• Главная
  • ELECTROCHROMIC ELEMENT AND PRODUCTION METHOD THEREOF, ELECTROCHROMIC LIGHT-ADJUSTING ELEMENT, ELECTROCHROMIC LIGHT-ADJUSTING LENS, AND ELECTROCHROMIC DEVICE

ELECTROCHROMIC ELEMENT AND PRODUCTION METHOD THEREOF, ELECTROCHROMIC LIGHT-ADJUSTING ELEMENT, ELECTROCHROMIC LIGHT-ADJUSTING LENS, AND ELECTROCHROMIC DEVICE

Реферат: An electrochromic element including: a laminated body including a support formed of a resin, a first electrode layer, an electrochromic layer, and a second electrode layer, the support, the first electrode layer, the electrochromic layer, and the second electrode layer being disposed in the laminated body in this order; and a gel electrolyte disposed between the first electrode layer and the second electrode layer, wherein a phase separation temperature of the gel electrolyte is higher than a softening point of the support.

Заявка: 1. An electrochromic element comprising:a laminated body including a support formed of a resin, a first electrode layer, an electrochromic layer, and a second electrode layer, the support, the first electrode layer, the electrochromic layer, and the second electrode layer being disposed in the laminated body in this order; anda gel electrolyte disposed between the first electrode layer and the second electrode layer,wherein a phase separation temperature of the gel electrolyte is higher than a softening point of the support.2. The electrochromic element according to claim 1 ,wherein the laminated body further includes a deterioration preventing layer between the first electrode layer and the second electrode layer.3. The electrochromic element according to claim 1 ,wherein the gel electrolyte includes a binder resin, andthe binder resin includes a urethane resin unit.4. The electrochromic element according to claim 1 ,wherein the gel electrolyte includes a binder resin, andthe binder resin includes at least one selected from the group consisting of a polyethylene oxide (PEO) chain and a polymethyl methacrylate (PMMA) chain.5. The electrochromic element according to claim 1 ,wherein a solid content of the gel electrolyte is 50% by mass or less.6. The electrochromic element according to claim 1 ,wherein the gel electrolyte includes an ionic liquid.7. The electrochromic element according to claim 6 ,wherein the gel electrolyte includes the ionic liquid in an amount of 50% by mass or more.8. The electrochromic element according to claim 1 ,wherein the phase separation temperature of the gel electrolyte is 160° C. or higher.9. The electrochromic element according to claim 1 ,wherein a difference between the phase separation temperature of the gel electrolyte and the softening point of the support is 10° C. or higher.10. The electrochromic element according to claim 1 ,wherein the softening point of the support is 200° C. or lower.11. The electrochromic element according to claim 1 ,wherein the support includes at least one selected from the group consisting of a polycarbonate resin, a polyethylene terephthalate resin, a polymethyl methacrylate resin, a urethane resin, a polyolefin resin, and a polyvinyl alcohol resin.12. The electrochromic element according to claim 1 ,wherein the gel electrolyte is a layered gel electrolyte layer, and a thickness of the layered gel electrolyte layer is 30 μm or more but 150 μm or less.13. The electrochromic element according to claim 1 ,wherein the laminated body includes an optical lens on at least one surface of the laminated body.14. The electrochromic element according to claim 1 ,wherein the laminated body has a desired curved surface formed through thermoforming.15. A method for producing the electrochromic element according to claim 1 , the method comprising:subjecting the laminated body produced to thermoforming so as to have a desired curved surface shape; andforming an optical lens on the laminated body.16. The method for producing the electrochromic element according to claim 15 ,wherein a heating temperature in the thermoforming is equal to or higher than the softening point of the support of the laminated body.17. An electrochromic light-adjusting element comprising{'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, 'the electrochromic element according to .'}18. An electrochromic light-adjusting lens comprising:{'claim-ref': {'@idref': 'CLM-00017', 'claim 17'}, 'the electrochromic light-adjusting element according to .'}19. An electrochromic device comprising{'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, 'the electrochromic element according to .'}20. The electrochromic device according to claim 19 ,wherein the electrochromic device is light-adjusting spectacles, an active ND filter for a camera, binoculars, opera glasses, cycling goggles, a clock, a watch, electronic paper, an electronic album, an electronic decoration member, or an electronic advertisement board.

