. EFFECT: invention allows to obtain tubes with a homogeneous mono-faceted crystallographic orientation of the working surface and isotropic physico-mechanical properties. 10 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (51) МПК C30B 29/66 C30B 15/00 C30B 33/06 C30B 29/02 H01J 45/00 (11) (13) 2 630 811 C1 (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (21)(22) Заявка: 2017108161, 13.03.2017 (24) Дата начала отсчета срока действия патента: 13.03.2017 Дата регистрации: Приоритет(ы): (22) Дата подачи заявки: 13.03.2017 (45) Опубликовано: 13.09.2017 Бюл. № 26 C 1 2 6 3 0 8 1 1 6663736 В1, 16.12.2003. US 20160362814 A1, 15.12.2016. (54) Способ формирования полых монокристаллических цилиндрических трубок (57) Реферат: Изобретение относится к области электронной кристаллографических направлений, вырезание техники для изготовления аксиальных электроискровой резкой и удаление участков цилиндрических изделий различных элементов цилиндров с промежуточной силовых электрических ...

Подробнее
10-04-2016 дата публикации

СПОСОБ СОЕДИНЕНИЯ И ФИКСАЦИИ МОНОКРИСТАЛЛОВ (ВАРИАНТЫ), УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА И СТЕК, ПОЛУЧЕННЫЙ С ИХ ИСПОЛЬЗОВАНИЕМ

Номер: RU2580127C1

Изобретение относится к механическим способам обработки монокристаллических слитков. Способ соединения и фиксации монокристаллов включает позиционирование нескольких монокристаллов, ориентирование их определенным образом и фиксацию монокристаллов друг с другом клеящим веществом, причем предварительно проводят отбор необходимого количества слитков монокристалла, затем проводят ориентацию торцов отобранных слитков с необходимым допуском и снятие предварительного базового среза длиной 18-20 мм, после чего склеивают слитки монокристаллов с помощью устройства для соединения и фиксации монокристаллов следующим образом: наносят клеящий материал на предварительно обезжиренный торец слитка монокристалла, устанавливают слиток предварительным базовым срезом на плоскость основания 1 устройства, одновременно прижимая слиток чистым торцом к неподвижному упору 4 и образующей слитка к поверхности бокового ограждения 2, устанавливают следующий слиток предварительным базовым срезом на плоскость основания ...

Подробнее
10-12-2012 дата публикации

СПОСОБ СОЕДИНЕНИЯ ДЕТАЛЕЙ ИЗ ТУГОПЛАВКИХ ОКСИДОВ

Номер: RU2011122428A
Принадлежит:

... 1. Способ соединения деталей из тугоплавких оксидов, включающий полировку соединяемых поверхностей, их совмещение и нагрев, отличающийся тем, что, по крайней мере, на одну из полированных соединяемых поверхностей наносят слой материала, образующего твердый раствор по крайней мере с одним из материалов соединяемых деталей, при этом температура плавления твердого раствора ниже температуры плавления каждого из материалов соединяемых деталей, после этого совмещенные детали отжигают при температуре выше температуры образования твердого раствора.2. Способ по п.1, отличающийся тем, что тугоплавким оксидом является иттрий-алюминиевый оксид со структурой граната.3. Способ по п.1, отличающийся тем, что тугоплавким оксидом является оксид алюминия.4. Способ по п.1, отличающийся тем, что тугоплавким оксидом является галлий-гадолиниевый оксид со структурой граната.5. Способ по п.1, отличающийся тем, что слой наносимого материала выполнен из оксидного материала.6. Способ по п.5, отличающийся тем, что ...

Подробнее
07-05-1986 дата публикации

Номер: DE0002555375C2

Подробнее
18-07-1984 дата публикации

FORMATION OF LAYER OF MULTICONSTITUENT

Номер: GB0008415146D0
Автор:
Принадлежит:

Подробнее
23-01-1992 дата публикации

BONDING DIAMOND TO DIAMOND

Номер: AU0000619285B2
Принадлежит:

Подробнее
28-04-2015 дата публикации

INTERMETALLIC ALUMINIDE POLYCRYSTALLINE DIAMOND COMPACT (PDC) CUTTING ELEMENTS

Номер: CA0002674469C

Machining and cutting tools including, but not limited to, rotary drill bits, mining tools, milling tools, wood shredders, reamers and wire dies formed with at least one substrate having a layer of polycrystalline diamond disposed thereon. The polycrystalline diamond layer may be generally described as a polycrystalline diamond compact (PDC) or PDC layer. The PDC may be formed by using an intermetallic aluminide catalyst. One example of such catalyst may include nickel aluminide used to form diamond to diamond bonds between adjacent diamond particles.

Подробнее
05-04-2012 дата публикации

METHOD OF BONDING POLY-CRYSTALLINE DIAMONDS TO WEAR SURFACE

Номер: CA0002726751A1
Принадлежит:

A method of bonding poly-crystalline diamonds to a wear surface, using commercially available poly-crystalline diamond cutters having poly-crystalline diamond buttons bonded to a carbide core. The poly-crystalline diamond cutters are cooled with cryogenic liquid. The poly-crystalline diamond cutters are crushed to form poly-crystalline diamond cutter fragments, with each of the fragments having a poly-crystalline diamond button fragment still bonded to a carbide core fragment. The carbide core fragment is then bonded onto the wear surface, such that the wear surface includes poly-crystalline diamond buttons fragments.

Подробнее
26-11-2006 дата публикации

THERMALLY STABLE ULTRA-HARD MATERIAL COMPACT CONSTRUCTIONS

Номер: CA0002851894A1
Принадлежит:

Thermally stable ultra-hard compact constructions of this invention comprise an ultra-hard material body that includes a thermally stable region positioned adjacent a surface of the body. The thermally stable region is formed from consolidated materials that are thermally stable at temperatures greater than about 750°C. The thermally stable region can occupy a partial portion of or the entire ultra-hard material body. The ultra-hard material body can comprise a composite of separate ultra-hard material elements that each form different regions of the body, at least one of the regions being thermally stable. The ultra-hard material body is attached to a desired substrate, an intermediate material is interposed between the body and the substrate, and the intermediate material joins the substrate and body together by high pressure/high temperature process.

Подробнее
31-12-1980 дата публикации

COMPOUND METALLIC CRYSTALLINE ARTICLE.

Номер: CH0000620945A5

Подробнее
28-02-2018 дата публикации

Clockwork mechanical component and method for manufacturing such a component.

Номер: CH0000712824A1
Принадлежит:

L’invention concerne un composant pour un mouvement de montre mécanique, notamment pour l’échappement d’un mouvement d’horlogerie mécanique, au moins une partie du composant étant destinée à subir des frottements lors de la marche du mouvement, comprenant: (i) une première couche de silicium (Cs1) découpée dans un premier plan cristallin du silicium; (i) une deuxième couche de silicium (Cs2) découpée dans un deuxième plan cristallin du silicium; l’orientation du réseau cristallin de la première couche étant décalée d’un angle différent de 0° ou 180° par rapport à l’orientation du réseau cristallin de la deuxième couche et/ou le premier plan cristallin étant différent et non équivalent au premier plan cristallin.

Подробнее
30-11-2020 дата публикации

The invention relates to a component for a mechanical watch movement and to a method for producing one such component.

Номер: CH0000712824B1
Принадлежит: RICHEMONT INT SA, Richemont International SA

L'invention concerne un composant pour un mouvement de montre mécanique, notamment pour l'échappement d'un mouvement d'horlogerie mécanique, au moins une partie du composant étant destinée à subir des frottements lors de la marche du mouvement, comprenant: (i) une première couche de silicium (Cs1) découpée dans un premier plan cristallin du silicium; (i) une deuxième couche de silicium (Cs2) découpée dans un deuxième plan cristallin du silicium ; par rapport à l'orientation du réseau cristallin de la deuxième couche de sorte que le premier plan cristallin soit en déphasage par rapport au deuxième plan cristallin et/ou le premier plan cristallin étant différent et non équivalent au deuxième plan cristallin.

Подробнее
28-08-2020 дата публикации

Large-size single-crystal silicon round rod splicing equipment

Номер: CN0211363024U
Автор:
Принадлежит:

Подробнее
12-10-2016 дата публикации

Seed crystal piece

Номер: CN0205635858U
Принадлежит:

Подробнее
23-06-2017 дата публикации

METHOD FOR PRODUCING A SINGLE CRYSTAL PIEZOELECTRIC LAYER AND MICROELECTRONIC DEVICE, OPTICAL OR PHOTONIC LAYER HAVING A HIGH

Номер: FR0003045678A1
Принадлежит: SOITEC

L'invention concerne un procédé de fabrication d'une couche (10) d'un matériau piézoélectrique monocristallin, caractérisé en ce qu'il comprend : - la fourniture d'un substrat donneur (100) dudit matériau piézoélectrique, - la fourniture d'un substrat receveur (110), - le transfert d'une couche dite « couche germe » (102) dudit substrat donneur (100) sur le substrat receveur (110), - la mise en œuvre d'une épitaxie du matériau piézoélectrique sur la couche germe (102) jusqu'à l'obtention de l'épaisseur souhaitée pour la couche piézoélectrique monocristalline (10).

Подробнее
24-03-2017 дата публикации

다중접합 태양 전지 소자들의 제조

Номер: KR0101719620B1
Принадлежит: 소이텍

... 본 발명은, 제1 설계된 기판을 제공하는 단계; 제2 기판을 제공하는 단계; 제1 웨이퍼 구조를 얻기 위해 상기 제1 설계된 기판 상에 적어도 하나의 제1 태양전지층을 형성하는 단계; 제2 웨이퍼 구조를 얻기 위해 상기 제2 기판 상에 적어도 하나의 제2 태양전지층을 형성하는 단계; 상기 제1 웨이퍼 구조를 상기 제2 웨이퍼 구조에 결합시키는 단계; 상기 제1 설계된 기판을 분리하는 단계; 상기 제2 기판을 제거하는 단계; 및 제3 기판을 상기 적어도 하나의 제1 태양전지층에 결합시키는 단계;를 포함하는 다중접합 태양전지 소자를 제조하는 방법에 관한 것이다.

Подробнее
23-09-2016 дата публикации

사파이어 라미네이트

Номер: KR1020160111015A
Принадлежит:

... 다양한 사파이어 및 라미네이트 구조체들이 본 명세서에서 논의된다. 일 실시예는 주 표면을 형성하는 제1 사파이어 면 타입을 갖는 제1 사파이어 시트, 및 주 표면을 형성하는 제2의 상이한 사파이어 면 타입을 갖는 제2 사파이어 시트를 갖는 사파이어 구조체의 형태를 취할 수 있다. 제1 사파이어 시트와 제2 사파이어 시트는 사파이어 구조체를 형성하도록 함께 융합된다.

Подробнее
03-07-2014 дата публикации

METHODS FOR PRODUCING RECTANGULAR SEEDS FOR INGOT GROWTH

Номер: WO2014105749A1
Принадлежит:

A method of producing rectangular seeds for use in semiconductor or solar material manufacturing includes connecting an adhesive layer to a top surface of a template, the template including a plurality of parallel slots, and drawing alignment lines on the adhesive layer, the alignment lines aligned with at least some of the parallel slots. The method also includes connecting quarter sections to the alignment layer such that an interface between a rectangular seed portion and a curved wing portion of each quarter section is aligned with at least one of the alignment lines drawn on the adhesive layer, and slicing each of the quarter sections to separate the rectangular seed portions from the curved wing portions.

Подробнее
22-05-2014 дата публикации

LAMINATED ALUMINUM OXIDE COVER COMPONENT

Номер: WO2014078026A1
Автор: KWONG, Kelvin
Принадлежит:

A cover glass for an electronic display comprises a plurality of layers of sapphire material, each of the layers having a substantially single crystal plane orientation, with adjacent layers having different substantially single crystal plane orientations. One or more interface layers are defined between adjacent layers of the sapphire material, with the adjacent layers of sapphire material bonded together at the one or more interface layers. A display window is defined in the cover glass, and configured for viewing a viewable area of the electronic display through the plurality of layers of the sapphire material bonded together at the one or more interface layers.

Подробнее
21-02-2013 дата публикации

METHOD FOR TAILORING THE DOPANT PROFILE IN A LASER CRYSTAL USING ZONE PROCESSING

Номер: WO2013025926A1
Автор: BYREN, Robert W.
Принадлежит:

A lasing medium having a tailored dopant concentration and a method of fabrication thereof is disclosed. The lasing medium has a single crystal having a continuous body having a selected length, wherein the crystal comprises dopant distributed along the length of the body to define a dopant concentration profile. In one embodiment, the dopant concentration profile results in a uniform heating profile. A method of fabricating a laser crystal having a tailored dopant concentration profile includes arranging a plurality of polycrystalline segments (12) together to form an ingot (10), the polycrystalline segments each having dopant distributed, providing a crystal seed (14) at a first end of the ingot, and moving a heating element (20) along the ingot starting from the first end (16) to a second end (18) of the ingot, the moving heating element creating a moving molten region (22) within the ingot while passing therealong.

Подробнее
04-04-2002 дата публикации

METHOD FOR JOINING

Номер: WO0000226660A1
Автор: MASUDA, Takashi
Принадлежит:

A method for joining a substrate (101) and another substrate (103) which comprises applying an aqueous solution of boehmite (AlO(OH)), which is a hydroxylated mineral of aluminium, on the substrate (101) to form an applied film (102) and subjecting the applied film (102) to a modification treatment.

Подробнее
06-10-2020 дата публикации

Conductive C-plane GaN substrate

Номер: US0010796904B2

A conductive C-plane GaN substrate has a resistivity of 2×10−2 Ω·cm or less or an n-type carrier concentration of 1×1018 cm−3 or more at room temperature. At least one virtual line segment with a length of 40 mm can be drawn at least on one main surface of the substrate. The line segment satisfies at least one of the following conditions (A1) and (B1): (A1) when an XRC of (004) reflection is measured at 1 mm intervals on the line segment, a maximum value of XRC-FWHMs across all measurement points is less than 30 arcsec; and (B1) when an XRC of the (004) reflection is measured at 1 mm intervals on the line segment, a difference between maximum and minimum values of XRC peak angles across all the measurement points is less than 0.2°.

Подробнее
17-03-2020 дата публикации

Combined wafer production method with laser treatment and temperature-induced stresses

Номер: US0010593590B2
Принадлежит: Siltectra GmbH, SILTECTRA GMBH

A method for the production of layers of solid material is contemplated. The method may include the steps of providing a solid body for the separation of at least one layer of solid material, generating defects by means of at least one radiation source, in particular a laser, in the inner structure of the solid body in order to determine a detachment plane along which the layer of solid material is separated from the solid body, and applying heat to a polymer layer disposed on the solid body in order to generate, in particular mechanically, stresses in the solid body, due to the stresses a crack propagating in the solid body along the detachment plane, which crack separates the layer of solid material from the solid body.

Подробнее
01-06-2021 дата публикации

Lithium tantalate single crystal substrate, bonded substrate, manufacturing method of the bonded substrate, and surface acoustic wave device using the bonded substrate

Номер: US0011021810B2

The lithium tantalate single crystal substrate of the present invention is a rotated Y-cut LiTaO3 single crystal substrate having a crystal orientation of 36° Y-49° Y cut characterized in that: the substrate is diffused with Li from its surface into its depth such that it has a Li concentration profile showing a difference in the Li concentration between the substrate surface and the depth of the substrate; and the substrate is treated with single polarization treatment so that the Li concentration is substantially uniform from the substrate surface to a depth which is equivalent to 5-15 times the wavelength of either a surface acoustic wave or a leaky surface acoustic wave propagating in the LiTaO3 substrate surface.

Подробнее
06-06-2024 дата публикации

METHOD OF PRODUCING LARGE GaAs AND GaP INFRARED WINDOWS

Номер: US20240183065A1

A method of growing large GaAs or GaP IR window slabs by HVPE, and in embodiments by LP-HVPE, includes obtaining a plurality of thin, single crystal, epitaxial-quality GaAs or GaP wafers, cleaving the wafers into tiles having ultra-flat, atomically smooth, substantially perpendicular edges, and then butting the tiles together to form an HVPE substrate larger than 4 inches for GaP, and larger than 8 inches or even 12 inches for GaAs. Subsequent HVPE growth causes the individual tiles to fuse by optical bonding into a large “tiled” single crystal wafer, while any defects nucleated at the tile boundaries are healed, causing the tiles to merge with themselves and with the slab with no physical boundaries, and no degradation in optical quality. A dopant such as Si can be added to the epitaxial gases during the final HVPE growth stage to produce EMI shielded GaAs windows.

Подробнее
23-11-2022 дата публикации

HIGH-QUALITY GROUP-III METAL NITRIDE SEED CRYSTAL AND METHOD OF MAKING

Номер: EP4090790A1
Принадлежит:

Подробнее
25-01-2018 дата публикации

LITHIUM-TANTALAT-EINKRISTALLSUBSTRAT, GEBONDETES SUBSTRAT, HERSTELLUNGSVERFAHREN DES GEBONDETEN SUBSTRATS, UND AKUSTISCHE OBERFLÄCHENWELLENVORRICHTUNG, DIE DAS GEBONDETE SUBSTRAT VERWENDET

Номер: DE112016001756T5

... [Zielsetzung] Es ist ein Ziel der vorliegenden Erfindung, ein Lithium-Tantalat-Einkristallsubstrat bereitzustellen, welches lediglich einem geringen Verziehen unterliegt, frei von Rissen und Kratzern ist, und eine bessere Temperatur-Unabhängigkeits-Charakteristik und einen größeren elektromechanischen Kupplungskoeffizienten aufweist als ein konventionelles Y-Schnitt LiTaO3-Substrat. [Mittel zur Lösung der Probleme] Das Lithium-Tantalat-Einkristallsubstrat der vorliegenden Erfindung ist ein rotierter Y-Schnitt LiTaO3-Einkristallsubstrat mit einer Kristallorientierung von 36°Y–49°Y-Schnitt, dadurch gekennzeichnet, dass: das Substrat mit Li von dessen Oberfläche in dessen Tiefe so diffundiert ist, dass es ein Li-Konzentrationsprofil aufweist, das einen Unterschied der Li-Konzentration zwischen der Substratoberfläche und der Tiefe des Substrats zeigt; und das Substrat mit einer singulär-Polarisationsbehandlung behandelt ist, so dass die Li-Konzentration im Wesentlichen gleichförmig ist von ...

Подробнее
16-01-1985 дата публикации

Method of formation of layer of multiconstituent material

Номер: GB2142346A
Принадлежит:

A method for forming heterostructures comprising multiconstituent epitaxial material, on a substrate comprises formation of a layer of "precursor" material on the substrate, and momentarily melting the precursor material by pulsed irradiation. The precursor material has the same major chemical constituents as the multiconstituent material to be formed, albeit not necessarily in the same proportions. In at least some systems (e.g., nickel or cobalt silicides on Si), solid state annealing of the re-solidified material often improves substantially the quality of the epitaxial material formed, resulting in substantially defect-free, substantially monocrystalline, material. An exemplary application of the inventive method is the formation of single crystal epitaxial NiSi2 on Si(100).

Подробнее
28-07-2021 дата публикации

Method for producing GaN laminate substrate

Номер: GB2591348A
Принадлежит:

The present invention includes: transferring a C-plane sapphire thin film 1t having an off-angle of 0.5-5° onto a handle substrate composed of a ceramic material having a coefficient of thermal expansion at 800 K that is greater than that of silicon and less than that of C-plane sapphire, thus preparing a GaN epitaxial growth substrate 11; performing high-temperature nitriding treatment on the GaN epitaxial growth substrate 11 and covering the surface of the C-plane sapphire thin film 1t with a surface treatment layer 11a made of AlN; having GaN grow epitaxially on the surface treatment layer 11a, thus preparing a GaN film carrier, the surface of which is made of an N-polarity surface; ion-implanting a GaN film 13; pasting and bonding together the GaN film-side surface of the ion-implanted GaN film carrier and a support substrate 12; performing peeling at an ion implantation region 13ion in the GaN film 13 and transferring a GaN thin film 13a onto the support substrate 12; and obtaining ...

Подробнее
21-01-2005 дата публикации

SINGLE-CRYSTAL-LIKE MATERIALS

Номер: AU2003229087A1
Принадлежит:

Подробнее
12-10-2021 дата публикации

RADIAL BEARING WITH WEAR RESISTANT INSERTS AND A WEAR RESISTANT COATING

Номер: CA3049602C

A radial bearing for transmitting a radial load, including a first radial bearing component having an inner surface defining a bore and a second radial bearing component received within the bore of the first radial bearing component and having an outer surface. The first radial bearing component includes a plurality of first component wear resistant inserts arranged and mounted on the inner surface. The second radial bearing component includes a second component wear resistant coating on at least a portion of the outer surface. The first radial bearing component and the second radial bearing component interact to transmit the radial load between the first radial bearing component and the second radial bearing component.

Подробнее
26-11-2019 дата публикации

POLYCRYSTALLINE DIAMOND COMPACT WITH GRADIENT INTERFACIAL LAYER

Номер: CA0002978270C

The present disclosure relates to a polycrystalline diamond compact (PDC) including a gradient interfacial layer between a thermally stable diamond (TSP) table and a base, such as a substrate or an earth-boring drill bit body. The gradient interfacial layer has a gradient of coefficients of thermal expansion between that of the diamond and the base. The disclosure also relates to methods of forming a gradient interfacial layer and a PDC containing such a layer.

Подробнее
06-10-2016 дата публикации

POLYCRYSTALLINE DIAMOND COMPACTS, AND RELATED METHODS AND APPLICATIONS

Номер: CA0002978769A1
Принадлежит:

Embodiments relate to polycrystalline diamond compacts ("PDCs") including a polycrystalline diamond ("PCD") table in which a metal-solvent catalyst is alloyed with at least one alloying element to improve thermal stability and/or wear resistance of the PCD table. In an embodiment, a PDC includes a substrate and a PCD table bonded to the substrate. The PCD table includes diamond grains defining interstitial regions. The PCD table includes an alloy comprising at least one Group VIII metal and at least one metallic alloying element such as phosphorous.

Подробнее
09-07-2009 дата публикации

POLYCRYSTALLINE ULTRA-HARD COMPACT CONSTRUCTIONS

Номер: CA0002646374A1
Принадлежит:

Polycrystalline ultra-hard compact constructions comprise a polycrystalline ultra-hard compact having a polycrystalline ultra-hard body attached to a substrate. A support member is attached to the compact by a braze material. The support member can have a one-piece construction including one or more support sections. The support member has a first section extending axially along a wall surface of the compact, and extending circumferentially along a portion of the compact. The support member can include a second section extending radially along a backside surface of the compact, and/or a third section extending radially along a front side surface of the compact. In one embodiment, the support member includes a second and/or third section and the compact disposed therein is in an axiall y compressed state. The support member is interposed between the compact and an end-use device, and improves the compact attachment strength to an end-use device when compared to conventional compacts.

Подробнее
11-08-2011 дата публикации

METHOD FOR MANUFACTURING SILICON CARBIDE SUBSTRATE

Номер: CA0002759074A1
Принадлежит:

At least one single crystal substrate (11), each having a backside surface (B1) and made of silicon carbide, and a supporting portion (30) having a main surface (FO) and made of silicon carbide, are prepared. In this preparing step, at least one of the backside surface (B1) and main surface (FO) is formed by machining. By this forming step, a surface layer having distortion in the crystal structure is formed on at least one of the backside surface (B1) and main surface (FO). The surface layer is removed at least partially. Following this removing step, the backside surface (B1) and main surface (FO) are connected to each other.

Подробнее
26-04-2019 дата публикации

METHOD AND APPARATUS FOR PRODUCING LARGE-AREA MONOLAYER FILMS OF SOLUTION DISPERSED NANOMATERIALS

Номер: CN0109689329A
Принадлежит:

Подробнее
04-07-2017 дата публикации

Laser processing method

Номер: CN0106914697A
Принадлежит:

Подробнее
28-10-2009 дата публикации

Method of thermally bonding single-end growing type composite crystal into double-end growing type composite crystal

Номер: CN0101565857A
Принадлежит:

The invention discloses a method of thermally bonding single-end growing type composite crystal into double-end growing type composite crystal, which comprises the following steps of: 1) selecting two single-end growing type composite crystals which comprise a doped region and a non-doped region; 2) setting the length of the doped region of the double-end growing type composite crystal as d2 and the length of the non-doped region at one end of the double-end growing type composite crystal as d1 and the length of the non-doped region at the other end of the double-end growing type composite crystal as d3 and confirming the lengths of the two single-end growing type composite crystals through a polishing method; and 3) connecting the doped regions of the two single-end growing type composite crystals together by a thermal bonding technical method. The method of thermally bonding single-end growing type composite crystal into double-end growing type composite crystal improves the commonality ...

Подробнее
22-12-2017 дата публикации

Splicing bench of silicon single crystal rod

Номер: CN0206780705U
Принадлежит:

Подробнее
13-02-2018 дата публикации

A assembly line for silicon material viscose

Номер: CN0207002873U
Автор: SHEN SHIFENG, ZHOU FANG
Принадлежит:

Подробнее
20-01-2010 дата публикации

Monocrystalline silicon rod splicing device

Номер: CN0201386145Y
Принадлежит:

Подробнее
20-12-2005 дата публикации

Method of joining synthetic corundum and method of manufacturing synthetic corundum cell

Номер: KR0100537685B1
Автор:
Принадлежит:

Подробнее
22-11-2019 дата публикации

PSEUDO SUBSTRATE WITH IMPROVED EFFICIENCY OF USAGE OF SINGLE CRYSTAL MATERIAL

Номер: KR0102047864B1
Автор:
Принадлежит:

Подробнее
08-03-2012 дата публикации

PROCESS TO PRODUCE ATOMICALLY THIN CRYSTALS AND FILMS

Номер: WO2012028724A1
Принадлежит:

The invention provides a process for exfoliating a 3-dimenisonal layered material to produce a 2-dimensional material, said process comprising the steps of mixing the layered material in a water-surfactant solution to provide a mixture wherein the material and atomic structural properties of the layered material in the mixture are not altered; applying energy, for example ultrasound, to said mixture; and applying a force, for example centrifugal force, to said mixture. The invention provides a fast, simple and high yielding process for separating 3-dimensional layered materials into individual 2-dimensional layers or flakes, which do not re-aggregate, without utilising hazardous solvents.

Подробнее
01-09-2020 дата публикации

Methods of manufacturing engineered substrate structures for power and RF applications

Номер: US0010763109B2
Принадлежит: Qromis, Inc.

A method of manufacturing a substrate includes forming a support structure by providing a polycrystalline ceramic core, encapsulating the polycrystalline ceramic core in a first adhesion shell, encapsulating the first adhesion shell in a conductive shell, encapsulating the conductive shell in a second adhesion shell, and encapsulating the second adhesion shell in a barrier shell. The method also includes joining a bonding layer to the support structure, joining a substantially single crystalline silicon layer to the bonding layer, forming an epitaxial silicon layer by epitaxial growth on the substantially single crystalline silicon layer, and forming one or more epitaxial III-V layers by epitaxial growth on the epitaxial silicon layer.

Подробнее
29-01-2015 дата публикации

SEED LAYERS AND PROCESS OF MANUFACTURING SEED LAYERS

Номер: US2015027362A1
Принадлежит:

This invention relates seed layers and a process of manufacturing seed layers for casting silicon suitable for use in solar cells or solar modules. The process includes the step of positioning tiles with aligned edges to form seams on a suitable surface, and the step of joining the tiles at the seams to form a seed layer. The step of joining includes heating the tiles to melt at least a portion of the tiles, contacting the tiles at both ends of at least one seam with electrodes, using plasma deposition of amorphous silicon, applying photons to melt a portion of the tiles, and/or layer deposition. Seed layers of this invention include a rectilinear shape of at least about 500 millimeters in width and length.

Подробнее
28-05-2019 дата публикации

Method of forming a deterministic thin film from a crystal substrate by etching a bilayer bonding interface to create a channel

Номер: US0010302864B2

An example method of forming a deterministic thin film from a crystal substrate is described herein. The method can include implanting ions into a surface of the crystal substrate to form a thin film crystal layer, and bonding the crystal substrate and a handle substrate to form a bilayer bonding interface between the crystal substrate and the handle substrate. The method can also include exfoliating the thin film crystal layer from the crystal substrate, patterning the thin film crystal layer to define a deterministic thin film, etching one or more trenches in the thin film crystal layer, etching the bilayer bonding interface via the one or more trenches, and releasing the deterministic thin film from the handle substrate.

Подробнее
02-03-2023 дата публикации

LARGE SCALE PRODUCTION OF OXIDIZED GRAPHENE

Номер: US20230062310A1
Принадлежит: NanoXplore Inc.

Embodiments described herein relate generally to the large scale production of functionalized graphene. In some embodiments, a method for producing functionalized graphene includes combining a crystalline graphite with a first electrolyte solution that includes at least one of a metal hydroxide salt, an oxidizer, and a surfactant. The crystalline graphite is then milled in the presence of the first electrolyte solution for a first time period to produce a thinned intermediate material. The thinned intermediate material is combined with a second electrolyte solution that includes a strong oxidizer and at least one of a metal hydroxide salt, a weak oxidizer, and a surfactant. The thinned intermediate material is then milled in the presence of the second electrolyte solution for a second time period to produce functionalized graphene.

Подробнее
28-11-2023 дата публикации

Method for producing a monocrystalline layer of lithium niobate by transferring a seed layer of yttria-stabilized zirconia to a silicon carrier substrate and epitaxially growing the monocrystalline layer of lithium niobate and substrate for epitaxial growth of a monocrystalline layer of lithium niobate

Номер: US0011828000B2
Автор: Bruno Ghyselen
Принадлежит: Soitec

A process for producing a monocrystalline layer of LNO material comprises the transfer of a monocrystalline seed layer of YSZ material to a carrier substrate of silicon material followed by epitaxial growth of the monocrystalline layer of LNO material.

Подробнее
29-10-2008 дата публикации

METHOD FOR MANUFACTURING SEMICONDUCTOR SUBSTRATE

Номер: EP1986217A1
Принадлежит:

A nitride-based semiconductor crystal (10) and a second substrate (30) are bonded together. In this state, impact is applied externally to separate the low-dislocation density region (12) of the nitride-based semiconductor crystal (10) along the hydrogen ion-implanted layer (13), thereby transferring (peeling off) the surface layer part (12b) of the low-dislocation density region (12) onto the second substrate (30). At this time, the lower layer part (12a) of the low-dislocation density region (12) stays on the first substrate (20) without being transferred onto the second substrate (30). The second substrate (30) onto which the surface layer part (12b) of the low-dislocation density region (12) has been transferred is defined as a semiconductor substrate available by the manufacturing method of the present invention, and the first substrate (20) on which the lower layer part (12a) of the low-dislocation density region (12) stays is reused as a substrate for epitaxial growth.

Подробнее
14-08-2019 дата публикации

METHOD FOR SLICING A SUBSTRATE WAFER

Номер: EP2521806B1
Автор: WAGNER, Ralph
Принадлежит: Osram Opto Semiconductors Gmbh

Подробнее
11-01-2023 дата публикации

METHOD FOR FORMING DIAMOND PRODUCT

Номер: EP4115007A1
Принадлежит:

Подробнее
11-11-1992 дата публикации

PRESSURE SENSOR

Номер: JP0004321572A
Принадлежит:

PURPOSE: To obtain smooth surface and uniform thickness by melting alloy such as ternary active solder in a cylindrical crucible made of boron nitride, etc., and then extruding the alloy onto a metal drum from an opening and cooling it. CONSTITUTION: The cylindrical crucible 1 is formed of nonmetallic material such as high-density graphite or boron silicate. The ternary active solder based upon Zr/Ni alloy consisting of 70-85 atom % Zr and 15-30 atom % Ni is put in the crucible and molten with high-frequency energy to obtain a molten body. Then pressure 4 is applied to the crucible 1, and the molten body is extruded onto the metal drum 5 made of copper, etc., from the crucible opening part 3 to obtain a foil body 6. The while the drum 5 is rotated at a high circumferential speed and water is supplied to the inside, the foil body 6 is cooled and solidified at a cooling speed of 103-106°C/second to produce an active solder foil. COPYRIGHT: (C)1992,JPO ...

Подробнее
12-03-1997 дата публикации

Номер: JP0002588849B2
Автор:
Принадлежит:

Подробнее
27-08-1999 дата публикации

СПОСОБ СРАЩИВАНИЯ И ПОЛИРОВКИ ОПТИЧЕСКИХ КРИСТАЛЛОВ

Номер: RU2135649C1

Изобретение может быть использовано в области оптического приборостроения в технологических лазерных установках, детекторах ядерных ионизирующих излучений. Сущность изобретения состоит в том, что способ сращивания и полировки кристаллов включает шлифовку и химическую обработку сопрягаемых поверхностей, их совмещение, нагрев до температуры 0,2-0,90 температуры плавления, сжатие при всестороннем давлении 0,2-2,0 предела текучести до локального пластического деформирования в приповерхностных слоях в местах сопряжения. Сжатие осуществляют в пресс-форме, внутренние стенки которой обработаны до 14 класса чистоты. После чего производят изотермическую выдержку и охлаждение. Сопрягаемые поверхности могут выполняться выпуклыми. Изобретение способствует удешевлению технологии и сокращению времени процесса при сохранении высокооптической прозрачности и механической прочности границ сращивания. 1 з.п.ф-лы, 1 табл.

Подробнее
03-09-2020 дата публикации

Способ получения функционального трехмерного компонента оптоэлектронного прибора и функциональный трехмерный компонент оптоэлектронного прибора

Номер: RU2731498C1

Изобретение относится к технологии получения полупроводниковых приборов и может найти применение в промышленном производстве светоизлучающих устройств и фоточувствительных элементов. Способ получения функционального трехмерного компонента (ФТК) оптоэлектронного прибора характеризуется тем, что на поверхности нагретой до температуры 620-710°С кремниевой подложки 1 методом молекулярно-пучковой эпитаксии формируют массив однонаправленных нитевидных нанокристаллов (ННК) III-нитридных материалов с образованием массива нанокристаллов 2, имеющих переменное по высоте поперечное сечение с утонениями на обоих концах и частично сросшихся в серединной по высоте зоне 3, после чего осуществляют отделение полученного массива от подложки путем травления водным раствором, включающим плавиковую и азотную кислоту. Полученный отделением от подложки бесподложечный массив ННК предназначен для применения в качестве функционального трехмерного компонента оптоэлектронного прибора. Функциональный трехмерный компонент ...

Подробнее
20-03-2016 дата публикации

СПОСОБ ПОЛУЧЕНИЯ МОНОКРИСТАЛЛИЧЕСКИХ АЛМАЗНЫХ ЭПИТАКСИАЛЬНЫХ ПЛЕНОК БОЛЬШОЙ ПЛОЩАДИ

Номер: RU2577355C1

Изобретение относится к электронной технике и может быть использовано при разработке технологии алмазных электронных приборов увеличенной площади. Способ включает закрепление на подложке монокристаллических алмазных пластин с ориентацией поверхности (100) и последующее нанесение на пластины эпитаксиального алмазного слоя, при этом перед закреплением на подложке на каждой монокристаллической алмазной пластине предварительно сполировывают края, создавая усеченную четырехгранную пирамиду с верхней плоскостью, ориентированной по кристаллографической плоскости (100), и с четырьмя боковыми гранями, ориентированными по плоскостям типа {311}, каждую усеченную пирамиду соединяют с подложкой таким образом, чтобы усеченные пирамиды соприкасались друг с другом своими боковыми гранями, а затем наносят на усеченные пирамиды алмазный эпитаксиальный слой. В качестве подложки, к которой крепятся монокристаллические алмазные пластины, применяют карбид кремния. Монокристаллические алмазные пластины соединяют ...

Подробнее
27-04-1996 дата публикации

Способ сращивания монокристаллов оксидов

Номер: SU1814332A1
Принадлежит:

Способ сращивания монокристаллов (М) оксидов. Использование: для получения монокристаллов со структурой силле- нита и элементов из них больших размеров. Сущность изобретения: способ включает нанесение на одну из поверхностей М прослойки из висмутсодержащего соединения, образующего твердый раствор со сращиваемыми кристаллами при температуре их нагрева. Затем М приводят в контакт, нагревают, выдерживают и охлаждают , получены элементы из М: Bi)2Si020, Bii2Ge020 и Bii2Ti020 размером до 80 120 мм. GTJ d х и Јь OJ О) ы ...

Подробнее
27-02-1998 дата публикации

СПОСОБ СОЗДАНИЯ ЛАЗЕРНОАКТИВНЫХ ЦЕНТРОВ ОКРАСКИ

Номер: RU95120652A
Принадлежит:

Способ создания лазерноактивных центров окраски TloVa+ в кристаллах KCl-Tl, включающий предварительное приведение кристаллов KCl-Tl в оптический контакт с кристаллами CsI-Tl и их одновременно облучение ионизирующей радиацией, отличающийся тем, что облучение ионизирующей радиацией осуществляют при 240 - 77К.

Подробнее
23-05-1993 дата публикации

Способ изготовления полупроводниковых элементов на основе кремния

Номер: SU1816816A1
Принадлежит:

Использование: в металлургии полупроводников . Сущность изобретения: кристаллы п и р-типа приводят в контакт, прикладывают внешнее напряжение, затем один из кристаллов приводят во вращение, которое осуществляют до тех пор, пока в зоне контакта не образуется жидкая прослойка . После остановки вращения кристаллы остывают, в результате чего происходит их сращивание, после чего зону контакта определяют в виде пластины. Способ позволяет упростить процесс за счет исключения полировки, довольно сложной предварительной операции, а также значительно ускорить его (время сращивания составляет несколько минут). 1 н.з.п.ф-лы, 1 ил., 1 пр.

Подробнее
24-06-1976 дата публикации

ZUSAMMENGESETZTER KRISTALLINER METALLGEGENSTAND

Номер: DE0002555375A1
Принадлежит:

Подробнее
16-11-2006 дата публикации

Process for preparation of single crystal profiled body useful in production of turbine blades gives high quality turbine blades without use of expensive laser beams for profiling turbine blade cooling channels

Номер: DE102005021642A1
Принадлежит:

Process for preparation of a single crystal profiled body involving:(a) preparation of profiled elements with at least one joint (sic) surface, (b) deposition (sic) of a profiled element on a joint surface of a single crystal substrate, (c) melting of a profiled element in a region covering the substrate joint surface and partial melting of the substrate in a first section containing a substrate joint surface, and (d) cooling of the melt so that a solidification front of an unmelted second section moves in the direction of a free joint surface of a profiled element.

Подробнее
10-06-2009 дата публикации

Verfahren zum großflächigen Verbinden von Verbindungshalbleitermaterialien

Номер: DE0010048374B4

Verfahren zum großflächigen Direktbonden von mindestens einem ersten Wafer mit mindestens einem zweiten Wafer, dadurch gekennzeichnet, daß eine Endreinigung der aneinander zu bondenden Flächen der Wafer entweder bei hoher Temperatur durch definierte Einwirkung von molekularem Wasserstoff oder bei geringer Temperatur durch Einwirkung von molekularem Wasserstoff bei gleichzeitiger Einstrahlung von ultraviolettem Licht durchgeführt wird und daß die gereinigten Oberflächen der Wafer erst nach der Endreinigung an einem wählbaren Zeitpunkt des Prozeßablaufs zum Auslösen des Bondvorgangs in Kontakt gebracht werden.

Подробнее
17-09-2019 дата публикации

INDUCED MATERIAL SEGREGATION METHODS OF MANUFACTURING A POLYCRYSTALLINE DIAMOND TOOL

Номер: CA0002980275C

Induced material segregation methods of manufacturing a polycrystalline diamond compact (PDC) cutter result in formation of a polycrystalline diamond/tungsten carbide (WC) composite material having a smooth compositional gradient from maximum WC concentration at one face to maximum diamond concentration at another face. Because the compositional gradient is smooth, very little or no mismatch of coefficient of thermal expansion occurs, which improves a service lifetime of the PDC cutter.

Подробнее
30-09-2014 дата публикации

METHOD OF BONDING POLY-CRYSTALLINE DIAMONDS TO WEAR SURFACES

Номер: CA0002726751C

A method of bonding poly-crystalline diamonds to a wear surface, using commercially available poly-crystalline diamond cutters having poly- crystalline diamond buttons bonded to a carbide core. The poly-crystalline diamond cutters are cooled with cryogenic liquid. The poly-crystalline diamond cutters are crushed to form poly-crystalline diamond cutter fragments, with each of the fragments having a poly-crystalline diamond button fragment still bonded to a carbide core fragment. The carbide core fragment is then bonded onto the wear surface, such that the wear surface includes poly- crystalline diamond buttons fragments.

Подробнее
02-10-2011 дата публикации

THERMALLY STABLE POLYCRYSTALLINE DIAMOND MATERIAL WITH A GRADIENT STRUCTURE

Номер: CA0002735108A1
Принадлежит:

A diamond construction may include a diamond body comprising a plurality of bonded-together diamond crystals forming a matrix phase, and a plurality of interstitial regions disposed between the bonded-together diamond crystals, the diamond body comprising: a first diamond region extending a depth from a surface of the diamond body being substantially free of a catalyst material used to form the diamond body, wherein the first diamond region comprises the matrix phase and in at least a portion of the plurality of interstitial spaces, the first diamond region comprises a metal carbide and an inert metal, wherein the metal carbide is formed as a result of reaction between the diamond crystals in the matrix phase and a carbide-forming metal; and a second diamond region adjacent the first diamond region comprising the matrix phase and a Group VIII metal in the interstitial regions.

Подробнее
22-01-2002 дата публикации

SINGLE CRYSTAL SIC AND A METHOD OF PRODUCING THE SAME

Номер: CA0002253136C

The single crystal SiC according to the invention is produced in the following manner. Two complexes M in each of which a polycrystalline film 2 of .beta.-SiC (or .alpha.-SiC) is grown on the surface of a single crystal .alpha.-SiC substrate 1 by thermochemical deposition, and the surface 2a of the polycrystalline film 2 is ground so that the smoothness has surface roughness of 200 angstroms RMS or smaller, preferably 100 to 50 angstroms RMS are subjected to a heat treatment under a state where the complexes are closely fixed to each other via their ground surfaces 2a', at a high temperature of 2,000.degree.C or higher and in an atmosphere of a saturated SiC vapor pressure, whereby the polycrystalline films 2 of the complexes M are recrystallized to grow a single crystal which is integrated with the single crystal .alpha.-SiC substrates 1. Large-size single crystal SiC in which impurities, micropipe defects, and the like do not remain, and which has high quality can be produced with high ...

Подробнее
13-11-2013 дата публикации

Positioning device for crystal bar bonding and crystal bar bonding device with same

Номер: CN0203284503U
Автор: CHEN ZHAO
Принадлежит:

Подробнее
12-05-2020 дата публикации

Intelligent single-polysilicon rod detection and distribution system

Номер: CN0111139523A
Автор:
Принадлежит:

Подробнее
04-09-2013 дата публикации

Monocrystalline silicon state detection device

Номер: CN103276452A
Автор: Li Jia
Принадлежит:

A monocrystalline silicon state detection device is disclosed, and comprises a first detector used to detect whether the surface of a monocrystalline silicon has a slit or not, and a second detector used to detect the position of the slit in the monocrystalline silicon. Compared with the prior art, the monocrystalline silicon state detection device can identify whether the monocrystalline silicon is a splicing monocrystalline silicon or not, and feedback the splicing monocrystalline silicon number and lengths of the corresponding monocrystalline silicon.

Подробнее
03-04-2013 дата публикации

Chunk polycrystalline silicon adhesive fixture

Номер: CN202849595U
Автор: ZHANG LINGSONG
Принадлежит:

Подробнее
07-01-2020 дата публикации

Compound semiconductor substrate and manufacturing method thereof

Номер: CN0110663096A
Автор:
Принадлежит:

Подробнее
16-11-2012 дата публикации

METHOD FOR REALIZATION Of a STRUCTURE TWO-DIMENSIONAL NETWORK OF DISLOCATIONS CORNER HAS PERIOD MAITRISEE

Номер: FR0002975109A1
Автор: FOURNEL FRANK

Procédé de réalisation d'une structure à réseau bidimensionnel de dislocations périodiques coin consistant à : fournir deux structures élémentaires de base (1', 2') ayant une partie cristalline (23, 43), provenant d'un même bloc, possédant un même paramètre de maille, un même réseau cristallin, au moins un repère (31, 34), les deux repères (31, 34) ayant une même orientation par rapport au réseau de la partie cristalline (23, 43) qui les porte, imposer une contrainte choisie à au moins une partie cristalline (23, 43), afin de changer son paramètre de maille d'une manière voulue, afin de disposer d'une structure élémentaire traitée (48, 65), assembler la partie cristalline (43) d'une structure élémentaire traitée (48) avec une autre partie cristalline (23) d'une structure élémentaire traitée (65) ou d'une structure élémentaire de base (1'), en faisant coïncider leurs repères (31, 34) afin qu'un désaccord des paramètres de maille apparaisse et crée le réseau bidimensionnel de dislocations ...

Подробнее
24-03-2017 дата публикации

METHOD OF TRANSFERRING PAVING STONES MONOCRYSTALLINE

Номер: FR0003041364A1
Автор: GHYSELEN BRUNO
Принадлежит: SOITEC

L'invention concerne un procédé de transfert comprenant les étapes : a. Fournir un substrat intermédiaire (10), le substrat intermédiaire (10) comprenant, sur une de ses faces, des pavés (20), lesdits pavés (20) sont en matériau monocristallin, les pavés (20) comprenant une zone de fragilisation (50) délimitant une portion de pavé (70) destinée à être transférée sur un substrat final (60) ; b. Exécuter une étape d'assemblage en mettant en contact la surface libre (40) de chacun des pavés (20) avec le substrat final (60) ; c. Exécuter, après l'étape d'assemblage, un détachement au niveau de la zone de fragilisation (50) de chacun des pavés (20) ; Le procédé de transfert est caractérisé en ce que lors de l'étape d'assemblage, le substrat intermédiaire (10) se déforme de sorte que les surfaces libres des pavés (20) deviennent coplanaires.

Подробнее
04-01-1985 дата публикации

PROCEDE DE FORMATION D'UNE COUCHE DE MATIERE A CONSTITUANTS MULTIPLES

Номер: FR0002548219A
Принадлежит:

L'INVENTION CONCERNE LA FABRICATION D'HETEROSTRUCTURES EPITAXIALES. DANS UN PROCEDE DE FORMATION D'HETEROSTRUCTURES COMPRENANT UNE MATIERE EPITAXIALE A CONSTITUANTS MULTIPLES, ON FORME SUR UN SUBSTRAT 10 UNE COUCHE DE MATIERE "PRECURSEUR" 11 ET ON FAIT FONDRE MOMENTANEMENT CETTE MATIERE PAR UNE IMPULSION DE RAYONNEMENT 20. LA MATIERE PRECURSEUR CONTIENT LES MEMES CONSTITUANTS CHIMIQUES PRINCIPAUX QUE LA MATIERE A CONSTITUANTS MULTIPLES, MAIS PAS NECESSAIREMENT DANS LES MEMES PROPORTIONS. DANS CERTAINS SYSTEMES (PAR EXEMPLE POUR DES SILICIURES DE NICKEL OU DE COBALT SUR DU SILICIUM), UN RECUIT A L'ETAT SOLIDE DE LA MATIERE RESOLIDIFIEE AMELIORE CONSIDERABLEMENT LA QUALITE DE LA MATIERE EPITAXIALE FORMEE ET DONNE UNE MATIERE PRATIQUEMENT MONOCRISTALLINE ET PRATIQUEMENT EXEMPTE DE DEFAUTS. APPLICATION A LA FABRICATION DE CIRCUITS INTEGRES.