Описание: The present application claims priority under 35 U.S.C. § 119 to Japanese Patent Application No. 2019-217187 filed Nov. 29, 2019, and Japanese Patent Application No. 2020-064004 filed Mar. 31, 2020. The contents of which are incorporated herein by reference in their entirety.The present disclosure relates to an electrochromic element, a method for producing the electrochromic element, an electrochromic light-adjusting element, an electrochromic light-adjusting lens, and an electrochromic device.Electrochromism is a phenomenon where a redox reaction reversely occurs by application of voltage to reversibly change a color. An element utilizing the electrochromism is an electrochromic element. The electrochromic element has characteristics that high transparency is achieved, and high coloring density can be achieved once the electrochromic element is colored. Therefore, application of the electrochromic element as a light-adjusting element is expected.Moreover, a film-like electrochromic element can be produced by using a resin substrate as a base material. Such an electrochromic element can produce an electrochromic element that can be bent or can have a three-dimensional shape.One example of a field in which application of the aforementioned electrochromic element is particularly expected is a light-adjusting lens for spectacles. The conventional light-adjusting lenses are generally photochromic lenses that develop colors through ultraviolet rays (for example, see Japanese Translation of PCT International Application Publication No. JP-T-2005-514647). However, because color changes by light, there were problems that a user cannot adjust color, automobiles that block ultraviolet rays have a decreased effect of coloring, and the response time is long.When a light-adjusting lens to which an electrochromic element is applied can be achieved, these problems are considered to be overcome. Therefore, many researches and developments have been performed so far. For example, a spectacle lens on which an electrochromic element is directly formed has been proposed (see, for example, Japanese Unexamined Patent Application Publication No. 07-175090).A problem to apply an electrochromic element to a lens for spectacles is productivity. The lens for spectacles has the following problems. Specifically, adjustment of a film formation process is required because the lens for spectacles is different in a curved surface shape of the lens depending on strength required by a wearer, which makes stable production difficult. Moreover, when an electrochromic element is directly formed on an optical lens, it is necessary to repeatedly subject an expensive lens as a substrate to the vacuum film formation or the wet coating several times, resulting in high cost at the time of occurrence of defects.An electrochromic element, which has a desired curved surface obtained by subjecting a plane-shaped electrochromic element to thermoforming and has an optical lens on one surface of the electrochromic element, has been proposed (see, for example, Japanese Unexamined Patent Application Publication No. 2018-10106). An electrochromic element suitable for such a process can be produced in the following manner. Specifically, a resin substrate is used as a support. After an electrochromic material is formed between two electrodes facing each other, and they are pasted with each other via an electrolyte layer that can conduct ions, to form the electrochromic element. Then, the electrochromic element is inserted between a concave mold and a convex mold that are heated to a temperature near the softening point or the glass transition temperature of the resin substrate, and is subjected to thermoforming, which makes it possible to process electrochromic element so as to have a curved surface shape or a three-dimensional shape. As a method for forming a lens, a method where an electrochromic element is embedded in a melted resin for a lens, followed by curing, and a method where an electrochromic element is directly pasted on a lens are proposed. According to the methods, it is possible to achieve production of a wide variety of lenses having a high degree of freedom in size at low cost in a small-lot production.According to one aspect of the present disclosure, an electrochromic element includes: a laminated body including a support formed of a resin, a first electrode layer, an electrochromic layer, and a second electrode layer, the support, the first electrode layer, the electrochromic layer, and the second electrode layer being disposed in the laminated body in this order; and a gel electrolyte disposed between the first electrode layer and the second electrode layer. A phase separation temperature of the gel electrolyte is higher than a softening point of the support.An electrochromic element of the present disclosure includes: a laminated body including a support formed of a resin, a first electrode layer, an electrochromic layer, and a second electrode layer, the support, the first electrode layer, the electrochromic layer, and the second electrode layer being disposed in the laminated body in this order; and a gel electrolyte disposed between the first electrode layer and the second electrode layer. A phase separation temperature of the gel electrolyte is higher than a softening point of the support. The electrochromic element may further include other layers according to the necessity.The present disclosure has an object to provide an electrochromic element that can prevent phase separation of a gel electrolyte caused by thermoforming.The present disclosure can provide an electrochromic element that can prevent phase separation of a gel electrolyte caused by thermoforming.The conventional techniques have the following problems. Specifically, an electrolyte layer used in an electrochromic element has poor heat resistance. When heat of a temperature equal to or higher than a certain temperature is applied thereto, phase separation of a liquid component and a solid component in the electrolyte layer occurs, which deteriorates reliability of a device. In addition, occurrence of optical distortion and exfoliation deteriorates optical quality. Moreover, in order to form a desired curved surface shape through thermoforming, a temperature near a softening point of a resin substrate or a temperature higher than the softening temperature is applied, thus-caused problems may significantly occur. The present disclosure is based on these findings.In the present disclosure, the softening point of the support means a temperature at which a resin constituting the support starts to deform.The softening point of the support can be determined in the following manner. Specifically, heat is applied to a support with a penetration probe using a TMA (thermomechanical analysis) device (available from KOBELCO Research Institute), and a displacement amount of a resin constituting the support is measured to determine the softening point.In the present disclosure, the phase separation temperature of the gel electrolyte means a temperature at which the gel electrolyte is separated into a matrix polymer and a liquid. In the present disclosure, a gel electrolyte is particularly formed, and a state that a liquid floats on the surface of the gel electrolyte layer at the time of heating is observed, and its temperature is regarded as a “phase separation temperature”. When heating is performed at a temperature exceeding the phase separation temperature of the gel electrolyte of the electrochromic element, the liquid in the element flows actively. Therefore, adhesion at an interface between the gel electrolyte and the electrochromic layer, adhesion at an interface between the gel electrolyte and the electrode, or adhesion at an interface between the gel electrolyte and the protective layer is decreased, which may cause problems such as occurrence of optical distortion and exfoliation. These problems may occur significantly when the electrochromic element is heated at a temperature near the softening point of a resin substrate or a temperature higher than the softening temperature. Therefore, increasing the phase separation temperature of the gel electrolyte prevents these problems and can enhance the reliability of an element.The phase separation temperature of the gel electrolyte is measured in the following manner. Specifically, a gel electrolyte layer is placed on a hot plate and is heated. At that time, the film surface is visually observed, and a temperature at the time when a liquid is generated on the surface of the gel electrolyte layer is measured, which is regarded as the phase separation temperature.According to an embodiment of the present disclosure, the laminated body preferably has a desired curved surface shape formed by thermoforming.As the thermoforming, such a method that a laminated body is heated and molded using a convex mold and a concave mold having a desired 3D shape without fixing ends of a support. Moreover, the thermoforming and vacuum forming may be performed in combination.The “desired curved surface shape” is a shape formed of a curved surface having a curvature. Examples of the desired curved surface shape include spherical shapes, cylindrical shapes, cone shapes, and various three-dimensional (3D) shapes. Note that, at least part of the laminated body may include the “desired curved surface shape”, or the whole laminated body may include the “desired curved surface shape”.In the thermoforming step, heating is preferably performed at a temperature near a softening point of a material constituting the support or at a temperature higher than the softening temperature. At this time, it was found that the problems of the phase separation of the gel electrolyte in the thermoforming step can be solved when a phase separation temperature of a gel electrolyte is higher than a softening point of the material of the support.According to an embodiment of the present disclosure, the gel electrolyte preferably includes a binder resin that will be described later, and the binder resin preferably includes a urethane resin unit. When the binder resin includes a urethane resin unit, a phase separation temperature of the gel electrolyte can be significantly increased. Moreover, physical properties required for the gel electrolyte, such as improvement of strength of a film, can be achieved.According to an embodiment of the present disclosure, the gel electrolyte preferably includes a binder resin that will be described later, and the binder resin preferably includes at least one selected from the group consisting of a polyethylene oxide (PEO) chain and a polymethyl methacrylate (PMMA) chain. This makes it possible to enhance affinity with an electrolyte that is a liquid and to increase the phase separation temperature. Moreover, the phase separation temperature can be increased by using the urethane resin unit in combination.According to an embodiment of the present disclosure, a solid content of the gel electrolyte is preferably 50% by mass or less, and more preferably 40% by mass or less. When the solid content of the gel electrolyte is 50% or less, ion conductivity can be sufficiently increased, and thus response time of a resulting electrochromic element can be shortened. The lower limit of the solid content of the gel electrolyte is about 10% by mass in terms of a phase separation temperature of the gel electrolyte.According to an embodiment of the present disclosure, the gel electrolyte preferably includes an ionic liquid. Because the ionic liquid is a material that is stable in a wide temperature range and is nonvolatile and chemically stable, reliability of the resulting electrochromic element can be improved. Moreover, a thermally stable gel electrolyte having a high phase separation temperature can be obtained by mixing the ionic liquid with the urethane resin unit. Moreover, a thermally stable gel electrolyte having a high phase separation temperature can be obtained by mixing the ionic liquid with a resin including a polyethylene oxide (PEO) chain or a polymethyl methacrylate (PMMA) chain.A phase separation temperature of the gel electrolyte is preferably 160° C. or higher, and more preferably 200° C. or higher. When the phase separation temperature of the gel electrolyte is 160° C. or higher, the temperature at the time of thermoforming can become higher. Therefore, a degree of freedom in selecting the material of the base material can be increased. The upper limit of the phase separation temperature of the gel electrolyte is about 250° C. in terms of heat resistance of, for example, the electrochromic layer.A softening point of the support is preferably 200° C. or lower, and more preferably 160° C. or lower. This makes it possible to prevent deterioration of the electrochromic material or the gel electrolyte binder contained in the electrochromic element by application of heat. The lower limit of the softening point of the support is about 100° C. in terms of stability on practical use, including stability in a storage environment.A difference between the phase separation temperature of the gel electrolyte and the softening point of the support is preferably 10° C. or higher, and more preferably 20° C. or higher. When the difference between the phase separation temperature of the gel electrolyte and the softening point of the support is 50° C. or higher, high reproducibility by a mold can be achieved through thermoforming. The upper limit of the difference between the phase separation temperature of the gel electrolyte and the softening point of the support is about 80° C. in terms of freedom in selecting a material of the support and prevention of deterioration of the electrochromic material.In the electrochromic element, the support is preferably a support formed of a resin. When a laminated body where each layer is formed on the resin substrate having a plane shape is subjected to thermoforming, a desired curved surface shape is formed. Therefore, it is possible to provide an electrochromic element excellent in productivity of formation of a coating film.Moreover, the support preferably includes at least one selected from the group consisting of a polycarbonate resin, a polyethylene terephthalate resin, a polymethyl methacrylate resin, a urethane resin, a polyolefin resin, and a polyvinyl alcohol resin. Among them, a polycarbonate resin, a polyethylene terephthalate resin, and a polymethyl methacrylate resin are preferable in terms of moldability and film formability of a coating film.In the case where the gel electrolyte is formed into a layered gel electrolyte layer, a thickness of the gel electrolyte layer is preferably 30 μm or more but 150 μm or less. When a thickness of the gel electrolyte layer falls within the range, it is difficult to decrease optical quality due to film thickness nonuniformity at time when the gel electrolyte layer is cured and shrunk, and it is difficult to cause such a problem that the cost of materials of the gel electrolyte layer becomes high. In addition, short circuit between electrodes of the electrochromic element hardly occurs, which improves reliability.In the present disclosure, an optical lens is preferably disposed on at least one surface of the laminated body. This makes it possible to provide an electrochromic element that has a strong mechanical strength and a desired curved surface shape through thermoforming, and is suitable for optical applications such as lenses.The optical lens may be formed on one surface of the laminated body, or may be formed so as to embed the laminated body.The optical lens preferably includes at least one transparent material selected from the group consisting of a polycarbonate resin, an allyl diglycol carbonate resin, a diallyl carbonate resin, a diallyl phthalate-based resin, a urethane resin, a thiourethane resin, an episulfide resin, a (meth)acrylate resin, and a cycloolefin resin. Among them, a polycarbonate resin, a thiourethane resin, and an allyl diglycol carbonate resin are preferable in terms of mechanical strength.An optical lens can be adhesively formed by curing the transparent material again after melting so that it is in contact with one surface of the laminated body or by applying light or heat thereto. Moreover, the laminated body and the optical lens may be attached together via an adhesive layer.A material of the adhesive layer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples of the material of the adhesive layer include transparent materials such as epoxy resins, urethane-based resins, acryl-based resins, and vinyl acetate-based resins. Among them, acryl-based resins are preferable.It is preferable that the support be disposed on the other surface of the laminated body in terms of scratch resistance.The electrochromic element includes at least one support. The electrochromic element may have a structure including one support, or may have a structure including two supports. When the electrochromic element includes one support, the cost of the members can be decreased.A method of the present disclosure for producing an electrochromic element is a method for producing the electrochromic element of the present disclosure. The method includes a step of subjecting the laminated body produced to thermoforming so as to have a desired curved surface shape; and a step of attaching an optical lens on the laminated body. The method further includes other steps if necessary.The thermoforming is suitably a method where a laminated body is heated and molded using a convex mold and a concave mold having a desired 3D shape without fixing ends of the support.A heating temperature in the thermoforming is preferably a temperature that is equal to or higher than a softening point of a material constituting the support. For example, when a polycarbonate resin as the support is used, the heating temperature is more preferably 130° C. or higher but 190° C. or lower.In the step of attaching the optical lens on the laminated body, so that a transparent material of the optical lens is in contact with one surface of the laminated body, the transparent material is melted, followed by curing again, or light or heat is applied thereto for curing, which makes it possible to adhesively form the optical lens. The laminated body and the optical lens can be attached to each other via an adhesive layer.In the method for producing the electrochromic element, the optical lens attached on the outer surface of the support preferably has a tentative strength and a tentative thickness. When the optical lens after attachment is subjected to cutting processing, a desired curved surface shape can be formed. Therefore, processing of a lens having a good precision (e.g., strength processing) according to users-specific conditions can be achieved. That is, it is not necessary to provide molds and members for each product shape, and it is easy to produce various kinds of products with high precision in a small lot production.Here, the embodiments will be described with reference to the drawings. In each drawing, the same components may be given to the same reference numerals, and the redundant description may be omitted., , and are each a schematic cross-sectional view presenting one example of an electrochromic element according to the first embodiment. is a schematic cross-sectional view illustrating an example of an electrochromic element obtained before thermoforming. is a schematic cross-sectional view illustrating an example of the electrochromic element obtained after thermoforming. is a schematic cross-sectional view illustrating an example of the electrochromic element obtained after a lens is attached thereto. Referring to , , and , the electrochromic element includes a first support , a first electrode layer , an electrochromic layer , a gel electrolyte layer , a second electrode layer , a second support , and a protective layer . The first electrode layer and the electrochromic layer are laminated in this order on the first support . The second electrode layer and the gel electrolyte layer , which is formed between the electrodes and facing each other, are laminated in this order on the second support . The protective layer seals peripheral parts.In the electrochromic element , the first electrode layer is disposed on the first support , and the electrochromic layer is disposed in contact with the first electrode layer . Above the electrochromic layer , the second electrode layer is disposed via the gel electrolyte layer so as to face the first electrode layer .For the sake of convenience, in each of the first electrode layer and the second electrode layer , surfaces facing each other are each referred to as “inner surface”, and a surface opposite to each inner surface is referred to as “outer surface”. In the present embodiment, the inner surface of the first electrode layer is in contact with the electrochromic layer , and the outer surface of the first electrode layer is in contact with the first support . The inner surface of the second electrode layer is in contact with the gel electrolyte layer , and the outer surface of the second electrode layer is in contact with the second support . The reference numeral and the reference numeral in , , and are a protective layer and an optical lens, respectively.A method for producing the electrochromic element of the first embodiment includes: a step of laminating, on the first support , the first electrode layer and the electrochromic layer in this order; a step of forming the second electrode layer on the second support ; a step of forming the gel electrolyte layer between the two supports, followed by curing, and sealing the peripheral parts with the protective layer ; and a step of forming a curved surface shape through thermoforming. The method further includes other steps if necessary.In addition, the method for producing electrochromic element of the first embodiment includes: a step of laminating, on the first support , the first electrode layer and the electrochromic layer in this order; a step of forming the gel electrolyte layer on the electrochromic layer , followed by curing, and laminating the second electrode layer ; a step of forming, on the second electrode layer , the second support formed of a curing resin; a step of sealing the peripheral parts with the protective layer ; and a step of forming a curved surface shape through thermoforming. The method further includes other steps if necessary.Note that, presents a view where the support at a side of the electrochromic layer is processed so as to have a convex spherical surface. However, it can be processed so as to have a concave spherical surface as well.In the electrochromic element , when voltage is applied between the first electrode layer and the second electrode layer , the electrochromic layer gives and receives electric charges to cause oxidation-reduction reaction, resulting in coloring and decoloring.As described above, in the electrochromic element according to the first embodiment, a curved surface having a desired 3D shape can be formed through thermoforming. Therefore, it is possible to provide an electrochromic element excellent in productivity (an increase in size).Moreover, when the electrochromic element according to the first embodiment includes an organic electrochromic material, an electrochromic element excellent in coloring characteristics can be achieved.Hereinafter, each component constituting the electrochromic element according to the first embodiment will be described in detail.The first support and the second support each have a function of supporting the first electrode layer , the electrochromic layer , the gel electrolyte layer , the second electrode layer , and the protective layer .As the first support and the second support , a conventional resin material that can be subjected to thermoforming can be used as it is, so long as each of the layers can be supported.As the first support and the second support , for example, a resin substrate such as a polycarbonate resin, a polyethylene terephthalate resin, a polymethyl methacrylate resin, a urethane resin, a polyolefin resin, or a polyvinyl alcohol resin may be used.When the electrochromic element is a reflective display element that is visually recognized from a side of the second electrode layer , either the first support or the second support does not need to have transparency. Moreover, a transparent insulating layer and a reflection preventing layer may be coated on the surfaces of the first support and the second support in order to enhance the water vapor barrier property, the gas barrier property, and the visibility.An average thickness of the first support and an average thickness of the second support are preferably 0.2 mm or more but 1.0 mm or less, because thermoforming is easily performed.A material of the first electrode layer and a material of the second electrode layer are suitably transparent conductive oxide materials. Examples thereof include tin-doped indium oxide (referred to as “ITO” hereinafter), fluorine-doped tin oxide (referred to as “FTO” hereinafter), and antimony-doped tin oxide (referred to as “ATO” hereinafter). Among them, preferable is an inorganic material including at least one selected from the group consisting of indium oxide (referred to as “In oxide” hereinafter), tin oxide (referred to as “Sn oxide” hereinafter), and zinc oxide (referred to as “Zn oxide” hereinafter), each of which is formed through vacuum vapor film formation.The In oxide, the Sn oxide, and the Zn oxide are materials that can be easily formed into a film by the sputtering method and can achieve excellent transparency and electric conductivity. Among them, InSnO, GaZnO, SnO, InO, ZnO, and InZnO are particularly preferable. Moreover, the electrode layer having a lower crystallinity is more preferable. The reason for this is because a high crystallinity thereof may easily cause separation of the electrode layer through thermoforming. From this point of view, IZO and AZO, which are amorphous films and exhibit high conductivity, are preferable. When these materials of the electrode layer are used, thermoforming is preferably performed so that a ratio of a maximum major axis length of the support at a curved surface of the laminated body after thermoforming to a maximum major axis length of the support at a plane surface of the laminated before thermoforming is 120% or less, and thermoforming is more preferably performed so that the ratio is 103% or less.In addition, conductive metal thin films that have transparency and include silver, gold, copper, or aluminum; carbon films such as carbon nanotube and graphene; network electrodes such as conductive metals, conductive carbons, and conductive oxides; and composite layers thereof are also useful. The network electrode is an electrode having a transmittance by forming, for example, carbon nanotube or another nontransparent material having a high conductivity in the form of a fine network. The network electrode is preferable because it is difficult to cut the network electrode at the time of thermoforming.The electrode layer is more preferably a laminated layer configuration of the network electrode and the conductive oxide or a laminated layer configuration of the conductive metal thin film and the conductive oxide. The laminated layer configuration allows the electrochromic layer to color and decolor in a uniform manner. The conductive oxide layer can be formed by coating a nanoparticle ink. The laminated layer configuration of the conductive metal thin film and the conductive oxide is specifically an electrode that satisfies conductivity and transparency in a thin film laminated layer configuration of, for example, ITO/Ag/ITO.A thickness of the first electrode layer and a thickness of the second electrode layer are adjusted so that an electrical resistance value required for the oxidation-reduction reaction of the electrochromic layer can be obtained.When a material of the first electrode layer and the second electrode layer is an ITO film produced under vacuum, each of the thickness of the first electrode layer and the thickness of the second electrode layer is preferably 20 nm or more but 500 nm or less, more preferably 50 nm or more but 200 nm or less.When the conductive oxide layer is formed by coating a nanoparticle ink, a thickness of the conductive oxide layer is preferably 0.2 μm or more but 5 μm or less. A thickness of the network electrode is preferably 0.2 μm or more but 5 μm or less.When it is used as a light-adjusting mirror, either the first electrode layer or the second electrode layer may have a reflection function. In this case, the material of the first electrode layer and the second electrode layer may include a metal material. Examples of the metal material include Pt, Ag, Au, Cr, rhodium, Al, alloys thereof, and laminated layer configurations thereof.Examples of a method for producing each of the first electrode layer and the second electrode layer include the vacuum vapor deposition method, the sputtering method, and the ion plating method. Various printing methods such as the spin coating method, the casting method, the micro gravure coating method, the gravure coating method, the bar coating method, the roll coating method, the wire bar coating method, the dip coating method, the slit coating method, the capillary coating method, the spray coating method, the nozzle coating method, the gravure printing method, the screen printing method, the flexographic printing method, the offset printing method, the reverse printing method, and the inkjet printing method can be used so long as the material of the first electrode layer and the material of the second electrode layer can be each coated for formation.The electrochromic layer is a layer including an electrochromic material.The electrochromic material may be an inorganic electrochromic compound or an organic electrochromic compound. Moreover, a conductive polymer known to exhibit electrochromism may be used as the electrochromic material.Examples of the inorganic electrochromic compound include tungsten oxide, molybdenum oxide, iridium oxide, and titanium oxide.Examples of the organic electrochromic compound include viologen, rare-earth phthalocyanine, and styryl.Examples of the conductive polymer include polypyrrole, polythiophene, polyaniline, and derivatives thereof.The electrochromic layer preferably has a structure where an organic electrochromic compound is born on conductive or semiconductive particles. The aforementioned structure is a structure obtained in the following manner. Specifically, particles having a particle diameter of 5 nm or more but 50 nm or less are bound on the surface of the electrode layer, and an organic electrochromic compound having a polar group such as a carboxyl group, a silanol group, or phosphonic acid is adsorbed on the surfaces of the particles.The aforementioned structure enables a high-speed response compared to conventional electrochromic display elements because the large surface effect of the particles is used to efficiently inject electrons into the organic electrochromic compound. Moreover, because a transparent film as a display layer can be formed by using the particles, a high coloring density of the electrochromic compound can be obtained. A plurality kinds of organic electrochromic compounds can be born on the conductive or semiconductive particles. The conductive particles can function as conductivity of the electrode layer.Specific examples of polymer-based electrochromic compounds and dye-based electrochromic compounds include: low-molecular organic electrochromic compounds such as azobenzene-based compounds, anthraquinone-based compounds, diarylethene-based compounds, dihydropyrene-based compounds, dipyridine-based compounds, styryl-based compounds, styryl spiropyran-based compounds, spirooxazine-based compounds, spirothiopyran-based compounds, thioindigo-based compounds, tetrathiafulvalene-based compounds, terephthalic acid-based compounds, triphenylmethane-based compounds, benzidine-based compounds, triphenylamine-based compounds, naphthopyran-based compounds, viologen-based compounds, pyrazoline-based compounds, phenazine-based compounds, phenylenediamine-based compounds, phenoxazine-based compounds, phenothiazine-based compounds, phthalocyanine-based compounds, fluoran-based compounds, fulgide-based compounds, benzopyran-based compounds, and metallocene-based compounds; and high-molecular conductive compounds such as polyaniline and polythiophene. These may be used alone or in combination.Among them, viologen-based compounds and dipyridine-based compounds are preferable, and dipyridine-based compounds represented by the following General Formula (1) are more preferable because a coloring-decoloring potential is low and excellent color values are obtained.In General Formula (1), R1 and R2 are each independently an alkyl group containing from 1 through 8 carbon atoms that may have a substituent, or an aryl group that may have a substituent, and at least one of R1 and R2 has a substituent selected from the group consisting of COOH, PO(OH), and Si(OCH)(with the proviso that k is from 1 through 20).In General Formula (1), X is a monovalent anion. The monovalent anion is not particularly limited and may be appropriately selected depending on the intended purpose, as long as the monovalent anion stably form a pair with a cation site. Examples thereof include Br ion (Br), Cl ion (Cl), ClOion (ClO, PFion (PF), and BFion (BF). In the General Formula (1), n, m, and l each independently represent 0, 1, or 2.In the General Formula (1), A, B, and C each independently represent an alkyl group containing from 1 through 20 carbon atoms that may have a substituent, an aryl group that may have a substituent, or a heterocyclic group that may have a substituent.As the metal complex-based or metal oxide-based electrochromic compound, an inorganic electrochromic compound, such as titanium oxide, vanadium oxide, tungsten oxide, indium oxide, iridium oxide, nickel oxide, and Persian blue, can be used.The conductive or semiconductive particles that bear the electrochromic compound are not particularly limited and may be appropriately selected depending on the intended purpose. A metal oxide is preferably used.Examples of a material of the metal oxide include metal oxides each including, as a main component, titanium oxide, zinc oxide, tin oxide, zirconium oxide, cerium oxide, yttrium oxide, boron oxide, magnesium oxide, strontium titanate, potassium titanate, barium titanate, calcium titanate, calcium oxide, ferrite, hafnium oxide, tungsten oxide, iron oxide, copper oxide, nickel oxide, cobalt oxide, barium oxide, strontium oxide, vanadium oxide, aluminosilicate, calcium phosphate, or aluminosilicate. These may be used alone or in combination.Among them, at least one selected from the group consisting of titanium oxide, zinc oxide, tin oxide, zirconium oxide, iron oxide, magnesium oxide, indium oxide, and tungsten oxide is preferable in terms of electrical characteristics such as electrical conductivity and physical characteristics such as optical properties, and titanium oxide or tin oxide is particularly preferable because a color display that is more excellent in a response speed of coloring and decoloring can be achieved.Shapes of the conductive or semiconductive particles are not particularly limited and may be appropriately selected depending on the intended purpose. In order to efficiently bear the electrochromic compound, shapes of the conductive or semiconductive particles having a large surface area per unit volume (referred to as “specific surface area” hereinafter) are used. In the case where the particles are aggregates of nanoparticles, for example, the particles have a large specific surface area, and therefore the electrochromic compound is more efficiently born on the particles and a display contrast ratio of coloring and decoloring is excellent.The electrochromic layer and the conductive or semiconductive particle layer can be formed through the vacuum film formation but are preferably formed by coating a particle dispersion paste in terms of productivity.An average thickness of the electrochromic layer is not particularly limited and may be appropriately selected depending on the intended purpose. The average thickness thereof is preferably 0.2 μm or more but 5.0 μm or less. When the average thickness is 0.2 μm or more but 5.0 μm or less, an excellent coloring density can be obtained, and a decrease in the visibility due to coloring cannot be found, which is favorable.The gel electrolyte layer includes a binder resin and an electrolyte.The binder resin is not particularly limited and may be appropriately selected depending on the intended purpose. The binder resin preferably includes a urethane resin unit in terms of a phase separation temperature of the polymerized film and the film strength. Inclusion of a polyethylene oxide (PEO) chain can improve compatibility with the electrolyte and can increase the phase separation temperature. In addition, inclusion of a polymethyl methacrylate (PMMA) chain can improve compatibility with the electrolyte and can increase the phase separation temperature, similarly to the inclusion of the PEO chain.The gel electrolyte layer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples of the gel electrolyte include: a liquid electrolyte such as an ionic liquid; and a solution obtained by dissolving a solid electrolyte in a solvent.The ionic liquid is not particularly limited and may be appropriately selected depending on the intended purpose. Examples of the ionic liquid include those in a liquid state near a temperature at which the ionic liquid is to be used. Note that, the ionic liquid means a liquid that dissolves a salt and exhibits a liquid state at normal temperature.The ionic liquid includes a cation and an anion.Examples of the cation include cations derived from: imidazole derivatives such as N,N-dimethylimidazole salts, N,N-methylethylimidazole salts, N,N-methylpropylimidazole salts, N,N-methylbutylimidazole salts, and N,N-allylbutylimidazole salts; pyridinium derivatives such as N,N-dimethylpyridinium salts and N,N-methylpropylpyridinium salts; pyrrolidinium derivatives such as N,N-dimethylpyrrolidinium salts, N-ethyl-N-methylpyrrolidinium salts, N-methyl-N-propylpyrrolidinium salts, N-butyl-N-methylpyrrolidinium salts, N-methyl-N-pentylpyrrolidinium salts, and N-hexyl-N-methylpyrrolidinium salts; and aliphatic quaternary ammonium-based salts such as trimethylpropylammonium salts, trimethyl hexyl ammonium salts, and triethyl hexyl ammonium salts. These may be used alone or in combination.Examples of the anion include a chlorine anion, a bromine anion, an iodine anion, BF, BFCF, BFCF, PF, NO, CFCO, CFSO, (CFSO)N, (FSO)N, (CFSO)(FSO)N, (CN)N, (CN)C, (CN)B, (CFSO)C, (CFSO)N, (CF)PF, AlCl, and AlCl. These may be used alone or in combination.Examples of the ionic liquid include liquids obtained by dissolving, for example, ethyl methylimidazolium tetracyanoborate (EMIMTCB, available from Merck), ethyl methylimidazolium bistrifluoromethane sulfonamide (EMIMTFSI, available from KANTO CHEMICAL CO., INC.), ethyl methylimidazolium trip entafluoroethyl trifluorophosphate (EMIMFAP, available from Merck), allyl butyl imidazolium tetrafluoroborate (ABIMBF4, available from KANTO CHEMICAL