Подробнее
04-11-2021 дата публикации

METHOD FOR MANUFACTURING COMPOSITE SUBSTRATE AND COMPOSITE SUBSTRATE

Номер: WO2021220737A1
Автор: AKIYAMA Shoji
Принадлежит:

Provided are a composite substrate capable of improving temperature characteristics while suppressing the generation of cracks and a method for manufacturing the composite substrate. The method according to the present invention for manufacturing a composite substrate comprises: a step for preparing a piezoelectric material substrate having a rough surface; a step for etching the rough surface of the piezoelectric material substrate by a chemical means and thus removing a damaged layer; a step for depositing an intermediate layer on the rough surface of the piezoelectric material substrate from which the damaged layer has been removed; a step for planarizing the surface of the intermediate layer thus deposited; a step for bonding the piezoelectric material substrate, via the deposited intermediate layer, to a support substrate that has a smaller coefficient of thermal expansion than the piezoelectric material; and a step for thinning the piezoelectric material substrate after bonding. As ...

Подробнее
02-08-1994 дата публикации

Ternary active brazing based on a zirconium-nickel alloy

Номер: US0005334344A
Автор:
Принадлежит:

This active brazing preferably serves to braze (join) ((aluminum-)oxide-)ceramic parts or single crystals or metal parts or to braze (join) ((aluminum-)oxide-)ceramic parts to single crystals or ((aluminum-)oxide-)ceramic parts or single crystals to metal parts. In addition to the zirconium-nickel alloy, which is composed of 70 atom % to 85 atom % zirconium and 15 atom % to 30 atom % nickel, it contains titanium. In an apparatus for fabricating a foil (6) from this ternary active-brazing alloy by melt spinning which has a uniform thickness and two surfaces that are as smooth as possible, the alloy, after being melted by high-frequency heating in a cylindrical crucible (1) made completely of a high-temperature-resistant and highly thermally conductive nonmetallic material, particularly of high-density graphite or of boron nitride, is forced through an opening (3) in the bottom of the crucible onto a metal drum (5) of high thermal conductivity rotating at a high circumferential speed, on ...

Подробнее
01-08-2002 дата публикации

Fabrication of periodic surface structures with nanometer-scale spacings

Номер: US20020102428A1
Принадлежит:

The periodic stress and strain fields produced by a pure twist grain boundary between two single crystals bonded together in the form of a bicrystal are used to fabricate a two-dimensional surface topography with controllable, nanometer-scale feature spacings (e.g., from 50 nanometers down to 1.5 nanometers). The spacing of the features is controlled by the misorientation angle used during crystal bonding. One of the crystals is selected to be thin, on the order of 5-100 nanometers. A buried periodic array of screw dislocations is formed at the twist grain boundary. To bring the buried periodicity to the surface, the thin single crystal is etched to reveal an array of raised elements, such as pyramids, that have nanometer-scale dimensions. The process can be employed with numerous materials, such as gold, silicon and sapphire. In addition, the process can be used with different materials for each crystal such that a periodic array of misfit dislocations is formed at the interface between ...

Подробнее
14-01-2021 дата публикации

METHOD OF MANUFACTURING DIAMOND SUBSTRATE, DIAMOND SUBSTRATE, AND DIAMOND COMPOSITE SUBSTRATE

Номер: US20210010131A1
Принадлежит: Sumitomo Electric Industries, Ltd.

A method of manufacturing a diamond substrate includes: forming an ion implantation layer at a side of a main surface of a diamond seed substrate by implanting ions into the main surface of the diamond seed substrate; producing a diamond structure by growing a diamond growth layer by a vapor phase synthesis method on the main surface of the diamond seed substrate, after implanting the ions; and performing heat treatment on the diamond structure. The performed heat treatment causes the diamond structure to be separated along the ion implantation layer into a first structure including the diamond seed substrate and failing to include the diamond growth layer, and a diamond substrate including the diamond growth layer. Thus, the method of manufacturing a diamond substrate is provided that enables a diamond substrate with a large area to be manufactured in a short time and at a low cost.

Подробнее
16-07-2020 дата публикации

ENGINEERED SUBSTRATE STRUCTURES FOR POWER AND RF APPLICATIONS

Номер: US20200227251A1
Принадлежит: QROMIS, Inc.

A method of manufacturing a substrate includes forming a support structure by providing a polycrystalline ceramic core, encapsulating the polycrystalline ceramic core in a first adhesion shell, encapsulating the first adhesion shell in a conductive shell, encapsulating the conductive shell in a second adhesion shell, and encapsulating the second adhesion shell in a barrier shell. The method also includes joining a bonding layer to the support structure, joining a substantially single crystalline silicon layer to the bonding layer, forming an epitaxial silicon layer by epitaxial growth on the substantially single crystalline silicon layer, and forming one or more epitaxial III-V layers by epitaxial growth on the epitaxial silicon layer.

Подробнее
22-06-2023 дата публикации

METHOD FOR TRANSFERRING A USEFUL LAYER OF CRYSTALLINE DIAMOND ONTO A SUPPORTING SUBSTRATE

Номер: US20230193511A1

Method for transferring a useful layer onto a supporting substrate, comprising the successive steps: a) providing a donor substrate made of crystalline diamond; b) implanting gaseous species, through the first surface of the donor substrate, according to a given implantation dose and implantation temperature suitable for forming a graphitic flat zone; c) assembling the donor substrate to the supporting substrate by direct adhesion; d) applying thermal annealing according to a thermal budget suitable for fracturing the donor substrate along the graphitic flat zone; the annealing temperature being greater than or equal to 800° C.; the implantation temperature is: above a minimum temperature beyond which bubbling of the implanted gaseous species occurs on the first surface when the donor substrate is submitted, in the absence of a stiffening effect, to thermal annealing according to said thermal budget, below a maximum temperature beyond which the given implantation dose no longer allows formation ...

Подробнее
11-06-2024 дата публикации

Engineered substrate structures for power and RF applications

Номер: US0012009205B2
Принадлежит: QROMIS, Inc.

A substrate including a support structure. The support structure including a polycrystalline ceramic core and a first adhesion layer coupled to the polycrystalline ceramic core. The support structure further including a conductive layer coupled to the first adhesion layer, a second adhesion layer coupled to the conductive layer, and a barrier layer coupled to the second adhesion layer. The substrate further including a bonding layer coupled to the support structure. The substrate further including a substantially single crystal layer comprising at least one of silicon carbide, sapphire, or gallium nitride coupled to the bonding layer. The substrate further including an epitaxial semiconductor layer coupled to the substantially single crystal layer.

Подробнее
10-07-2013 дата публикации

PROCESS TO PRODUCE ATOMICALLY THIN CRYSTALS AND FILMS

Номер: EP2611953A1
Принадлежит:

Подробнее
11-12-2019 дата публикации

PROCESS FOR MANUFACTURING A TWO-DIMENSIONAL FILM OF HEXAGONAL CRYSTALLINE STRUCTURE

Номер: EP3577257A1
Принадлежит:

Подробнее
12-01-2012 дата публикации

Hybrid Silicon Wafer and Method of Producing the Same

Номер: US20120009374A1
Принадлежит: Nippon Mining and Metals Co Ltd

Provided is a hybrid silicon wafer in which molten state polycrystalline silicon and solid state single-crystal silicon are mutually integrated, comprising fine crystals having an average crystal grain size of 8 mm or less at a polycrystalline portion within 10 mm from a boundary with a single-crystal portion. Additionally provided is a method of manufacturing a hybrid silicon wafer, wherein a columnar single-crystal silicon ingot is sent in a mold in advance, molten silicon is cast around and integrated with the single-crystal ingot to prepare an ingot complex of single-crystal silicon and polycrystalline silicon, and a wafer shape is cut out therefrom. The provided hybrid silicon wafer comprises the functions of both a polycrystalline silicon wafer and a single-crystal wafer.

Подробнее
29-03-2012 дата публикации

Supporting substrate, bonded substrate, method for manufacturing supporting substrate, and method for manufacturing bonded substrate

Номер: US20120074404A1
Автор: Kazuhiro Ushita
Принадлежит: Bridgestone Corp

Provided is a supporting substrate ( 30 ) to be bonded on a single crystalline wafer composed of a single crystalline body. The supporting substrate is provided with a silicon carbide polycrystalline substrate ( 10 ) composed of a silicon carbide polycrystalline body, and a coat layer ( 20 ) deposited on the silicon carbide polycrystalline substrate ( 10 ). The coat layer ( 20 ) is composed of silicon carbide or silicon and is in contact with the single crystalline wafer, and the arithmetic average roughness of the contact surface ( 22 ) of the coat layer ( 20 ) in contact with the single crystalline wafer is 1 nm or less.

Подробнее
26-07-2012 дата публикации

Method for making gallium nitride substrate

Номер: US20120190172A1
Автор: Jian-Shihn Tsang
Принадлежит: Hon Hai Precision Industry Co Ltd

A method for making a GaN substrate for growth of nitride semiconductor is provided. The method first provides a GaN single crystal substrate. Then an ion implanting layer is formed inside the GaN single crystal substrate, which divides the GaN single crystal substrate into a first section and a second section. After that, the GaN single crystal substrate is connected with an assistant substrate through a connecting layer. Thereafter, the GaN single crystal substrate is heated whereby the ion implanting layer is decompounded. Finally, the second section is separated from the first section. The first section left on a surface of the assistant substrate is provided for growth of nitride semiconductor thereon.

Подробнее
31-01-2013 дата публикации

GaN BONDED SUBSTRATE AND METHOD OF MANUFACTURING GaN BONDED SUBSTRATE

Номер: US20130029472A1

A gallium nitride (GaN) bonded substrate and a method of manufacturing a GaN bonded substrate in which a polycrystalline nitride-based substrate is used. The method includes loading a single crystalline GaN substrate and a polycrystalline nitride substrate into a bonder; raising the temperature in the bonder; bonding the single crystalline GaN substrate and the polycrystalline nitride substrate together by pressing the single crystalline GaN substrate and the polycrystalline nitride substrate against each other after the step of raising the temperature; and cooling the resultant bonded substrate.

Подробнее
20-06-2013 дата публикации

Method for manufacturing a silicon carbide wafer and respective equipment

Номер: US20130157448A1
Принадлежит: STMICROELECTRONICS SRL

An embodiment described herein includes a method for producing a wafer of a first semiconductor material. Said first semiconductor material has a first melting temperature. The method comprises providing a crystalline substrate of a second semiconductor material having a second melting temperature lower than the first melting temperature, and exposing the crystalline substrate to a flow of first material precursors for forming a first layer of the first material on the substrate. The method further comprising bringing the crystalline substrate to a first process temperature higher than the second melting temperature, and at the same time lower than the first melting temperature, in such a way the second material melts, separating the second melted material from the first layer, and exposing the first layer to the flow of the first material precursor for forming a second layer of the first material on the first layer.

Подробнее
02-01-2020 дата публикации

Method for Separating Thin Layers of Solid Material from a Solid Body

Номер: US20200006119A1
Принадлежит:

Providing a solid body to be split into a number of layers of solid material, introducing or generating defects in the solid body in order to determine a first detachment plane () along which a first layer of solid material is separated from the solid body, providing a receiving layer for holding the layer of solid material on the solid body, applying heat to the receiving layer in order to generate, in particular mechanically, stresses in the solid body, due to the stresses a crack propagating in the solid body along the detachment plane, which crack separates the first layer of solid material from the solid body, then providing a second receiving layer for holding another layer of solid material on the solid body reduced by the first layer of solid material, introducing or generating defects in the solid body in order to determine a second detachment plane () along which a second layer of solid material is separated from the solid body, applying heat to the second receiving layer in order to generate, in particular mechanically, stresses in the solid body, due to the stresses a crack propagating in the solid body along the second detachment plane, which crack separates the second layer of solid material from the solid body. 1. (canceled)2. A method for producing layers of solid material , the method comprising:introducing or generating defects in a solid body to define a first detachment plane along which a first layer of solid material is to be separated from the solid body;providing a first receiving layer for holding the first layer of solid material on the solid body;applying heat to the first receiving layer to generate stresses in the solid body, the stresses causing a first crack to propagate in the solid body along the first detachment plane, wherein the first layer of solid material is separated from the solid body along the first crack;after separating the first layer of solid material from the solid body, introducing or generating defects in the solid ...

Подробнее
09-01-2020 дата публикации

Two-stage seeded growth of large aluminum nitride single crystals

Номер: US20200010975A1
Принадлежит: Crystal IS Inc

In various embodiments, growth of large, high-quality single crystals of aluminum nitride is enabled via a two-stage process utilizing two different crystalline seeds.

Подробнее
09-01-2020 дата публикации

CALCIUM FLUORIDE MEMBER, METHOD FOR PRODUCING SAME, AND METHOD FOR PRESSURE-BONDING CALCIUM FLUORIDE CRYSTAL

Номер: US20200010977A1
Принадлежит: NIKON CORPORATION

The calcium fluoride member includes a first member made from monocrystalline calcium fluoride and a second member made from monocrystalline or polycrystalline calcium fluoride. The first member and the second member is pressure-bonded together to form the calcium fluoride member. 1. A calcium fluoride member , comprising:a first member made from monocrystalline calcium fluoride; anda second member made from monocrystalline or polycrystalline calcium fluoride,the first member and the second member being pressure-bonded together to form the calcium fluoride member.2. The calcium fluoride member according to claim 1 , wherein the second member is made from monocrystalline calcium fluoride.3. The calcium fluoride member according to claim 1 , wherein the calcium fluoride member is used as a member for constituting a light source.4. The calcium fluoride member according to claim 3 , wherein the member for constituting the light source is a gas sealing container that includes a spherical shell in which a gas is sealed therein.5. The calcium fluoride member according to claim 3 , wherein the member for constituting the light source is a gas sealing container in which a gas is sealed therein claim 3 , the gas sealing container including a first cylinder in which the gas is sealed therein and a flange that is pressure-bonded to an end of the first cylinder in an axial direction of the first cylinder claim 3 , the first cylinder being included as the first member and the flange being included as the second member.6. The calcium fluoride member according to claim 1 , wherein the calcium fluoride member is a cylinder-shaped member claim 1 , and a flow path for circulating a coolant is formed inside a peripheral wall portion of the cylinder-shaped member.7. The calcium fluoride member according to claim 6 ,wherein the cylinder-shaped member is a gas sealing container in which a gas is sealed therein,the gas sealing container includes a first cylinder as the first member and a ...

Подробнее
17-01-2019 дата публикации

Shaped silicon ingot using layer transfer

Номер: US20190017192A1
Автор: Francois J. Henley
Принадлежит: Silicon Genesis Corp

A shaped crystalline ingot for an ion cleaving process has a major surface that is substantially planar, a first side face that is substantially planar along a first direction orthogonal to the major surface, and a second side face that is substantially planar along a second direction orthogonal to the major surface. The ion cleaving process is a process in which ions are implanted into the shaped crystalline ingot to form a cleave plane that separates a substrate comprising the major surface from the shaped crystalline ingot.

Подробнее
24-01-2019 дата публикации

TECHNIQUES FOR FORMING OPTOELECTRONIC DEVICES

Номер: US20190024259A1
Принадлежит:

Embodiments relate to use of a particle accelerator beam to form thin films of material from a bulk substrate. In particular embodiments, a bulk substrate (e.g. donor substrate) having a top surface is exposed to a beam of accelerated particles. In certain embodiments, this bulk substrate may comprise GaN; in other embodiments this bulk substrate may comprise Si, SiC, or other materials. Then, a thin film or wafer of material is separated from the bulk substrate by performing a controlled cleaving process along a cleave region formed by particles implanted from the beam. In certain embodiments this separated material is incorporated directly into an optoelectronic device, for example a GaN film cleaved from GaN bulk material. In some embodiments, this separated material may be employed as a template for further growth of semiconductor materials (e.g. GaN) that are useful for optoelectronic devices. 1. A method comprising:providing a GaN workpiece;introducing a plurality of particles into a surface of the GaN workpiece to form a cleave region in the GaN workpiece;bonding the surface of the GaN workpiece to a substrate;applying energy to cleave a detached thickness of GaN, from a remainder of the GaN workpiece; andprocessing the substrate bearing the detached thickness of GaN.2. A method as in wherein the substrate comprises a metal.3. A method as in wherein:the metal comprises a reflecting layer positioned between the detached thickness of GaN and a remainder of the substrate following the application of energy; andthe method further comprises processing the substrate to create a light emitting diode device.4. A method as in wherein the wherein the substrate comprises an integrated pattern including filler.5. A method as in wherein the integrated pattern includes electrically conductive islands.6. A method as in wherein the filler comprises silicon oxide and/or aluminum nitride.7. A method as in wherein the substrate comprises sapphire.8. A method as in wherein the ...

Подробнее
29-01-2015 дата публикации

SEED LAYERS AND PROCESS OF MANUFACTURING SEED LAYERS

Номер: US20150027362A1
Автор: Stoddard Nathan G.
Принадлежит:

This invention relates seed layers and a process of manufacturing seed layers for casting silicon suitable for use in solar cells or solar modules. The process includes the step of positioning tiles with aligned edges to form seams on a suitable surface, and the step of joining the tiles at the seams to form a seed layer. The step of joining includes heating the tiles to melt at least a portion of the tiles, contacting the tiles at both ends of at least one seam with electrodes, using plasma deposition of amorphous silicon, applying photons to melt a portion of the tiles, and/or layer deposition. Seed layers of this invention include a rectilinear shape of at least about 500 millimeters in width and length. 1. A process for manufacturing silicon seed layers suitable for use in the manufacture of solar cells or solar modules , the process comprising:positioning tiles with aligned edges to form seams on a suitable surface; andjoining the tiles at the seams to form a seed layer.2. The process of claim 1 , wherein the joining comprises:heating the tiles to melt at least a portion of the tiles and close the seams; andcooling the seed layer.3. The process of claim 2 , further comprising:repositioning the seed layer with respect to a top side and a bottom side following cooling the seed layer;reheating the seed layer to melt at least a previously unmelted portion of the seed layer and close the seams; andrecooling the seed layer.4. The process of claim 2 , wherein the cooling comprises about 100 degrees Celsius an hour.5. The process of claim 1 , wherein the joining comprises:contacting the tiles at both ends of at least one seam with electrodes;flowing electrical current through the tiles between the electrodes to melt at least a portion of the tiles and close the seams;optionally repeating the contacting and the flowing for each seam in the layer; andcooling the seed layer.6. The process of claim 5 , wherein the electrodes remain stationary with respect to the tiles ...

Подробнее
02-02-2017 дата публикации

LARGE AREA, LOW-DEFECT GALLIUM-CONTAINING NITRIDE CRYSTALS, METHOD OF MAKING, AND METHOD OF USE

Номер: US20170029978A1
Принадлежит:

An ultralow defect gallium-containing nitride crystal and methods of making ultralow defect gallium-containing nitride crystals are disclosed. The crystals are useful as substrates for light emitting diodes, laser diodes, transistors, photodetectors, solar cells, and photoelectrochemical water splitting for hydrogen generators. 1. A method for forming an ultralow defect gallium-containing nitride crystal derived from a proto-seed comprising a gallium-containing nitride crystal with a length and a first thickness substantially orthogonal to a first direction of the length and a second thickness orthogonal to the first direction of the length , the method comprising:subjecting the proto-seed to an ammonothermal growth of a gallium based crystalline material to cause the proto-seed to grow in a second direction lateral to the first direction of the length to form a laterally-grown sector comprising at least one of an a-wing, a +c sector, a −c sector, an m-m′ sector, and an m′-m′ sector; separating the a-wing from a portion of the crystal comprising the proto-seed by slicing substantially parallel to an a-plane, and', 'removing residual defective material from the a-wing by removing material from a −c-surface positioned opposite to a +c-surface of the a-wing or from a +c-surface positioned opposite to a −c-surface of the a-wing to form said ultralow defect gallium-containing nitride crystal;, 'wherein if the laterally-grown sector comprises an a-wing,'} separating the ±c sector from a portion of the crystal comprising the proto-seed by slicing substantially parallel to a c-plane;', 'removing residual defective material from the ±c sector by removing material substantially parallel to a c axis or by removing material substantially parallel to an m-plane to form said ultralow defect gallium-containing nitride crystal;, 'wherein if the laterally-grown sector comprises at least one of a +c sector or a −c sector,'} separating an m/a wing from a portion of the crystal ...

Подробнее
24-02-2022 дата публикации

DEVICES AND METHODS FOR GROWING CRYSTALS

Номер: US20220056612A1

The present disclosure provides a device for preparing a crystal and a method for growing a crystal. The device may include a growth chamber configured to execute a crystal growth; and a temperature control system configured to heat the growth chamber to cause that a radial temperature difference in the growth chamber does not exceed a first preset range of an average temperature in the growth chamber during the crystal growth. The method may include placing a seed crystal and a source material in a growth chamber to grow a crystal; and controlling a heating component based on information of a temperature sensing component, to cause that a radial temperature difference in the growth chamber does not exceed a first preset range of an average temperature in the growth chamber during a crystal growth. 1. A device for preparing a crystal , comprising:a growth chamber configured to execute a crystal growth; anda temperature control system configured to heat the growth chamber to cause that a radial temperature difference in the growth chamber does not exceed a first preset range of an average temperature in the growth chamber during the crystal growth.26-. (canceled)7. The device of claim 1 , wherein the temperature control system causes that the radial temperature difference in the growth chamber does not exceed the first preset range of the average temperature in the growth chamber at least during a crystal growth sub-interval of the crystal growth claim 1 , wherein the crystal growth sub-interval is a first 80% time period of a crystal growth interval of the crystal growth.8. The device of claim 1 , wherein the temperature control system causes that a radial temperature gradient in the growth chamber does not exceed a preset radial temperature gradient threshold during the crystal growth.913-. (canceled)14. The device of claim 1 , wherein the temperature control system causes that an axial temperature gradient in the growth chamber maintains stable during the crystal ...

Подробнее
18-02-2021 дата публикации

PSEUDO-SUBSTRATE WITH IMPROVED EFFICIENCY OF USAGE OF SINGLE CRYSTAL MATERIAL

Номер: US20210050248A1
Принадлежит:

The invention relates to a method for fabricating a pseudo-substrate comprising the steps of providing a single crystal ingot, providing a handle substrate, cutting a thin slice from the single crystal ingot, and attaching the thin slice to the handle substrate to form a pseudo-substrate. According to the invention, the thickness of the thin slice is substantially equal or inferior to a critical thickness below which the slice, if taken alone, is no longer mechanically stable. The invention further relates to a semiconductor structure. 1. A method for fabricating at least one pseudo-substrate , comprising:providing a single crystal ingot comprising a piezoelectric material;providing a bonding layer on a surface of the single crystal ingot without polishing the surface of the single crystal ingot; andtransferring a thin piezoelectric layer of the single crystal ingot adjacent the bonding layer to a handle substrate, the bonding layer bonding the thin piezoelectric layer to the handle substrate;wherein a thickness of the thin piezoelectric layer is 300 μm or less.2. The method of claim 1 , wherein the piezoelectric material comprises LiNbOor LiTaO.3. The method of claim 1 , wherein transferring the thin piezoelectric layer of the single crystal ingot adjacent the bonding layer to the handle substrate comprises cutting the thin piezoelectric layer from the single crystal ingot.4. The method of claim 3 , wherein cutting the thin piezoelectric layer from the single crystal ingot comprises sawing the thin piezoelectric layer from the single crystal ingot.5. The method of claim 1 , wherein transferring the thin piezoelectric layer of the single crystal ingot adjacent the bonding layer to the handle substrate comprises separating the thin piezoelectric layer of the single crystal ingot from a remainder of the single crystal ingot claim 1 , and subsequently bonding the bonding layer to the handle substrate.6. The method of claim 1 , wherein the handle substrate comprises a ...