CO., INC.), and methylpropylpyrrolidinium bisfluorosulfonimide (P13FSI, available from KANTO CHEMICAL CO., INC.). These may be used alone or in combination.An amount of the ionic liquid is preferably 50% by mass or more, and particularly preferably 80% by mass or more, relative to a total amount of the gel electrolyte layer. When the amount of the ionic liquid is 50% by mass or more, ion conductivity can be improved.As a material of the solid electrolyte, for example, supporting electrolytes of inorganic ion salts (e.g., alkali metal salts and alkaline earth metal salts), quaternary ammonium salts, acids, and alkalis can be used. Specific examples of the material of the solid electrolyte include LiClO, LiBF, LiAsF, LiPF, LiCFSO, LiCFCOO, KCl, NaClO, NaCl, NaBF, NaSCN, KBF, Mg(ClO), and Mg(BF).The gel electrolyte layer of the present disclosure can be produced through polymerization reaction by the cast polymerization method. The cast polymerization method includes: a step of preparing a composition solution; and a step of sandwiching the prepared composition solution between molds or films to allow it polymerize.The composition solution can be obtained by mixing an electrolytic solution obtained by mixing the ionic liquid or the solid electrolyte with a solvent, a polymerizable material, and, if necessary, the polymerization initiator and other components.Examples of the polymerizable material include urethaneacrylate monomers, acrylate monomers having a PEO chain, and acrylate monomers having a PMMA chain.Examples of the mold include: containers formed of, for example, glass and resins; and films to which a release agent is attached. The composition solution can be filled into an empty cell of an electrochemical device as the mold, and the composition solution can be allowed to directly polymerize in the device.The polymerization reaction is preferably a radical polymerization reaction, and more preferably a thermal radical polymerization reaction or a photoradical polymerization reaction. When the radical polymerization is performed, a composition solution is preferably subjected to deoxygenation in advance.Examples of the solvent include propylene carbonate, acetonitrile, γ-butyrolactone, ethylene carbonate, sulfolane, dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,2-dimethoxyethane, 1,2-ethoxymethoxyethane, polyethylene glycol, alcohols, and mixture solvents thereof.The polymerization initiator is not particularly limited and may be appropriately selected depending on the intended purpose. Examples of the polymerization initiator include a radical polymerization initiator.Examples of the radical polymerization initiator include a thermal polymerization initiator and a photopolymerization initiator. These may be used alone or in combination.Examples of the thermal polymerization initiator include: azo compounds such as 2,2′-azobisisobutyronitrile, dimethyl-2,2′-azobisisobutylate, 2,2′-azobis(2,4-dimethylvaleronitrile), and 2,2′-azobis[2(2-imidazolin-2-yl)propane]; and organic peroxides such as 2,5-dimethyl-2,5-bis(tert-butylperoxy)hexane and di(4-tert-butylcyclohexyl)peroxydicarbonate. These may be used alone or in combination.Examples of the photopolymerization initiator include: ketal-based photopolymerization initiators such as 2,2-dimethoxy-1,2-diphenylethan-1-one; acetophenone-based photopolymerization initiators such as 1-hydroxycyclohexylphenylketone, 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 4-phenoxydichloroacetophenone, and 4-(t-butyl)dichloroacetophenone; and benzoin ether-based photopolymerizaion initiators such as benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isopropyl ether, and benzoin isobutyl ether. These may be used alone or in combination.An amount of the polymerization initiator is not particularly limited and may be appropriately selected depending on the intended purpose. The amount of the polymerization initiator is preferably 0.001 parts by mass or more but 5 parts by mass or less, more preferably 0.01 parts by mass or more but 2 parts by mass or less, and particularly preferably 0.01 parts by mass or more but 1 part by mass or less, relative to 100 parts by mass of the monomer component.Another method for producing the gel electrolyte layer is not particularly limited to the above. A method where a composition solution before polymerization is coated on the electrochromic layer and is allowed to polymerize by heat or irradiation of ultraviolet rays can also be used. In addition, it is possible to use a method where the supports on which the electrochromic layer is formed face each other with a gap (from about 5 μm through about 150 μm) being maintained, and the composition solution is filled therebetween and is allowed to polymerize through irradiation of ultraviolet rays or heating.illustrates a view as if the respective layers are completely separated for the sake of convenience. However, the composition of the gel electrolyte may be partially permeated in the electrochromic layer depending on the composition and the production method of the gel electrolyte layer.The protective layer is formed so as to physically and chemically protect the side parts of the electrochromic element. The protective layer can be formed by coating, for example, an ultraviolet curable insulating resin or a thermosetting insulating resin so as to cover the side surfaces and/or the upper surface, followed by curing. In addition, a protective layer obtained by laminating a curing resin and an inorganic material is preferable. The laminated layer structure including the inorganic material can improve barrier property against oxygen and water.The inorganic material is preferably a material having high insulating property, high transparency, and high durability. Specific examples of the material include oxides or sulfides of, for example, silicon, aluminum, titanium, zinc, and tin, and mixtures thereof. These films can be easily formed through the vacuum film formation process such as the sputtering method or the vapor deposition method.An average thickness of the protective layer is not particularly limited and may be appropriately selected depending on the intended purpose. The average thickness thereof is preferably 5 μm or more but 100 μm or less. Moreover, the protective layer may be formed after thermoforming.The electrochromic element of the present disclosure is not particularly limited and may be appropriately selected depending on the intended purpose, but the electrochromic element of the present disclosure preferably has the following characteristics.A refractive index n1 of the support, a refractive index n2 of the optical lens, and a refractive index n3 of the adhesive layer preferably satisfy the following expression: n1_n3n2 in terms of a decrease in reflection at the adhesion interface and transparency.Alternatively, the refractive index n1 of the support, the refractive index n2 of the optical lens, and the refractive index n3 of the adhesive layer preferably satisfy the following expression: n2n3n1 in terms of a decrease in reflection at the adhesion interface and transparency.The refractive index can be measured by, for example, a multi-wavelength Abbe refractometer (available from ATAGO CO., LTD., DR-M2).A coefficient of linear expansion α1 of the support, a coefficient of linear expansion α2 of the optical lens, and a coefficient of linear expansion α3 of the adhesive layer preferably satisfy the following expression: α1≤α3≤α2 in terms of the thermal stability and the mechanical stability.The coefficient of linear expansion α1 of the support, the coefficient of linear expansion α2 of the optical lens, and the coefficient of linear expansion α3 of the adhesive layer preferably satisfy the following expression: α2≤α3≤α1 in terms of the thermal stability and the mechanical stability.The coefficient of linear expansion can be measured by, for example, a TMA (thermomechanical analysis) device (available from KOBELCO Research Institute).An Abbe number ν1 of the support and an Abbe number ν2 of the optical lens preferably satisfy the following expression: ν1≤ν2 in terms of a decrease in the chromatic aberration.The Abbe number can be measured by, for example, a multi-wavelength Abbe refractometer (available from ATAGO CO., LTD., DR-M2).is a cross-sectional view illustrating an electrochromic element obtained after an optical lens is attached to the electrochromic element according to the first embodiment. Referring to , an optical lens is attached on one outer surface of a laminated body (electrochromic element ), and a first support is provided on the other outer surface.A material of the optical lens is not particularly limited and may be appropriately selected depending on the intended purpose. For example, transparent materials such as polycarbonate resins, allyl diglycol carbonate resins, diallyl carbonate resins, diallyl phthalate resins, urethane-based resins, thiourethane resins, episulfide resins, methacrylate resins, and cycloolefin resins are suitably used.So that the transparent material is in contact with one outer surface, the transparent material is melted, followed by curing again, or light or heat is applied thereto for curing, to adhesively form the optical lens . Note that, a method for adhesively forming the optical lens is not limited to these methods.When a radius of curvature after curing is set by taking deformation caused by, for example, curing shrinkage into account and when at least one of a curvature of an incident surface of the optical lens or a curvature of an emission surface of the optical lens is adjusted, the electrochromic element can have any strength.When a desired curved surface shape is formed through cutting processing after formation of the optical lens , a lens processing (strength processing) according to users-specific conditions can be achieved. That is, it is not necessary to provide molds and members for each product shape, and it is easy to produce various kinds of products with high precision in a small lot production.A modification example 1 of the first embodiment exemplifies an electrochromic element having a layer structure different from that of the first embodiment. In the first embodiment, the description of the same components as those in the embodiments that have already been described may be omitted., , and are each a cross-sectional view exemplifying the modification example 1 of the first embodiment.Referring to , , and , an electrochromic element of the modification example 1 of the first embodiment is different from the electrochromic element according to the first embodiment (see , , and ) in that the electrochromic element includes a deterioration preventing layer that is contact with the gel electrolyte layer and the second electrode layer .In the modification example 1 of the first embodiment, the deterioration preventing layer is formed in order to prevent deterioration caused by electrochemical reaction of the second electrode layer . This makes it possible to provide an electrochromic element that further has excellent repeating characteristics in addition to the effect of the first embodiment, in the electrochromic element according to the modification example 1 of the first embodiment.A role of the deterioration preventing layer is to perform reverse reaction to the electrochromic layer and to keep balance of electric charges, which prevents the second electrode layer from corrosion and deterioration through irreversible oxidation-reduction reaction. As a result, the repeating stability of the electrochromic element is improved. Note that, the reverse reaction includes a function as a capacitor in addition to a case where the deterioration preventing layer is oxidized and reduced.A material of the deterioration preventing layer is not particularly limited and may be appropriately selected depending on the intended purpose, so long as it is a material that prevents corrosion through irreversible oxidation-reduction reaction of the first electrode layer and the second electrode layer . As the material of the deterioration preventing layer , conductive or semiconductive metal oxides including tin-antimony oxide, nickel oxide, titanium oxide, zinc oxide, tin oxide, or a plurality of the foregoing metal oxides can be used. Moreover, when coloring of the deterioration preventing layer does not matter, the same material as that of the electrochromic material can be used.Among them, when an electrochromic element is produced as an optical element such as a lens required for transparency, a material having high transparency is preferably used as the deterioration preventing layer . Preferable examples of the material include n-type semiconductive oxide particles (n-type semiconductive metal oxides). Examples of the n-type semiconductive metal oxide include: titanium oxide, tin oxide, and zinc oxide, each of which is formed of particles having a primary particle diameter of 100 nm or less; compound particles including a plurality of the aforementioned oxides; and mixtures thereof.In addition, when the deterioration preventing layer is included, the electrochromic layer is preferably a material that changes color through oxidization reaction. As a result, at the same time when the electrochromic layer undergoes oxidization reaction, the n-type semiconductive metal oxide easily undergoes reduction (electron injection), which makes it possible to decrease driving voltage.In such an embodiment, a particularly preferable electrochromic material is an organic polymer material. The organic polymer material makes it possible to easily produce a film through, for example, a coating formation process and to adjust or control colors by its molecular structure. Specific examples of the organic polymer materials are reported in, for example, “Chemistry of Materials review 2011. 23, 397-415 Navigating the Color Palette of Solution-Processable Electrochromic Polymers (Reynolds)”, “Macromolecules 1996. 29 7629-7630 (Reynolds)”, and “Polymer journal, Vol. 41, No. 7, Electrochromic Organic Matallic Hybrid Polymers”.Examples of the organic polymer material include poly(3,4-ethylenedioxythiophene)-based materials and complex-formed polymers of bis(terpyridine) and an iron ion.Meanwhile, as the deterioration preventing layer , a material of a p-type semiconductor layer having high transparency is, for example, an organic material including a nitroxyl radical (NO radical). Examples thereof include derivatives of 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and polymer materials of the derivatives.The deterioration preventing layer is not particularly limited. For example, a material for the deterioration preventing layer can be mixed with the gel electrolyte layer , to impart a deterioration preventing function to the gel electrolyte layer . In that case, the layer structure becomes the same as the structure of the electrochromic element of the first embodiment in , , and .A method for forming the deterioration preventing layer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples of the method include the vacuum vapor deposition method, the sputtering method, and the ion plating method. Moreover, various printing methods such as the spin coating method, the casting method, the micro gravure coating method, the gravure coating method, the bar coating method, the roll coating method, the wire bar coating method, the dip coating method, the slit coating method, the capillary coating method, the spray coating method, the nozzle coating method, the gravure printing method, the screen printing method, the flexographic printing method, the offset printing method, the reverse printing method, and the inkjet printing method can be used, so long as the material of the deterioration preventing layer can be coated for formation.An electrochromic element of a modification example 2 of the first embodiment exemplifies an electrochromic element having a layer structure different from that of the first embodiment. In the modification example 2 of the first embodiment, the description of the same components as those in the embodiments that have already been described may be omitted., , and are each a cross-sectional view exemplifying an electrochromic element of the modification example 2 of the first embodiment. Referring to , , and , the electrochromic element of the modification example 2 of the first embodiment is different from the electrochromic element according to the modification example 1 of the first embodiment (see , , and ) in that the second support is omitted and the protective layer is formed on the second electrode layer in the electrochromic element of the modification example 2 of the first embodiment. The protective layer formed on the second electrode layer can include the same material as the materials of the protective layer formed on the side parts. Note that, the material of the protective layer formed on the second electrode layer may be identical to or different from the material of the protective layer formed on the side parts. The electrochromic element of the third embodiment can be thinner and can be produced at low cost because it is formed of one support.is a cross-sectional view presenting a state obtained after attachment of the optical lens of the electrochromic element of the modification example 2 of the first embodiment.The electrochromic element of the modification example 2 of the first embodiment has the same structure as that of the modification example 1 of the first embodiment except that the optical lens is attached on one outer surface of the laminated body (electrochromic element ) and the other outer surface includes the first support . Therefore, detailed description is omitted herein.An electrochromic element of a modification example 3 of the first embodiment exemplifies an electrochromic element having a layer structure different from that of the first embodiment. In the modification example 3 of the first embodiment, the description of the same components as those in the embodiments that have already been described may be omitted., , and are each a cross-sectional view exemplifying an electrochromic element of the modification example 3 of the first embodiment. Referring to , , and , the electrochromic element of the modification example 3 of the first embodiment is different from the electrochromic element of the modification example 2 of the first embodiment (see , , and ) in that arrangement of the electrochromic layer and arrangement of the deterioration preventing layer are reversed.The electrochromic element of the modification example 3 of the first embodiment is different in arrangement of the layer structure. However, when voltage is applied between the first electrode layer and the second electrode layer , the electrochromic layer gives and receives electric charges to cause oxidation-reduction reaction, resulting in coloring and decoloring.is a cross-sectional view presenting a state obtained after attachment of the optical lens of the electrochromic element of the modification example 3 of the first embodiment.The electrochromic element of the modification example 3 of the first embodiment has the same structure as that of the modification example 1 of the first embodiment except that the optical lens is attached on one outer surface of the laminated body (electrochromic element ) and the other outer surface includes the first support . Therefore, detailed description is omitted herein.An electrochromic element of a modification example 4 of the first embodiment exemplifies an electrochromic element in which the optical lens is formed so as to embed the electrochromic element, as exemplified in that is the first embodiment. In the modification example 4 of the first embodiment, the description of the same components as those in the embodiments that have already been described may be omitted.is a cross-sectional view exemplifying an electrochromic element of the modification example 4 of the first embodiment. Referring to , the optical lens is formed so as to embed the electrochromic element .The electrochromic element is placed so as to be immersed in a transparent resin in the state of being melted. While the state is maintained, the melted resin is cooled and cured again or the melted resin is cured by application of light or heat. As a result, the optical lens can be formed so as to embed the electrochromic element .The modification example 5 of the first embodiment exemplifies an electrochromic element in which the electrochromic element and the optical lens , as exemplified in that is the first embodiment, are attached via an adhesive layer . In the modification example 5 of the first embodiment, the description of the same components as those in the embodiments that have already been described may be omitted.is a cross-sectional view exemplifying the electrochromic element of the modification example 5 of the first embodiment. Referring to , the optical lens is attached on the second support via the adhesive layer . This makes it possible to produce the optical lens independently from the production step of the electrochromic element and to employ a suitable method for producing the optical lens. Therefore, it is easy to produce a product with high precision. Moreover, because inventory management can be independently performed, it is easy to produce various kinds of products in a small lot production.A material of the adhesive layer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include transparent materials such as epoxy resins, urethane-based resins, acryl-based resins, vinyl acetate-based resins, and modified polymer-based resins.An average thickness of the adhesive layer is not particularly limited and may be appropriately selected depending on the intended purpose. The average thickness thereof is preferably 3 μm or more but 200 μm or less.The second embodiment is an embodiment where a gel electrolyte enters an electrochromic layer in the electrochromic element exemplified in that is the first embodiment. The electrochromic layer may be porous, and the gel electrolyte may enter the parts of the pores.An electrochromic light-adjusting element of the present disclosure includes the electrochromic element of the present disclosure.Examples of the electrochromic light-adjusting element include anti-glare mirrors and light-adjusting glass.An electrochromic device of the present disclosure includes the electrochromic element of the present disclosure or the electrochromic light-adjusting element of the present disclosure, and further includes other units if necessary.The other units are not particularly limited and may be appropriately selected depending on uses. Examples of the other units include power sources, fixing units, and control units.Examples of the electrochromic device include light-adjusting spectacles, active ND filters for cameras, binoculars, opera glasses, cycling goggles, clocks, watches, electronic paper, electronic albums, electronic decoration members, and electronic advertisement boards.is a perspective view illustrating electrochromic light-adjusting spectacles including the electrochromic light-adjusting element of the present disclosure. With reference to , the electrochromic light-adjusting spectacles include an electrochromic light-adjusting element , and a frame of the spectacles, a switch , and a power source . The electrochromic light-adjusting element is the electrochromic light-adjusting element of the present disclosure, which has been processed into a desired shape.A pair of the electrochromic light-adjusting elements are incorporated into the frame of the spectacles. The frame of the spectacles is provided with the switch and the power source . The power source is electrically connected to the first electrode and the second electrode with wirings (not illustrated) via the switch .By switching the switch , one state can be selected, for example, from a state where positive voltage is applied between the first electrode and the second electrode, a state where negative voltage is applied between the first electrode and the second electrode, and a state where no voltage is applied.As the switch , for example, any switch such as a slide switch or a push switch can be used, as long as the switch is a switch capable of switching at least the above-mentioned three states.As the power source , for example, any DC power source such as a button battery or a solar battery can be used. The power source is capable of applying negative or positive (±) several voltages between the first electrode and the second electrode.For example, the pair of the electrochromic light-adjusting elements color in a predetermined color when positive voltage is applied between the first electrode and the second electrode. Moreover, the pair of the electrochromic light-adjusting elements decolor and become transparent when negative voltage is applied between the first electrode and the second electrode.However, there is a case where the electrochromic light-adjusting elements color when negative voltage is applied between the first electrode and the second electrode, and the electrochromic light-adjusting elements decolor and become transparent when positive voltage is applied, depending on properties of a material used for the electrochromic layer. Once the electrochromic light-adjusting elements color, the color is maintained without applying voltage between the first electrode and the second electrode.Hereinafter, the present disclosure will be described by way of Examples. However, the present disclosure should not be construed as being limited to these Examples.Example 1 is an example for producing an electrochromic element illustrated in . The electrochromic element produced in Example 1 can be also used as a light-adjusting lens element.First, as a first support , an ellipse polycarbonate resin substrate (AD5503, softening point: 145° C., obtained from TEIJIN LIMITED) (maximum major axis length: 80 mm×maximum minor axis length: 55 mm, and thickness: 0.5 mm) was provided.On the first support, an ITO film was formed by the sputtering method so as to have a thickness of about 100 nm, to form a first electrode layer .Next, on the surface of the ITO film, a dispersion liquid of titanium oxide nanoparticles (product name: SP210, obtained from Showa Titanium Co., Ltd., average particle diameter: 20 nm) was coated by the spin coating method, followed by an annealing treatment at 120° C. for 15 minutes, to form a nanostructure semiconductor material, which was formed of the film of the titanium oxide particles and had a thickness of about L0 μm.Then, a 2,2,3,3-tetrafluoropropanol solution containing 1.5% by mass of an electrochromic compound expressed by the following Structural Formula A was coated by the spin coating method, and an annealing treatment was performed at 120° C. for 10 minutes, to bear (adsorb) it on the film of the titanium oxide particles. As a result, an electrochromic layer was formed.On the electrochromic layer , a dispersion liquid of SiOparticles having an average primary particle diameter of 20 nm (solid concentration of silica: 24.8% by mass, polyvinyl alcohol: 1.2% by mass, and water: 74% by mass) was coated through spin coating, to form an insulating inorganic particle layer having a thickness of 2 μm.As a second support , a polycarbonate resin substrate having the same shape and thickness as those of the first support was provided. On the second support , an ITO film was formed by the sputtering method so as to have a thickness of about 100 nm, to form a second electrode layer .A solution was coated on the surface of a PET film (NP75C, obtained from PANAC CO., LTD.) that had undergone a release treatment. The solution was obtained by mixing a polymerizable material (V3877, obtained from DAIDO CHEMICAL CORPORATION) and an electrolyte (1-ethyl-3-methylimidazolium tetracyanoborate, EMIMTCB) by a mass ratio (20:80) and mixing 0.5% by mass of a photopolymerization initiator (IRGACURE 184, obtained from Nippon Kayaku Co., Ltd.) relative to an amount of the polymerizable material. The resultant was pasted with the PET film (NP75A, PANAC CO., LTD.) that had undergone a release treatment and was cured with ultraviolet rays (UV), to produce a gel electrolyte layer.The release film was exfoliated and the produced gel electrolyte layer was pasted on the surface of the insulating inorganic particle layer. Then, the surface of the second electrode layer of the second support and the surface of the gel electrolyte layer were pasted with each other, to produce a laminated body.An ultraviolet-ray-curable adhesive (product name: KARAYAD R604, obtained from Nippon Kayaku Co., Ltd.) was added dropwise to side parts of the pasted laminated body, and was irradiated with ultraviolet rays for curing, to form a protective layer having a thickness of 3 μm.As described above, an electrochromic element obtained before thermoforming as presented in was produced.The produced electrochromic element obtained before thermoforming was sandwiched by a convex mold and a concave mold having a radius of curvature of about 130 mm upon application of heat at 135° C., to produce an electrochromic element obtained after thermoforming that has as a three-dimensional (3D) spherical shape as presented in . The temperature of the mold was set to 146° C.The temperature of the mold needs to be set to a temperature near a softening temperature of each support material. When the temperature of the mold is lower than the softening temperature of each support material, sufficient shaping cannot be performed. When the temperature of the mold is too high, it takes time to cool down, which decreases productivity.As a material of an optical lens to be attached to the produced electrochromic element, a polycarbonate resin (IUPILON CLS3400, obtained from Mitsubishi Engineering-Plastics Corporation) was used. The electrochromic element obtained after thermoforming was inserted into a mold, followed by injection molding, to integrally mold the materials so as to have a lens shape (see ).The surface of the optical lens part attached on the electrochromic element was subjected to cutting processing, which made it possible to have a curvature. Moreover, both the electrochromic element and the optical lens could be processed through the cutting processing so as to have such a size that fits into a spectacle frame.The gel electrolyte layer was placed on a hot plate, followed by a heating treatment. At that time, the surface of the film was visually observed, and a temperature at which a liquid was generated on the surface of the gel electrolyte layer was recorded. This temperature was regarded as a phase separation temperature. When the phase separation temperature of the gel electrolyte layer produced in Example 1 was measured, the phase separation temperature reached more than 200° C. Therefore, the measurement was stopped. Results are presented in Table 1-1 and Table 1-2.Whether the electrochromic element to which the optical lens was attached was exfoliated was visually observed, and was evaluated based on the following evaluation criteria. Results are presented in Table 1-1 and Table 1-2.A: Exfoliation that could be visually observed did not occur.B: Exfoliation that could be visually observed occurred.Electrochromic elements of Examples 2 to 27 and Comparative Examples 1 to 12 were each produced in the same manner as in Example 1 except that the polymerizable material used in the gel electrolyte layer was produced based on the formulations and the mass ratios described in Table 1-1 and Table 1-2. As the electrolyte, 1-ethyl-3-methylimidazolium tetracyanoborate (EMIMTCB) was used. As the photopolymerization initiator, 0.5% by mass of IRGACURE 184 (obtained from Nippon Kayaku Co., Ltd.) relative to a total amount of the acrylate was mixed therewith.The produced electrochromic elements of Examples 2 to 27 and Comparative Examples 1 to 12 were evaluated for the exfoliation and the phase separation temperature of the gel electrolyte layer in the same manners as in Example 1. Results are presented in Table 1-1 and Table 1-2.Details of abbreviations in Table 1-1 and Table 1-2 are as follows.Electrochromic elements of Examples 28 to 71 and Comparative Examples 13 were produced in the same manner as in Example 1 except that the polymerizable material used in the gel electrolyte layer was prepared based on the formulations and the mass ratios described in Table 2-1 and Table 2-2; and the electrolyte used in the gel electrolyte layer was changed to an electrolyte described in Table 2-1 and Table 2-2. As the photopolymerization initiator, 0.5% by mass of IRGACURE 184 (obtained from Nippon Kayaku Co., Ltd.) relative to a total amount of the acrylate or an amount of the other polymerizable material (V3877) was mixed therewith.The produced electrochromic elements of Examples 28 to 71 and Comparative Examples 13 were evaluated for the exfoliation and the phase separation temperature of the gel electrolyte layer in the same manner as in Example 1. Results are presented in Table 2-1 and Table 2-2.The softening point of the support (AD5503, obtained from TEIJIN LIMITED) was set to 145° C., and the temperature of a mold for thermoforming was set to 146° C.The softening point of the support means a temperature at which a resin constituting the support starts to be deformed. The softening point of the support was determined in the following manner. Specifically, heat is applied to the support with a penetration probe using a TMA (thermomechanical analysis) device (obtained from KOBELCO Research Institute), and a displacement amount of the resin constituting the support was measured to determine the softening point.Details of abbreviations in Table 2-1 and Table 2-2 are as follows.Electrochromic elements of Examples 72 to 92 were produced in the same manner as in Example 1 except that except that the polymerizable material used in the gel electrolyte layer was produced based on the formulations and the mass ratios described in Table 3; EMIMTFSI (ethyl methylimidazolium bistrifluoromethane sulfonimide, obtained from KANTO CHEMICAL CO., INC.) was used as the electrolyte used in the gel electrolyte layer; a resin described in Table 3 was used as the support; and thermoforming was performed at a molding temperature described in Table 3. As the photopolymerization initiator, 0.5% by mass of IRGACURE 184 (obtained from Nippon Kayaku Co., Ltd.) relative to a total amount of the acrylate or an amount of the other polymerizable material (V3877) was mixed therewith.The produced electrochromic elements of Examples 72 to 92 were evaluated for the exfoliation and the phase separation temperature of the gel electrolyte layer in the same manner as in Example 1. Results are presented in Table 3.Details of abbreviations in Table 3 are as follows.Aspects of the present disclosure are as follows, for example.<1> An electrochromic element including:a laminated body including a support formed of a resin, a first electrode layer, an electrochromic layer, and a second electrode layer, the support, the first electrode layer, the electrochromic layer, and the second electrode layer being disposed in the laminated body in this order; anda gel electrolyte disposed between the first electrode layer and the second electrode layer,wherein a phase separation temperature of the gel electrolyte is higher than a softening point of the support.<2> The electrochromic element according to <1>,wherein the laminated body further includes a deterioration preventing layer between the first electrode layer and the second electrode layer.<3> The electrochromic element according to <1> or <2>,wherein the gel electrolyte includes a binder resin, andthe binder resin includes a urethane resin unit.<4> The electrochromic element according to any one of <1> to <3>,wherein the gel electrolyte includes a binder resin, andthe binder resin includes at least one selected from the group consisting of a polyethylene oxide (PEO) chain and a polymethyl methacrylate (PMMA) chain.<5> The electrochromic element according to any one of <1> to <4>,wherein a solid content of the gel electrolyte is 50% by mass or less.<6> The electrochromic element according to any one of <1> to <5>,wherein the gel electrolyte includes an ionic liquid.<7> The electrochromic element according to <6>,wherein the gel electrolyte includes the ionic liquid in an amount of 50% by mass or more.<8> The electrochromic element according to any one of <1> to <7>,wherein the phase separation temperature of the gel electrolyte is 160° C. or higher.<9> The electrochromic element according to any one of <1> to <8>,wherein a difference between the phase separation temperature of the gel electrolyte and the softening point of the support is 10° C. or higher.<10> The electrochromic element according to any one of <1> to <9>,wherein the softening point of the support is 200° C. or lower.<11> The electrochromic element according to any one of <1> to <10>,wherein the support includes at least one selected from the group consisting of a polycarbonate resin, a polyethylene terephthalate resin, a polymethyl methacrylate resin, a urethane resin, a polyolefin resin, and a polyvinyl alcohol resin.<12> The electrochromic element according to any one of <1> to <11>,wherein the gel electrolyte is a layered gel electrolyte layer, and a thickness of the layered gel electrolyte layer is 30 μm or more but 150 μm or less.<13> The electrochromic element according to any one of <1> to <12>,wherein the laminated body includes an optical lens on at least one surface of the laminated body.<14> The electrochromic element according to any one of <1> to <13>,wherein the laminated body has a desired curved surface formed through thermoforming.<15> A method for producing the electrochromic element according to any one of <1> to <14>, the method including:subjecting the laminated body produced to thermoforming so as to have a desired curved surface shape; andforming an optical lens on the laminated body.<16> The method for producing the electrochromic element according to <15>,wherein a heating temperature in the thermoforming is equal to or higher than the softening point of the support of the laminated body.<17> An electrochromic light-adjusting element includingthe electrochromic element according to any one of <1> to <14>.<18> An electrochromic light-adjusting lens including:the electrochromic light-adjusting element according to <17>.<19> An electrochromic device includingthe electrochromic element according to any one of <1> to <14> or the electrochromic light-adjusting element according to <17>.<20> The electrochromic device according to <19>,wherein the electrochromic device is light-adjusting spectacles, an active ND filter for a camera, binoculars, opera glasses, cycling goggles, a clock, a watch, electronic paper, an electronic album, an electronic decoration member, or an electronic advertisement board.The electrochromic element according to any one of <1> to <14>, the method for producing an electrochromic element according to <15> or <16>, the electrochromic light-adjusting element according to <17>, the electrochromic light-adjusting lens according to <18>, and the electrochromic device according to <19> or <20> can solve the conventionally existing problems in the art and can achieve the object of the present disclosure.