Подробнее
15-02-2018 дата публикации

LITHIUM TANTALATE SINGLE CRYSTAL SUBSTRATE, BONDED SUBSTRATE, MANUFACTURING METHOD OF THE BONDED SUBSTRATE, AND SURFACE ACOUSTIC WAVE DEVICE USING THE BONDED SUBSTRATE

Номер: US20180048283A1
Принадлежит: SHIN-ETSU CHEMICAL CO., LTD.

The lithium tantalate single crystal substrate is a rotated Y-cut LiTaOsingle crystal substrate having a crystal orientation of 36° Y-49° Y cut characterized in that: the substrate is diffused with Li from its surface into its depth such that it has a Li concentration profile showing a difference in the Li concentration between the substrate surface and the depth of the substrate; and the substrate is treated with single polarization treatment so that the Li concentration is substantially uniform from the substrate surface to a depth which is equivalent to 5-15 times the wavelength of either a surface acoustic wave or a leaky surface acoustic wave propagating in the LiTaOsubstrate surface. 1. A method of manufacturing a bonded substrate , comprising:{'sub': '3', "bonding a base substrate to a LiTaOsingle crystal substrate which has a concentration profile wherein Li concentration is different between a substrate surface and an inner part of the substrate and wherein Li concentration is substantially uniform in a region ranging from at least one of the substrate's surfaces to a depth; and"}{'sub': '3', 'removing a LiTaOsurface layer opposite the bonding face in a manner such that at least part of said region where the Li concentration is substantially uniform is left.'}2. A method of manufacturing a bonded substrate , comprising:{'sub': '3', "bonding a base substrate to a LiTaOsingle crystal substrate which has a concentration profile wherein Li concentration is different between a substrate surface and an inner part of the substrate and wherein Li concentration is substantially uniform in a region ranging from at least one of the substrate's surfaces to a depth and"}{'sub': '3', 'removing a LiTaOsurface layer opposite the bonding face in a manner such that only said region where the Li concentration is substantially uniform is left.'}3. The method of manufacturing a bonded substrate as claimed in claim 2 , wherein that region in which the Li concentration is ...

Подробнее
22-02-2018 дата публикации

POLYSILICON FILAMENT BONDING DEVICE USING POLYSILICON FRAGMENTS

Номер: US20180050917A1
Принадлежит:

The present invention relates to a polysilicon filament manufacturing device, and more specifically, to a polysilicon filament binding device for manufacturing a polysilicon filament having a desired length by connecting polysilicon fragments cut from damage, etc. The present invention provides a polysilicon filament binding device comprising: a body part having a barrel-shape; a guide part provided inside the body part, guiding incoming polysilicon fragments; and a main light source for heating the binding surfaces of the polysilicon fragments. 1. A polysilicon filament bonding device comprising:a body portion formed like a cylinder;a guide portion disposed in the body portion and configured to guide polysilicon fragments brought into the body portion; anda main light source for heating a bonding surface of the polysilicon fragments.2. The polysilicon filament bonding device according to claim 1 , further comprising an auxiliary light source for preliminarily heating a polysilicon fragment accommodated in the body portion.3. The polysilicon filament bonding device according to claim 2 , wherein the auxiliary light source is arranged so as not to interfere with the guide portion.4. The polysilicon filament bonding device according to claim 3 , wherein the body portion comprises a reflective surface disposed on an internal surface thereof.5. The polysilicon filament bonding device according to claim 1 , further comprising a light concentrator for concentrating light emitted from the main light source to a bonding surface.6. The polysilicon filament bonding device according to claim 1 , wherein the body portion comprises a sight glass for observing a bonding surface of the polysilicon filament.7. The polysilicon filament bonding device according to claim 1 , wherein the body portion further comprises a fixer for fixing the polysilicon fragment.8. The polysilicon filament bonding device according to claim 1 , wherein the guide portion is formed of a polysilicon ...

Подробнее
25-02-2016 дата публикации

Method for manufacturing a wafer

Номер: US20160056034A1

A method for manufacturing a wafer includes forming a plurality nano-pillars on a surface of a brick; forming a cover layer on the surfaces of the brick, wherein the cover layer covers the nano-pillars; forming an adhesive layer on the surface of the cover layer; cutting the brick into a plurality of wafers; and removing the cover layer and the adhesive layer on the wafers by a solvent, wherein the solvent reacts with the cover layer but not reacts with the brick.

Подробнее
10-03-2022 дата публикации

APPARATUS FOR PREPARING LARGE-SIZE SINGLE CRYSTAL

Номер: US20220074073A1
Принадлежит:

Disclosed is an apparatus for preparing a large-size single crystal, which relates to the field of semiconductor material preparation, and more particularly, to an apparatus for preparing a large-size single crystal from a plurality of small-size single crystals by connecting them in solid states. The apparatus includes a hydrocooling furnace, a solid connection chamber hermetically disposed in the hydrocooling furnace, and combined fixtures provided in the solid connection chamber, wherein a plurality of crystal pieces are fixed by the combined fixtures, a top column or a stress block is used for pressing the crystal piece through the combined fixtures, a heating wire surrounding the solid connection chamber is provided in the hydrocooling furnace, a vacuum tube is communicated with the solid connection chamber, and a thermocouple is disposed close to the combined fixtures. The present disclosure is advantageous in that: 1, single crystal pieces with a small size can be connected and prepared into a single crystal with a larger size, 2, in the preparation process, the problems in the conventional single crystal growth process, such as twinning and polycrystallization, can be excluded from consideration, 3, the equipment is simple, and 4, preparation of single crystals with any size is possible theoretically. 1. An apparatus for preparing a large-size single crystal , characterized by comprising a hydrocooling furnace , a solid connection chamber hermetically disposed in the hydrocooling furnace , and combined fixtures in the solid connection chamber ,a plurality of crystal pieces are fixed by the combined fixtures, a top column or a stress block is used for pressing the crystal piece through the combined fixtures,a heating wire surrounding the solid connection chamber is provided in the hydrocooling furnace,a vacuum tube is communicated with the solid connection chamber, anda thermocouple is disposed close to the combined fixtures.2224222. The apparatus according ...

Подробнее
22-05-2014 дата публикации

Laminated aluminum oxide cover component

Номер: US20140139978A1
Автор: Kelvin Kwong
Принадлежит: Apple Inc

A cover glass for an electronic display comprises a plurality of layers of sapphire material, each of the layers having a substantially single crystal plane orientation, with adjacent layers having different substantially single crystal plane orientations. One or more interface layers are defined between adjacent layers of the sapphire material, with the adjacent layers of sapphire material bonded together at the one or more interface layers. A display window is defined in the cover glass, and configured for viewing a viewable area of the electronic display through the plurality of layers of the sapphire material bonded together at the one or more interface layers.

Подробнее
29-05-2014 дата публикации

Method for Peeling Group 13 Element Nitride Film

Номер: US20140147953A1
Принадлежит: NGK Insulators Ltd

A film 3 of a nitride of a group 13 element is grown on a seed crystal substrate 11 by flux process from a melt containing a flux and the group 13 element under nitrogen containing atmosphere. The film 3 of the nitride of the group 13 element includes an inclusion distributed layer 3 a in a region distant from an interface 11 a of the film 3 of the nitride of the group 13 element on the side of the seed crystal substrate 11 and containing inclusions derived from components of the melt, and an inclusion depleted layer 3 b, with the inclusion depleted. provided on the layer 3 a. Laser light A is irradiated from the side of the back face 1 b of the seed crystal substrate 11 to peel the single crystal 3 of the nitride of the group 13 element from the seed crystal substrate 11 by laser lift-off method.

Подробнее
11-03-2021 дата публикации

METHOD FOR MANUFACTURING A CRYSTALLINE LAYER OF PZT MATERIAL, AND SUBSTRATE FOR EPITAXIAL GROWING A CYRSTALLINE LAYER OF PZT MATERIAL

Номер: US20210074906A1
Автор: Ghyselen Bruno
Принадлежит:

A process for producing a crystalline layer of PZT material, comprising the transfer of a monocrystalline seed layer of SrTiOmaterial to a carrier substrate of silicon material, followed by epitaxial growth of the crystalline layer of PZT material. 1. A process for producing a crystalline layer of PZT material , comprising: transferring a monocrystalline seed layer of SrTiOmaterial to a carrier substrate of silicon material , followed by epitaxial growth of the crystalline layer of PZT material.2. The process of claim 1 , wherein the monocrystalline seed layer has a thickness of less than 10 μm.3. The process of claim 2 , wherein the transfer of the monocrystalline seed layer of SrTiOmaterial to the carrier substrate of silicon material comprises joining a monocrystalline substrate of SrTiOmaterial to the carrier substrate followed thinning the monocrystalline substrate of SrTiOmaterial.4. The process of claim 3 , wherein the thinning of the monocrystalline substrate of SrTiOmaterial comprises formation of a weakened zone delimiting a portion of the monocrystalline substrate of SrTiOmaterial intended to be transferred to the carrier substrate of silicon material.5. The process of claim 4 , wherein the formation of the weakened zone comprises implanting atomic and/or ionic species into the monocrystalline substrate of SrTiOmaterial.6. The process of claim 4 , wherein the thinning of the monocrystalline substrate of SrTiOmaterial comprises detaching at the weakened zone so as to transfer the portion of the monocrystalline substrate of SrTiOmaterial to the carrier substrate of silicon material.7. The process of claim 3 , wherein the joining of the monocrystalline substrate of SrTiOmaterial to the carrier substrate comprises molecular adhesion of the monocrystalline substrate of SrTiOmaterial to the carrier substrate.8. The process of claim 1 , wherein the monocrystalline seed layer of SrTiOmaterial is in the form of a plurality of tiles each transferred to the carrier ...

Подробнее
16-03-2017 дата публикации

COMPOSITE SUBSTRATE

Номер: US20170077141A1
Принадлежит: SHIN-ETSU CHEMICAL CO., LTD.

This composite substrate has a single-crystal semiconductor thin film () provided to at least the front surface of an inorganic insulating sintered-body substrate () having a thermal conductivity of at least 5 W/m·K and a volume resistivity of at least 1×10Ω·cm. The composite substrate also has, provided between the inorganic insulating sintered-body substrate () and the single-crystal semiconductor thin film (), a silicon coating layer () comprising polycrystalline silicon or amorphous silicon. 1. A composite substrate comprising an inorganic insulating sintered-body substrate having a thermal conductivity of at least 5 W/m·k and a volume resistivity of at least 1×10Ω·cm , and a single-crystal semiconductor thin-film provided on at least a front surface of the inorganic insulating sintered-body substrate , the composite substrate being characterized by having a silicon coating made of polycrystalline silicon or amorphous silicon provided between the inorganic insulating sintered-body substrate and the single-crystal semiconductor thin-film.2. The composite substrate of which is characterized in that the silicon coating covers all of the inorganic insulating sintered-body substrate.3. The composite substrate of which is characterized in that the silicon coating is a high-purity silicon layer formed by sputtering claim 1 , electron-beam vapor deposition claim 1 , chemical vapor deposition or epitaxial growth.4. The composite substrate of which is characterized in that the inorganic insulating sintered-body substrate is composed primarily of silicon nitride claim 1 , aluminum nitride or sialon.5. The composite substrate of which is characterized in that the single-crystal semiconductor thin-film is single-crystal silicon.6. The composite substrate of which is characterized by further comprising claim 1 , between the inorganic insulating sintered-body substrate and the silicon coating claim 1 , a silicon nitride coating formed by chemical vapor deposition.7. The ...

Подробнее
22-03-2018 дата публикации

METHOD FOR MANUFACTURING HEXAGONAL SEMICONDUCTOR PLATE CRYSTAL

Номер: US20180079109A1
Принадлежит:

A plate crystal cut from a gallium nitride crystal with a crystal cutting wire, where the plate crystal has a principal face of (20−21), and a magnitude of warpage of the plate crystal is 1.0 μm/mm or less in a line along the perpendicular projection of the c axis on the principal face passing through the center of the principal face. 19-. (canceled)10: A plate crystal cut from a gallium nitride crystal with a crystal cutting wire , wherein the plate crystal has a principal face of (20−21) , and a magnitude of warpage of the plate crystal is 1.0 μm/mm or less in a line along the perpendicular projection of the c axis on the principal face passing through the center of the principal face.11: The plate crystal according to claim 10 , wherein the magnitude of warpage of the plate crystal is 0.8 μm/mm or less.12: The plate crystal according to claim 10 , wherein the magnitude of warpage of the plate crystal is 0.5 μm/mm or less.13: The plate crystal according to claim 10 , wherein the magnitude of warpage of the plate crystal is 0.3 μm/mm or less.14: The plate crystal according to claim 10 , wherein the plate crystal has a square shape of 5 mm to 10 mm claim 10 , and a magnitude of warpage per evaluated length 5 mm of the plate crystal is less than 5 run in the line.15: The plate crystal according to claim 10 , wherein the plate crystal has a disk-like shape.16: The plate crystal according to claim 15 , wherein a maximum diameter of the plate crystal is equal to or more than 10 mm.17: The plate crystal according to claim 15 , wherein a maximum diameter of the plate crystal is equal to or more than 20 mm.18: The plate crystal according to claim 15 , wherein a maximum diameter of the plate crystal is equal to or more than 25 mm.19: The plate crystal according to claim 15 , wherein the plate crystal has diameter of 2 inches claim 15 , and a magnitude of warpage per evaluated length 50 mm of the plate crystal is less than 40 μm in the line.20: The plate crystal according to ...

Подробнее
22-03-2018 дата публикации

LITHIUM TANTALATE SINGLE CRYSTAL SUBSTRATE, BONDED SUBSTRATE, MANUFACTURING METHOD OF THE BONDED SUBSTRATE, AND SURFACE ACOUSTIC WAVE DEVICE USING THE BONDED SUBSTRATE

Номер: US20180080144A1
Принадлежит: SHIN-ETSU CHEMICAL CO., LTD.

[Object] 1: A rotated Y-cut lithium tantalate (LiTaO) single crystal substrate having a crystal orientation of 36° Y-49° Y cut , wherein said substrate is diffused with Li from its surface into its depth such that it has a Li concentration profile showing a difference in the Li concentration between the substrate surface and the depth of the substrate; and said substrate is treated with single polarization treatment so that the Li concentration is substantially uniform from the substrate surface to a depth which is equivalent to 5-15 times the wavelength of either a surface acoustic wave or a leaky surface acoustic wave propagating in the LiTaOsubstrate surface.2: The lithium tantalate single crystal substrate of claim 1 , wherein said Li concentration profile is one in which the Li concentration is higher at an area closer to the substrate surface of said rotated Y-cut LiTaOsubstrate and is lower at an area closer to the middle of said substrate.3: The lithium tantalate single crystal substrate of claim 1 , wherein a ratio of Li to Ta at the substrate surface is such that Li:Ta=50−α:50+α where α is in the range of −0.5<α<0.5.4: The lithium tantalate single crystal substrate of claim 1 , wherein said substrate is doped with Fe in an amount of 25 ppm-150 ppm.5: A bonded substrate claim 1 , comprising:a base substrate; and{'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, 'a lithium tantalate single crystal substrate of , being bonded to said base substrate.'}6: The bonded substrate of claim 5 , wherein a LiTaOsurface layer opposite the bonding face of said lithium tantalate single crystal substrate is removed in a manner such that at least part of said area where the Li concentration is substantially uniform is left.7: The bonded substrate of claim 5 , wherein said base substrate is made of Si claim 5 , SiC or spinel.8: A surface acoustic wave device claim 5 , comprising:{'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, 'the lithium tantalate single crystal substrate ...

Подробнее
12-03-2020 дата публикации

SUBSTRATE-TRANSFERRED STACKED OPTICAL COATINGS

Номер: US20200080231A1
Принадлежит:

A method for manufacturing substrate-transferred optical coatings, comprising: a) providing a first optical coating on a first host substrate as a base coating structure; b) providing a second optical coating on a second host substrate; c) bonding the optical coating of the base coating structure to the second optical coating, thereby obtaining one combined coating; d) detaching one of the first and the second host substrates from the combined coating; determining if the combined coating fulfills a predetermined condition; e) if the result of the determining step is negative, taking the combined coating together with the remaining host substrate as the base coating structure to be processed next and continuing with step b); f) if the result of the determining step is positive, providing an optical substrate and bonding the optical substrate to the combined coating; g) removing the other one of the first and the second host substrate. 1. A method for manufacturing optical interference coatings , comprising:a) providing a first optical coating on a first host substrate as a base coating structure;b) providing a second optical coating on a second host substrate;c) directly bonding the base coating structure to the second optical coating, thereby obtaining one combined coating;d) detaching one of the first and the second host substrates from the combined coating;determining if the combined coating fulfills a predetermined condition;e) if the result of the determining step is negative, taking the combined coating together with the remaining host substrate as the base coating structure to be processed next and continuing with step b);f) if the result of the determining step is positive, providing an optical substrate and directly bonding the optical substrate to the combined coating; andg) removing the other one of the first and the second host substrate.2. The method according to claim 1 , wherein the predefined condition is whether a thickness of the combined coating is ...

Подробнее
23-03-2017 дата публикации

TECHNIQUES FOR FORMING OPTOELECTRONIC DEVICES

Номер: US20170084778A1
Принадлежит:

Embodiments relate to use of a particle accelerator beam to form thin films of material from a bulk substrate are described. In particular embodiments, a bulk substrate having a top surface is exposed to a beam of accelerated particles. In certain embodiments, this bulk substrate may comprise GaN; in other embodiments this bulk substrate may comprise (111) single crystal silicon. Then, a thin film or wafer of material is separated from the bulk substrate by performing a controlled cleaving process along a cleave region formed by particles implanted from the beam. In certain embodiments this separated material is incorporated directly into an optoelectronic device, for example a GaN film cleaved from GaN bulk material. In some embodiments, this separated material may be employed as a template for further growth of semiconductor materials (e.g. GaN) that are useful for optoelectronic devices. 1. A workpiece for formation of an optoelectronic device , the workpiece comprising:a layer of crystalline material having a lattice constant compatible with formation of an overlying film of semiconductor material; anda substrate releasably bonded to a first surface of the layer of crystalline material opposite to a second surface of the layer of crystalline material, the second surface being coarse from cleaving and whereupon the overlying film of semiconductor material is to be formed,wherein the substrate has a coefficient of thermal expansion approximately equal to a coefficient of thermal expansion of the layer of crystalline material.2. The workpiece as in wherein the layer of crystalline material exhibits a level of stress lower than a threshold value sufficient to nucleate and propagate defects within the layer of crystalline material.3. The workpiece as in wherein mismatch between the substrate and the layer of crystalline material develops the level of stress insufficient to generate more than about 1×10defects/cm.4. The workpiece as in wherein mismatch between the ...

Подробнее
02-04-2015 дата публикации

Precision Cut High Energy Crystals

Номер: US20150093571A1
Автор: Nassim Haramein
Принадлежит: Resonance Project Foundation

Crystals having a modified regular tetrahedron shape are provided. Crystals preferably have four substantially identical triangular faces that define four truncated vertices and six chamfered edges. The six chamfered edges can have an average length of l, and an average width of w, and 8≦l/w≦9.5.

Подробнее
01-04-2021 дата публикации

METHOD FOR PRODUCING A MONOCRYSTALLINE LAYER OF AN LNO MATERIAL AND SUBSTRATE FOR EPITAXIAL GROWTH OF A MONOCRYSTALLINE LAYER OF AN LNO MATERIAL

Номер: US20210095391A1
Автор: Ghyselen Bruno
Принадлежит:

A process for producing a monocrystalline layer of LNO material comprises the transfer of a monocrystalline seed layer of YSZ material to a carrier substrate of silicon material followed by epitaxial growth of the monocrystalline layer of LNO material. 1. A process for producing a monocrystalline layer of lithium niobate (LNO) material , comprising: transferring a monocrystalline seed layer of yttria-stabilized zirconia (YSZ) material to a carrier substrate of silicon material followed by epitaxial growth of the monocrystalline layer of LNO material.2. The process of claim 1 , wherein the monocrystalline seed layer has a thickness of less than 10 μm claim 1 , preferably less than 2 μm claim 1 , and more preferably less than 0.2 μm.3. The process of claim 2 , wherein the transfer of the monocrystalline seed layer of YSZ material to the carrier substrate of silicon material comprises joining a monocrystalline substrate of YSZ material to the carrier substrate claim 2 , followed by thinning the monocrystalline substrate of YSZ material.4. The process of claim 3 , wherein the thinning comprises forming a weakened zone delimiting a portion of the monocrystalline substrate of YSZ material to be transferred to the carrier substrate of silicon material.5. The process of claim 4 , wherein the formation of the weakened zone comprises implanting atomic and/or ionic species into the monocrystalline substrate of YSZ material.6. The process of claim 4 , wherein the thinning comprises detaching at the weakened zone so as to transfer the portion of the monocrystalline substrate of YSZ material to the carrier substrate of silicon material.7. The process of claim 3 , wherein joining the monocrystalline substrate of YSZ material to the carrier substrate comprises molecular adhesiones of the monocrystalline substrate of YSZ material to the carrier substrate.8. The process of claim 3 , wherein the monocrystalline seed layer of YSZ material is in the form of a plurality of tiles each ...

Подробнее
28-03-2019 дата публикации

COMBINED PRODUCTION MEHTOD FOR SEPARATING A NUMBER OF THIN LAYERS OF SOLID MATERIAL FROM A THICK SOLID BODY

Номер: US20190096746A1
Принадлежит:

Providing a solid body to be split into a number of layers of solid material, introducing or generating defects in the solid body in order to determine a first detachment plane () along which a first layer of solid material is separated from the solid body, providing a receiving layer for holding the layer of solid material on the solid body, applying heat to the receiving layer in order to generate, in particular mechanically, stresses in the solid body, due to the stresses a crack propagating in the solid body along the detachment plane, which crack separates the first layer of solid material from the solid body, then providing a second receiving layer for holding another layer of solid material on the solid body reduced by the first layer of solid material, introducing or generating defects in the solid body in order to determine a second detachment plane () along which a second layer of solid material is separated from the solid body, applying heat to the second receiving layer in order to generate, in particular mechanically, stresses in the solid body, due to the stresses a crack propagating in the solid body along the second detachment plane, which crack separates the second layer of solid material from the solid body. 1providing a solid body to be split into a number of layers of solid material, the solid body having a first level surface portion and a second level surface portion;introducing or generating defects in the solid body using laser beams in order to determine a first detachment plane along which a first layer of solid material is separated from the solid body, the laser beams penetrating into the solid body via the second level surface portion;providing a receiving layer for holding the layer of solid material on the second level surface portion of the solid body, the receiving layer being in the form of a polymer layer;applying heat to the receiving layer in order to mechanically generate stresses in the solid body, the application of heat ...

Подробнее
04-05-2017 дата публикации

METHOD OF MAKING A JOINT BETWEEN SAPPHIRE PARTS

Номер: US20170121851A1
Автор: Lounsbury Roger Ian
Принадлежит:

A method of making a joint between parts is provided, wherein the surface of at least one of the parts comprises aluminum oxide such as alpha aluminum oxide in the form of sapphire. A layer of aluminum nitride is provided between the surfaces of the parts where these contact. The method comprises the steps of bringing the parts into contact whereby the aluminum nitride layer is sandwiched between the parts and is in contact with the aluminum oxide surface, and performing localized heating of the aluminum nitride. The aluminum nitride is heated to at least the melting temperature of the aluminum nitride aluminum oxide eutectic, such that the aluminum nitride and adjacent aluminum oxide mix and melt to form an aluminum oxy-nitride bond. On cooling, the aluminum oxynitride forms a solid joint between the parts. 1. A method of forming a joint between parts , wherein the parts comprise sapphire , the parts comprising respective surfaces configured for mutual contact , at least one of the parts further comprising a layer of aluminum nitride thereon whereby the aluminum nitride layer is juxtaposed between the surfaces when the parts are brought into contact , the method comprising bringing the parts into contact whereby the aluminum nitride layer is sandwiched between the surfaces of the respective parts , and providing localized heating of the aluminum nitride layer from a heat source that does not directly heat the sapphire parts , to at least the melting temperature of the juxtaposed sapphire surfaces , such that the aluminum nitride melts adjacent sapphire of the sapphire parts and reacts with the melted sapphire to form aluminum oxy-nitride compounds that , on cooling , join the parts.2. The method of wherein prior to making the joint claim 1 , at least one of the sapphire parts is subjected to fine forming by thermal creep.3. The method of wherein said thermal creep fine forming comprises the steps of heating a rough sapphire part to about 1700-2000° C. following by ...

Подробнее
10-06-2021 дата публикации

Systems and methods for disassembling two-dimensional van der waals crystals into macroscopic monolayers and reassembling into artificial lattices

Номер: US20210172087A1
Принадлежит: Columbia University of New York

Systems and methods for generating one or more single crystal monolayers from two-dimensional van der Waals crystals are disclosed herein. Example methods include providing a bulk material including a plurality of van der Waals crystal layers, and exfoliating one or more single crystal monolayers of van der Waals crystal from the bulk material by applying a flexible and flat metal tape to a surface of the bulk material. In certain embodiments, the one or more single crystal monolayers can be assembled into an artificial lattice. The present disclosure also provides techniques for manufacturing flexible and flat metal tape for generating one or more single crystal monolayers from two-dimensional van der Waals crystals. The present disclosure also provides compositions for creating a macroscopic artificial lattice. In certain embodiments, the composition can include two or more macroscopic single crystal monolayers adapted from a bulk van der Waals crystal, where the single crystal monolayers are configured for assembly into an artificial lattice based on one or more properties.

Подробнее
25-05-2017 дата публикации

LARGE AREA NITRIDE CRYSTAL AND METHOD FOR MAKING IT

Номер: US20170145585A1
Принадлежит:

Techniques for processing materials in supercritical fluids including processing in a capsule disposed within a high-pressure apparatus enclosure are disclosed. The disclosed techniques are useful for growing crystals of GaN, AlN, InN, and their alloys, including InGaN, AlGaN, and AlInGaN for the manufacture of bulk or patterned substrates, which in turn can be used to make optoelectronic devices, lasers, light emitting diodes, solar cells, photoelectrochemical water splitting and hydrogen generation devices, photodetectors, integrated circuits, and transistors. 1. A method for growth of a large-area merged crystal , the method comprising:depositing an adhesion layer on a surface of a handle substrate, said adhesion layer having a melting point at a first temperature;{'sub': 1', '1', '1', '2', '2', '2', '1', '1', '1', '2', '2', '2, 'bonding at least a first crystal and a second crystal to said adhesion layer to form a tiled substrate, said first crystal having a first nominal crystallographic orientation (xyz), and said second crystal having a second nominal crystallographic orientation (xyz), said first nominal crystallographic orientation (xyz) and said second nominal crystallographic orientation (xyz) being identical; and'}laterally and vertically growing a crystalline composition over said tiled substrate using ammonothermal growth at a second temperature to form a merged crystal,wherein said first and second crystals define first and second domains in said merged crystal; [{'sub': 1', '1', '1', '1, 'zis a negative surface normal of the first nominal crystallographic orientation, and xand yare crystallographic vectors that are orthogonal to z;'}, {'sub': 2', '2', '2', '2, 'zis a negative surface normal of the second nominal crystallographic orientation, and xand yare crystallographic vectors that are orthogonal to z;'}, {'sub': 1', '2, 'a polar misorientation angle γ between zand zis greater than about 0.005 degrees and less than about 0.5 degrees;'}, {'sub': 1 ...

Подробнее
09-06-2016 дата публикации

Wafer producing method

Номер: US20160158881A1
Принадлежит: Disco Corp

A wafer producing method for producing a hexagonal single crystal wafer from a hexagonal single crystal ingot includes a separation start point forming step of setting the focal point of a laser beam inside the ingot at a predetermined depth from the upper surface of the ingot, which depth corresponds to the thickness of the wafer to be produced, and next applying the laser beam to the upper surface of the ingot while relatively moving the focal point and the ingot to thereby form a modified layer parallel to the upper surface of the ingot and cracks extending from the modified layer, thus forming a separation start point. In the separation start point forming step, the laser beam is applied to the ingot plural times with the focal point of the laser beam set at the modified layer previously formed, thereby separating the cracks from the modified layer.

Подробнее
09-06-2016 дата публикации

Artificial crystal growth method

Номер: US20160160389A1
Принадлежит: Murata Manufacturing Co Ltd

An artificial crystal growth method that includes applying a pressure that causes at least two substantially rectangular-parallelepiped-shaped crystal substrates to abut each other in an X-axis direction with crystallographic axis directions of the crystal substrates aligned with each other, and causing the at least two crystal substrates to grow an artificial crystal in a state where the pressure is being applied.

Подробнее
07-06-2018 дата публикации

SiC WAFER PRODUCTING METHOD

Номер: US20180154542A1
Автор: Kazuya Hirata
Принадлежит: Disco Corp

An SiC wafer producing method includes setting a focal point of a pulsed laser beam to a single crystal SiC inside an ingot at a predetermined depth from an end surface of the ingot, the predetermined depth corresponding to the thickness of the wafer to be produced. The pulsed laser beam is applied to the ingot, thereby forming a small circular modified portion on a c-plane present in the ingot at the predetermined depth, in which the modified portion is a region where SiC has been decomposed into Si and C. A separation layer is formed for separating the wafer from the ingot, the separation layer being composed of a plurality of continuous modified portions and a plurality of cracks isotropically formed on the c-plane so as to extend from each modified portion.

Подробнее
07-06-2018 дата публикации

OFF-AXIS EPITAXIAL LIFT OFF PROCESS

Номер: US20180155808A1
Принадлежит:

Embodiments described herein provide processes for forming and removing epitaxial films and materials from growth wafers by epitaxial lift off (ELO) processes. In some embodiments, the growth wafer has edge surfaces with an off-axis orientation which is utilized during the ELO process. The off-axis orientation of the edge surface provides an additional variable for controlling the etch rate during the ELO process and therefore the etch front may be modulated to prevent the formation of high stress points which reduces or prevents stressing and cracking the epitaxial film stack. In one embodiment, the growth wafer is rectangular and has an edge surface with an off-axis orientation rotated by an angle greater than 0° and up to 90° relative to an edge orientation of <110> at 0°. 1. A method for forming an epitaxial film stack during an epitaxial lift off process , the method comprising:providing a growth wafer diced from a piece of semiconductor material, the growth wafer having a plurality of edge surfaces, wherein none of the plurality of edge surfaces has an orientation that is perpendicular to the crystallographic orientation of the piece of semiconductor material, and wherein none of the plurality of edge surfaces has an orientation that is parallel to the crystallographic orientation of the piece of semiconductor material;growing a sacrificial layer over the growth wafer;forming the epitaxial film stack over the sacrificial layer; andremoving the sacrificial layer by an etching process, the etching process including a first etch rate of the sacrificial layer near corners of the plurality of edge surfaces that is different than a second etch rate of the sacrificial layer near sides of the plurality of edge surfaces.2. The method of claim 1 , wherein the orientation of each of the edge surfaces includes an off-axis orientation that is at an angle greater than 0° and less than 90° with respect to the crystallographic orientation of the piece of semiconductor ...

Подробнее
09-06-2016 дата публикации

Method for improving quality of spalled material layers

Номер: US20160163553A1

Methods for removing a material layer from a base substrate utilizing spalling in which mode III stress, i.e., the stress that is perpendicular to the fracture front created in the base substrate, during spalling is reduced. The substantial reduction of the mode III stress during spalling results in a spalling process in which the spalled material has less surface roughness at one of its' edges as compared to prior art spalling processes in which the mode III stress is present and competes with spalling.

Подробнее
14-05-2020 дата публикации

SiC COMPOSITE SUBSTRATE AND METHOD FOR MANUFACTURING SAME

Номер: US20200149189A1
Принадлежит:

Provided is an SiC composite substrate having a monocrystalline SiC layer on a polycrystalline SiC substrate , wherein: some or all of the interface at which the polycrystalline SiC substrate and the monocrystalline SiC layer are in contact is an unmatched interface Ithat is not lattice-matched; the monocrystalline SiC layer has a smooth obverse surface and has, on the side of the interface with the polycrystalline SiC substrate , a surface that has more pronounced depressions and projections than the obverse surface; and the close-packed plane (lattice plane ) of the crystals of the polycrystalline SiC in the polycrystalline SiC substrate is randomly oriented with reference to the direction of a normal to the obverse surface of the monocrystalline SiC layer . The present invention improves the adhesion between the polycrystalline SiC substrate and the monocrystalline SiC layer. 1. An SiC composite substrate comprising a polycrystalline SiC substrate and a monocrystalline SiC layer thereon , wherein the entirety or a part of the interface of the polycrystalline SiC substrate in abutment with the monocrystalline SiC layer is a mismatch interface that is not lattice-matched , the monocrystalline SiC layer has a smooth front surface and a surface on the side of the interface with the polycrystalline SiC substrate that is more rugged than the front surface , said rugged surface of the monocrystalline SiC layer is composed of oblique surface segments randomly oriented with reference to a direction normal to the front surface of the monocrystalline SiC layer , and the close-packed planes of polycrystalline SiC crystals in the polycrystalline SiC substrate are parallel to said oblique surface segments and correspondingly randomly oriented with reference to a direction normal to the front surface of the monocrystalline SiC layer.2. The SiC composite substrate of wherein claim 1 , where the close-packed plane of the crystal lattice of each crystal grain in the ...

Подробнее
18-09-2014 дата публикации

Method and device for cleaving wafers

Номер: US20140263524A1
Принадлежит: SolarWorld Industries America Inc

A method for cleaving wafers comprising the following steps: providing a slice of a crystalline material with at least a first plane side, providing at least one stressing means to be attached to said slice, wherein said at least one stressing means is at least in parts made of a material with a coefficient of thermal expansion different from that of the slice, attaching said stressing means to said first plane side of said slice to form a stack, inducing a thermal shear stress to said slice by applying a temperature change to said stack.

Подробнее
09-07-2015 дата публикации

System and method of growing silicon ingots from seeds in a crucible and manufacture of seeds used therein

Номер: US20150191846A1
Принадлежит: GTAT Corp

Systems and methods that reduce the overall cost of producing a silicon ingot are provided herein. More specifically, one or more surface pieces may be sliced from a silicon boule in relation to a plurality of nodes at a particular orientation. These one or more surface pieces may then be formed into one or more seeds having a specific length, width and thickness usable in a silicon ingot growth process. By utilizing these pieces to form one or more seeds, pieces of a boule which would have been previously discarded may now be used to form high quality seeds for use in a silicon ingot grow process.

Подробнее
28-06-2018 дата публикации

METHOD FOR TRANSFERRING MONOCRYSTALLINE PADS

Номер: US20180182661A1
Автор: Ghyselen Bruno
Принадлежит: SOITEC

A method of transferring blocks of semiconductor material to a substrate comprises the following steps: a. providing an intermediate substrate, the intermediate substrate comprising, on one of its faces, blocks, the blocks comprise a monocrystalline material, the blocks comprising an embrittlement area delimiting a block portion intended to be transferred onto a final substrate; b. executing an assembling step by putting the free surface of each of the blocks in contact with the final substrate; c. executing, after the assembling step, detachment at the embrittlement area of each of the blocks. During the assembling step, the intermediate substrate deforms so that the free surfaces of the blocks become coplanar. 1. A transfer method comprising the steps:a. providing an intermediate substrate, the intermediate substrate comprising, on one of its faces, blocks assembled by a first main face to the intermediate substrate, the blocks having a free surface opposite to the first main face, and comprising monocrystalline material, the blocks comprising an embrittlement area, the embrittlement area and the free surface of each block, delimiting a block portion intended to be transferred onto a final substrate;b. executing an assembling step by putting the free surface of each of the blocks in contact with the final substrate;c. executing, after the assembling step, a detachment at the embrittlement area of each of the blocks so as to transfer the block portion of each of the blocks onto the final substrate;wherein the intermediate substrate deforms so that the free surfaces of the blocks become coplanar during the assembling step b.2. The transfer method according to claim 1 , wherein the assembling step b. is a molecular adhesion step.3. The transfer method according to claim 1 , wherein an assembling layer is inserted between the final substrate and the blocks before the assembling step b.4. The transfer method according to claim 1 , wherein the blocks have a thickness ...

Подробнее
22-07-2021 дата публикации

METHOD OF MANUFACTURING RING-SHAPED MEMBER AND RING-SHAPED MEMBER

Номер: US20210225617A1
Принадлежит:

Provided are a method of manufacturing a ring-shaped member and the ring-shaped member. A method of manufacturing a ring-shaped member to be placed in a process chamber of a substrate processing apparatus includes arranging one silicon member and another silicon member to cause one abutting surface of the one silicon member and another abutting surface of the other silicon member to abut on each other, heating the one abutting surface and the other abutting surface through optical heating to melt silicon on a surface of the one abutting surface and silicon on a surface of the other abutting surface such that silicon melt is caused to flow into a gap between the one abutting surface and the other abutting surface, and cooling the one abutting surface and the other abutting surface to crystallize the silicon melt forming a silicon adhesion part. 1. A ring-shaped member to be placed in a process chamber of a substrate processing apparatus that performs plasma processing on a substrate accommodated in the process chamber , the ring-shaped member comprising:a plurality of silicon members; anda silicon adhesion part that is provided to fill a gap between one abutting surface of one of the silicon members and another abutting surface of another one of the silicon members, and joins the one abutting surface and the other abutting surface,wherein the silicon adhesion part is made from silicon melt at an end surface of the one silicon member and silicon melt at an end surface of the other silicon member to come into contact with each other that have flown into the gap due to capillary phenomenon and have been crystallized, andwherein one silicon adhesion part made of monocrystalline silicon taking over crystallinity of the one abutting surface and another silicon adhesion part made of monocrystalline silicon taking over crystallinity of the other abutting surface are integrated at atomic level.2. The ring-shaped member according to claim 1 , wherein the gap has a size of 1 mm ...

Подробнее
22-07-2021 дата публикации

Carrier-assisted method for parting crystalline material along laser damage region

Номер: US20210225652A1
Принадлежит: Cree Inc

A method for removing a portion of a crystalline material (e.g., SiC) substrate includes joining a surface of the substrate to a rigid carrier (e.g., >800 μm thick), with a subsurface laser damage region provided within the substrate at a depth relative to the surface. Adhesive material having a glass transition temperature above 25° C. may bond the substrate to the carrier. The crystalline material is fractured along the subsurface laser damage region to produce a bonded assembly including the carrier and a portion of the crystalline material. Fracturing of the crystalline material may be promoted by (i) application of a mechanical force proximate to at least one carrier edge to impart a bending moment in the carrier; (ii) cooling the carrier when the carrier has a greater coefficient of thermal expansion than the crystalline material; and/or (iii) applying ultrasonic energy to the crystalline material.

Подробнее
27-06-2019 дата публикации

CHALCOGENIDE FILM, DEVICE INCLUDING, AND METHOD OF FORMING THE SAME

Номер: US20190194797A1
Принадлежит:

A chalcogenide film is provided. The chalcogenide film includes a noble metal chalcogenide material having a formula MC. M represents a noble metal. C represents a chalcogen. x is any one positive value equal to or more than 1.4 and less than 2. The chalcogenide film is configured to generate electrons and holes upon light incident on the chalcogenide film. 1. A chalcogenide film comprising:{'sub': 'x', 'a noble metal chalcogenide material having a formula MC;'}wherein M represents a noble metal;wherein C represents a chalcogen;wherein x is any one positive value equal to or more than 1.4 and less than 2; andwherein the chalcogenide film is configured to generate electrons and holes upon light incident on the chalcogenide film.2. The film according to claim 1 , wherein the chalcogenide film is a monolayer of the noble metal chalcogenide material.3. The film according to claim 1 , wherein the chalcogenide film is a bilayer of the noble metal chalcogenide material.4. The film according to claim 1 , wherein the light comprises visible light.5. The film according to claim 1 , wherein the light comprises infrared light.6. The film according to claim 5 , wherein the infrared light is mid-infrared light.7. The film according to claim 1 , wherein the noble metal chalcogenide material is any one material selected from a group consisting of platinum selenide claim 1 , platinum sulfide claim 1 , palladium selenide and palladium sulfide.8. The film according to claim 7 ,wherein the noble metal chalcogenide material is platinum selenide; and{'sub': 1.8', '1.6', '1.4, 'wherein the noble metal chalcogenide material is any one selected from a group consisting of PtSe, PtSe, and PtSe.'}9. A device comprising a chalcogenide film claim 7 , the chalcogenide film comprising:{'sub': 'x', 'a noble metal chalcogenide material having a formula MC;'}wherein M represents a noble metal;wherein C represents a chalcogen;wherein x is any one positive value equal to or more than 1.4 and less than ...

Подробнее
26-07-2018 дата публикации

OFF-AXIS EPITAXIAL LIFT PROCESS

Номер: US20180209018A1
Принадлежит:

Embodiments described herein provide processes for forming and removing epitaxial films and materials from growth wafers by epitaxial lift off (ELO) processes. In some embodiments, the growth wafer has edge surfaces with an off-axis orientation which is utilized during the ELO process. The off-axis orientation of the edge surface provides an additional variable for controlling the etch rate during the ELO process and therefore the etch front may be modulated to prevent the formation of high stress points which reduces or prevents stressing and cracking the epitaxial film stack. In one embodiment, the growth wafer is rectangular and has an edge surface with an off-axis orientation rotated by an angle greater than 0° and up to 90° relative to an edge orientation of <110> at 0°. 1. A growth wafer , comprising:a single substrate having a crystalline lattice structure, wherein:the single substrate has multiple edges that are non-parallel and non-perpendicular to a cleave plane, andthe single substrate has a facial surface with a <001> orientation, off by up to 12°.2. The growth wafer of claim 1 , wherein the edges being non-parallel and non-perpendicular to the cleave plane corresponds to the edges having an off-axis orientation that is rotated from the cleave plane by an angle from 0° to 90°.3. The growth wafer of claim 1 , wherein the edges being non-parallel and non-perpendicular to the cleave plane corresponds to the edges having an off-axis orientation that is rotated from the cleave plane by an angle from 30° to 60°.4. The growth wafer of claim 1 , wherein the edges being non-parallel and non-perpendicular to the cleave plane corresponds to the edges having an off-axis orientation that is rotated from the cleave plane by a 45° angle.5. The growth wafer of claim 1 , wherein the growth wafer has a rectangular shape or square shape claim 1 , and the edges correspond to the sides of the rectangular shape or the square shape.6. The growth wafer of claim 1 , wherein the ...

Подробнее
01-08-2019 дата публикации

Combined wafer production method with laser treatment and temperature-induced stresses

Номер: US20190237359A1
Принадлежит:

A method for the production of layers of solid material is contemplated. The method may include the steps of providing a solid body for the separation of at least one layer of solid material, generating defects by means of at least one radiation source, in particular a laser, in the inner structure of the solid body in order to determine a detachment plane along which the layer of solid material is separated from the solid body, and applying heat to a polymer layer disposed on the solid body in order to generate, in particular mechanically, stresses in the solid body, due to the stresses a crack propagating in the solid body along the detachment plane, which crack separates the layer of solid material from the solid body. 1. A method for the production of layers of solid material comprising:providing a solid body for the separation of at least one layer of solid material, the solid body having a first level surface portion and a second level surface portion, wherein the second level surface is part of the layer of solid material, wherein the layer of solid material is thinner than the remaining part of the solid body, wherein the first level surface and the second level surface are opposing main surfaces of said solid material;then generating defects by means of laser beams of multiphoton excitation caused by at least one laser acting in the inner structure of the solid body in order to determine a detachment plane along which the layer of solid material is separated from the solid body, the laser beams penetrating into the solid body via the second level surface portion;then providing a receiving layer for holding the layer of solid material on the solid body, the receiving layer being disposed on the second level surface portion and the receiving layer being in the form of a polymer layer;then subjecting the receiving layer to temperature conditions in order to generate mechanical stresses in the solid body, including cooling of the receiving layer to a ...

Подробнее
06-09-2018 дата публикации

MANUFACTURING METHOD OF SiC COMPOSITE SUBSTRATE

Номер: US20180251910A1
Принадлежит:

A manufacturing method of an SiC composite substrate that includes a single crystal SiC layer on a polycrystalline SiC substrate . After manufacturing a single crystal SiC layer supporting body by providing the single crystal SiC layer on one surface of a holding substrate including Si. A polycrystalline SiC is deposited on the single crystal SiC layer through chemical vapor deposition to manufacture an SiC laminated body laminated with the single crystal SiC layer and the polycrystalline SiC layer having a thickness t on the holding substrate ′. At the same time, the single crystal SiC layer supporting body is heated at a temperature less than 1,414 degrees Celsius, and a portion of the thickness t of the polycrystalline SiC is deposited. Then, the holding substrate ′ is physically and/or chemically removed. 1. A method for producing a SiC composite substrate comprising a monocrystalline SiC layer on a polycrystalline SiC substrate , the method comprising the steps of , in order: providing a monocrystalline SiC layer on one side of a support substrate made of silicon so as to produce a monocrystalline SiC layer carrier; during the production of a SiC laminate comprising the monocrystalline SiC layer and a polycrystalline SiC substrate of thickness t stacked on the support substrate by using a chemical vapor deposition process to deposit polycrystalline SiC on the monocrystalline SiC layer , heating the monocrystalline SiC layer carrier to below 1 ,414° C. and depositing thereon only part of the thickness t of the polycrystalline SiC , subsequently raising the temperature to 1 ,414° C. or above and additionally depositing polycrystalline SiC up to the thickness t while melting at least part of the support substrate , and then cooling; and physically and/or chemically removing the support substrate.2. The SiC composite substrate production method of claim 1 , wherein the thickness of the polycrystalline SiC deposited when the monocrystalline SiC carrier is heated to ...

Подробнее
06-09-2018 дата публикации

SiC COMPOSITE SUBSTRATE AND METHOD FOR MANUFACTURING SAME

Номер: US20180251911A1
Принадлежит:

Provided is an SiC composite substrate having a monocrystalline SiC layer on a polycrystalline SiC substrate , wherein: some or all of the interface at which the polycrystalline SiC substrate and the monocrystalline SiC layer are in contact is an unmatched interface Ithat is not lattice-matched; the monocrystalline SiC layer has a smooth obverse surface and has, on the side of the interface with the polycrystalline SiC substrate , a surface that has more pronounced depressions and projections than the obverse surface; and the close-packed plane (lattice plane ) of the crystals of the polycrystalline SiC in the polycrystalline SiC substrate is randomly oriented with reference to the direction of a normal to the obverse surface of the monocrystalline SiC layer . The present invention improves the adhesion between the polycrystalline SiC substrate and the monocrystalline SiC layer. 1. An SiC composite substrate comprising a polycrystalline SiC substrate and a monocrystalline SiC layer thereon , wherein the entirety or a part of the interface of the polycrystalline SiC substrate in abutment with the monocrystalline SiC layer is a mismatch interface that is not lattice-matched , the monocrystalline SiC layer has a smooth front surface and a more rugged surface on the side of the interface with the polycrystalline SiC substrate than the front surface , and the close-packed planes of polycrystalline SiC crystals in the polycrystalline SiC substrate are randomly oriented with reference to a normal direction to the front surface of the monocrystalline SiC layer.2. The SiC composite substrate of wherein the rugged surface that the monocrystalline SiC layer has on the side of the interface with the polycrystalline SiC substrate is composed of oblique surface segments which are randomly oriented with reference to a normal direction to the front surface of the monocrystalline SiC layer.3. The SiC composite substrate of wherein the polycrystalline SiC substrate is a chemical ...