Вам могут быть интересны следующие патенты

Рисунок 1. Взаимосвязь патентов (ближайшие 20).

LIGHT-ADJUSTING ELEMENT AND PRODUCT CONTAINING THE SAME

Номер патента: US20140218781A1. Автор: Nakamura Kazuki,Kobayashi Norihisa,Araki Shingo. Владелец: NATIONAL UNIVERSITY CORPORATION CHIBA UNIVERSITY. Дата публикации: 2014-08-07.

Electrochromic element and spectacle lens

Номер патента: EP4343416A1. Автор: Hironori Kawakami,Shigeki Miyazaki. Владелец: Hoya Lens Thailand Ltd. Дата публикации: 2024-03-27.

Electrochromic element and eyeglass lens

Номер патента: EP4343417A1. Автор: Hironori Kawakami,Shigeki Miyazaki. Владелец: Hoya Lens Thailand Ltd. Дата публикации: 2024-03-27.

Electrochromic element and lens for spectacles

Номер патента: US20240151991A1. Автор: Hironori Kawakami,Shigeki Miyazaki. Владелец: Hoya Lens Thailand Ltd. Дата публикации: 2024-05-09.

Electrochromic element and lens for spectacles

Номер патента: US20240168314A1. Автор: Hironori Kawakami,Shigeki Miyazaki. Владелец: Hoya Lens Thailand Ltd. Дата публикации: 2024-05-23.

Electrochromic element and eyeglass lens

Номер патента: EP4343418A1. Автор: Hironori Kawakami,Shigeki Miyazaki. Владелец: Hoya Lens Thailand Ltd. Дата публикации: 2024-03-27.

Electrochromic element and lens for spectacles

Номер патента: US20240219796A1. Автор: Hironori Kawakami,Shigeki Miyazaki. Владелец: Hoya Lens Thailand Ltd. Дата публикации: 2024-07-04.

Electrochromic element and spectacle lens

Номер патента: US20230400742A1. Автор: Sou MIYAMOTO. Владелец: Hoya Lens Thailand Ltd. Дата публикации: 2023-12-14.

Electrochromic element and spectacle lens

Номер патента: EP4235288A1. Автор: Sou MIYAMOTO. Владелец: Hoya Lens Thailand Ltd. Дата публикации: 2023-08-30.

Electrochromic element and electrochromic light control device

Номер патента: US11774826B2. Автор: Tohru Yashiro,Fuminari Kaneko,Keiichiroh Yutani,Tomoo Fukuda. Владелец: Ricoh Co Ltd. Дата публикации: 2023-10-03.

Electrochromic element and electrochromic device

Номер патента: US11187956B2. Автор: Takashi Suzuki,Makoto Morita,Akira Shiokawa,Shotaro Ogawa. Владелец: Panasonic Intellectual Property Management Co Ltd. Дата публикации: 2021-11-30.

Electrochromic element and electrochromic device

Номер патента: US20190018296A1. Автор: Takashi Suzuki,Makoto Morita,Akira Shiokawa,Shotaro Ogawa. Владелец: Panasonic Intellectual Property Management Co Ltd. Дата публикации: 2019-01-17.

Electrochromic element

Номер патента: US11796884B2. Автор: Kazuya Miyazaki. Владелец: Canon Inc. Дата публикации: 2023-10-24.

High coloration speed solid-state electrochromic element and device

Номер патента: US20230324755A1. Автор: Liping Ma. Владелец: Nitto Denko Corp. Дата публикации: 2023-10-12.

Electrochromic element, and method for driving the same

Номер патента: US11966139B2. Автор: Fuminari Kaneko,Naoki Ura. Владелец: Ricoh Co Ltd. Дата публикации: 2024-04-23.

Electrochromic element, and method for driving the same

Номер патента: EP3945363A1. Автор: Fuminari Kaneko,Naoki Ura. Владелец: Ricoh Co Ltd. Дата публикации: 2022-02-02.

Smart electrochromic element and manufacturing method thereof

Номер патента: US20230244116A1. Автор: Min Hee Son,Ji Seon Kim,Sun Yong Lee. Владелец: Industry University Cooperation Foundation IUCF HYU. Дата публикации: 2023-08-03.

Electrochromic element and production method for same

Номер патента: EP4318116A1. Автор: Akiko Ogasawara,Kenta WATANABE. Владелец: Nitto Denko Corp. Дата публикации: 2024-02-07.

Electrochromic element and method for manufacturing same

Номер патента: US20240168351A1. Автор: Akiko Ogasawara,Kenta WATANABE. Владелец: Nitto Denko Corp. Дата публикации: 2024-05-23.

Light-adjustable lens illumination system with fovea protection

Номер патента: US20200292834A1. Автор: John Kondis,Christian A. Sandstedt,Robert Maloney,Matt Haller,llya Goldshleger. Владелец: RxSight Inc. Дата публикации: 2020-09-17.

Electrochromic element

Номер патента: AU3272300A. Автор: Dirk Jodicke,Hans-Joachim Becker,Volker Gumprich. Владелец: Flabeg GmbH and Co KG. Дата публикации: 2000-09-21.

Electrochromic element, method for driving the same, and optical filter

Номер патента: US20140168746A1. Автор: Jun Yamamoto,Kazuya Miyazaki. Владелец: Canon Inc. Дата публикации: 2014-06-19.

Electrochromic element, optical filter, lens unit, imaging apparatus, and window member

Номер патента: EP3320392A1. Автор: Kenji Yamada,Satoshi Igawa,Satoshi Ota,Wataru Kubo,Kentaro Ito. Владелец: Canon Inc. Дата публикации: 2018-05-16.

Electrochromic element, optical filter, lens unit, image pickup apparatus, and window member

Номер патента: US09869919B2. Автор: Satoshi Igawa,Wataru Kubo. Владелец: Canon Inc. Дата публикации: 2018-01-16.

Electrochromic element, lens unit, imaging device, and window member

Номер патента: US09946137B2. Автор: Shinjiro Okada,Kazuya Miyazaki. Владелец: Canon Inc. Дата публикации: 2018-04-17.

Electrochromic device, control device of electrochromic device, and control method of electrochromic device

Номер патента: US20210033939A1. Автор: Keiichiroh Yutani,Tohru Hasegawa. Владелец: Individual. Дата публикации: 2021-02-04.

Electrochromic device and imaging apparatus

Номер патента: US20180341162A1. Автор: Go Naito. Владелец: Canon Inc. Дата публикации: 2018-11-29.

Electrochromic element unit, dimming window, and imaging device

Номер патента: US20180067371A1. Автор: Kenji Yamada,Kentaro Ito,Kousuke Kiyamura. Владелец: Canon Inc. Дата публикации: 2018-03-08.

Electrochromic element, and lens unit and imaging apparatus including the same

Номер патента: US12001029B2. Автор: Kazuya Miyazaki. Владелец: Canon Inc. Дата публикации: 2024-06-04.

Electrochromic element, lens unit, imaging device, and window member

Номер патента: US20160299400A1. Автор: Shinjiro Okada,Kazuya Miyazaki. Владелец: Canon Inc. Дата публикации: 2016-10-13.

Electrochromic device, optical filter, lens unit, imaging apparatus, window member, and driving method

Номер патента: US20190171077A1. Автор: Kenji Yamada,Satoshi Igawa,Wataru Kubo. Владелец: Canon Inc. Дата публикации: 2019-06-06.

Electrochromic element

Номер патента: US20190227401A1. Автор: Hiroyuki Takahashi,Tohru Yashiro,Noboru Sasa,Koh Fujimura,Keiichiroh Yutani,Tomoo Fukuda,Takaaki Konno. Владелец: Ricoh Co Ltd. Дата публикации: 2019-07-25.

Heads-up display using electrochromic elements

Номер патента: US20210241713A1. Автор: Johan VAARLID. Владелец: Microchip Technology Inc. Дата публикации: 2021-08-05.

Electrochromic element

Номер патента: US20190049809A1. Автор: Shinya Tahara,Takuji Oyama,Hiroshi Kumai,Teppei Konishi. Владелец: Asahi Glass Co Ltd. Дата публикации: 2019-02-14.

Electrochromic element

Номер патента: US11970662B2. Автор: Tohru Yashiro,Masato Shinoda,Ryo Kawamura,Daisuke Goto,Fuminari Kaneko,Naoki Ura,Mamiko Inoue,Naru TANAKA. Владелец: Ricoh Co Ltd. Дата публикации: 2024-04-30.

Tungsten oxide powder and electrochromic element using same

Номер патента: EP4310586A1. Автор: Daisuke Fukushi. Владелец: Toshiba Materials Co Ltd. Дата публикации: 2024-01-24.

LIGHT-ADJUSTABLE LENS ILLUMINATION SYSTEM WITH FOVEA PROTECTION

Номер патента: US20200292834A1. Автор: Kondis John,Haller Matt,Sandstedt Christian A.,Maloney Robert,Goldshleger llya. Владелец: RxSight, Inc.. Дата публикации: 2020-09-17.

Color-changing and light-adjusting lens and glasses using same

Номер патента: CN216145037U. Автор: 李风华. Владелец: Shenzhen Wicue Optoelectronics Co Ltd. Дата публикации: 2022-03-29.

Liquid crystal composite and liquid crystal light-adjusting element

Номер патента: CN112867965A. Автор: 藤田浩章,斋藤将之. Владелец: JNC Petrochemical Corp. Дата публикации: 2021-05-28.

Liquid crystal composite and liquid crystal light-adjusting element

Номер патента: CN112912469A. Автор: 斋藤将之. Владелец: JNC Petrochemical Corp. Дата публикации: 2021-06-04.

Electrochromic device

Номер патента: US20080130086A1. Автор: David A. Nilsson,Anna Malmstrom. Владелец: Acreo AB. Дата публикации: 2008-06-05.

Image display device and production method thereof

Номер патента: US09885895B2. Автор: Tomoyuki Toyoda,Yusuke Kamata,Yoshihisa Shinya. Владелец: Dexerials Corp. Дата публикации: 2018-02-06.

Backlight module and manufacturing method thereof

Номер патента: US20240280855A1. Автор: Chien-Tzu Chu,Chao-Chin Sung,Chueh-Yuan NIEN,Chao-Sen Yang. Владелец: Carux Technology Pte Ltd. Дата публикации: 2024-08-22.

Retardation film and production method therefor, polarizing plate, and display device

Номер патента: US09389352B2. Автор: Takashi Shimizu,Nao Murakami,Toshiyuki Iida. Владелец: Nitto Denko Corp. Дата публикации: 2016-07-12.

Light is to optical transceiver and production and preparation method thereof

Номер патента: CN106506086A. Автор: 马克·海姆巴赫. Владелец: Source Photonics Chengdu Co Ltd. Дата публикации: 2017-03-15.

Electrochrome element driver

Номер патента: US20100259810A1. Автор: Manuel Gaertner,Fred Rennig. Владелец: STMicroelectronics Design and Application GmbH. Дата публикации: 2010-10-14.

Process for driving an electrochromic element

Номер патента: AU6917498A. Автор: Jens Cardinal,Peter Reichmann. Владелец: Flachglas Wernberg GmbH. Дата публикации: 1998-09-09.

Controller configured for an electro-optic device and method thereof

Номер патента: WO2013148459A1. Автор: David A. Theiste,Kevin L. Ash,Thomas F. Guarr,David L. Eaton. Владелец: GENTEX CORPORATION. Дата публикации: 2013-10-03.

Controller configured for an electro-optic device and method thereof

Номер патента: US20130258440A1. Автор: David A. Theiste,Kevin L. Ash,Thomas F. Guarr,David L. Eaton. Владелец: Gentex Corp. Дата публикации: 2013-10-03.

Controller configured for an electro-optic device and method thereof

Номер патента: US09405165B2. Автор: David A. Theiste,Kevin L. Ash,Thomas F. Guarr,David L. Eaton. Владелец: Gentex Corp. Дата публикации: 2016-08-02.

Control system for electrochromic devices

Номер патента: EP1626306A3. Автор: Bryan D. Greer. Владелец: Sage Electrochromics Inc. Дата публикации: 2006-06-07.

Control system for electrochromic devices

Номер патента: EP1619546A3. Автор: Bryan D. Greer. Владелец: Sage Electrochromics Inc. Дата публикации: 2006-04-12.

Intelligent glass display and production and preparation method thereof

Номер патента: CN110023828A. Автор: 菲尔丁·B·斯塔顿,大卫·施特伦普夫. Владелец: Newton Noyd Technology Co Ltd. Дата публикации: 2019-07-16.

Wide icicle type light adjusting lens for diffusing light of led

Номер патента: KR101109581B1. Автор: 현동훈,노명재. Владелец: 노명재. Дата публикации: 2012-01-31.

Optical element and optical element production method

Номер патента: US20210124091A1. Автор: Kazunari Tada,Jinichi Kasuya. Владелец: KONICA MINOLTA INC. Дата публикации: 2021-04-29.

OPTICAL ELEMENT AND OPTICAL ELEMENT PRODUCTION METHOD

Номер патента: US20210124091A1. Автор: Kasuya Jinichi,Tada Kazunari. Владелец: . Дата публикации: 2021-04-29.

Forming die, optical element, and forming die production method

Номер патента: CN102574309B. Автор: 渡边大辅,小岛進. Владелец: Konica Minolta Opto Inc. Дата публикации: 2015-03-25.

EDGE LIT LIGHTING ASSEMBLY WITH LIGHT ADJUSTMENT ELEMENT

Номер патента: US20160282538A1. Автор: Parker Jeffery R.,McCollum Timothy A.,Mayer Michael D.. Владелец: . Дата публикации: 2016-09-29.

Ferroelectric thin film element and production method thereof

Номер патента: US5852703A. Автор: Keiichi Nashimoto. Владелец: Fuji Xerox Co Ltd. Дата публикации: 1998-12-22.

Insulated glass unit utilizing electrochromic elements

Номер патента: US20240363898A1. Автор: Anoop Agrawal,John P. Cronin,Lori L. Adams. Владелец: Polyceed Inc. Дата публикации: 2024-10-31.

Electrochromic element

Номер патента: US12091612B2. Автор: Masato Shinoda,Daisuke Goto,Fuminari Kaneko. Владелец: Ricoh Co Ltd. Дата публикации: 2024-09-17.

Color filter and production method thereof

Номер патента: US20060068990A1. Автор: Masashi Nishiyama,Kaori Yamashita,Hirononri Kobayashi. Владелец: DAI NIPPON PRINTING CO LTD. Дата публикации: 2006-03-30.

Sheath beam stripper and production method thereof

Номер патента: US20230013318A1. Автор: Bulend Ortac,Bartu Simsek,Ozan Aktas. Владелец: Bilkent Universitesi UNAM Ulusal Nanoteknoloji Arastirma Merkezi. Дата публикации: 2023-01-19.

Photoelectronic device and production method of the same

Номер патента: US7142739B2. Автор: Akihiko Okubora. Владелец: Sony Corp. Дата публикации: 2006-11-28.

Optical device and production method thereof

Номер патента: US20050191005A1. Автор: Makoto Katayama,Tomohiko Kanie,Takayuki Shimazu. Владелец: Sumitomo Electric Industries Ltd. Дата публикации: 2005-09-01.

Production device and production method for an optical device component having a grating structure

Номер патента: US7527919B2. Автор: Akira Sakamoto,Satoshi Okude. Владелец: Fujikura Ltd. Дата публикации: 2009-05-05.

Plastic scintillating fiber and production method therefor

Номер патента: EP4231057A1. Автор: Toru Hashizume,Katsuhiro Fujita. Владелец: Kuraray Co Ltd. Дата публикации: 2023-08-23.

Opto-electric hybrid board, and production method therefor

Номер патента: US09703057B2. Автор: Naoki Shibata,Yuichi Tsujita. Владелец: Nitto Denko Corp. Дата публикации: 2017-07-11.

Composite light-emitting material, production method thereof, and use thereof

Номер патента: US12054656B2. Автор: Jingjing Wang,Fei Li,Haizheng Zhong. Владелец: Zhijing Nanotech Co Ltd. Дата публикации: 2024-08-06.

Electrochromic device and preparation method thereof, and apparatus

Номер патента: ZA202204104B. Автор: Yao Wen,Yu-Sheng Lin. Владелец: Univ Sun Yat Sen. Дата публикации: 2023-12-20.

Electrowetting display panel and the manufacturing method thereof

Номер патента: US20130141775A1. Автор: Qi Yao,Feng Zhang,Zhanfeng CAO,Jianshe XUE,Tianming DAI. Владелец: BOE Technology Group Co Ltd. Дата публикации: 2013-06-06.

Photoelectric coupling assembly and manufacturing method thereof

Номер патента: US20080095505A1. Автор: Wataru Sakurai,Kazuhito Saito. Владелец: Sumitomo Electric Industries Ltd. Дата публикации: 2008-04-24.

Diffraction optical element and production method thereof

Номер патента: US7508585B2. Автор: Yoshinori Maeno. Владелец: Oki Electric Industry Co Ltd. Дата публикации: 2009-03-24.

Method for modifying power of light adjustable lens

Номер патента: US09950482B2. Автор: Robert H. Grubbs,Christian A. Sandstedt. Владелец: RxSight Inc. Дата публикации: 2018-04-24.

Microreactor and product production method

Номер патента: US20240238749A1. Автор: Yukako Asano,Takehiro Chiba,Masashi Tagami. Владелец: Hitachi Plant Services Co Ltd. Дата публикации: 2024-07-18.

Wireless tag with printed wiring column, and production and preparation method thereof

Номер патента: CN108292371A. Автор: 李钧,高岛毛,梅俊峰. Владелец: FILM ELECTRONIC Co Ltd. Дата публикации: 2018-07-17.

Organic electroluminescence element, and inspecting apparatus and inspecting method thereof

Номер патента: KR100839732B1. Автор: 히데끼 우찌다. Владелец: 샤프 가부시키가이샤. Дата публикации: 2008-06-19.

Bio sensor using fet element and extend gate, and operating method thereof

Номер патента: KR102345695B1. Автор: 성우경,이국녕,김원효. Владелец: 한국전자기술연구원. Дата публикации: 2021-12-31.

Bio sensor using fet element and extend gate, and operating method thereof

Номер патента: KR102345693B1. Автор: 성우경,이국녕,김원효,홍동기,강혜림. Владелец: 한국전자기술연구원. Дата публикации: 2021-12-31.

Production method and production apparatus for magnetic recording medium

Номер патента: US20040175510A1. Автор: Mitsuru Takai,Kazuhiro Hattori,Takahiro Suwa. Владелец: TDK Corp. Дата публикации: 2004-09-09.

Acoustic lens and production method thereof, and acoustic wave probe

Номер патента: US20210097971A1. Автор: Takashi Suzuki,Shigeo Kobayashi,Hideshi Tomita. Владелец: Nisshinbo Holdings Inc. Дата публикации: 2021-04-01.

Packing material for ion chromatography and production method therefor

Номер патента: US12036486B2. Автор: Naoko Uchiyama,Shiho Iemura. Владелец: Resonac Corp. Дата публикации: 2024-07-16.

Capacitive sensor sheet and production method thereof

Номер патента: US09482693B2. Автор: Koji Nishizawa,Hiroto Komatsu,Yusuke Kobayashi. Владелец: Shin Etsu Polymer Co Ltd. Дата публикации: 2016-11-01.

A new bridge and production method in the violin family

Номер патента: EP3278329A1. Автор: Ibrahim Metin UGUR,Gunsu YILMA. Владелец: Individual. Дата публикации: 2018-02-07.

Post-traumatic immobilisation device and production method thereof

Номер патента: US12086514B2. Автор: Ricardo Veiga Rivero,Jordi Tura Ceide. Владелец: Xkelet Easylife SL. Дата публикации: 2024-09-10.

Product Information Presentation And Smart Purchase System And Method Thereof

Номер патента: US20210272182A1. Автор: Chaucer Chiu. Владелец: Inventec Pudong Technology Corp. Дата публикации: 2021-09-02.

Production design assistance device, production design assistance method and production design assistance program

Номер патента: EP3982218A1. Автор: Masahiro Nakamura. Владелец: Lexer Res Inc. Дата публикации: 2022-04-13.

Composite film applied to flexible substrate, preparation method therefor, and product thereof

Номер патента: US20240287674A1. Автор: Jian Zong. Владелец: Jiangsu Favored Nanotechnology Co Ltd. Дата публикации: 2024-08-29.

Display device and control method thereof

Номер патента: RU2457551C1. Автор: Сейдзи ОХХАСИ. Владелец: Шарп Кабусики Кайся. Дата публикации: 2012-07-27.

System and method for managing the creation and production of computer generated works

Номер патента: WO2000007127A1. Автор: Sylvain Moreau,Rejean Gagne,Claude Cajolet. Владелец: AVID TECHNOLOGY, INC.. Дата публикации: 2000-02-10.

Gas sensor and production method for gas sensor

Номер патента: US20240345019A1. Автор: Masashi Nomura,Kunihiko YONEZU,Daisuke MATSUYAMA,Yuto Inose. Владелец: Niterra Co Ltd. Дата публикации: 2024-10-17.

Sample pad for medical diagnosis kit, and production method therefor

Номер патента: EP4183340A1. Автор: Seong Eun Park,Ji Soo Won,Byeong Joon LEE,Woong Gi JANG. Владелец: ENVIONEER Co Ltd. Дата публикации: 2023-05-24.