Подробнее
22-09-2016 дата публикации

METHOD FOR MANUFACTURING RECTANGULAR PARALLELEPIPED-SHAPED SINGLE CRYSTAL, RECTANGULAR PARALLELEPIPED-SHAPED SINGLE CRYSTAL, METHOD FOR MANUFACTURING CERAMICS, CERAMICS, PIEZOELECTRIC ELEMENT, PIEZOELECTRIC DEVICE, AND ELECTRONIC DEVICE

Номер: US20160273125A1
Принадлежит:

This invention is a method for manufacturing a rectangular parallelepiped-shaped single crystal containing sodium niobate of a perovskite structure as the main component, and the method includes a process of heating a mixture 1 of bismuth sodium niobate which is formed from particles containing a plurality of crystals represented by General Formula (1): BiNaNbmO(m is an integer of 2 or more) and in which an average value mof the m values is larger than 6 and sodium containing alkali metal halide at 1200° C. or more and 1250° C. or less to obtain a rectangular parallelepiped-shaped single crystal containing sodium niobate as the main component. 1. A method for manufacturing a rectangular parallelepiped-shaped single crystal containing sodium niobate of a perovskite structure as a main component ,the method comprising:{'sub': 2.5', 'm−1.5', '3m+3', 'a, 'heating a mixture 1 of bismuth sodium niobate which is formed from particles containing a plurality of crystals of a composition represented by General Formula (1): BiNaNbmO(m is an integer of 2 or more) and in which an average value mof the m values in the particles is larger than 6 and sodium containing alkali metal halide at 1200° C. or more and 1250° C. or less to obtain a mixture 2 containing sodium niobate of a perovskite structure; and'}removing a water soluble component from the mixture 2.2. The method for manufacturing a rectangular parallelepiped-shaped single crystal containing sodium niobate as a main component according to claim 1 , wherein a weight of the sodium containing alkali metal halide is 1.0 times or more and 10 times or less a weight of the bismuth sodium niobate in the mixture 1.3. The method for manufacturing a rectangular parallelepiped-shaped single crystal containing sodium niobate as a main component according to claim 1 , wherein the m value represents a number of layers of oxygen octahedrons in a c-axis direction in the bismuth sodium niobate with a bismuth layer structure.4. The method ...

Подробнее
22-08-2019 дата публикации

Method of manufacturing ring-shaped member and ring-shaped member

Номер: US20190259581A1
Принадлежит: Thinkon New Technology Japan Corp

Provided are a method of manufacturing a ring-shaped member and the ring-shaped member. A method of manufacturing a ring-shaped member to be placed in a process chamber of a substrate processing apparatus includes arranging one silicon member and another silicon member to cause one abutting surface of the one silicon member and another abutting surface of the other silicon member to abut on each other, heating the one abutting surface and the other abutting surface through optical heating to melt silicon on a surface of the one abutting surface and silicon on a surface of the other abutting surface such that silicon melt is caused to flow into a gap between the one abutting surface and the other abutting surface, and cooling the one abutting surface and the other abutting surface to crystallize the silicon melt forming a silicon adhesion part.

Подробнее
28-09-2017 дата публикации

METHOD OF FORMING A COMPOSITE SUBSTRATE

Номер: US20170279006A1
Принадлежит:

In a method according to embodiments of the invention, a III-nitride layer is grown on a growth substrate. The III-nitride layer is connected to a host substrate. The growth substrate is removed. The growth substrate is a non-III-nitride material. The growth substrate has an in-plane lattice constant a. The III-nitride layer has a bulk lattice constant a. In some embodiments, [(|a−a|)/a]*100% is no more than 1%. 1. A method comprising:{'sub': layer', 'substrate', 'substrate', 'layer', 'substrate, 'growing a III-nitride layer with a bulk lattice constant aon a non-III-nitride growth substrate with an in-plane lattice constant asuch that [(|a−a|)/a]*100% is no more than 1%;'}providing a composite substrate comprising the III-nitride layer bonded to a host substrate; andgrowing a semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region on the III-nitride layer of the composite substrate.2. The method of wherein growing a III-nitride layer comprises growing the III-nitride layer such that a group V face of the III-nitride layer is the growth surface and a group III face of the III-nitride layer is disposed on the non-III-nitride growth substrate.3. The method of wherein growing a semiconductor structure comprises growing the semiconductor structure on the group III face of the III-nitride layer.4. The method of wherein the non-III-nitride growth substrate is ScAlMgOand the III-nitride layer is InGaN.5. The method of wherein the non-III-nitride growth substrate is RAO(MO) claim 1 , where R is selected from Sc claim 1 , In claim 1 , Y claim 1 , and the lanthanides; A is selected from Fe (III) claim 1 , Ga claim 1 , and Al; M is selected from Mg claim 1 , Mn claim 1 , Fe (II) claim 1 , Co claim 1 , Cu claim 1 , Zn and Cd; and n is an integer ≧1.6. The method of wherein the III-nitride layer is one of InGaN and AlInGaN.7. The method of wherein the III-nitride layer is InGaN claim 1 , where 0.06≦x≦0.48.8. The method of ...

Подробнее
22-10-2015 дата публикации

Fixed Cutter Drill Bit Cutter Elements Including Hard Cutting Tables Made from CVD Synthetic Diamonds

Номер: US20150299901A1
Принадлежит: National Oilwell DHT, L.P.

Systems and methods of forming components from CVD single crystal diamonds that can withstand high temperatures and pressures, for example, in a mining and/or drilling environment. This may be accomplished by transforming a graphite powder by hot-filament chemical vapor deposition (HFCVD) into a CVD single diamond crystal powder, growing a plurality of CVD single diamond crystals on a planar surface of a substrate or on a dowel. In one example, if a substrate is used as the growth surface, the plurality of CVD single crystals grow in at least one layer on the substrate and at least a portion of the plurality of CVD single diamond crystals are removed from the substrate in the form of a plurality of discrete intact sheets of CVD single diamond crystals, stacked in a mold, and sintered, for example, to form a CVD single crystal diamond table. 1. A method for forming a single crystal element , the method comprising:(a) transforming a graphite powder into a CVD diamond powder;(b) growing a plurality of CVD single diamond crystals on a substrate, wherein the plurality of CVD single crystal diamonds are grown in an orientation along the pool crystallographic plane;(c) removing at least a portion of the CVD single diamond crystals from the substrate after (b);(d) transforming the removed CVD single diamond crystals into a CVD single diamond crystal powder;(e) disposing the CVD single diamond crystal powder and a tungsten carbide support element into a mold; and(f) thermo-mechanically processing the CVD single diamond crystal powder in the mold to form a solid CVD single diamond crystal table secured to the tungsten carbide support element.2. The method of claim 1 , wherein the substrate comprises a catalyst claim 1 , and wherein (b) comprises initiating the growth of the plurality of CVD single diamond crystals with the catalyst.3. The method of claim 2 , wherein the substrate is a dowel.4. The method of claim 3 , wherein the substrate comprises cobalt (Co) claim 3 , ...

Подробнее
29-10-2015 дата публикации

METHODS FOR PRODUCING RECTANGULAR SEEDS FOR INGOT GROWTH

Номер: US20150308011A1
Принадлежит:

A method of producing rectangular seeds for use in semiconductor or solar material manufacturing includes connecting an adhesive layer to a top surface of a template, the template including a plurality of parallel slots, and drawing alignment lines on the adhesive layer, the alignment lines aligned with at least some of the parallel slots. The method also includes connecting quarter sections to the adhesive layer such that an interface between a rectangular seed portion and a curved wing portion of each quarter section is aligned with at least one of the alignment lines drawn on the adhesive layer, and slicing each of the quarter sections to separate the rectangular seed portions from the curved wing portions. 1. A method of producing rectangular seeds for use in semiconductor or solar material manufacturing , the method comprising:connecting an adhesive layer to a top surface of a template, the template including a plurality of parallel slots;drawing alignment lines on the adhesive layer, the alignment lines aligned with at least some of the parallel slots;connecting quarter sections to the adhesive layer such that an interface between a rectangular seed portion and a curved wing portion of each quarter section is aligned with at least one of the alignment lines drawn on the adhesive layer; andslicing each of the quarter sections with a wire web to separate the rectangular seed portions from the curved wing portions, wherein the sliced rectangular seed portions are rectangular seeds.2. The method of claim 1 , wherein connecting an adhesive layer includes connecting double-sided adhesive film to the top surface of the template.3. The method of claim 1 , further comprising arranging the rectangular seeds in a directional solidification system (DSS) furnace.4. The method of claim 3 , wherein arranging the rectangular seeds in a DSS furnace includes arranging the rectangular seeds in a grid.5. The method of claim 1 , further comprising:positioning the sliced curved ...

Подробнее
10-09-2020 дата публикации

TWO-STAGE SEEDED GROWTH OF LARGE ALUMINUM NITRIDE SINGLE CRYSTALS

Номер: US20200283926A1
Принадлежит:

In various embodiments, growth of large, high-quality single crystals of aluminum nitride is enabled via a two-stage process utilizing two different crystalline seeds. 157.-. (canceled)58. A crystal assemblage comprising:a first seed crystal (i) comprising AlN, (ii) having a growth surface having an N polarity, and (iii) having a first diameter;a first single-crystal AlN boule extending from the growth surface of the first seed crystal, a diameter of at least a portion of the first boule exceeding the first diameter and increasing no more than approximately 2 mm for each 20 mm of axial length;a second seed crystal (i) comprising AlN, (ii) having a growth surface having an Al polarity, and (iii) having a second diameter greater than the first diameter; anda second single-crystal AlN boule extending from the growth surface of the second seed crystal, a diameter of at least a portion of the second boule exceeding the second diameter and increasing at least approximately 10 mm for each 20 mm of axial length.59. The crystal assemblage of claim 58 , wherein the second seed crystal was a portion of the first single-crystal AlN boule.60. The crystal assemblage of claim 58 , wherein a maximum diameter of the first boule does not exceed a transition diameter ranging from approximately 10 mm to approximately 40 mm.61. The crystal assemblage of claim 60 , wherein a minimum diameter of the second boule is no less than the transition diameter.62. The crystal assemblage of claim 58 , wherein a minimum diameter of the second boule is at least equal to a transition diameter ranging from approximately 10 mm to approximately 40 mm.63. The crystal assemblage of claim 58 , wherein the first diameter does not exceed a transition diameter ranging from approximately 10 mm to approximately 40 mm.64. The crystal assemblage of claim 63 , wherein the second diameter is no less than the transition diameter.65. The crystal assemblage of claim 58 , wherein the second diameter is at least equal to ...

Подробнее
18-10-2018 дата публикации

BONDING METHOD OF CRYSTAL BODY

Номер: US20180298522A1
Принадлежит:

To improve the production yield rate of a synthesis corundum cell superior in translucency, chemical resistance or an optical component comprising calcium fluoride. On the other end side of synthetic corundum piece, spacer intervenes between the surfaces which will be bonded. The spacer is crushed flat by pressure force which effects the other end side of synthetic corundum piece in the case of heat-treatment after the temporary bonding. Thereby, the spacer does not disturb the synthetic optical contacting or chemical pressurized fusion bonding state of corundum piece. 1. An bonding method of the crystal body piece , put the surfaces of the pieces of the crystal body such as synthetic corundum (Al2O3) , calcium fluoride (CaF2)or magnesium fluoride (MgF2) which will be bonded together to each other , strongly press the one end side of two pieces of the crystal body pieces with the condition of putting together , generate an interference fringe between the surfaces put together , dissipate the interference fringe between the surfaces put together by heating the crystal body pieces at a temperature less than the melting point of the crystal body in this state , particularly , insert a minute spacer between the other end side of the crystal body pieces bonded together to each other , the minute spacer consists of material which can be crushed flat by the pressure force at the time of heating.2. In bonding method of the crystal body piece according to claim 1 , characterized in that the diameter of the spacer is 15-60 μm of fiber.3. In bonding method of the crystal body piece according to claim 1 , characterized in that the pressing part is only a part of the widthwise direction of the crystal body piece. The present invention relates to an bonding method of a crystal body such as synthetic corundum (Al2O3), calcium fluoride (CaF2) or magnesium fluoride (MgF2), synthetic corundum is used as the material of a flow-cell which is incorporated in a fine particle counter ...

Подробнее
15-12-2016 дата публикации

CALCIUM FLUORIDE MEMBER, METHOD FOR PRODUCING SAME, AND METHOD FOR PRESSURE-BONDING CALCIUM FLUORIDE CRYSTAL

Номер: US20160362814A1
Принадлежит: NIKON CORPORATION

The calcium fluoride member includes a first member made from monocrystalline calcium fluoride and a second member made from monocrystalline or polycrystalline calcium fluoride. The first member and the second member is pressure-bonded together to form the calcium fluoride member. 1. A calcium fluoride member , comprising:a first member made from monocrystalline calcium fluoride; anda second member made from monocrystalline or polycrystalline calcium fluoride,the first member and the second member being pressure-bonded together to form the calcium fluoride member.2. The calcium fluoride member according to claim 1 , wherein the second member is made from monocrystalline calcium fluoride.3. The calcium fluoride member according to claim 1 , wherein the calcium fluoride member is used as a member for constituting a light source.4. The calcium fluoride member according to claim 3 , wherein the member for constituting the light source is a gas sealing container that includes a spherical shell in which a gas is sealed therein.5. The calcium fluoride member according to claim 3 , wherein the member for constituting the light source is a gas sealing container in which a gas is sealed therein claim 3 , the gas sealing container including a first cylinder in which the gas is sealed therein and a flange that is pressure-bonded to an end of the first cylinder in an axial direction of the first cylinder claim 3 , the first cylinder being included as the first member and the flange being included as the second member.6. The calcium fluoride member according to claim 1 , wherein the calcium fluoride member is a cylinder-shaped member claim 1 , and a flow path for circulating a coolant is formed inside a peripheral wall portion of the cylinder-shaped member.7. The calcium fluoride member according to claim 6 ,wherein the cylinder-shaped member is a gas sealing container in which a gas is sealed therein,the gas sealing container includes a first cylinder as the first member and a ...

Подробнее
14-12-2017 дата публикации

TECHNIQUES FOR FORMING OPTOELECTRONIC DEVICES

Номер: US20170358704A1
Принадлежит:

Embodiments relate to use of a particle accelerator beam to form thin films of material from a bulk substrate are described. In particular embodiments, a bulk substrate having a top surface is exposed to a beam of accelerated particles. In certain embodiments, this bulk substrate may comprise GaN; in other embodiments this bulk substrate may comprise (111) single crystal silicon. Then, a thin film or wafer of material is separated from the bulk substrate by performing a controlled cleaving process along a cleave region formed by particles implanted from the beam. In certain embodiments this separated material is incorporated directly into an optoelectronic device, for example a GaN film cleaved from GaN bulk material. In some embodiments, this separated material may be employed as a template for further growth of semiconductor materials (e.g. GaN) that are useful for optoelectronic devices. 1. A workpiece for formation of an optoelectronic device , the workpiece comprising:a layer of crystalline material having a lattice constant compatible with formation of an overlying film of semiconductor material; anda substrate releasably bonded to a first surface of the layer of crystalline material opposite to a second surface of the layer of crystalline material, the second surface being coarse from cleaving and whereupon the overlying film of semiconductor material is to be formed,wherein the substrate has a coefficient of thermal expansion approximately equal to a coefficient of thermal expansion of the layer of crystalline material.2. The workpiece as in wherein the layer of crystalline material exhibits a level of stress lower than a threshold value sufficient to nucleate and propagate defects within the layer of crystalline material.3. The workpiece as in wherein mismatch between the substrate and the layer of crystalline material develops the level of stress insufficient to generate more than about 1×10defects/cm.4. The workpiece as in wherein mismatch between the ...

Подробнее
27-12-2018 дата публикации

METHOD FOR ASSEMBLING SEMICONDUCTOR NANOCRYSTALS

Номер: US20180374700A1
Принадлежит: Universiteit Van Amsterdam

A method for assembling semiconductor nanocrystals including: providing a binary system including semiconductor nanocrystals with an effective particle diameter of at most 20 nm, a first and a second solvent, the system having: a Ta, which is the temperature at which aggregation starts, a Ts, which is the solvent separation temperature of the system, an aggregation temperature range between Ta and Ts with Ta being included and Ts not, a homogeneous temperature range which is below Ta when Ta is lower than Ts and which is above Ta when Ta is higher than Ts, a heterogeneous temperature range which is above Ts when Ta is lower than Ts and below Ts when Ta is higher than Ts, and, bringing the temperature of the binary system from a value in the homogeneous temperature range to a value in the aggregation temperature range, thereby causing formation of an aggregate of the nanocrystals. 1. Method for assembling semiconductor nanocrystals comprising:providing a binary system comprising semiconductor nanocrystals with an effective particle diameter of at most 20 nm, a first solvent, and a second solvent, a Ta, which is the temperature of the system at which aggregation starts to take place,', 'a Ts, which is the solvent separation temperature of the system,', 'an aggregation temperature range, which is the range between Ta and Ts with Ta being included and Ts not being included,', 'a homogeneous temperature range which is below Ta when Ta is lower than Ts and which is above Ta when Ta is higher than Ts,', 'a heterogeneous temperature range which is above Ts when Ta is lower than Ts and below Ts when Ta is higher than Ts,, 'the system having'}and,bringing the temperature of the binary system from a value in the homogeneous temperature range to a value in the aggregation temperature range, thereby causing formation of an aggregate of said semiconductor nanocrystals.2. Method according to claim 1 , wherein the semiconductor nanocrystals have an effective particle diameter below ...

Подробнее
21-12-2007 дата публикации

Friction welding of a single crystal component to a second component with minimisation of in plane friction and forge forces

Номер: WO2007144557A1
Автор: Simon Edward Bray
Принадлежит: ROLLS-ROYCE PLC

A blade member (10) is oscillated in the direction of arrow A-A relative to a rim (12) of a disc (14). A forge force is applied radially and a weld is formed along line (16). The blade member (10) is formed from a face centred cubic (FCC) nickel based single crystal alloy, such as CMSX-4 of Cannon-Muskegon Corporation. The orientation of the single crystal blade member (10) is controlled to maximise the stress on the (111) slip plane. By maximising the stress on the (111) slip plane the in-plane friction forces and the forge force are minimised. Minimising the in-plane forces enables the single crystal blade member (10) to be successfully welded to the rim (12) of the disc (14).

Подробнее
11-08-2016 дата публикации

Wafer manufacturing method

Номер: DE102016201780A1
Принадлежит: Disco Corp

Es wird ein Wafer-Herstellungsverfahren zum Herstellen eines hexagonalen Einkristall-Wafers aus einem hexagonalen Einkristall-Ingot offenbart. Das Wafer-Herstellungsverfahren umfasst einen Trennstartpunktausbildungsschritt mit einem Einstellen des Brennpunkts eines Laserstrahls, der eine Transmissionswellenlänge für den Ingot aufweist, auf eine von der oberen Fläche des Ingots aus vorbestimmte Tiefe im Inneren des Ingots. Der Trennstartpunktausbildungsschritt schließt einen ersten Schritt mit einem Ausbilden des Trennstartpunkts mit einer ersten Leistung und einen zweiten Schritt mit einem Einstellen des Brennpunkts auf die modifizierte Schicht, die zuvor in dem ersten Schritt ausgebildet wird, und dann einem Aufbringen des Laserstrahls auf den Ingot mit einer zweiten Leistung, die höher ist als die erste Leistung, bei einer erhöhten Wiederholfrequenz in dem Zustand ein, in dem die Energie pro Puls des Laserstrahls die gleiche ist wie die in dem ersten Schritt, wodurch die Risse von der modifizierten Schicht getrennt werden. There is disclosed a wafer manufacturing method for producing a hexagonal single crystal wafer from a hexagonal single crystal ingot. The wafer manufacturing method includes a separation start point forming step of adjusting the focal point of a laser beam having a transmission wavelength for the ingot to a predetermined depth in the interior of the ingot from the top surface of the ingot. The separation start point forming step includes a first step of forming the separation start point with a first power and a second step of adjusting the focus on the modified layer previously formed in the first step and then applying the laser beam to the ingot with a second one Power higher than the first power at an increased repetition frequency in the state where the energy per pulse of the laser beam is the same as that in the first step, thereby separating the cracks from the modified layer.

Подробнее
17-11-2022 дата публикации

Substrate for an electronic device and method for producing the same

Номер: US20220367188A1
Принадлежит: Shin Etsu Handotai Co Ltd

The present invention is a substrate for an electronic device, including a nitride semiconductor film formed on a joined substrate including a silicon single crystal, where the joined substrate has at least a bond wafer including a silicon single crystal joined on a base wafer including a silicon single crystal, the base wafer includes CZ silicon having a resistivity of 0.1 Ωcm or lower and a crystal orientation of <100>, and the bond wafer has a crystal orientation of <111>. This provides a substrate for an electronic device, having a suppressed warp.

Подробнее
21-06-2022 дата публикации

碳化硅衬底

Номер: CN111433394B
Автор: 冲田恭子, 本家翼
Принадлежит: Sumitomo Electric Industries Ltd

本发明满足规定的数学表达式,其中ν 0 代表指示与具有4H多型并且具有零应力的碳化硅的拉曼光谱的纵向光分支的折叠模式相对应的峰的波数,ν max 代表指示与从第一主表面到第二主表面的区域中的碳化硅衬底的拉曼光谱的纵向光分支的折叠模式相对应的峰的波数的最大值,ν min 代表指示与从第一主表面到第二主表面的区域中的碳化硅衬底的拉曼光谱的纵向光分支的折叠模式相对应的峰的波数的最小值,并且ν 1 代表指示与在第一主表面处的碳化硅衬底的拉曼光谱的纵向光分支的折叠模式相对应的峰的波数。

Подробнее
06-07-1999 дата публикации

半導体材料の溶接方法

Номер: JPH11179565A
Принадлежит: KOMATSU LTD

(57)【要約】 【課題】 非常に脆く、溶接することが不可能であると 考えられていたSi等の半導体材料を、高エネルギ密度 熱源を用いることでその溶接を可能にし、半導体材料の 加工自由度を向上する。 【解決手段】 高エネルギ密度熱源を利用することによ り、非常に弱いエネルギで局所を加熱、溶融させること により、トータル入熱を抑制し、Si等の半導体材料へ の熱衝撃を緩和しながら、その溶融部を徐々に拡大し、 所定の溶接部を実現する。所定の出力まで、エネルギ出 力を漸増、漸減することにより、急激な温度分布形成に よる熱応力起因の亀裂を抑止する。溶接前に600℃以 上の予熱を施しておくことが好ましい。また同種材料に より成る溶加材1を添加しながら溶接を行う。

Подробнее
12-12-2017 дата публикации

Cutting elements of drill bit with fixed cutters containing hard cutting plates made of synthetic diamonds formed by chemical vapour deposition

Номер: RU2638220C2
Принадлежит: Нэшнл Ойлвэл Дхт, Л.П.