Sample pad for medical diagnosis kit, and production method therefor

Номер патента: US20230255528A1. Автор: Seong Eun Park,Ji Soo Won,Byeong Joon LEE,Woong Gi JANG. Владелец: ENVIONEER Co Ltd. Дата публикации: 2023-08-17.

System and process for the detailed design and production of reinforcement for buildings

Номер патента: WO2007014866A2. Автор: Apostolos Konstantinidis. Владелец: Apostolos Konstantinidis. Дата публикации: 2007-02-08.

Magnetic disk substrate and production method of magnetic disk

Номер патента: WO2006022443A1. Автор: Hiroyuki Machida,Katsuaki Aida,Kazuyuki Haneda. Владелец: SHOWA DENKO K.K.. Дата публикации: 2006-03-02.

Production method of and production apparatus for optical recording disc

Номер патента: US20020100559A1. Автор: Shoji Akiyama,Kokichi Kohinata,Yoshinori Itaba. Владелец: Individual. Дата публикации: 2002-08-01.

Evaluation site accuracy control method and production method

Номер патента: US20240111915A1. Автор: Kota Kobayashi,Yutaro INOUE,Jun Shiwaku. Владелец: Honda Motor Co Ltd. Дата публикации: 2024-04-04.

Laminated core, VR type resolver and production method for laminated core

Номер патента: US09923435B2. Автор: Takaaki Ochiai. Владелец: Minebea Co Ltd. Дата публикации: 2018-03-20.

Laminated core, VR type resolver and production method for laminated core

Номер патента: US09692280B2. Автор: Takaaki Ochiai. Владелец: Minebea Co Ltd. Дата публикации: 2017-06-27.

Display panel, preparation method thereof, and display device

Номер патента: US12033974B2. Автор: Quanpeng YU. Владелец: Shanghai Tianma Microelectronics Co Ltd. Дата публикации: 2024-07-09.

Zero-Crossing Detection Device and Method Thereof and No-Neutral Switch

Номер патента: US20210135565A1. Автор: Dong Xing,Aijun Wang,Weihu Chen,Fanbin Wang,Jinpeng Hu. Владелец: Consumer Lighting US LLC. Дата публикации: 2021-05-06.

Magnetic disk substrate and production method of magnetic disk

Номер патента: WO2006022446A1. Автор: Hiroyuki Machida,Katsuaki Aida,Kazuyuki Haneda. Владелец: SHOWA DENKO K.K.. Дата публикации: 2006-03-02.

Semiconductor manufacturing apparatus and operating method thereof

Номер патента: US20240251496A1. Автор: Jinhong Park,Dohyung Kim,Insung Kim,Jungchul Lee,Seongchul HONG. Владелец: SAMSUNG ELECTRONICS CO LTD. Дата публикации: 2024-07-25.

Magnetic disk substrate and production method of magnetic disk

Номер патента: MY142805A. Автор: Hiroyuki Machida,Katsuaki Aida,Kazuyuki Haneda. Владелец: Showa Denko KK. Дата публикации: 2011-01-14.

Production method and production apparatus of optical disc

Номер патента: US7842202B2. Автор: Takayuki Suzuki,Masahiro Nakamura,Naoto Ozawa. Владелец: Origin Electric Co Ltd. Дата публикации: 2010-11-30.

Thermal imaging process and products using image rigidification

Номер патента: US20030064302A1. Автор: Jonathan Caspar,Gregory Weed,Harvey Taylor,Rolf Gabrielsen. Владелец: Individual. Дата публикации: 2003-04-03.

Mask, exposure method and production method of semiconductor device

Номер патента: US7517618B2. Автор: Shigeru Moriya. Владелец: Sony Corp. Дата публикации: 2009-04-14.

Pixel circuit and driving method thereof, and display panel

Номер патента: US12057070B2. Автор: Yue Li,Mengmeng ZHANG. Владелец: Wuhan Tianma Microelectronics Co Ltd. Дата публикации: 2024-08-06.

Ultra-Slim Sensor Device and Manufacturing Method Thereof

Номер патента: US20120235669A1. Автор: Chung Kook Lee,Young Seong Wang,Cheol Jin Jeong. Владелец: Lattron Co Ltd. Дата публикации: 2012-09-20.

Display Panel and Manufacturing Method Thereof, and Display Device

Номер патента: US20240260363A1. Автор: LI Wang,BO Wang,Jingquan WANG. Владелец: BOE Technology Group Co Ltd. Дата публикации: 2024-08-01.

Toner for electropotography and production method therefor

Номер патента: EP2375290A3. Автор: Atsuo Miyamoto. Владелец: Tomoegawa Paper Co Ltd. Дата публикации: 2012-08-29.

Ultrasonic measurement system and measurement method thereof

Номер патента: US09976885B2. Автор: Shuguang Zhang,Jinhui Huang,Xiongbing Kang. Владелец: AUDIOWELL ELECTRONICS (GUANGDONG) Co Ltd. Дата публикации: 2018-05-22.

Touch element and manufacturing method thereof, and touch screen

Номер патента: US09684399B2. Автор: Feng Bai,Jiuxia YANG. Владелец: Beijing BOE Optoelectronics Technology Co Ltd. Дата публикации: 2017-06-20.

Structural health monitoring system for a material and production method

Номер патента: US09678026B2. Автор: Blanka Lenczowski. Владелец: Airbus Defence and Space GmbH. Дата публикации: 2017-06-13.

Data recording device with conducting microtips and production method thereof

Номер патента: US7453789B2. Автор: Serge Gidon,Yves Samson. Владелец: Commissariat a lEnergie Atomique CEA. Дата публикации: 2008-11-18.

Solid-state imaging element, signal processing method thereof, and electronic device

Номер патента: US12010418B2. Автор: Tatsuo Fujiwara. Владелец: Sony Group Corp. Дата публикации: 2024-06-11.

Power purchasing system, method thereof and computer readable storage medium

Номер патента: US20170132725A1. Автор: Chia-Shin Yen,Wei-Hsuan Wang. Владелец: INSTITUTE FOR INFORMATION INDUSTRY. Дата публикации: 2017-05-11.

Pixel circuit and driving method thereof, and display device

Номер патента: US20220157223A1. Автор: Jing Feng,Peng Liu,Zhichong Wang,Yi Ouyang,Gaoming SUN,Xinglong LUAN. Владелец: BOE Technology Group Co Ltd. Дата публикации: 2022-05-19.

Insole, user terminal and pairing method thereof

Номер патента: US12016433B2. Автор: Hyung Jin Cho,Kyung Hoon Kang. Владелец: Salted Co Ltd. Дата публикации: 2024-06-25.

Residual stress detection device and detection method thereof

Номер патента: US20200191670A1. Автор: Hsiu-An Tsai,Zong-Rong LIU. Владелец: METAL INDUSTRIES RESEARCH AND DEVELOPMENT CENTRE. Дата публикации: 2020-06-18.

Projection apparatus and heat dissipation control method thereof

Номер патента: US20200341358A1. Автор: Kai-Lun Hou,Wen-Hao Chu,Te-Tang Chen. Владелец: Coretronic Corp. Дата публикации: 2020-10-29.

Organic light emitting diode display device and control method thereof

Номер патента: US20210134230A1. Автор: Zhidong Yuan,Yongqian Li,Can Yuan. Владелец: Hefei BOE Joint Technology Co Ltd. Дата публикации: 2021-05-06.

Electronic cigarette and power control method thereof

Номер патента: US20210298365A1. Автор: Zhongli XU,Yonghai LI,Linjian HUANG. Владелец: Shenzhen FirstUnion Technology Co Ltd. Дата публикации: 2021-09-30.

Display device and driving method thereof

Номер патента: EP1932136A4. Автор: Yasunori Yoshida. Владелец: Semiconductor Energy Laboratory Co Ltd. Дата публикации: 2009-07-29.

Display device and driving method thereof

Номер патента: EP1932136A1. Автор: Yasunori Yoshida. Владелец: Semiconductor Energy Laboratory Co Ltd. Дата публикации: 2008-06-18.

Display device, pixel driving circuit and driving method thereof

Номер патента: US20170358261A1. Автор: Xingyu Zhou. Владелец: EverDisplay Optronics Shanghai Co Ltd. Дата публикации: 2017-12-14.

In-dynamic memory search device and operation method thereof

Номер патента: US20240265966A1. Автор: Feng-Min Lee,Yu-Hsuan Lin,Po-Hao Tseng. Владелец: Macronix International Co Ltd. Дата публикации: 2024-08-08.

Receiving device and operation method thereof

Номер патента: US20240250866A1. Автор: Wei-Lun Liu. Владелец: Wistron Corp. Дата публикации: 2024-07-25.

Light sensor and control method thereof

Номер патента: US20210282246A1. Автор: Meng-Yong Lin,Cheng-Feng Liu. Владелец: Sensorteknik Technology Corp. Дата публикации: 2021-09-09.

Control panel and controlling method thereof

Номер патента: US09532437B1. Автор: Genyuan Zhang. Владелец: Enno Electronics Co ltd. Дата публикации: 2016-12-27.

Non-spherical resin particle and production method thereof

Номер патента: US20080227017A1. Автор: Tatsuya Nagase,Mitsutoshi Nakamura. Владелец: KONICA MINOLTA BUSINESS TECHNOLOGIES INC. Дата публикации: 2008-09-18.

Polystyrene-based waterproofing composition and production or manufacture method thereof

Номер патента: CA2578770A1. Автор: Jorge Antonio Hernandez-Escobedo. Владелец: Individual. Дата публикации: 2006-03-09.

Carry composite panel, material, product and production and preparation method thereof

Номер патента: CN108290368A. Автор: 罗伯特·维洛兹·赫雷斯. Владелец: Individual. Дата публикации: 2018-07-17.

Prefabricated sleeper and production equipment and method thereof

Номер патента: CN111409193A. Автор: 杜志文. Владелец: Anhui Zhongzhi Rail Transportation Equipment Manufacturing Co ltd. Дата публикации: 2020-07-14.

Production management system and product production method

Номер патента: JP5064940B2. Автор: 祐之 石田. Владелец: Sharp Corp. Дата публикации: 2012-10-31.

FIBER MEMBRANES FOR REPAIRING TISSUE AND PRODUCTS AND PREPARATION METHOD THEREOF

Номер патента: US20160045296A1. Автор: GUO Zeyue. Владелец: . Дата публикации: 2016-02-18.

A kind of structural metal material stamping die and production and preparation method thereof

Номер патента: CN109570473A. Автор: 肖峰. Владелец: SUQIAN FENGCHI SECURITY Co Ltd. Дата публикации: 2019-04-05.

Immunosuppressant cell and production and preparation method thereof

Номер патента: CN104955941B. Автор: 陈信伟,许素菁,庄再成,陈欣瑜,王丽姿. Владелец: National Health Research Institutes. Дата публикации: 2019-03-26.

Grid structure and production device and method thereof

Номер патента: CN107849845B. Автор: 汉斯-彼得·冯·埃尔曼. Владелец: Jiobrook GmbH. Дата публикации: 2021-05-04.

Printing plate material and production and regenerating methods thereof

Номер патента: US6851364B1. Автор: Yasuharu Suda. Владелец: Mitsubishi Heavy Industries Ltd. Дата публикации: 2005-02-08.

A kind of industrial dedusting device and production and preparation method thereof

Номер патента: CN109499257A. Автор: 肖峰. Владелец: SUQIAN FENGCHI SECURITY Co Ltd. Дата публикации: 2019-03-22.

A kind of epoxy resin composite material and product and preparation method thereof

Номер патента: CN108264726A. Автор: 周维,孙永亮,张燕平,段平平,周芳享. Владелец: BYD Co Ltd. Дата публикации: 2018-07-10.

Improved building material and product and preparation method thereof

Номер патента: CN1271797A. Автор: 埃尔文·G·文森特,拉尔夫·D·韦伯. Владелец: VENSENT AG. Дата публикации: 2000-11-01.

Novel roadbed composite material and production and application methods thereof

Номер патента: CN103193428A. Автор: 黄晓辉,李迎春. Владелец: Individual. Дата публикации: 2013-07-10.

The electronic device and production and preparation method thereof of antenna and/or trace with plating

Номер патента: CN108701670A. Автор: 高岛毛. Владелец: FILM ELECTRONIC Co Ltd. Дата публикации: 2018-10-23.

Porous inorganic oxide granule and production and preparation method thereof

Номер патента: CN103038168B. Автор: M.克雷茨施马,H.赫里希. Владелец: Grace GmbH. Дата публикации: 2016-11-09.

Waterborne multi-colored diagonal-stone-imitated coating and production and spraying methods thereof

Номер патента: CN106047177A. Автор: 张祥,余林岚,吴为桠. Владелец: Individual. Дата публикации: 2016-10-26.

Bias unit for linked system and production and preparation method thereof

Номер патента: CN107366775A. Автор: P·马尔克. Владелец: BorgWarner Inc. Дата публикации: 2017-11-21.

Self sealss gillies' graft, paster and production and preparation method thereof

Номер патента: CN107441615A. Автор: A·李,J·洪,E·范德伯格. Владелец: Cornnas Medical Co Ltd. Дата публикации: 2017-12-08.

Abrasive disks with an improved durability and productivity and preparation method thereof

Номер патента: KR101159160B1. Автор: 신정호. Владелец: 주식회사 썬텍인더스트리. Дата публикации: 2012-06-25.

High workability polyvinylhalide formulation and production and preparation method thereof

Номер патента: CN102112543B. Автор: S·李,S·沙柯. Владелец: PolyOne Corp. Дата публикации: 2015-12-09.

Plug valve for petroleum drilling and production and use method thereof

Номер патента: CN114151566A. Автор: 吴峰. Владелец: Jiangsu Youte Mosen Machinery Co ltd. Дата публикации: 2022-03-08.

Composition and production and preparation method thereof for postexercise recovery

Номер патента: CN109640704A. Автор: 万峰,威廉·布伦登·卡尔森,亨利·W·郭. Владелец: Seattle Cami Co. Дата публикации: 2019-04-16.

Flexible interconnection for integrated circuit modules and production and preparation method thereof

Номер патента: CN107112309A. Автор: 米图尔·达拉尔,桑贾伊·古普塔. Владелец: MC10 Inc. Дата публикации: 2017-08-29.

Porous concrete mixture and products and preparation method thereof

Номер патента: CN101538167A. Автор: 陈兵,陈龙珠,雒亚莉. Владелец: Shanghai Jiaotong University. Дата публикации: 2009-09-23.

A kind of epoxy resin composite material and product and preparation method thereof

Номер патента: CN108264726B. Автор: 周维,孙永亮,张燕平,段平平,周芳享. Владелец: BYD Co Ltd. Дата публикации: 2019-11-05.

Graft with expansible region and production and preparation method thereof

Номер патента: CN105517508B. Автор: J·J·斯卡蒂,D·G·卡尔普,I·E·达格赫,K·W·佩恩. Владелец: Atrium Medical Corp. Дата публикации: 2018-05-22.

Fresh water pearl culturing clam calcium source and production and preparation method thereof

Номер патента: CN100577003C. Автор: 罗文�,胡洪国,沈文英. Владелец: Individual. Дата публикации: 2010-01-06.

Digital satin protective glaze and product and preparation method thereof

Номер патента: CN115849713B. Автор: 夏利兵. Владелец: Foshan Jinzhulin New Material Technology Co ltd. Дата публикации: 2023-09-12.

Downhole valve of straddle tool joint and production and preparation method thereof

Номер патента: CN107461172A. Автор: J·R·门科尼,P·R·小塞居拉. Владелец: Bench Tree Group LLC. Дата публикации: 2017-12-12.

WIDE ICICLE-TYPE LIGHT-ADJUSTING LENS FOR DIFFUSING THE LIGHT OF AN LED

Номер патента: US20130258676A1. Автор: Hyun Dong Hoon,Noh Myeong-Jae. Владелец: . Дата публикации: 2013-10-03.

LIGHT ADJUSTABLE LENS TRACKING SYSTEM AND METHOD

Номер патента: US20200170785A1. Автор: Goldshleger Ilya,Kondis John,Kurtz Ronald M.. Владелец: RxSight, Inc.. Дата публикации: 2020-06-04.

METHOD FOR MODIFYING POWER OF LIGHT ADJUSTABLE LENS

Номер патента: US20180244003A1. Автор: GRUBBS Robert H.,Sandstedt Christian A.. Владелец: RxSight, Inc.. Дата публикации: 2018-08-30.

Method for modifying power of light adjustable lens

Номер патента: US20160339657A1. Автор: Robert H. Grubbs,Christian A. Sandstedt. Владелец: Calhoun Vision Inc. Дата публикации: 2016-11-24.

Light adjustable lens tracking system and method

Номер патента: US11013593B2. Автор: John Kondis,Ilya Goldshleger,Ronald M. Kurtz. Владелец: RxSight Inc. Дата публикации: 2021-05-25.

ANTENNA ELEMENT AND ARRAY ANTENNA AND OPERATING METHOD THEREOF

Номер патента: US20220149522A1. Автор: EOM Soon Young. Владелец: Electronics and Telecommunications Research Institute. Дата публикации: 2022-05-12.

Sliding Element and Sliding Element Production Method

Номер патента: ES2791603T3. Автор: . Владелец: Senju Metal Industry Co Ltd. Дата публикации: 2020-11-05.

Sm-fe-n-based magnetic material and production method thereof

Номер патента: US20240355516A1. Автор: Noritsugu Sakuma,Tetsuya Shoji,Akihito Kinoshita. Владелец: Toyota Motor Corp. Дата публикации: 2024-10-24.

Electrochromic element drive control circuit

Номер патента: US20030234752A1. Автор: Robert Turnbull,David Schmidt. Владелец: Gentex Corp. Дата публикации: 2003-12-25.

Cell strain having increased virus production ability and production method thereof

Номер патента: WO2022119560A1. Автор: Jen-Chieh Lin,Ching-Len Liao. Владелец: Yuh, Chiou-Hwa. Дата публикации: 2022-06-09.

Thermally conductive, electrically insulating material and production method thereof

Номер патента: US20110076406A1. Автор: Yukihisa Takeuchi,Yasumasa Hagiwara,Yuuichi Aoki. Владелец: Denso Corp. Дата публикации: 2011-03-31.

Hyperbranched polylysine powder with low polydispersity index and production method thereof

Номер патента: US12024592B2. Автор: Changyou Gao,Xiaofei Dong,Zhaolong Wang. Владелец: Zhejiang University ZJU. Дата публикации: 2024-07-02.

Composition containing reduced coenzyme Q10 and production method thereof

Номер патента: US09981899B2. Автор: Takashi Ueda,Takahiro Ueda,Shiro Kitamura,Hideyuki Kishida,Shinsuke Akao. Владелец: Kaneka Corp. Дата публикации: 2018-05-29.

Toffee content and production method thereof

Номер патента: WO2024136787A1. Автор: Osman KADIROGLU,Dilek SENER,Zeynep MUTLU,Hidayet KADIROGLU. Владелец: Elvan Gida Sanayi Ve Ticaret A.S. Дата публикации: 2024-06-27.

Polybenzazole article and production method thereof

Номер патента: US6818734B1. Автор: Tetsuo Kodama,Yusuke Shimizu. Владелец: Toyobo Co Ltd. Дата публикации: 2004-11-16.

Hot-melt adhesive resin film and production method thereof

Номер патента: EP3736131A1. Автор: Hirokazu Iizuka,Kunihiro Takei,Yuiko Maruyama. Владелец: Fujimori Kogyo Co Ltd. Дата публикации: 2020-11-11.

Hot-melt adhesive resin film and production method thereof

Номер патента: EP3736130A1. Автор: Hirokazu Iizuka,Kunihiro Takei,Yuiko Maruyama. Владелец: Fujimori Kogyo Co Ltd. Дата публикации: 2020-11-11.

Hot-melt adhesive resin film and production method thereof

Номер патента: US20190001634A1. Автор: Hirokazu Iizuka,Kunihiro Takei,Yuiko Maruyama. Владелец: Fujimori Kogyo Co Ltd. Дата публикации: 2019-01-03.

Cell strain having increased virus production ability and production method therefor

Номер патента: US09650613B2. Автор: Se-Ho Park,Eunbi YI. Владелец: Immunomax Co Ltd. Дата публикации: 2017-05-16.

Photoluminescence Material and Production Method Thereof

Номер патента: US20220298412A1. Автор: Wei-Hung Chiang,Ren-Jie Weng. Владелец: National Taiwan University of Science and Technology NTUST. Дата публикации: 2022-09-22.

Photoluminescence material and production method thereof

Номер патента: US11807790B2. Автор: Wei-Hung Chiang,Ren-Jie Weng. Владелец: National Taiwan University of Science and Technology NTUST. Дата публикации: 2023-11-07.

Very thin steel sheet and production method thereof

Номер патента: US09689052B2. Автор: Hidekuni Murakami,Seiichi Tanaka,Akihiro Jinno,Keiichiroh Torisu. Владелец: Nippon Steel and Sumitomo Metal Corp. Дата публикации: 2017-06-27.

Interior material having deodorant, antimicrobial surface layer and production method thereof

Номер патента: AU2019250301B2. Автор: Tomohiro Inoue,Manabu Furudate. Владелец: Shin Etsu Chemical Co Ltd. Дата публикации: 2024-07-18.

Genetically Engineered Bacteria Producing Lacto-N-neotetraose and Production Method Thereof

Номер патента: US20230279456A1. Автор: BO Jiang,Tao Zhang,Miaomiao HU,Mengli LI. Владелец: JIANGNAN UNIVERSITY. Дата публикации: 2023-09-07.

Metal removal method, dry etching method, and production method for semiconductor element

Номер патента: US20220325418A1. Автор: Kazuma Matsui. Владелец: Showa Denko KK. Дата публикации: 2022-10-13.

Oxaziridine compound and production method thereof

Номер патента: US09988396B2. Автор: Teruhiko Ishikawa,Morita Iwami. Владелец: Seed Research Institute Co Ltd. Дата публикации: 2018-06-05.

Multi-layer PCB having function of dissipating heat from power semiconductor module package and PCB, and production method thereof

Номер патента: US09930815B2. Автор: Ku Yong Kim. Владелец: Mdm Inc. Дата публикации: 2018-03-27.

A tire cord fabric and production method thereof

Номер патента: EP2892732A1. Автор: Sadettin Fidan,Kürsat AKSOY. Владелец: Kordsa Global Endustriyel Iplik ve Kord Bezi Sanayi ve Ticaret AS. Дата публикации: 2015-07-15.

Battery having a prismatic housing and production method thereof

Номер патента: US11664554B2. Автор: Andreas Huth,Werner Schreiber,Andreas Gaugler,Stefan Stock. Владелец: VW Kraftwerk GmbH. Дата публикации: 2023-05-30.

SmFeN-BASED ANISOTROPIC MAGNETIC POWDER AND BONDED MAGNET, AND PRODUCTION METHODS THEREOF

Номер патента: US20240274335A1. Автор: Hisashi Maehara. Владелец: Nichia Corp. Дата публикации: 2024-08-15.

Neutralizing antibody for flaviviruses and production method thereof

Номер патента: US20240352097A1. Автор: Wen-Hung Wang,Yen-Hsu Chen,Day-Yu Chao. Владелец: National Sun Yat Sen University. Дата публикации: 2024-10-24.

Aluminum alloy and production method thereof

Номер патента: US09657376B2. Автор: Shae-Kwang Kim,Young-Ok YOON,Jeong-Ho Seo. Владелец: Korea Institute of Industrial Technology KITECH. Дата публикации: 2017-05-23.

Solar cell and production method thereof, photovoltaic module

Номер патента: NL2033695B1. Автор: Yang Jie,Zhang Xinyu,WANG Zhao,Wang Lipeng,Yang Zhongxiang,Shen Mengchao. Владелец: Jinko Solar Co Ltd. Дата публикации: 2024-05-24.

Aluminum alloy forging and production method thereof

Номер патента: US20240229208A9. Автор: Takuya Arayama. Владелец: Showa Denko KK. Дата публикации: 2024-07-11.

A bio-leather coated fabric and producing method thereof

Номер патента: EP4294976A1. Автор: Ece Gözen Akin. Владелец: Gozen Bioworks Corp. Дата публикации: 2023-12-27.

A bioleather production method

Номер патента: EP4294982A1. Автор: Ece Gözen Akin. Владелец: Gozen Bioworks Corp. Дата публикации: 2023-12-27.

Fluorine-containing polymer and production method thereof

Номер патента: US20230220128A1. Автор: Yuuki YOTSUMOTO,Takahiro Furutani,Ryouichi YANO. Владелец: Daikin Industries Ltd. Дата публикации: 2023-07-13.

Caliper cover assembly and production method thereof

Номер патента: US20220196089A1. Автор: Jianping Zhang. Владелец: Individual. Дата публикации: 2022-06-23.

Stacked ceramic body and production method thereof

Номер патента: US20030107867A1. Автор: Yukihisa Takeuchi,Akio Iwase,Tetuji Ito. Владелец: Denso Corp. Дата публикации: 2003-06-12.

Refrigeration apparatus and production method thereof

Номер патента: US20240210099A1. Автор: Xiaobing Zhu,Jianquan Chen,Yanbin WAN. Владелец: Qingdao Haier Refrigerator Co Ltd. Дата публикации: 2024-06-27.

Resin composition and production method thereof, and cleaning method of resin molding processing machine

Номер патента: US20240254299A1. Автор: Shunichiro I,Daisuke Masaki. Владелец: Asahi Kasei Corp. Дата публикации: 2024-08-01.

Obsessive-compulsive disorder animal model and production method thereof

Номер патента: US20230000064A1. Автор: Bong June YOON,In Bum LEE. Владелец: KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION. Дата публикации: 2023-01-05.

Solar cell and production method thereof, photovoltaic module

Номер патента: US20230402552A1. Автор: Jie Yang,Zhao Wang,Lipeng Wang,Mengchao SHEN. Владелец: Jinko Solar Co Ltd. Дата публикации: 2023-12-14.

Solar cell and production method thereof, photovoltaic module

Номер патента: NL2033696B1. Автор: Yang Jie,WANG Zhao,Wang Lipeng,Shen Mengchao. Владелец: Jinko Solar Co Ltd. Дата публикации: 2024-03-19.

π-CONJUGATED COPOLYMER PRODUCTION METHOD THEREOF AND CAPACITOR USING THE COPOLYMER

Номер патента: WO2005030831A2. Автор: Yoshihiro Saida,Shuichi Naijo,Hideki Ohata. Владелец: SHOWA DENKO K. K.. Дата публикации: 2005-04-07.

Multi-layer circuit board and production method thereof

Номер патента: MY139193A. Автор: Koichi Kawamura,Takeyoshi Kano. Владелец: Fuji Photo Film Co Ltd. Дата публикации: 2009-08-28.

Fused siliceous refractory and production method thereof

Номер патента: US20070243994A1. Автор: Akifumi Sakamoto. Владелец: Nichias Corp. Дата публикации: 2007-10-18.

Modified sulfur and production method thereof

Номер патента: AU2020213268A1. Автор: Phil Ho Ahn. Владелец: Individual. Дата публикации: 2021-08-05.

Self- viscoelastic intraocular lens cartridge and production method thereof

Номер патента: EP4051175A1. Автор: Faruk OYTUN,Serkan Atmaca. Владелец: Vsy Biyoteknoloji Ve Ilac Sanayi AS. Дата публикации: 2022-09-07.

Semiconductor structure and production method thereof

Номер патента: US20210005706A1. Автор: Bin Lu,Jian Shen. Владелец: Shenzhen Goodix Technology Co Ltd. Дата публикации: 2021-01-07.

A herbal composition with antiviral effect and production method thereof

Номер патента: WO2023129120A3. Автор: Murat KARTAL. Владелец: Bezmi̇alem Vakif Üni̇versi̇tesi̇. Дата публикации: 2023-08-17.

A herbal composition with antiviral effect and production method thereof

Номер патента: WO2023129120A2. Автор: Murat KARTAL. Владелец: Bezmi̇alem Vakif Üni̇versi̇tesi̇. Дата публикации: 2023-07-06.

Caliper cover assembly and production method thereof

Номер патента: US12078217B2. Автор: Jianping Zhang. Владелец: Individual. Дата публикации: 2024-09-03.

A bio-leather coated fabric and producing method thereof

Номер патента: US20240301620A1. Автор: Ece Gözen Akin. Владелец: Gozen Bioworks Corp. Дата публикации: 2024-09-12.

A polyurethane foam and production method thereof and a cooling device

Номер патента: EP3853296A1. Автор: Orcun YUCEL,Cahit Can CANAKCI,Sefa Yasin UZEN,Yusuf YUSUFOGLU,Tugce ONER. Владелец: Arcelik AS. Дата публикации: 2021-07-28.

Powder and production method therefor

Номер патента: EP4442645A1. Автор: Koji Matsui,Kenji Imai,Kohei Hosoi. Владелец: Tosoh Corp. Дата публикации: 2024-10-09.

Nebulizer mesh and production method thereof

Номер патента: US09889261B2. Автор: Makoto Sakai,Yuji Uchiumi,Shingo Watanabe,Yoshio Shindo,Tasuku ARIMOTO. Владелец: Tanaka Kikinzoku Kogyo KK. Дата публикации: 2018-02-13.

OLED light emitting device and production method thereof and display apparatus

Номер патента: US09882157B2. Автор: Yansong Li. Владелец: BOE Technology Group Co Ltd. Дата публикации: 2018-01-30.

Polyester yarn and production method thereof

Номер патента: US09797071B2. Автор: Young-Jo Kim,Gi-Woong Kim,Sang-Mok Lee,Young-Soo Lee. Владелец: KOLON INDUSTRIES INC. Дата публикации: 2017-10-24.

Aluminum alloy and production method thereof

Номер патента: US09657377B2. Автор: Shae-Kwang Kim,Young-Ok YOON,Jeong-Ho Seo. Владелец: Korea Institute of Industrial Technology KITECH. Дата публикации: 2017-05-23.

Semi-crystalline shape memory polymer and production method thereof

Номер патента: US09527947B2. Автор: Jing Lu,Yong Zhu,Jinlian Hu,Jianping Han. Владелец: Hong Kong Polytechnic University HKPU. Дата публикации: 2016-12-27.

Polar solvent solution and production method thereof

Номер патента: US20180127553A1. Автор: Hironori Yamamoto,Hiroaki SUZUMURA,Kana ISHIDA,Kazuhide Sekiyama. Владелец: Spiber Inc. Дата публикации: 2018-05-10.

Diphenylamine compounds and production method thereof

Номер патента: US20140336415A1. Автор: Minoru Ito,Akiko IKUMI. Владелец: Kumiai Chemical Industry Co Ltd. Дата публикации: 2014-11-13.

Recording medium, image formation method thereby, and production method thereof

Номер патента: US20030021959A1. Автор: Yuji Kondo,Hiroyuki Ogino,Tsuyoshi Santo. Владелец: Individual. Дата публикации: 2003-01-30.

Steel cord and production method therefor, and tire

Номер патента: LU506939B1. Автор: Lili YAO,Haidong Yao,Shoupeng KOU,Zhisong Zhou,Zengguang Ke. Владелец: Jiangsu Xingda Steel Tyre Cord. Дата публикации: 2024-08-22.

Diphenylamine compounds and production method thereof

Номер патента: US09550724B2. Автор: Minoru Ito,Akiko IKUMI. Владелец: Kumiai Chemical Industry Co Ltd. Дата публикации: 2017-01-24.

Dimensionally stable paper and production method thereof

Номер патента: US09441327B2. Автор: Bernd Ullmann,Holger Arnold. Владелец: Ahlstrom Corp. Дата публикации: 2016-09-13.

Rare earth magnet and production method thereof

Номер патента: US11990260B2. Автор: Masaaki Ito,Hisashi Maehara,Motoki Hiraoka,Reimi TABUCHI,Masanori OKANAN. Владелец: Nichia Corp. Дата публикации: 2024-05-21.

Dpp-4 inhibitor and production method therefor

Номер патента: EP4427756A1. Автор: Mikio Aoki,Masanori Kusumoto,Toshihiro Yoneyama,Kazuki Mikata. Владелец: Sumitomo Chemical Co Ltd. Дата публикации: 2024-09-11.

Solid electrolytic capacitor, and production method thereof

Номер патента: US09721732B2. Автор: Kazumi Naito. Владелец: Showa Denko KK. Дата публикации: 2017-08-01.

Paper rolls installation and production method

Номер патента: RU2721801C2. Автор: Фабио ПЕРИНИ. Владелец: ФУТУРА С.п.а.. Дата публикации: 2020-05-22.

Caliper cover assembly and production method therefor

Номер патента: EP4112964A1. Автор: Jianping Zhang. Владелец: Individual. Дата публикации: 2023-01-04.

Refrigeration apparatus and production method therefor

Номер патента: EP4332470A1. Автор: Xiaobing Zhu,Jianquan Chen,Yanbin WAN. Владелец: Qingdao Haier Refrigerator Co Ltd. Дата публикации: 2024-03-06.

Composite oxide particles and production method thereof

Номер патента: US20090253571A1. Автор: Hiroshi Sasaki,Shinsuke Hashimoto,Tomohiro Yamashita,Tomoaki Nonaka. Владелец: TDK Corp. Дата публикации: 2009-10-08.

Composite material and production method thereof

Номер патента: US20140349103A1. Автор: M. Hüseyin ATES,Elif ERDOGAN,Saim OZ. Владелец: Kordsa Global Endustriyel Iplik ve Kord Bezi Sanayi ve Ticaret AS. Дата публикации: 2014-11-27.

Production method of a composite material

Номер патента: EP2681039A2. Автор: M. Hüseyin ATES,Elif ERDOGAN,Saim OZ. Владелец: Kordsa Global Endustriyel Iplik ve Kord Bezi Sanayi ve Ticaret AS. Дата публикации: 2014-01-08.

Controlled release particles and production method thereof

Номер патента: US20130337072A1. Автор: Junji Oshima. Владелец: Japan Enviro Chemicals Ltd. Дата публикации: 2013-12-19.

Biocompatible bleaching agent and production method thereof

Номер патента: WO2022098337A1. Автор: Derya SURMELIOGLU,Ceylan HEPOKUR. Владелец: Gaziantep Universitesi Rektorlugu. Дата публикации: 2022-05-12.

Catalyst for proton exchange membrane fuel cell and production method for catalyst

Номер патента: US20170149069A1. Автор: Minoru Ishida,Koichi Matsutani. Владелец: Tanaka Kikinzoku Kogyo KK. Дата публикации: 2017-05-25.

Catalyst for solid polymer fuel cell and production method for the same

Номер патента: US10892496B2. Автор: Minoru Ishida,Koichi Matsutani. Владелец: Tanaka Kikinzoku Kogyo KK. Дата публикации: 2021-01-12.

A reinforcement member for reinforcing concrete and production method thereof

Номер патента: WO2022125029A3. Автор: Burak ERDAL,Ugur ALPARSLAN,Mert PATKAVAK. Владелец: KORDSA TEKNIK TEKSTIL A.S.. Дата публикации: 2022-09-09.

Semiconductor package and production method thereof

Номер патента: US20030173664A1. Автор: Tsutomu Ohuchi,Fumiaki Kamisaki. Владелец: Ars Electronics Co Ltd. Дата публикации: 2003-09-18.

Silicic fertilizer and production method thereof

Номер патента: US20020007656A1. Автор: Hiroshi Matsumoto,Kazunori Fukiage,Masaki Iwasaki. Владелец: Individual. Дата публикации: 2002-01-24.

A reinforcement member for reinforcing concrete and production method thereof

Номер патента: WO2022125029A2. Автор: Burak ERDAL,Ugur ALPARSLAN,Mert PATKAVAK. Владелец: KORDSA TEKNIK TEKSTIL A.S.. Дата публикации: 2022-06-16.

Antimicrobial glass composition and production method thereof

Номер патента: EP3998240A1. Автор: Namjin Kim,Young Seok Kim. Владелец: LG ELECTRONICS INC. Дата публикации: 2022-05-18.

Molded article using plant material and production method thereof

Номер патента: EP4446366A1. Автор: Takashi Watanabe,Kenji Kitayama,Naoko Kobayashi,Tomohiro Hashizume. Владелец: Kyoto University NUC. Дата публикации: 2024-10-16.

SiC single crystal and production method thereof

Номер патента: US09856582B2. Автор: Takeshi Suzuki,Yoshiyuki Yonezawa,Mina RYO. Владелец: Fuji Electric Co Ltd. Дата публикации: 2018-01-02.

Composite material and production method thereof

Номер патента: US09808998B2. Автор: M. Hüseyin ATES,Elif ERDOGAN,Saim OZ. Владелец: Kordsa Global Endustriyel Iplik ve Kord Bezi Sanayi ve Ticaret AS. Дата публикации: 2017-11-07.

Exhaust gas purifying catalyst and production method thereof

Номер патента: US09623401B2. Автор: Satoshi Nagao,Kazutoshi Akashi. Владелец: Toyota Motor Corp. Дата публикации: 2017-04-18.

Iron sofa frame structure, sofa and production method thereof

Номер патента: US11406191B2. Автор: Xiaohong Li,Weiming Chen. Владелец: Remacro Technology Co Ltd. Дата публикации: 2022-08-09.

Iron Sofa Frame Structure, Sofa and Production Method Thereof

Номер патента: US20210353064A1. Автор: Xiaohong Li,Weiming Chen. Владелец: Remacro Machinery and Technology Wujiang Co Ltd. Дата публикации: 2021-11-18.

Intelligent photoelectric sorting machine and product separation method thereof

Номер патента: AU2020427333B2. Автор: Xiaodong Ge,Taiyou LI,Xingguo Liang. Владелец: Tianjin Meiteng Technology Co Ltd. Дата публикации: 2024-05-16.

Polyarylene sulfide resin composition, molded article, layered product, and production method therefor

Номер патента: EP4450551A2. Автор: Tomomichi Kanda,Takamichi AOKI. Владелец: DIC Corp. Дата публикации: 2024-10-23.

Antioxidants for synthetic lubricating materials and production methods thereof

Номер патента: RU2458097C2. Автор: Юджин П. ДиБелла. Владелец: Кемтура Корпорейшн. Дата публикации: 2012-08-10.

Intelligent photoelectric sorting machine and product separation method thereof

Номер патента: AU2020427333A1. Автор: Xiaodong Ge,Taiyou LI,Xingguo Liang. Владелец: Tianjin Meiteng Technology Co Ltd. Дата публикации: 2022-09-29.

Opaque single-layer bottle with light protection and production method thereof

Номер патента: US09994383B2. Автор: Miguel Ángel Caballero López,Fortun Leza Roa. Владелец: Minera Catalano Aragonesa SA. Дата публикации: 2018-06-12.

Optically active 2,2'-biphenol derivative and production method of same

Номер патента: US20100280284A1. Автор: Yoshikazu Ito,Tsutomu Inoue,Yasushi Kubota. Владелец: Nippon Soda Co Ltd. Дата публикации: 2010-11-04.

Production method and production line for producing a flow field fuel-cell plate

Номер патента: US20240030464A1. Автор: Henrik Ljungcrantz. Владелец: Interpiex Nas Electronics GmbH. Дата публикации: 2024-01-25.

Microalgae-containing product and production method therefor

Номер патента: US20240368527A1. Автор: Takeshi Fujiwara,Takafumi Watanabe,Akihiko KANAMOTO. Владелец: Op Bio Factory Co Ltd. Дата публикации: 2024-11-07.

Emulsifier and production method therefor, and production method for emulsion

Номер патента: US09637559B2. Автор: Kazuo Tajima,Yoko Imai,Kaori Toyoda. Владелец: KANAGAWA UNIVERSITY. Дата публикации: 2017-05-02.

Iron-containing instant noodles fried in oil and such noodles production method

Номер патента: RU2522521C2. Автор: Мохаммад Шамем АЛАМ. Владелец: НЕСТЕК С.А.. Дата публикации: 2014-07-20.

Packing mat and production method

Номер патента: RU2287639C2. Автор: ФРАНСЕКИ Ульрих ФОН. Владелец: Хюскер Зюнтетик Гмбх. Дата публикации: 2006-11-20.

Chewing gum, its base and production method

Номер патента: RU2533033C2. Автор: Сяоху СЯ,Майкл Эс. ХААС,Стивен П. СИНОСКИ. Владелец: Вм. Ригли Дж. Компани. Дата публикации: 2014-11-20.

Elastic element and product for single-use wear, including elastic element

Номер патента: RU2752879C1. Автор: Сюнсукэ САКАИ. Владелец: Дайо Пейпер Корпорейшн. Дата публикации: 2021-08-11.

Hydrated lime production method and process line

Номер патента: RU2197442C2. Автор: С.И. Хвостенков. Владелец: Хвостенков Сергей Иванович. Дата публикации: 2003-01-27.

Interleaving paper for glass and production method therefor

Номер патента: EP3845705A1. Автор: Koichi Hagihara. Владелец: Oji Holdings Corp. Дата публикации: 2021-07-07.

Photocatalyst application liquid, photocatalytic structure, and production method therefor

Номер патента: PH12019550298A1. Автор: Mitsuhiro Yanagita,Daiya KOBAYASHI. Владелец: Nippon Soda Co. Дата публикации: 2021-01-11.

Production system and production method of potassium manganate

Номер патента: US12050027B2. Автор: GUAN Yang,Junliang Zhao,Liangqin LIN. Владелец: Shenzhen Hangxin Trading Co Ltd. Дата публикации: 2024-07-30.

Production method for hemiaminal compound and production method for heterocyclic compound

Номер патента: US20220002257A1. Автор: Aina USHIYAMA. Владелец: Fujifilm Corp. Дата публикации: 2022-01-06.

Production method for nanofiber aggregates, production apparatus for nanofiber aggregates, and nanofiber aggregates

Номер патента: CA3137394A1. Автор: Hiroyoshi Sota. Владелец: M Techx Inc. Дата публикации: 2020-09-24.

Production method for nanofiber aggregates, production apparatus for nanofiber aggregates, and nanofiber aggregates

Номер патента: AU2020239833A1. Автор: Hiroyoshi Sota. Владелец: M Techx Inc. Дата публикации: 2021-11-18.

Thin film semiconductor device and manufacturing method thereof

Номер патента: US20030027405A1. Автор: Hisao Hayashi. Владелец: Individual. Дата публикации: 2003-02-06.

Group III nitride semiconductor light-emitting device and production method therefor

Номер патента: US09577156B2. Автор: Shingo Totani. Владелец: Toyoda Gosei Co Ltd. Дата публикации: 2017-02-21.

Thermoelectric conversion material and production method thereof

Номер патента: US20180287033A1. Автор: Shinsuke Hirono,Hiroyuki Suto. Владелец: Toyota Motor Corp. Дата публикации: 2018-10-04.