FIELD: mining engineering. SUBSTANCE: method of forming a single crystal cutting element for the drill bit with fixed cutters includes transformation of graphite powder into diamond powder chemically precipitated from vapour phase (CVD); growing a plurality of CVD single crystal diamonds on a substrate, wherein said multiple CVD diamond single crystals are grown in orientation along a crystallographic plane, each CVD single crystal diamond of a plurality of CVD single crystal diamonds has a rectangular prismatic shape with sides width in the range from 10 to 20 um; removing at least a portion of the CVD single crystal diamonds from the substrate; transformation of the removed CVD single crystaldiamonds into powder of CVD single crystal diamonds; placing the powder of CVD single crystal diamonds and a tungsten carbide support element into a mould and thermomechanical treatment of the powder of CVD single crystal diamonds in a mould for forming a solid plate of CVD single crystal diamonds attached to the tungsten carbide support element. EFFECT: increasing the strength of the resulting structure at high temperatures and pressures. 14 cl, 6 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (51) МПК E21B 10/567 C30B 25/00 C30B 29/04 C23C 16/27 (11) (13) 2 638 220 C2 (2006.01) (2006.01) (2006.01) (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (21)(22) Заявка: 2015119799, 18.11.2013 (24) Дата начала отсчета срока действия патента: 18.11.2013 (72) Автор(ы): ЧЖАНЬ Годун (US), НИКСОН Майкл С. (US) (73) Патентообладатель(и): НЭШНЛ ОЙЛВЭЛ ДХТ, Л.П. (US) Дата регистрации: (56) Список документов, цитированных в отчете о поиске: EP 0419087 A1, 27.03.1991. RU Приоритет(ы): (30) Конвенционный приоритет: 21.11.2012 US 61/728,920 (45) Опубликовано: 12.12.2017 Бюл. № 35 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 22.06.2015 (86) Заявка PCT: US 2013/070512 (18.11.2013) (87) Публикация заявки PCT: 2 6 3 8 2 2 0 (43) Дата публикации ...

Подробнее
21-04-2014 дата публикации

복합 기판, 그 제조 방법, 13족 원소 질화물로 이루어진 기능층의 제조 방법 및 기능 소자

Номер: KR20140047050A
Принадлежит: 엔지케이 인슐레이터 엘티디

본 발명의 복합 기판(10)은, 사파이어 기판(1A), 사파이어 기판의 표면에 형성된 질화갈륨 결정으로 이루어진 종결정막(4) 및 이 종결정막(4) 상에 결정 성장시킨 두께 200 ㎛ 이하의 질화갈륨 결정층(7)을 포함한다. 사파이어 기판(1A)과 종결정막(4)의 계면에는 보이드(3)가 형성되어 있고, 이 보이드 비율은 4.5%∼12.5%이다.

Подробнее
22-04-2022 дата публикации

微波加热制备复合薄膜的方法、复合薄膜及电子元器件

Номер: CN114381808A
Принадлежит: Jinan Jingzheng Electronics Co Ltd

本申请公开微波加热制备复合薄膜的方法、复合薄膜及电子元器件,包括:对单晶晶圆执行离子注入处理,采用的注入离子为极性离子,获得包含余质层、极性注入层和薄膜层三层结构的单晶晶圆注入片;在与所述单晶晶圆预匹配的非同质衬底晶圆的其中一面制作绝缘层得到衬底晶圆;将所述单晶晶圆注入片与所述衬底晶圆的绝缘层键合,得到键合界面含有极性分子的键合体;对所述键合体使用微波发生器执行预设工艺参数的加热处理,直至所述极性注入层与所述薄膜层分离,得到剥离所述余质层后的单晶压电复合薄膜;所述预设工艺参数包括:加热所述键合体至预设温度,并保持预设时长。采用上述制备方法,避免复合薄膜某一层或整体断裂,降低复合薄膜的生产成本。

Подробнее
16-08-2012 дата публикации

Production method for monocrystalline substrate and production method for monocrystalline member with modified layer formed therein

Номер: WO2012108054A1

 比較的大きくて薄い単結晶基板を容易に製造することができる単結晶基板製造方法および内部改質層形成単結晶部材を提供することを課題とする。レーザ光(B)を出射するとともに単結晶部材(10)の屈折率に起因する収差を補正する集光レンズ(15)を、単結晶部材(10)上に非接触に配置する工程と、単結晶部材(10)の表面(10t)にレーザ光を照射して単結晶部材内部にレーザ光を集光する工程と、集光レンズ(15)と単結晶部材(10)とを相対的に移動させて、単結晶部材(10)の内部に、2次元状の改質層(12)を形成する工程と、改質層(12)により分断されてなる単結晶層を改質層(12)から剥離することで単結晶基板を形成する工程と、を有する。

Подробнее
06-10-2016 дата публикации

Generation of physical modifications by means of LASER inside a solid

Номер: DE102015004347A1
Автор: Jan Richter, Marko Swoboda
Принадлежит: SILTECTRA GmbH

Die vorliegende Erfindung bezieht sich auf ein Verfahren zum Erzeugen einer physischen Modifikation, insbesondere eines Gitterdefekts oder zum lokalen Verändern der Festigkeit, in einem Festkörper, insbesondere einem Ingot oder einem Wafer. Das erfindungsgemäße Verfahren umfasst mindestens die Schritte: – Bereitstellen des zu behandelnden Festkörpers (2), – Bereitstellen einer Strahlungsquellenanordnung (4) zum Erzeugen von mindestens einem Lichtstrahl (6), – Bereitstellen einer Optik (8), wobei die Optik (8) mindestens zwei Umlenkelemente (10, 12) zum Umlenken von Lichtstrahlanteilen (16, 18) aufweist, – Erzeugen und Emittieren mindestens eines Lichtstrahls (6) durch die Strahlungsquellenanordnung (4), – Umlenken zumindest zweier voneinander verschiedener Lichtstrahlanteile (16, 18) des emittierten Lichtstrahls (6) mittels der Umlenkelemente (10, 12), wobei die Lichtstrahlanteile (16, 18) derart umgelenkt werden, dass sie in den Festkörper (2) eindringen und wobei die voneinander verschiedenen umgelenkten Lichtstrahlanteile (16, 18) in einem Fokus (20) innerhalb des Festkörpers (2) zusammentreffen und die physische Modifikation (1), insbesondere in Form eines Gitterdefekts, durch die im Fokus (2) zusammentreffenden Lichtstrahlenanteile (16, 18) erzeugt wird. The present invention relates to a method for producing a physical modification, in particular a lattice defect or for locally changing the strength, in a solid, in particular an ingot or a wafer. The method according to the invention comprises at least the following steps: provision of the solid to be treated (2), provision of a radiation source arrangement (4) for generating at least one light beam (6), provision of optics (8), the optics (8) at least two deflection elements (10, 12) for deflecting light beam portions (16, 18), - generating and emitting at least one light beam (6) by the radiation source arrangement (4), - deflecting at least two mutually different light beam portions (16, 18) of the emitted ...

Подробнее
14-02-2018 дата публикации

Ring-shaped member manufacturing method and ring-shaped member

Номер: JP6278498B1
Автор: 敦 碇, 智 藤井

【課題】複数のシリコン部材を接合したリング状部材の製造方法及びリング状部材を提供する。【解決手段】基板にプラズマ処理をする基板処理装置の前記基板が収容される処理室内に設置するリング状部材32の製造方法であって、一のシリコン部材34の一の突き合わせ面と、他のシリコン部材36の他の突き合わせ面とが、突き合わされるように配置する工程と、前記一の突き合わせ面と前記他の突き合わせ面とを光加熱により加熱し、一の突き合わせ面の表面のシリコンと他の突き合わせ面の表面のシリコンとを融解し、一の突き合わせ面と他の突き合わせ面との間にシリコン融解物が流れ込むようにする工程と、前記一の突き合わせ面と前記他の突き合わせ面とを冷却し、前記シリコン融解物を結晶化させてシリコン接着部を形成し、一のシリコン部材32と他のシリコン部材34とを前記シリコン接着部を介して接合する工程とを含むことを特徴とする。【選択図】図2 A method of manufacturing a ring-shaped member in which a plurality of silicon members are joined and a ring-shaped member are provided. A method of manufacturing a ring-shaped member 32 installed in a processing chamber in which a substrate of a substrate processing apparatus for performing plasma processing on a substrate is accommodated, wherein one butted surface of one silicon member 34 and another The step of arranging the other butted surfaces of the silicon member 36 so as to be butted together, the one butted surface and the other butted surface are heated by light heating, and the silicon on the surface of the one butted surface and the other Melting the silicon on the surface of the butt surface so that the silicon melt flows between the butt surface and the other butt surface, and cooling the one butt surface and the other butt surface Then, the silicon melt is crystallized to form a silicon bonding portion, and one silicon member 32 and another silicon member 34 are bonded via the silicon bonding portion. Characterized by comprising and. [Selection] Figure 2

Подробнее
24-01-2022 дата публикации

Wafer producing method

Номер: KR102354661B1
Принадлежит: 가부시기가이샤 디스코

본 발명은, 잉곳으로부터 효율적으로 웨이퍼를 생성할 수 있는 웨이퍼의 생성 방법을 제공하는 것을 목적으로 한다. 육방정 단결정 잉곳으로부터 웨이퍼를 생성하는 웨이퍼의 생성 방법으로서, 육방정 단결정 잉곳에 대하여 투과성을 갖는 파장의 레이저 빔을 조사하여, 잉곳의 표면에 평행한 개질층 및 상기 개질층으로부터 신장되는 크랙을 형성하여 분리 기점을 형성하는 분리 기점 형성 단계를 포함한다. 분리 기점 형성 단계는, 표면의 수선에 대하여 c축이 오프각만큼 기울고, 표면과 c면 사이에 오프각이 형성되는 방향과 직교하는 방향으로 레이저 빔의 집광점을 상대적으로 이동시켜 직선형의 개질층을 형성하는 개질층 형성 단계를 포함한다. 개질층 형성 단계는, 레이저 빔의 편광면을 가공 방향에 맞춰 레이저 빔을 조사한다. An object of the present invention is to provide a wafer production method capable of efficiently producing a wafer from an ingot. A method of producing a wafer for producing a wafer from a hexagonal single crystal ingot, by irradiating a laser beam with a wavelength having a transmittance to the hexagonal single crystal ingot to form a modified layer parallel to the surface of the ingot and cracks extending from the modified layer and a separation origin forming step of forming a separation origin. In the separation origin forming step, the c-axis is inclined by the off angle with respect to the normal to the surface, and the converging point of the laser beam is relatively moved in a direction orthogonal to the direction in which the off angle is formed between the surface and the c-plane, thereby forming a straight reformed layer. It includes a modified layer forming step to form a. In the reforming layer forming step, the laser beam is irradiated by matching the polarization plane of the laser beam in the processing direction.

Подробнее
02-07-2008 дата публикации

Single-crystal-like materials

Номер: EP1641965A4
Принадлежит: Rutgers State University of New Jersey

Подробнее
01-10-2013 дата публикации

Hybrid silicon wafer and method for manufacturing same

Номер: KR101313486B1

실리콘 웨이퍼로서, 다결정의 소결 실리콘 웨이퍼 중에 단결정 웨이퍼가 매립된 구조를 구비하고 있는 것을 특징으로 하는 하이브리드 실리콘 웨이퍼. 다결정 소결 실리콘의 일부를 도려내고, 이 도려낸 부분에 단결정 잉곳을 삽입하고, 이들을 HIP 에 의해 상호 가열 확산 접합시켜, 다결정의 소결 실리콘과 단결정 실리콘 잉곳의 복합체를 제조하고, 이 복합체를 슬라이스하여 다결정의 소결 실리콘 웨이퍼 중에 단결정 웨이퍼가 매립된 구조를 갖는 하이브리드 실리콘 웨이퍼의 제조 방법. 다결정 실리콘 웨이퍼와 단결정 웨이퍼의 쌍방의 기능을 구비한 하이브리드 실리콘 웨이퍼 및 그 제조 방법을 제공하는 것을 과제로 한다. A silicon wafer comprising a structure in which a single crystal wafer is embedded in a polycrystalline sintered silicon wafer. A part of the polycrystalline sintered silicon is cut out, a single crystal ingot is inserted into the cut out portion, and they are mutually heat-diffused and bonded by HIP to prepare a composite of the polycrystalline sintered silicon and the single crystal silicon ingot, and the composite is sliced to A method for producing a hybrid silicon wafer having a structure in which a single crystal wafer is embedded in the sintered silicon wafer. An object of the present invention is to provide a hybrid silicon wafer having a function of both a polycrystalline silicon wafer and a single crystal wafer, and a method of manufacturing the same.

Подробнее
26-02-2020 дата публикации

Wafer generation method

Номер: JP6654435B2
Принадлежит: Disco Corp

Подробнее
10-01-2017 дата публикации

DRILL BIT CUTTING CUTTING ELEMENTS WITH ATTACHED CUTTERS CONTAINING SOLID CUTTING PLATES COMPLETED FROM SYNTHETIC DIAMONDS FORMED BY CHEMICAL DEPOSITION FROM VAPOR PHASE

Номер: RU2015119799A
Принадлежит: Нэшнл Ойлвэл Дхт, Л.П.

РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2015 119 799 A (51) МПК E21B 10/46 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2015119799, 18.11.2013 (71) Заявитель(и): НЭШНЛ ОЙЛВЭЛ ДХТ, Л.П. (US) Приоритет(ы): (30) Конвенционный приоритет: 21.11.2012 US 61/728,920 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 22.06.2015 R U (43) Дата публикации заявки: 10.01.2017 Бюл. № 01 (72) Автор(ы): ЧЖАН Гудун (US), НИКСОН Майкл С. (US) (86) Заявка PCT: (87) Публикация заявки PCT: WO 2014/081654 (30.05.2014) R U (54) РЕЖУЩИЕ ЭЛЕМЕНТЫ БУРОВОГО ДОЛОТА С ЗАКРЕПЛЕННЫМИ РЕЗЦАМИ, СОДЕРЖАЩИЕ ТВЕРДЫЕ РЕЖУЩИЕ ПЛАСТИНЫ, ВЫПОЛНЕННЫЕ ИЗ СИНТЕТИЧЕСКИХ АЛМАЗОВ, СФОРМИРОВАННЫХ ХИМИЧЕСКИМ ОСАЖДЕНИЕМ ИЗ ПАРОВОЙ ФАЗЫ (57) Формула изобретения 1. Способ формирования монокристаллического элемента, включающий: (a) преобразование графитового порошка в CDV алмазный порошок; (b) выращивание множества CDV алмазных монокристаллов на подложке, причем указанное множество CDV алмазных монокристаллов выращивают с ориентацией вдоль кристаллографической плоскости [100]; (c) удаление по меньшей мере части CVD алмазных монокристаллов с подложки после этапа (b); (d) преобразование удаленных CVD алмазных монокристаллов в CVD алмазный монокристаллический порошок; (e) помещение CVD алмазного монокристаллического порошка и опорного элемента из карбида вольфрама в литейную форму и (f) термомеханическую обработку CVD алмазного монокристаллического порошка в литейной форме для формирования твердой CVD алмазной монокристаллической пластины, прикрепленной к опорному элементу из карбида вольфрама. 2. Способ по п. 1, в котором подложка содержит катализатор, а этап (b) включает инициирование роста указанного множества CDV алмазных монокристаллов с помощью этого катализатора. 3. Способ по п. 2, в котором подложка является штырем. Стр.: 1 A 2 0 1 5 1 1 9 7 9 9 A Адрес для переписки: 190000, Санкт-Петербург, BOX-1125, "ПАТЕНТИКА" 2 0 1 5 1 1 9 7 9 9 US ...

Подробнее
29-07-2020 дата публикации

Method of making composite substrate from sic

Номер: RU2728484C2

FIELD: manufacturing technology. SUBSTANCE: invention relates to the technology of producing a composite substrate of SiC with a monocrystalline SiC layer on a polycrystalline SiC substrate, which can be used in production of powerful semiconductor devices: diodes with Schottky barrier, pin-diodes, pin-diodes, field-effect transistors and bipolar transistors with isolated gate (IGBT), used for supply control at high temperatures, frequencies and power levels, and at growing of gallium nitride, diamond and nano-carbon thin films. Method of producing a composite SiC substrate containing a monocrystalline SiC layer on a polycrystalline SiC substrate comprises the steps of: providing a monocrystalline substrate of SiC 12s, providing a support substrate of Si 21, forming a region of ion implantation 12i in a monocrystalline substrate of SiC 12s, connection of the ion implantation region 12i of the monocrystalline substrate from SiC 12s on one side of Si 21 support substrate to form bonded substrate 13, lamination of substrate 13 in area of ion implantation 12i to form monocrystalline SiC 12 layer on support substrate 21 to produce carrier 14 of monocrystalline SiC 12 layer, heating carrier 14 of monocrystalline SiC 12 layer to a temperature lower than 1414 °C and depositing thereon a portion of polycrystalline SiC 11a substrate with thickness t 1 of at least 30 mcm, to obtain layered structure 15a, heating carrier of obtained layer structure 15a to temperature of 1414 °C or higher and additional deposition of polycrystalline SiC 11b substrate to thickness t equal to 100–650 mcm, using a chemical vapor deposition process to form layer structure 15, when melting at least a portion of support substrate 21, cooling obtained structure 15 and physical and/or chemical removal of support substrate 21 to obtain composite substrate of SiC 10. EFFECT: invention enables to obtain a composite substrate of SiC with a monocrystalline SiC layer, having good crystallinity and weak ...

Подробнее
02-08-2016 дата публикации

Large area, low-defect gallium-containing nitride crystals, method of making, and method of use

Номер: US9404197B2
Принадлежит: Soraa Inc

An ultralow defect gallium-containing nitride crystal and methods of making ultralow defect gallium-containing nitride crystals are disclosed. The crystals are useful as substrates for light emitting diodes, laser diodes, transistors, photodetectors, solar cells, and photoelectrochemical water splitting for hydrogen generators.

Подробнее
03-04-2012 дата публикации

Nitride crystal with removable surface layer and methods of manufacture

Номер: US8148801B2
Автор: Mark P. D&#39;Evelyn
Принадлежит: Soraa Inc

A nitride crystal or wafer with a removable surface layer comprises a high quality nitride base crystal, a release layer, and a high quality epitaxial layer. The release layer has a large optical absorption coefficient at wavelengths where the base crystal is substantially transparent and may be etched under conditions where the nitride base crystal and the high quality epitaxial layer are not. The high quality epitaxial layer may be removed from the nitride base crystal by laser liftoff or by chemical etching after deposition of at least one epitaxial device layer. The nitride crystal with a removable surface layer is useful as a substrate for a light emitting diode, a laser diode, a transistor, a photodetector, a solar cell, or for photoelectrochemical water splitting for hydrogen generation.

Подробнее
12-06-2019 дата публикации

Semiconductor substrate manufacturing method

Номер: EP3101160B1
Принадлежит: Sumitomo Chemical Co Ltd

Подробнее
21-12-2016 дата публикации

The generation method of wafer

Номер: CN106239751A
Автор: 平田和也
Принадлежит: Disco Corp

提供晶片的生成方法,经济性地生成晶片。晶片的生成方法从c面露出于上表面且具有与c面垂直的c轴的六方晶单晶锭生成具有α的偏离角的晶片,具有如下的步骤:支承步骤,隔着楔角度为α的楔状部件利用支承工作台对六方晶单晶锭进行支承而使上表面相对于水平面倾斜偏离角α;改质层形成步骤,将对于六方晶单晶锭具有透过性的波长的激光束的聚光点定位在距上表面的第1深度,在与形成有偏离角α的第2方向垂直的第1方向上使聚光点和六方晶单晶锭相对地移动而对上表面照射激光束,在六方晶单晶锭的内部形成直线状的第1改质层和从第1改质层沿着c面延伸的第1裂纹;和转位步骤,使聚光点在第2方向上相对地移动而转位进给规定的量。

Подробнее
30-08-2022 дата публикации

Method for forming SiC crystal ingot

Номер: CN109807693B
Автор: 平田和也, 酒井敏行
Принадлежит: Disco Corp

本发明提供一种高效地成型出SiC晶锭的SiC晶锭的成型方法。本发明的SiC晶锭的成型方法包括下述工序:保持工序,利用卡盘工作台(14)对从SiC晶锭生长基台(2)切割得到的原始SiC晶锭(4)的切割面(6)进行保持;平坦化工序,对卡盘工作台(14)所保持的原始SiC晶锭(4)的端面(8)进行磨削而将其平坦化;c面检测工序,从平坦化后的端面(8’)对原始SiC晶锭(4)的c面进行检测;第一端面形成工序,对平坦化后的端面(8’)进行磨削,形成相对于c面以偏离角α倾斜的第一端面(8”);以及第二端面形成工序,利用卡盘工作台(14)对第一端面(8”)进行保持并对原始SiC晶锭(4)的切割面(6)进行磨削,以与第一端面(8”)平行的方式形成第二端面(6’)。

Подробнее
20-06-2008 дата публикации

PLATE OF LARGE DIAMETER MADE OUT OF SiC AND METHOD OF ITS FABRICATION

Номер: RU2327248C2

FIELD: metallurgy. SUBSTANCE: invention refers to a SiC plate with an outer diameter of six inches and to a method of its fabrication. To achieve that a polycrystalline SiC is being grown from at least one side of a small diameter plate surface made out of a mono crystalline α-SiC up to a dimension when its outer diameter corresponds to a manipulation device of an existing line for semiconductors fabrication; and than the polycrystalline SiC received out of the mono crystalline SiC on the surface of the plate is ground to achieve the SiC of a bigger diameter with a double structure where the polycrystalline SiC has been grown around the outer periphery of the smaller diameter plate out of the mono crystalline α-SiC. EFFECT: economise fabrication of a semiconducting device on the base of a SiC an existing line of devices fabrication on the base of SiC is used so as to achieve the possibility to manipulate the plate of a smaller diameter made out of SiC. 5 cl, 4 dwg ÐÎÑÑÈÉÑÊÀß ÔÅÄÅÐÀÖÈß (19) RU (11) 2 327 248 (13) C2 (51) ÌÏÊ H01L 21/205 (2006.01) ÔÅÄÅÐÀËÜÍÀß ÑËÓÆÁÀ ÏÎ ÈÍÒÅËËÅÊÒÓÀËÜÍÎÉ ÑÎÁÑÒÂÅÍÍÎÑÒÈ, ÏÀÒÅÍÒÀÌ È ÒÎÂÀÐÍÛÌ ÇÍÀÊÀÌ (12) ÎÏÈÑÀÍÈÅ ÈÇÎÁÐÅÒÅÍÈß Ê ÏÀÒÅÍÒÓ (21), (22) Çà âêà: 2005103611/28, 30.06.2003 (72) Àâòîð(û): ÍÈÑÈÍÎ Ñèãåõèðî (JP), ÌÓÐÀÒÀ Êàöóòîñè (JP) (24) Äàòà íà÷àëà îòñ÷åòà ñðîêà äåéñòâè ïàòåíòà: 30.06.2003 (43) Äàòà ïóáëèêàöèè çà âêè: 10.07.2005 R U (73) Ïàòåíòîîáëàäàòåëü(è): ÌÈÖÓÈ ÈÍÄÆÈÍÈÐÈÍà ÝÍÄ ØÈÏÁÈËÄÈÍà ÊÎ. ËÒÄ. (JP) (30) Êîíâåíöèîííûé ïðèîðèòåò: 11.07.2002 JP 2002-202953 (45) Îïóáëèêîâàíî: 20.06.2008 Áþë. ¹ 17 2 3 2 7 2 4 8 (56) Ñïèñîê äîêóìåíòîâ, öèòèðîâàííûõ â îò÷åòå î ïîèñêå: ÅÐ 0916750 À1, 19.05.1999. JP 10055975 A, 24.02.1998. RU 2154698 Ñ2, 20.08.2000. US 5746827 À, 05.05.1998. US 6110279 À, 29.08.2000. JP 2000012462 À, 14.01.2000. JP 2002053395 À, 19.02.2002. RU 2100870 Ñ1, 27.12.1997. (86) Çà âêà PCT: JP 03/08312 (30.06.2003) C 2 C 2 (85) Äàòà ïåðåâîäà çà âêè PCT íà íàöèîíàëüíóþ ôàçó: 11.02.2005 R U 2 3 2 7 2 4 8 (87) Ïóáëèêàöè PCT: WO ...