Oled substrate and producing method thereof, panel, and display apparatus

Номер патента: US20170018729A1. Автор: Huai-Ting Shih,Zhiqiang Jiao. Владелец: BOE Technology Group Co Ltd. Дата публикации: 2017-01-19.

Thin-film solar cell and production method for thin-film solar cell

Номер патента: US20160155878A1. Автор: Hiroki Sugimoto,Hideki Hakuma,Yasuaki Iwata. Владелец: Solar Frontier KK. Дата публикации: 2016-06-02.

Sunshade production method and production system

Номер патента: US20040084128A1. Автор: Mikimara Matsui. Владелец: CHUBU INDUSTRIES Co Inc. Дата публикации: 2004-05-06.

Lot management production method and product carrying container

Номер патента: US20020121518A1. Автор: Tomohide Jozaki. Владелец: Sony Corp. Дата публикации: 2002-09-05.

Pvc floor, and production line and preparation method therefor

Номер патента: EP4417403A1. Автор: Dingyi LU. Владелец: Wuxi Boyu Plastic Machinery Co ltd. Дата публикации: 2024-08-21.

Food product, device and production method of said food product.

Номер патента: EP3554273A1. Автор: Enrico Camporese,Manuel Marcon. Владелец: Individual. Дата публикации: 2019-10-23.

Cable parking system for a network element and method thereof

Номер патента: US20240349441A1. Автор: Daniel Rivaud,Fabien Colton,Simon J. E. Shearman. Владелец: Ciena Corp. Дата публикации: 2024-10-17.

Sputtering target and production method of the same

Номер патента: US09934949B2. Автор: Masahiro Shoji,Shoubin Zhang,Keita UMEMOTO. Владелец: Mitsubishi Materials Corp. Дата публикации: 2018-04-03.

Production method for poly(amino acid)

Номер патента: US09815938B2. Автор: Toshiaki Nagata,Mitsuhisa Yamano,Hideki Saitoh. Владелец: Takeda Pharmaceutical Co Ltd. Дата публикации: 2017-11-14.

Serum-free stable transfection and production of recombinant human proteins in human cell lines

Номер патента: US09796986B2. Автор: Cathleen Wegmann,Haiyan Ding,Carola Schroeder. Владелец: Octapharma AG. Дата публикации: 2017-10-24.

Disposable diaper production method and production device

Номер патента: US09789008B2. Автор: Takahiro Shimada. Владелец: Zuiko Corp. Дата публикации: 2017-10-17.

Thin-film solar cell and production method for thin-film solar cell

Номер патента: US09786804B2. Автор: Hiroki Sugimoto,Hideki Hakuma,Yasuaki Iwata. Владелец: Solar Frontier KK. Дата публикации: 2017-10-10.

Production method for methane hydrate using reservoir grouting

Номер патента: US20210222536A1. Автор: Masanori Kurihara,Yuchen Liu. Владелец: Japan E&p International Corp. Дата публикации: 2021-07-22.

Serum-free stable transfection and production of recombinant human proteins in human cell lines

Номер патента: US09512457B2. Автор: Cathleen Wegmann,Haiyan Ding,Carola Schroeder. Владелец: Octapharma AG. Дата публикации: 2016-12-06.

Microbial organic fertiliser and production methods thereof

Номер патента: RU2595173C2. Автор: Влодимир ЧЕРВОНЫЙ. Владелец: Влодимир ЧЕРВОНЫЙ. Дата публикации: 2016-08-20.

Three-dimensional shaped object production method and production device

Номер патента: US20180354193A1. Автор: Kazuhiro Ochi. Владелец: MIMAKI ENGINEERING CO LTD. Дата публикации: 2018-12-13.

Liquid discharging apparatus and production method therefor

Номер патента: US20090309924A1. Автор: Hiroyuki Yamamoto,Yoshiaki Kurihara. Владелец: Canon Inc. Дата публикации: 2009-12-17.

Flexible photovoltaic membrane sandwich panel production system and production method

Номер патента: WO2024072340A1. Автор: Emin Orkun ÖZ. Владелец: Assan Panel Sanayi Ve Ticaret Anonim Sirketi. Дата публикации: 2024-04-04.

Polyurethane, roller covering and production method

Номер патента: US20240218106A1. Автор: Stefan POLLASCHEK,Anton Horak. Владелец: VOITH PATENT GMBH. Дата публикации: 2024-07-04.

Production method for antenna and production device for antenna

Номер патента: EP1598857A4. Автор: Takayuki Hoshino,Shinji Matsui,Kazushige Kondo. Владелец: Individual. Дата публикации: 2008-11-26.

Sputtering target and production method of the same

Номер патента: US20160079044A1. Автор: Masahiro Shoji,Shoubin Zhang,Keita UMEMOTO. Владелец: Mitsubishi Materials Corp. Дата публикации: 2016-03-17.

Culture method for cells and production method for useful substance

Номер патента: US20240240130A1. Автор: Atsushi Inada. Владелец: Fujifilm Corp. Дата публикации: 2024-07-18.

Power module and production method of the same

Номер патента: US20190273034A1. Автор: Wei Cheng,Xin Zou,Shouyu Hong,Zhenqing ZHAO,Ganyu ZHOU. Владелец: Delta Electronics Shanghai Co Ltd. Дата публикации: 2019-09-05.

Steel wire mesh made of steel wires having hexagonal loops, production device, and production method

Номер патента: AU2022207151A1. Автор: Mario Brunn. Владелец: GEOBRUGG AG. Дата публикации: 2023-07-27.

Steel wire mesh made of steel wires having hexagonal loops, production device, and production method

Номер патента: AU2022207151B2. Автор: Mario Brunn. Владелец: GEOBRUGG AG. Дата публикации: 2024-05-09.

Backing plate, sputtering target, and production methods therefor

Номер патента: US20220013342A1. Автор: Koji Nishioka,Naoya Satoh. Владелец: Sumitomo Chemical Co Ltd. Дата публикации: 2022-01-13.

Production method and production apparatus for joint separator

Номер патента: US20200083544A1. Автор: Toshiki Kawamura,Yasuhide FUKUSHIMA,Yohei Kataoka. Владелец: Honda Motor Co Ltd. Дата публикации: 2020-03-12.

Electronic device, dielectric ceramic composition and production method of the same

Номер патента: US20060128553A1. Автор: Yasuo Watanabe,Akira Sato,Miyuki Yanagida,Haruya Hara. Владелец: TDK Corp. Дата публикации: 2006-06-15.

Production method and production system for producing a continuous-fiber-reinforced component

Номер патента: US20210308958A1. Автор: Uwe Beier,Christian Metzner. Владелец: AIRBUS SAS. Дата публикации: 2021-10-07.

A chewable tablet with calcium and vitamin D and preparation method thereof

Номер патента: AU2021104464A4. Автор: Yue Wu. Владелец: Super Foods New Zealand Ltd. Дата публикации: 2021-09-16.

Steel wire mesh made of steel wires having hexagonal loops, production device, and production method

Номер патента: ZA202305327B. Автор: Brunn Mario. Владелец: GEOBRUGG AG. Дата публикации: 2024-06-26.

Steel for knives, steel for martensitic knives, knife, and production method for steel for martensitic knives

Номер патента: EP4026926A1. Автор: Kentaro Fukumoto. Владелец: Hitachi Metals Ltd. Дата публикации: 2022-07-13.

Composite and production method for composite

Номер патента: US20230271888A1. Автор: Nobuya Suzuki,Saori INOUE,Ryo Yoshimatsu,Ryuji Koga,Yasuhisa UESHIMA. Владелец: Denka Co Ltd. Дата публикации: 2023-08-31.

Production device and production method for single curved tempered glass

Номер патента: EP3741730A1. Автор: Jun-feng HAN. Владелец: Luoyang North Glass Technology Co Ltd. Дата публикации: 2020-11-25.

Production device and production method for single curved tempered glass

Номер патента: CA3088454A1. Автор: Jun-feng HAN. Владелец: Luoyang North Glass Technology Co Ltd. Дата публикации: 2019-07-25.

Cell culturing method and production method for useful substance

Номер патента: EP4410957A1. Автор: Atsushi Inada. Владелец: Fujifilm Corp. Дата публикации: 2024-08-07.

Production method for nanofiber aggregates, production apparatus for nanofiber aggregates, and nanofiber aggregates

Номер патента: US20220195646A1. Автор: Hiroyoshi Sota. Владелец: M Techx Inc. Дата публикации: 2022-06-23.

Backing plate, sputtering target, and production methods therefor

Номер патента: US12057302B2. Автор: Koji Nishioka,Naoya Satoh. Владелец: Sumitomo Chemical Co Ltd. Дата публикации: 2024-08-06.

Production method, workpiece and production device of three-dimensional pattern

Номер патента: US20110064924A1. Автор: Chien-Min Chang,Jung-Chin Wu,Wan-Li Chuang. Владелец: Compal Electronics Inc. Дата публикации: 2011-03-17.

Poly(arylene sulfide) resin mixture, resin composition, molded article, and production methods therefor

Номер патента: EP4435056A1. Автор: Nobuyuki Matsumoto,Masashi Kunishige. Владелец: DIC Corp. Дата публикации: 2024-09-25.

OLED substrate, manufacturing method thereof, OLED display panel and electronic equipment

Номер патента: US09966423B2. Автор: Baoxia ZHANG,Cuili Gai. Владелец: BOE Technology Group Co Ltd. Дата публикации: 2018-05-08.

Titanium alloy member and production method therefor

Номер патента: US09920399B2. Автор: Yoshiki Ono,Tohru Shiraishi,Yuji Araoka. Владелец: NHK Spring Co Ltd. Дата публикации: 2018-03-20.

Production method of optical fiber preform and production method of optical fiber

Номер патента: US09902643B2. Автор: Seiichi Shinada. Владелец: Furukawa Electric Co Ltd. Дата публикации: 2018-02-27.

Glass fiberboard and production method therefor

Номер патента: US09476198B2. Автор: Myung Lee,Seong-Moon Jung,Eun-Joo Kim,Suk Jang. Владелец: LG HAUSYS LTD. Дата публикации: 2016-10-25.

Hot-dip zn-al alloy-plated steel material with excellent bending workability and production method thereof

Номер патента: CA2620736C. Автор: Shiro Fujii. Владелец: Nippon Steel Corp. Дата публикации: 2011-03-29.

Adhesive patch and production method thereof

Номер патента: CA2634272C. Автор: Masanori Uematsu. Владелец: Teikoku Seiyaku Co Ltd. Дата публикации: 2014-08-26.

Quantum dots and production method thereof

Номер патента: US20190385839A1. Автор: Christopher Murray,Eun Joo Jang,Tae Gon Kim,Nuri Oh,Cherie Kagan,Tianshuo ZHAO. Владелец: University of Pennsylvania Penn. Дата публикации: 2019-12-19.

Quantum dots and production method thereof

Номер патента: US11901178B2. Автор: Christopher Murray,Eun Joo Jang,Tae Gon Kim,Nuri Oh,Cherie Kagan,Tianshuo ZHAO. Владелец: University of Pennsylvania Penn. Дата публикации: 2024-02-13.

Npr non-magnetic steel material for rock bolt and production method thereof

Номер патента: US20210189536A1. Автор: Hongyan Guo,Min Xia,Manchao He,Jiuping Wang. Владелец: Individual. Дата публикации: 2021-06-24.

Hot-melt adhesive resin film and production method thereof

Номер патента: US11826991B2. Автор: Hirokazu Iizuka,Kunihiro Takei,Yuiko Maruyama. Владелец: Fujimori Kogyo Co Ltd. Дата публикации: 2023-11-28.

Npr steel material for rock bolt and production method thereof

Номер патента: US20210062311A1. Автор: Hongyan Guo,Min Xia,Manchao He,Jiuping Wang. Владелец: Individual. Дата публикации: 2021-03-04.

Chipset and manufacturing method thereof

Номер патента: US12027512B2. Автор: Shiqun Gu,Linglan Zhang. Владелец: Shanghai Biren Technology Co Ltd. Дата публикации: 2024-07-02.

Planar magnetic element and manufacturing method thereof

Номер патента: US20240234004A9. Автор: Lei Chen,Liang Wang,Teng Liu,Xiaohu Li,Jianxing DONG. Владелец: Delta Electronics Shanghai Co Ltd. Дата публикации: 2024-07-11.

Production method and production apparatus for ring-shaped part

Номер патента: US10486237B2. Автор: Shuichi NOWATARI. Владелец: Individual. Дата публикации: 2019-11-26.

Package structure of a stack-type light-sensing element and package method thereof

Номер патента: US20050247859A1. Автор: Chih-Ming Hsu,Chung-Cheng Lin,Chin-Ting Lee. Владелец: Cleavage Enterprise Co Ltd. Дата публикации: 2005-11-10.

Automatically-limiting electric sausage filler and control method thereof

Номер патента: US9655371B2. Автор: Ying Xu,Junliang WANG,Shengyue Pan. Владелец: Intradin Shanghai Machinery Co Ltd. Дата публикации: 2017-05-23.

Automatically-limiting Electric Sausage Filler and Control Method Thereof

Номер патента: US20160366899A1. Автор: Ying Xu,Junliang WANG,Shengyue Pan. Владелец: Intradin Shanghai Machinery Co Ltd. Дата публикации: 2016-12-22.

Production method of dialkyl carbonate and production apparatus for dialkyl carbonate

Номер патента: US20240199527A1. Автор: Hiroyuki Ochi,Miyako Enomoto. Владелец: Asahi Kasei Corp. Дата публикации: 2024-06-20.

Air purifier and production method for air purifier

Номер патента: US20220176007A1. Автор: Masakazu Goto. Владелец: Eclair Ltd. Дата публикации: 2022-06-09.

Piezoelectric element, piezoelectric vibrator and manufacturing method thereof, and electronic device

Номер патента: US20220165931A1. Автор: YuJu CHEN. Владелец: BOE Technology Group Co Ltd. Дата публикации: 2022-05-26.

Laser apparatus and production method of laser apparatus

Номер патента: US20090052486A1. Автор: Kenji Tamamori,Shinan Wang. Владелец: Canon Inc. Дата публикации: 2009-02-26.

Laser apparatus and production method of laser apparatus

Номер патента: US7477668B2. Автор: Kenji Tamamori,Shinan Wang. Владелец: Canon Inc. Дата публикации: 2009-01-13.

Microcapsules loaded with probiotics and production thereof

Номер патента: EP3672640A2. Автор: Buse BERBER. Владелец: Nanomik Biyoteknoloji AS. Дата публикации: 2020-07-01.

Linear Motion Guide Device and Production Method Therefor

Номер патента: US20160305477A1. Автор: Jun Matsumoto. Владелец: NSK LTD. Дата публикации: 2016-10-20.

Polishing apparatus and pad replacing method thereof

Номер патента: US20080125022A1. Автор: Shu-Yi Lin,Shiuh-Jer Huang,Guang-Ling He. Владелец: National Taiwan University of Science and Technology NTUST. Дата публикации: 2008-05-29.

Carbon fiber bundle and production method therefor

Номер патента: EP4403680A1. Автор: Jun Watanabe,Yuki Suga,Fumihiko Tanaka. Владелец: TORAY INDUSTRIES INC. Дата публикации: 2024-07-24.

Production method and production apparatus for dried vitrigel membrane

Номер патента: US11814488B2. Автор: Toshiaki Takezawa. Владелец: NATIONAL AGRICULTURE AND FOOD RESEARCH ORGANIZATION. Дата публикации: 2023-11-14.

Power conversion device for electric range, and control method thereof

Номер патента: US20230422356A1. Автор: Young Kook Kim,Yeon Soo Seong,Kyo Eon OH,Eui Soon LEE. Владелец: Coway Co Ltd. Дата публикации: 2023-12-28.

Fuse and production method therefor

Номер патента: US20210391137A1. Автор: Yonglin Yang,Xiqing Chen,Xiangming Li,Xiaobing SHAN. Владелец: AEM Components Co Ltd. Дата публикации: 2021-12-16.

Electronic circuit board, and production method therefor

Номер патента: US20180001683A1. Автор: Tadashi Kawamoto,Shigeru Baba,Kazuhiko Tanaka,Sakae Murata,Youichi Sumoto. Владелец: Komura Tech Co Ltd. Дата публикации: 2018-01-04.

Coating layer for vehicle trim element, trim element and method thereof

Номер патента: US20240286377A1. Автор: Benjamin Quesnel. Владелец: Materi&#39;act. Дата публикации: 2024-08-29.

Heat pump system and the control method thereof

Номер патента: US20230228470A1. Автор: Guang Zhang,Guangyu SHEN,Hui Zhai. Владелец: Carrier Corp. Дата публикации: 2023-07-20.

Cream containing polar microalgae and its production method

Номер патента: WO2023128894A1. Автор: Didem OZCIMEN,Benan INAN,Şule Miray EYİER. Владелец: Yildiz Teknoloji Transfer Ofisi Anonim Sirketi. Дата публикации: 2023-07-06.

Active element and fabricating method thereof

Номер патента: US20160190342A1. Автор: Chia-Ming Chiang,Chih-Wen Lai,hao-wei Wang. Владелец: Chunghwa Picture Tubes Ltd. Дата публикации: 2016-06-30.

Power module and manufacturing method thereof

Номер патента: US20190304882A1. Автор: Wei Cheng,Tao Wang,Shouyu Hong,Zhenqing ZHAO,Haibin Xu. Владелец: Delta Electronics Inc. Дата публикации: 2019-10-03.

Metal member and production method therefor

Номер патента: US20210404066A1. Автор: Shigeru Yoshimura. Владелец: NGK Electronics Devices Inc. Дата публикации: 2021-12-30.

Semiconductor package and manufacturing method thereof

Номер патента: US20240282661A1. Автор: Yu-Wei Lin,Li-Hui Cheng,Pu Wang,Chih-Chien Pan. Владелец: Taiwan Semiconductor Manufacturing Co TSMC Ltd. Дата публикации: 2024-08-22.

Magnetic element and manufacturing method thereof

Номер патента: US20240029940A1. Автор: Haijun Yang,Jiamin Shi,Debao Quan. Владелец: Delta Electronics Shanghai Co Ltd. Дата публикации: 2024-01-25.

Itching relieving apparatus and operating method thereof

Номер патента: US20240315869A1. Автор: Ying Wei,Anning Chen,Chu Gong,Weinong Xu. Владелец: Shenzhen Chuancheng Technology Service Co ltd. Дата публикации: 2024-09-26.

Display device and manufacturing method thereof

Номер патента: US20200335679A1. Автор: Bin Zhong. Владелец: Kaistar Lighting Xiamen Co Ltd. Дата публикации: 2020-10-22.

Inorganic-organic hybrid oxide polymer and manufacturing method thereof

Номер патента: US09982140B2. Автор: Hsueh-Shih Chen. Владелец: National Tsing Hua University NTHU. Дата публикации: 2018-05-29.

Reinforcing element for producing prestressed concrete components, concrete component and production methods

Номер патента: US09938721B2. Автор: Josef Peter Kurath-Grollmann. Владелец: CPC AG. Дата публикации: 2018-04-10.

Carbon fiber bundle and production method therefor

Номер патента: US20240337048A1. Автор: Jun Watanabe,Yuki Suga,Fumihiko Tanaka. Владелец: TORAY INDUSTRIES INC. Дата публикации: 2024-10-10.

Linear motion guide device and production method therefor

Номер патента: US09765814B2. Автор: Jun Matsumoto. Владелец: NSK LTD. Дата публикации: 2017-09-19.

Thin fan and manufacturing method thereof

Номер патента: US09732757B2. Автор: Chin-Hung Lee. Владелец: Delta Electronics Inc. Дата публикации: 2017-08-15.

Fabric material having cut loop texture, method of manufacturing same and product using same

Номер патента: US09683320B2. Автор: Hyun Sam Lee,Sung Hoon Choi. Владелец: CLEMBON Co Ltd. Дата публикации: 2017-06-20.

Synthesis gas and nanocarbon production method and production system

Номер патента: US09498764B2. Автор: Satoru Nakamura,Akio Tada. Владелец: Kitami Institute of Technology NUC. Дата публикации: 2016-11-22.

Sliding element and method of manufacturing therefor

Номер патента: RU2682361C1. Автор: Йосинори ИЗАВА. Владелец: Ниссан Мотор Ко., Лтд.. Дата публикации: 2019-03-19.

Wired circuit board and production method thereof

Номер патента: US20090025212A1. Автор: Toshiki Naito,Yuichi Takayoshi,Kazushi Ichikawa. Владелец: Nitto Denko Corp. Дата публикации: 2009-01-29.

Compost excellent in fertilizing activity and production method thereof

Номер патента: CA2234198C. Автор: Kazuyoshi Suzuki. Владелец: NKK Corp. Дата публикации: 2001-10-16.

Npr nonmagnetic anchor rod steel material and production method therefor

Номер патента: EP3686308A1. Автор: Hongyan Guo,Min Xia,Manchao He,Jiuping Wang. Владелец: Individual. Дата публикации: 2020-07-29.

Antibacterial colored spun yarn and production method thereof

Номер патента: NL2033838B1. Автор: Zhang Yi,Zhang Heng,HOU Shuai,ZHENG Yang,JI Kang. Владелец: Anhui Hanlian Top Dyed Melange Yarn Co Ltd. Дата публикации: 2023-10-11.

Pressed powder magnetic core material, pressed powder magnetic core, and production method thereof

Номер патента: US20180281061A1. Автор: Kouya Oohira,Noritaka KAKO. Владелец: NTN Corp. Дата публикации: 2018-10-04.