Подробнее
16-09-2015 дата публикации

Welding method of single crystal alloy

Номер: JP5780700B2
Принадлежит: Rolls Royce PLC

Подробнее
13-08-2015 дата публикации

Techniques for forming optoelectronic devices

Номер: JP2015523712A

粒子加速器ビームを使用してバルク基板から材料の薄いフィルムを形成することに関する。特定の実施形態では、上面を有するバルク基板を加速粒子のビームに曝露する。ある実施形態ではこのバルク基板はGaNを含んでおり、他の実施形態ではこのバルク基板は(111)単結晶シリコンを含んでいる。そして、ビームから注入された粒子によって形成された分割領域に沿って、制御された分割プロセスを実行することにより、材料の薄いフィルム又はウェハをバルク基板から分離する。ある実施形態では、この分離された材料、例えばGaNバルク材料から分割されたGaNフィルムを、光電子工学デバイスに直接組み込む。いくつかの実施形態ではこの分離した材料を、光電子工学デバイスに使用できる半導体材料(例えばGaN)の更なる成長のためのテンプレートとして使用してもよい。【選択図】図4

Подробнее
11-08-2017 дата публикации

Chip generation method

Номер: CN107030905A
Автор: 平田和也
Принадлежит: Disco Corp

本发明提供晶片的生成方法,能够从钽酸锂锭高效率地生成晶片并减少被舍弃的锭的量。一种晶片生成方法,从钽酸锂锭生成晶片,该晶片生成方法包含从具有与Y轴平行地形成的定向平面的42°旋转Y切锭即钽酸锂锭的端面将对于钽酸锂具有透过性的波长的激光束的聚光点定位在锭内部而进行照射并一边对锭进行加工进给一边在锭内部形成改质层的工序、以及对锭施加外力而将板状物从锭剥离从而生成晶片的工序。在形成改质层的工序中,在与定向平面平行或垂直的方向上对锭进行相对地加工进给。

Подробнее
10-07-2020 дата публикации

Composite sic-substrate and method of its production

Номер: RU2726283C2

FIELD: production of composite materials.SUBSTANCE: disclosed is a method of producing a composite SiC substrate, having a substrate of polycrystalline SiC and a layer of monocrystalline SiC on it, comprising steps of in which form a thin film of monocrystalline SiC on one main surface of the carrier substrate, mechanically processing the surface of the thin monocrystalline SiC film to impart roughness and removing defects caused by machining to form a monocrystalline SiC layer, having a surface that is more rough than the surface of the layer adjacent to the support substrate, wherein the rough surface is composed of the inclined surface segments, which are randomly oriented relative to direction of perpendicular to surface of layer adjacent to bearing substrate, depositing polycrystalline SiC on the rough surface of the monocrystalline SiC layer by a chemical vapor deposition method, thereby forming a polycrystalline SiC substrate, in which close-packed planes of polycrystalline SiC crystals are randomly oriented relative to the direction of the perpendicular to the surface of the monocrystalline SiC layer adjacent to the carrier substrate, and then carrying carrier is physically and/or chemically removed.EFFECT: present invention improves adhesion between a polycrystalline SiC substrate and a monocrystalline SiC layer without creation of any defects of the crystallographic structure in the layer of monocrystalline SiC and without the need for an intermediate layer between the substrate of polycrystalline SiC and the layer of monocrystalline SiC.8 cl, 11 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 726 283 C2 (51) МПК H01L 21/20 (2006.01) H01L 21/02 (2006.01) C23C 16/32 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК H01L 21/20 (2020.02); H01L 21/02 (2020.02); C23C 16/32 (2020.02) (21)(22) Заявка: 2018113268, 08.09.2016 (24) Дата начала отсчета срока действия патента: Дата регистрации: (73) ...

Подробнее
16-09-2022 дата публикации

Composite substrate and method for manufacturing composite substrate

Номер: KR102444516B1

〈과제〉 본 발명의 목적은 Li량의 불균일이 적은 압전체층과 지지 기판을 포함하여 구성되는 복합 기판의 제조 방법을 제공하는 것이다. 〈해결 수단〉 본 발명의 복합 기판의 제조 방법은, 압전체 기판에 이온 주입을 행하는 공정과, 압전체 기판과 지지 기판을 접합하는 공정과, 압전체 기판과 지지 기판을 접합하는 공정 후에, 압전체 기판의 이온 주입되는 깊이 위치에 있어서, 지지 기판에 접합된 압전체층과 나머지 압전체 기판으로 분리하는 공정과, 이 분리하는 공정 후에, 압전체층에 Li을 확산시키는 공정을 포함하는 것을 특징으로 하는 것이다. <assignment> It is an object of the present invention to provide a method for manufacturing a composite substrate comprising a piezoelectric layer with little variation in the amount of Li and a support substrate. <Solution> In the method for manufacturing a composite substrate of the present invention, after the step of implanting ions into the piezoelectric substrate, the step of bonding the piezoelectric substrate and the support substrate, and the step of bonding the piezoelectric substrate and the support substrate, the depth position at which the piezoelectric substrate is implanted is characterized in that it includes a step of separating the piezoelectric layer bonded to the support substrate and the remaining piezoelectric substrate, and a step of diffusing Li into the piezoelectric layer after the separation step.

Подробнее
28-02-2019 дата публикации

Laser processing device

Номер: DE102018214619A1
Автор: Haruki Kamiyama
Принадлежит: Disco Corp

Ein durch einen Laseroszillator oszillierter Laserstrahl wird durch einen Kondensor gebündelt. Der Kondensor weist auf: eine konkave Linse; eine konvexe Linse, die mit einem vorbestimmten Abstand von der konkaven Linse angeordnet ist und bei einer Position angeordnet ist, sodass eine Aberration eines Brennpunkts in der Atmosphäre null ist; und einen Aktuator, der eine Aberration bei dem Brennpunkt in der Atmosphäre durch Verändern des Abstands der konvexen Linse in Bezug auf die konkave Linse erzeugt. Der Aktuator erzeugt die Aberration in der Atmosphäre, sodass die Aberration des Brennpunkts im Inneren eines Werkstücks null ist. A laser beam oscillated by a laser oscillator is condensed by a condenser. The condenser comprises: a concave lens; a convex lens disposed at a predetermined distance from the concave lens and disposed at a position such that an aberration of a focus in the atmosphere is zero; and an actuator that generates an aberration at the focal point in the atmosphere by changing the distance of the convex lens with respect to the concave lens. The actuator generates the aberration in the atmosphere, so that the aberration of the focal point inside a workpiece is zero.

Подробнее
04-02-2015 дата публикации

Techniques for forming optoelectronic devices

Номер: KR20150013134A
Принадлежит: 실리콘 제너시스 코포레이션

벌크 기판으로부터 물질의 박막을 형성하기 위해 입자 가속기 빔을 사용하는 것과 관련된 실시예들이 개시된다. 특정 실시예들에서, 최상면을 갖는 벌크 기판은 가속된 입자들의 빔에 노출된다. 몇몇 실시예들에서, 이 벌크 기판은 GaN을 포함할 수 있고, 다른 실시예들에서는 (111) 단결정 실리콘을 포함할 수 있다. 그리고, 상기 빔으로부터 주입된 입자들에 의해 형성된 클리빙 영역을 따라 통제된 클리빙 프로세스를 수행함으로써 상기 벌크 기판으로부터 물질의 웨이퍼 또는 박막이 분리된다. 몇몇 실시예에서는, 이러한 분리된 물질이 광전자 디바이스로 직접 편입된다(예컨대, GaN 벌크 물질로부터 클리빙된 GaN 필름). 몇몇 실시예들에서, 이러한 분리된 물질은, 광전자 디바이스에 유용한 반도체 물질(예컨대, GaN)의 추가적인 성장을 위한 템플릿으로서 채용될 수 있다.

Подробнее
25-02-2020 дата публикации

Patent RU2018113268A3

Номер: RU2018113268A3
Автор:
Принадлежит:

ВИ“? 2018113268” АЗ Дата публикации: 25.02.2020 Форма № 18 ИЗ,ПМ-2011 Федеральная служба по интеллектуальной собственности Федеральное государственное бюджетное учреждение ж 5 «Федеральный институт промышленной собственности» (ФИПС) ОТЧЕТ О ПОИСКЕ 1. . ИДЕНТИФИКАЦИЯ ЗАЯВКИ Регистрационный номер Дата подачи 2018113268/28(020775) 08.09.2016 РСТ/ЛР2016/076361 08.09.2016 Приоритет установлен по дате: [ ] подачи заявки [ ] поступления дополнительных материалов от к ранее поданной заявке № [ ] приоритета по первоначальной заявке № из которой данная заявка выделена [ ] подачи первоначальной заявки № из которой данная заявка выделена [ ] подачи ранее поданной заявки № [Х] подачи первой(ых) заявки(ок) в государстве-участнике Парижской конвенции (31) Номер первой(ых) заявки(ок) (32) Дата подачи первой(ых) заявки(ок) (33) Код страны 1. 2015-180637 14.09.2015 ]Р Название изобретения (полезной модели): [Х] - как заявлено; [ ] - уточненное (см. Примечания) КОМПОЗИТНАЯ 51С-ПОДЛОЖКА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ Заявитель: СИН-ЭЦУ КЕМИКАЛ КО., ЛТД., Р, КУСИК ИНК., ]Р 2. ЕДИНСТВО ИЗОБРЕТЕНИЯ [Х] соблюдено [ ] не соблюдено. Пояснения: см. Примечания 3. ФОРМУЛА ИЗОБРЕТЕНИЯ: [Х] приняты во внимание все пункты (см. Примечания) [ ] приняты во внимание следующие пункты: [ ] принята во внимание измененная формула изобретения (см. Примечания) 4. КЛАССИФИКАЦИЯ ОБЪЕКТА ИЗОБРЕТЕНИЯ (ПОЛЕЗНОЙ МОДЕЛИ) (Указываются индексы МПК и индикатор текущей версии) НОП. 21/20 (2006.01) НОП. 21/02 (2006.01) С23С 16/32 (2006.01) 5. ОБЛАСТЬ ПОИСКА 5.1 Проверенный минимум документации РСТ (указывается индексами МПК) НОТ. 21/20-21/205, 21/02, С23С 16/32 5.2 Другая проверенная документация в той мере, в какой она включена в поисковые подборки: 5.3 Электронные базы данных, использованные при поиске (название базы, и если, возможно, поисковые термины): ВУРАТЕМТЬЗ, ОУУРТ, Е-ГлЬгагу, ЕАРАТТЪ, ЕВЗСО, Езрасепе Соозе, Сооз]е Ржщепб, ]- Р]а{ Рав, КТРКХ, Г.ех15Мех15, РАТЕМТСОРЕ, Ра еагсь, Оцез{е]-Отфи, КОРТО, ОЗРТО 6. ...

Подробнее
21-06-2022 дата публикации

Method for splicing and growing diamond single crystal

Номер: CN113463192B

本发明的一种拼接生长金刚石单晶的方法属于金刚石单晶制备技术领域。以金刚石单晶作为籽晶,将2~25片籽晶拼接在一起得到金刚石单晶衬底,在拼接缝处通过磁控溅射或者真空镀膜溅射一层铱膜;利用微波等离子体化学气相沉积(MPCVD)设备在溅射铱膜的金刚石单晶衬底的表面外延生长完整的金刚石单晶外延层,得到金刚石单晶材料,生长面为(100)晶面。本发明提出了一种拼接生长金刚石单晶的新方法,得到高质量的大面积金刚石单晶片。

Подробнее
23-04-2014 дата публикации

Laser processing method

Номер: JP5480169B2
Принадлежит: Hamamatsu Photonics KK

Подробнее
01-12-2017 дата публикации

For the cutting method for the ingot casting for manufacturing solar cell

Номер: CN104380436B
Принадлежит: SunPower Corp

本发明描述了用于制造太阳能电池的铸锭的切割方法以及所述方法所用的铸锭和夹具。在一个实例中,铸锭的切割方法包括直接用切割装置的夹具夹持所述铸锭的一部分。所述铸锭被部分切割以形成从所述铸锭的未切割部分突出的多个晶片部分。进一步切割所述铸锭,以将所述多个晶片部分与所述未切割部分分离,从而提供多个分立晶片。

Подробнее
10-07-2005 дата публикации

PLATE OF LARGE DIAMETER FROM SIC AND METHOD FOR ITS MANUFACTURE

Номер: RU2005103611A

ÐÎÑÑÈÉÑÊÀß ÔÅÄÅÐÀÖÈß (19) RU (51) ÌÏÊ 7 (11) 2005 103 611 (13) A H 01 L 25/00 ÔÅÄÅÐÀËÜÍÀß ÑËÓÆÁÀ ÏÎ ÈÍÒÅËËÅÊÒÓÀËÜÍÎÉ ÑÎÁÑÒÂÅÍÍÎÑÒÈ, ÏÀÒÅÍÒÀÌ È ÒÎÂÀÐÍÛÌ ÇÍÀÊÀÌ (12) ÇÀßÂÊÀ ÍÀ ÈÇÎÁÐÅÒÅÍÈÅ (21), (22) Çà âêà: 2005103611/28, 30.06.2003 (71) Çà âèòåëü(è): ÌÈÖÓÈ ÈÍÄÆÈÍÈÐÈÍà ÝÍÄ ØÈÏÁÈËÄÈÍà ÊÎ., ËÒÄ. (JP) (30) Ïðèîðèòåò: 11.07.2002 JP 2002-202953 (43) Äàòà ïóáëèêàöèè çà âêè: 10.07.2005 Áþë. ¹ 19 (86) Çà âêà PCT: JP 03/08312 (30.06.2003) (74) Ïàòåíòíûé ïîâåðåííûé: Åãîðîâà Ãàëèíà Áîðèñîâíà Àäðåñ äë ïåðåïèñêè: 129010, Ìîñêâà, óë. Á.Ñïàññêà , 25, ñòð.3, ÎÎÎ "Þðèäè÷åñêà ôèðìà Ãîðîäèññêèé è Ïàðòíåðû", ïàò.ïîâ. Ã.Á. Åãîðîâîé R U Ôîðìóëà èçîáðåòåíè 1. Ïëàñòèíà áîëüøîãî äèàìåòðà èç SiC, äèàìåòð êîòîðîé óâåëè÷åí çà ñ÷åò äâîéíîé ñòðóêòóðû, â êîòîðîé ïîëèêðèñòàëëè÷åñêèé SiC âûðàùåí äî ðàçìåðà, ñîîòâåòñòâóþùåãî óñòðîéñòâó ìàíèïóëèðîâàíè ñóùåñòâóþùåé ëèíèè èçãîòîâëåíè ïîëóïðîâîäíèêîâ, âîêðóã âíåøíåé ïåðèôåðèè ïëàñòèíû ìàëîãî äèàìåòðà èç ìîíîêðèñòàëëè÷åñêîãî α-SiC. 2. Ïëàñòèíà áîëüøîãî äèàìåòðà èç SiC ïî ï.1, â êîòîðîé ðàçìåùåíû ïî ìåíüøåé ìåðå äâå èëè áîëåå óïîì íóòûõ ïëàñòèíû ìàëîãî äèàìåòðà èç ìîíîêðèñòàëëè÷åñêîãî α-SiC. 3. Ïëàñòèíà áîëüøîãî äèàìåòðà èç SiC ïî ï.1, â êîòîðîé óïîì íóòûé ïîëèêðèñòàëëè÷åñêèé SiC ïðåäñòàâë åò ñîáîé β -SiC, ïîëó÷åííûé ìåòîäîì ÕÎÏÔ. 4. Ïëàñòèíà áîëüøîãî äèàìåòðà èç SiC ïî ï.1, â êîòîðîé óïîì íóòûé ïîëèêðèñòàëëè÷åñêèé SiC èìååò âûñîêóþ îòðàæàòåëüíóþ ñïîñîáíîñòü ïî îòíîøåíèþ ê ñâåòîâîìó èçëó÷åíèþ ëàçåðà äë îáíàðóæåíè ïëàñòèíû. 5. Ñïîñîá èçãîòîâëåíè ïëàñòèíû áîëüøîãî äèàìåòðà èç SiC, âêëþ÷àþùèé â ñåá ñòàäèè, íà êîòîðûõ âûðàùèâàþò ïîëèêðèñòàëëè÷åñêèé SiC ñ îäíîé ñòîðîíû ïîâåðõíîñòè ïëàñòèíû ìàëîãî äèàìåòðà èç ìîíîêðèñòàëëè÷åñêîãî α-SiC òàêèì îáðàçîì, ÷òîáû ïîëó÷èòü ðàçìåð ïî íàðóæíîìó äèàìåòðó, ñîîòâåòñòâóþùèé óñòðîéñòâó ìàíèïóëèðîâàíè ñóùåñòâóþùåé ëèíèè èçãîòîâëåíè ïîëóïðîâîäíèêîâ, à çàòåì øëèôóþò óïîì íóòûé ïîëèêðèñòàëëè÷åñêèé SiC íà óïîì íóòîé ïîâåðõíîñòè ïëàñòèíû èç ìîíîêðèñòàëëè÷åñêîãî α-SiC ñ ïîëó÷åíèåì SiC óâåëè÷åííîãî äèàìåòðà ñ äâîéíîé ñòðóêòóðîé, â ...

Подробнее
27-09-2006 дата публикации

Welding method

Номер: RU2284251C2

FIELD: welding and surfacing, namely forming melt surfaced part on main material, possibly monocrystalline or crystalline material produced by directional crystallization, restoration processes of defective zone of main material, joining methods of main material with additional one, restoration of turbine blades, air-jet engines and other machines of similar designation. SUBSTANCE: welding is realized for forming on main material large number of surfaced portions while keeping preliminarily set gaps between adjacent surfaced portions. Then surfaced portions are formed in each gap. Main material is monocrystal received by directional crystallization. Surfaced portion is formed in direction normal to crystal growth direction of main material. At joining additional material with main, crystalline or monocrystalline material, all said operations are realized. At restoring, defective portion of cast metal is removed and respective concave portion is formed on surface of cast metal and it is filled with surfacing metal. EFFECT: improved strength of surfaced parts due to elimination of cracking. 23 cl, 23 dwg ÐÎÑÑÈÉÑÊÀß ÔÅÄÅÐÀÖÈß (19) RU (11) 2 284 251 (13) C2 (51) ÌÏÊ B23K 9/00 B23K 9/04 B23P 6/04 (2006.01) (2006.01) (2006.01) ÔÅÄÅÐÀËÜÍÀß ÑËÓÆÁÀ ÏÎ ÈÍÒÅËËÅÊÒÓÀËÜÍÎÉ ÑÎÁÑÒÂÅÍÍÎÑÒÈ, ÏÀÒÅÍÒÀÌ È ÒÎÂÀÐÍÛÌ ÇÍÀÊÀÌ (12) ÎÏÈÑÀÍÈÅ ÈÇÎÁÐÅÒÅÍÈß Ê ÏÀÒÅÍÒÓ (21), (22) Çà âêà: 2004133863/02, 19.11.2004 (72) Àâòîð(û): ÑÈÌÎÕÀÒÀ Ñàòèî (JP), ÌÅÃÀ Ìàñàõèêî (JP), ÊÈÑÈ Êèìèõèðî (JP), ÊÀÒÀßÌÀ Ñåéäçè (JP) (24) Äàòà íà÷àëà îòñ÷åòà ñðîêà äåéñòâè ïàòåíòà: 19.11.2004 (73) Ïàòåíòîîáëàäàòåëü(è): ÌÈÖÓÁÈÑÈ ÕÅÂÈ ÈÍÄÀÑÒÐÈÇ, ËÒÄ. (JP) (43) Äàòà ïóáëèêàöèè çà âêè: 10.05.2006 R U (30) Êîíâåíöèîííûé ïðèîðèòåò: 21.11.2003 JP 2003-392694 (45) Îïóáëèêîâàíî: 27.09.2006 Áþë. ¹ 27 2 2 8 4 2 5 1 (56) Ñïèñîê äîêóìåíòîâ, öèòèðîâàííûõ â îò÷åòå î ïîèñêå: US 5071059 A, 10.12.1991. JP 2000102866 A, 11.04.2000. JP 2003-053533 A, 26.02.2003. RU 2196672 C1, 20.01.2003. US 4633554 A, 06.06.1987. JP 57-181765 A, 09.11.1982. SU ...

Подробнее
05-08-2021 дата публикации

METHOD FOR PRODUCING SiC WAFER

Номер: KR102287126B1
Автор: 가즈야 히라타
Принадлежит: 가부시기가이샤 디스코

(과제) 단결정 SiC 잉곳으로부터 경제적으로 웨이퍼를 생성할 수 있는 웨이퍼 생성 방법을 제공한다. (해결 수단) SiC 웨이퍼의 생성 방법으로서, 잉곳 (2) 의 단면을 평탄화하는 단면 평탄화 공정과, 단결정 SiC 에 대해 투과성을 갖는 파장의 레이저 광선 (LB) 의 집광점 (FP) 을 잉곳 (2) 의 단면으로부터 생성해야 할 SiC 웨이퍼의 두께에 상당하는 깊이에 위치시키고 잉곳 (2) 에 레이저 광선 (LB) 을 조사하여 웨이퍼를 박리하는 박리층 (42) 을 형성하는 박리층 형성 공정과, 박리층 (42) 이 형성된 잉곳 (2) 의 단면에 접착제를 개재하여 하드 플레이트 (44) 를 배치 형성하는 하드 플레이트 배치 형성 공정과, 하드 플레이트 (44) 와 함께 잉곳 (2) 의 박리층 (42) 으로부터 SiC 웨이퍼 (58) 를 박리하는 박리 공정을 포함한다. (Project) To provide a wafer production method capable of economically producing a wafer from a single crystal SiC ingot. (Solution Means) As a method of producing a SiC wafer, a cross-section planarization step of flattening the cross-section of the ingot 2, and a converging point FP of a laser beam LB having a wavelength having transparency to single-crystal SiC are formed in the ingot 2 A release layer forming step of forming a release layer 42 for peeling the wafer by irradiating the ingot 2 with a laser beam LB at a depth corresponding to the thickness of the SiC wafer to be produced from the cross section of the release layer; A hard plate arrangement forming step of disposing a hard plate 44 through an adhesive on the end face of the ingot 2 on which the 42 is formed, and the hard plate 44 together with the release layer 42 of the ingot 2 A peeling step of peeling the SiC wafer 58 is included.

Подробнее
24-02-2022 дата публикации

SOI wafer and its manufacturing method

Номер: JP7024668B2
Автор: 祥泰 古賀
Принадлежит: Sumco Corp

Подробнее
10-06-2019 дата публикации

Method for attaching seed for growing single crystal

Номер: KR20190063677A
Автор: 구갑렬, 김정규, 최정우
Принадлежит: 에스케이씨 주식회사

실시예는 단결정 성장용 종자정 부착 방법에 관한 것으로, 실시예에 따른 단결정 성장용 종자정 부착 방법은 종자정을 종자정 홀더에 부착할 때 접착제를 사용함으로써 생기는 기포를 제거하기 위해 진공하(일정한 진공도 유지)에서 필름을 사용하여 종자정 및 종자정 홀더의 얼라인을 둘러싸서 패키징함으로써 종자정이 종자정 홀더로부터 미끄러지거나 이탈되는 것을 방지할 수 있다. 나아가, 미세한 크기의 기포를 제거 및 크랙 발생을 방지할 수 있다. 또한, 진공하에서 열처리하여 건조 및 경화 단계를 수행함으로써 기화되는 용매까지도 제거할 수 있으므로, 종자정의 이탈 방지 및 잉곳의 품질을 향상시킬 수 있다.

Подробнее