Antibacterial colored spun yarn and production method thereof

Номер патента: NL2033838A. Автор: Zhang Yi,Zhang Heng,HOU Shuai,ZHENG Yang,JI Kang. Владелец: Anhui Hanlian Top Dyed Melange Yarn Co Ltd. Дата публикации: 2023-01-26.

Release film for high-capacity multilayer ceramic capacitor and production method thereof

Номер патента: US11117347B2. Автор: Te-Chao Liao,Sen-Huang Hsu,Chao-Quan WU. Владелец: Nan Ya Plastics Corp. Дата публикации: 2021-09-14.

Iron sofa frame structure, sofa and production method thereof

Номер патента: NZ772033B2. Автор: Li XiaoHong,CHEN Weiming. Владелец: Remacro Machinery & Technology (Wuijiang) Co Ltd. Дата публикации: 2024-01-30.

Photocatalyst transfer film and production method thereof

Номер патента: US11987682B2. Автор: Masahiro Yuyama,Tomohiro Inoue,Manabu Furudate. Владелец: Shin Etsu Chemical Co Ltd. Дата публикации: 2024-05-21.

Iron sofa frame structure, sofa and production method thereof

Номер патента: NZ772033A. Автор: Li XiaoHong,CHEN Weiming. Владелец: Remacro Machinery & Tech Wuijiang Co Ltd. Дата публикации: 2023-10-27.

Npr anchor rod steel material and production method therefor

Номер патента: EP3686310A1. Автор: Hongyan Guo,Min Xia,Manchao He,Jiuping Wang. Владелец: Individual. Дата публикации: 2020-07-29.

Semiconductor light emitting element and manufacturing method thereof

Номер патента: US20190067514A1. Автор: Ming-Sen Hsu,Hsin Liang Yeh. Владелец: EPILEDS TECHNOLOGIES Inc. Дата публикации: 2019-02-28.

Production method and production apparatus for ring-shaped part

Номер патента: US20190184466A1. Автор: Shuichi NOWATARI. Владелец: Individual. Дата публикации: 2019-06-20.

Light emitting device and manufacturing method thereof

Номер патента: US20220216383A1. Автор: Ming-Chang Lin. Владелец: Innolux Corp. Дата публикации: 2022-07-07.

Quantum device, manufacturing method thereof, and electronic device

Номер патента: US20240090348A1. Автор: Ye Li,Hui Yang. Владелец: Origin Quantum Computing Technology Hefei Co Ltd. Дата публикации: 2024-03-14.

Semiconductor package and manufacturing method thereof

Номер патента: US20120032341A1. Автор: Shin-Hua Chao,Chih-Ming Chung,Chao-Yuan Liu,Hui-Ying HSIEH. Владелец: Advanced Semiconductor Engineering Inc. Дата публикации: 2012-02-09.

Porous multi-metal oxide nanotubes and production method therefor

Номер патента: US20220195630A1. Автор: Ju Ahn PARK,Sangaraju Shanmugam. Владелец: Kia Corp. Дата публикации: 2022-06-23.

An adaptive change engine system and a method thereof

Номер патента: WO2024095124A1. Автор: Ritesh Kumar,Aayush Bhatnagar,Pradeep Kumar Bhatnagar,Polsoni Chaitanya REDDY. Владелец: Jio Platforms Limited. Дата публикации: 2024-05-10.

YIG magnetic ceramic composition for microwave application and preparation method thereof

Номер патента: US20040099837A1. Автор: DONG Jun,Sang Lee,Dong-Young Kim,Jin Hahn. Владелец: EG Co Ltd. Дата публикации: 2004-05-27.

Signal transmission structure, package structure and bonding method thereof

Номер патента: US20070221403A1. Автор: Chia-Hsing Chou,Chih-Yi Huang. Владелец: Advanced Semiconductor Engineering Inc. Дата публикации: 2007-09-27.

Porous multi-metal oxide nanotubes and production method therefor

Номер патента: US20240141558A1. Автор: Ju Ahn PARK,Sangaraju Shanmugam. Владелец: Kia Corp. Дата публикации: 2024-05-02.

Porous multi-metal oxide nanotubes and production method therefor

Номер патента: US11905624B2. Автор: Ju Ahn PARK,Sangaraju Shanmugam. Владелец: Kia Corp. Дата публикации: 2024-02-20.

Transparent electronic device and manufacturing method thereof

Номер патента: US20240154048A1. Автор: Yu-Ling Lin,Tsung-Ying Ke. Владелец: AUO Corp. Дата публикации: 2024-05-09.

A stabilized reinforcing textile fabric and a production method thereof

Номер патента: WO2019027385A2. Автор: Elcin CAKAL SARAC,Deniz KORKMAZ,Egemen BILGE. Владелец: KORDSA TEKNIK TEKSTIL A.S.. Дата публикации: 2019-02-07.

A stabilized reinforcing textile fabric and a production method thereof

Номер патента: WO2019027384A2. Автор: Elcin CAKAL SARAC,Deniz KORKMAZ,Egemen BILGE. Владелец: KORDSA TEKNIK TEKSTIL A.S.. Дата публикации: 2019-02-07.

Surface-treated rolling bearing and manufacturing method thereof

Номер патента: US20030015262A1. Автор: Seiji Sato,Yasuo Murakami,Hiromichi Takemura,Youichi Matumoto. Владелец: NSK LTD. Дата публикации: 2003-01-23.

Kit for detecting foot-and-mouth disease virus and detection method thereof

Номер патента: US20230102037A1. Автор: Wei Xiong,JIAN Li,Junxin Xue,Yingzheng LIN. Владелец: Aftc Of Shanghai Customs. Дата публикации: 2023-03-30.

Composite layer circuit element and manufacturing method thereof

Номер патента: US11764077B2. Автор: Cheng-Chi Wang,Chuan-Ming Yeh,Kuo-Jung Fan,Heng-Shen Yeh. Владелец: Innolux Corp. Дата публикации: 2023-09-19.

Electronic package and manufacturing method thereof

Номер патента: US20240274495A1. Автор: Yu-Po Wang,Nai-Hao Kao,Shuai-Lin Liu. Владелец: Siliconware Precision Industries Co Ltd. Дата публикации: 2024-08-15.

Display panel, preparation method thereof and display device

Номер патента: US11626571B2. Автор: Qian Wang,Shiyang Xu. Владелец: Chengdu BOE Optoelectronics Technology Co Ltd. Дата публикации: 2023-04-11.

Epitaxial wafer and production method therefor

Номер патента: EP4411791A1. Автор: Tatsuo Abe,Atsushi Suzuki,Toshiki Matsubara,Yasushi Mizusawa,Tsuyoshi Ohtsuki. Владелец: Shin Etsu Handotai Co Ltd. Дата публикации: 2024-08-07.

Electronic package and manufacturing method thereof

Номер патента: US20240274505A1. Автор: Yu-Po Wang,Nai-Hao Kao,Shuai-Lin Liu. Владелец: Siliconware Precision Industries Co Ltd. Дата публикации: 2024-08-15.

A stabilized reinforcing textile fabric and a production method thereof

Номер патента: WO2019027384A3. Автор: Elcin CAKAL SARAC,Deniz KORKMAZ,Egemen BILGE. Владелец: KORDSA TEKNIK TEKSTIL A.S.. Дата публикации: 2019-03-21.

Oled display device and manufacture method thereof

Номер патента: US20190109295A1. Автор: Jing Ni,Jinming TANG. Владелец: Wuhan China Star Optoelectronics Technology Co Ltd. Дата публикации: 2019-04-11.

Rubber composition, processing method thereof, rubber hose using the same

Номер патента: US12060476B2. Автор: Tao Xu,Zhi Sheng FU,An Yang WU. Владелец: Shaoxing Pinghe New Material Technology Co Ltd. Дата публикации: 2024-08-13.

Linear actuator with contact type safety nut and fault detection method thereof

Номер патента: EP4411176A1. Автор: Shugen Xu,Zhong Xu. Владелец: Zhejiang Dingli Machinery Co Ltd. Дата публикации: 2024-08-07.

Power supply device for luminous element and method thereof

Номер патента: US20080164829A1. Автор: Sang-Hoon Lee,Jeong-il Kang. Владелец: SAMSUNG ELECTRONICS CO LTD. Дата публикации: 2008-07-10.

Solid electrolytic capacitor and manufacturing method thereof

Номер патента: US20090290289A1. Автор: Sung Wook Han. Владелец: Samsung Electro Mechanics Co Ltd. Дата публикации: 2009-11-26.

Elastic functional textile fabric and dyeing and finishing method thereof

Номер патента: US20220243362A1. Автор: I-Min Lin. Владелец: Individual. Дата публикации: 2022-08-04.

Display device and manufacturing method thereof

Номер патента: US20240284755A1. Автор: Bo Shi,Weiyun HUANG,Haigang Qing,Benlian WANG. Владелец: Chengdu BOE Optoelectronics Technology Co Ltd. Дата публикации: 2024-08-22.

Sufu containing functional factors and preparation method thereof

Номер патента: AU2020103504A4. Автор: Hui Chen,Zhigang Wu,Huihua Zheng,Su BU,Wande Gao,Hanping LU. Владелец: Jiangsu Alphay Bio Technology Co Ltd. Дата публикации: 2021-01-21.

Sic single crystal substrate and production method therefor

Номер патента: EP4421219A1. Автор: Jun Yoshikawa,Kiyoshi MATSUSHIMA,Fumiyasu NOZAKI. Владелец: NGK Insulators Ltd. Дата публикации: 2024-08-28.

Moisture permeable waterproof fabric and manufacturing method thereof

Номер патента: WO1995011332A1. Автор: In Hee Kim,Youn Heum Park. Владелец: Sung Won Ind. Co., Ltd.. Дата публикации: 1995-04-27.

Display backplane, manufacturing method thereof and display device

Номер патента: US09991475B2. Автор: Guangcai Yuan,Wulin SHEN. Владелец: BOE Technology Group Co Ltd. Дата публикации: 2018-06-05.

Arc-ablation resistant switch contact and preparation method thereof

Номер патента: US09905376B2. Автор: Hongmei Zhang,Yang DING,Zhenxing WANG,Huisheng HAN. Владелец: Nantong Memtech Technologies Co ltd. Дата публикации: 2018-02-27.

Gate driver and control method thereof

Номер патента: US09859883B2. Автор: Hua-Chiang Huang. Владелец: uPI Semiconductor Corp. Дата публикации: 2018-01-02.

Fermented burdock sauce and preparation method thereof

Номер патента: AU2021102609A4. Автор: Weidong Wang,Han Bi,Yue&#39;e Sun. Владелец: Xuzhou University of Technology. Дата публикации: 2021-07-01.

Composite film and fabrication method thereof, photoelectric element and photoelectric apparatus

Номер патента: US09828544B2. Автор: Chen Tang,Jingxia Gu. Владелец: BOE Technology Group Co Ltd. Дата публикации: 2017-11-28.

Washing machine with balancer and control method thereof

Номер патента: US09809916B2. Автор: Min Sung KIM,Dong Ha JUNG,Jeong Hoon Kang,Doo Young Rou. Владелец: SAMSUNG ELECTRONICS CO LTD. Дата публикации: 2017-11-07.

Wet spun fibers, wet formed film, and production method therefor

Номер патента: US12139819B2. Автор: Takaichi Watanabe,Tsutomu Ono. Владелец: Okayama University NUC. Дата публикации: 2024-11-12.

Quick assembly and disassembly device of a toilet cover and implementation method thereof

Номер патента: US09661962B2. Автор: Feiyu Li,Baojia Huang,Huiqing Wang,Yuzhi Liu. Владелец: Individual. Дата публикации: 2017-05-30.

Semiconductor device and fabrication method thereof

Номер патента: US09607963B2. Автор: Chang-Fu Lin,Fu-Tang HUANG,Chin-Tsai Yao,Ming-Chin Chuang. Владелец: Siliconware Precision Industries Co Ltd. Дата публикации: 2017-03-28.

Recombinant yeast and substance production method using the same

Номер патента: US09546356B2. Автор: Masayoshi Muramatsu,Masakazu Ito. Владелец: Toyota Motor Corp. Дата публикации: 2017-01-17.

Coated barium titanate particulate and production method for same

Номер патента: US09478356B2. Автор: Yoshimi Moriya,Hidehiko Iinuma. Владелец: Kanto Denka Kogyo Co Ltd. Дата публикации: 2016-10-25.

Metalized plastic articles and methods thereof

Номер патента: US09435035B2. Автор: Liang Zhou,Qing Gong,Xiong Zhang,Weifeng Miao. Владелец: BYD Co Ltd. Дата публикации: 2016-09-06.

Proppants and production methods thereof

Номер патента: RU2377272C2. Автор: Томас В. УРБАНЕК. Владелец: 1389414 Альберта Лтд. Дата публикации: 2009-12-27.

Novel crystal of 5-aminolevulinic acid phosphate and production method thereof

Номер патента: RU2433118C2. Автор: Наохиса ТАТИЯ. Владелец: Космо Ойл Ко., Лтд.. Дата публикации: 2011-11-10.

Device for guided bone tissue regeneration and production method

Номер патента: RU2770275C1. Автор: Ральф БАДАУИ,Джозеф НАММУР. Владелец: Зирбон. Дата публикации: 2022-04-15.

Live-pathogen-mimetic nanoparticles based on pathogen cell wall skeleton, and production method thereof

Номер патента: CA3170551A1. Автор: Yong Taik Lim,Sang Nam Lee. Владелец: Progeneer Inc. Дата публикации: 2021-09-10.

Fodder production method for cats

Номер патента: RU2700501C1. Автор: Евгения Павловна Юрганова. Владелец: Евгения Павловна Юрганова. Дата публикации: 2019-09-17.

Glycosylated sphingoid bases and production thereof

Номер патента: US11820789B2. Автор: Jorge Santos,Györgyi OSZTROVSZKY,Gyula Dekany,Andras Nagy,Ferenc Horvath,Piroska Kovacs-Penzes. Владелец: Carbocode SA. Дата публикации: 2023-11-21.

Branched conjugated diene-aromatic vinyl copolymer and production method for the same

Номер патента: SG174321A1. Автор: Junichi Yoshida. Владелец: Asahi Kasei Chemicals Corp. Дата публикации: 2011-10-28.

Tea products obtained from rosa damascena plant and production method thereof

Номер патента: WO2022060312A2. Автор: Ahmet Arif KURT. Владелец: Süleyman Demi̇rel Üni̇versi̇tesi̇. Дата публикации: 2022-03-24.

Transgenic mouse with disrupted calcium ion channel alpha1b gene and production method thereof

Номер патента: WO2003059054A1. Автор: Hee-Sup Shin,Chan-Ki Kim. Владелец: Orient Co., Ltd. Дата публикации: 2003-07-24.

A composite part and production method thereof

Номер патента: CA3161410A1. Автор: Recep KILIC. Владелец: Individual. Дата публикации: 2021-07-08.

Fire proof and flame retardant polyacrylate fiber and production method thereof

Номер патента: WO2023219590A1. Автор: Ali Demirci. Владелец: Aksa Akri̇li̇k Ki̇mya Sanayi̇i̇ Anoni̇m Şi̇rketi̇. Дата публикации: 2023-11-16.

Hollow carbon fiber and production method

Номер патента: US20030026980A1. Автор: Osamu Hirai,Shinji Takeda,Noriyuki Taguchi,Kazumi Kokaji. Владелец: Hitachi Chemical Co Ltd. Дата публикации: 2003-02-06.

Front axle beam and production method thereof

Номер патента: US20200039291A1. Автор: Kenji Tamura,Koichiro Ishihara,Kenji Imanishi,Kunihiro YABUNO,Kunihiro YOSHIDA,Sam Soo HWANG. Владелец: Individual. Дата публикации: 2020-02-06.

Glycosylated sphingoid bases and production thereof

Номер патента: CA3102486A1. Автор: Jorge Santos,Györgyi OSZTROVSZKY,Gyula Dekany,Andras Nagy,Ferenc Horvath,Piroska Kovacs-Penzes. Владелец: Carbocode SA. Дата публикации: 2019-12-19.

Glycosylated sphingoid bases and production thereof

Номер патента: EP3807289A1. Автор: Jorge Santos,Györgyi OSZTROVSZKY,Gyula Dekany,Andras Nagy,Ferenc Horvath,Piroska Kovacs-Penzes. Владелец: Carbocode SA. Дата публикации: 2021-04-21.

Glycosylated Sphingoid Bases and Production Thereof

Номер патента: US20210332077A1. Автор: Jorge Santos,Györgyi OSZTROVSZKY,Gyula Dekany,Andras Nagy,Ferenc Horvath,Piroska Kovacs-Penzes. Владелец: Carbocode SA. Дата публикации: 2021-10-28.

Electronic device and production method thereof

Номер патента: US20190393435A1. Автор: Christopher Murray,Eun Joo Jang,Tae Gon Kim,Nuri Oh,Cherie Kagan,Tianshuo ZHAO. Владелец: University of Pennsylvania Penn. Дата публикации: 2019-12-26.

Electronic device and production method thereof

Номер патента: US20230200095A1. Автор: Christopher Murray,Eun Joo Jang,Tae Gon Kim,Nuri Oh,Cherie Kagan,Tianshuo ZHAO. Владелец: University of Pennsylvania Penn. Дата публикации: 2023-06-22.

Zirconia sintered body and production method thereof

Номер патента: EP3805185A1. Автор: Akiko Ito,Hitoshi Nagayama,Hiroyuki Fujisaki,Ayako Watanabe,Sho AZECHI. Владелец: Tosoh Corp. Дата публикации: 2021-04-14.

A nanomechanical resonator array and production method thereof

Номер патента: EP2987239A1. Автор: Yusuf Leblebici,Burhanettin Erdem Alaca,Ismail YORULMAZ,Yasin KILINC,Bekir AKSOY. Владелец: KOC Universitesi. Дата публикации: 2016-02-24.

Oxaliplatin containing therapeutic polyamidoamine (pamam) dendrimers and production method thereof

Номер патента: EP3976024A1. Автор: Gülşah GEDIK,Hakan NAZLI. Владелец: T C Trakya Ueniversitesi. Дата публикации: 2022-04-06.

High-performance pps fiber structure and production method and use thereof (as amended)

Номер патента: US20180251920A1. Автор: Jie Xu,Lili Yang,Yanfang Shi. Владелец: TORAY INDUSTRIES INC. Дата публикации: 2018-09-06.

Encapsulation structure, production method thereof, glue-spreading device, and encapsulation glue

Номер патента: US20190123302A1. Автор: Chengyuan Luo. Владелец: BOE Technology Group Co Ltd. Дата публикации: 2019-04-25.

Magnetic material and production method therefor

Номер патента: US20180033531A1. Автор: Masaki Kato,Ken Hirota,Junichi Kotani,Nobuya Matsutani. Владелец: Doshisha Co Ltd. Дата публикации: 2018-02-01.

Circuit Board, Electronic Device, and Production Method for Circuit Board

Номер патента: US20240196543A1. Автор: Leiwen GAO. Владелец: Honor Device Co Ltd. Дата публикации: 2024-06-13.

Permanent magnet synchronous motor and production method for same

Номер патента: EP4258521A1. Автор: Misato Sato,Shuichi TAMIYA,Hayato TAKISAWA. Владелец: Hitachi Industrial Products Ltd. Дата публикации: 2023-10-11.

Automatic production system for continuous measurement of output and production and the method thereof

Номер патента: TWI396952B. Автор: Neng Kuei Ye. Владелец: Neng Kuei Ye. Дата публикации: 2013-05-21.

Bactericidal fertilizer and production and application method thereof

Номер патента: CN102249800B. Автор: 胡克矩,胡德一. Владелец: Individual. Дата публикации: 2013-06-05.

Ginseng beauty tea and production and preparation method thereof

Номер патента: CN101961062B. Автор: 蔡霄英. Владелец: Individual. Дата публикации: 2013-04-03.

A kind of microlayer model array chip and production and preparation method thereof

Номер патента: CN109701671A. Автор: 刘安,周嘉,杜林�. Владелец: FUDAN UNIVERSITY. Дата публикации: 2019-05-03.

Luminous element and manufacturing method and luminous method thereof

Номер патента: CN102130262A. Автор: 周明杰,马文波,唐晶. Владелец: Shenzhen Oceans King Lighting Engineering Co Ltd. Дата публикации: 2011-07-20.

Antistatic laminate, optical film, polarizing plate, image display device and production method of antistatic laminate

Номер патента: US20120003467A1. Автор: . Владелец: FUJI FILM Corporation. Дата публикации: 2012-01-05.

BIS-(1(2)H-TETRAZOL-5-YL) AMINE AND PRODUCTION METHOD THEREFOR

Номер патента: US20120004419A1. Автор: TODA Toshiyuki,KOFUKUDA Toru. Владелец: TOYO BOSEKI KABUSHIKI KAISHA. Дата публикации: 2012-01-05.

SECONDARY BATTERY AND PRODUCTION METHOD THEREOF

Номер патента: US20120003512A1. Автор: SATO Yutaka,Tsunaki Takuro,Kohno Ryuji,HIRANO Fujio,Koseki Mitsuru. Владелец: . Дата публикации: 2012-01-05.

Cheese made of recombined milk and production method thereof

Номер патента: RU2595415C2. Автор: Витаутас Фядаравичюс. Владелец: ТОО &#34;Марс-2&#34;. Дата публикации: 2016-08-27.

Nanocomposite and production method thereof

Номер патента: RU2430939C2. Автор: Кайоунг Ву НАМ,Юнг Гон КИМ,ТИ Хун КИМ. Владелец: Хайосунг Корпоратион. Дата публикации: 2011-10-10.

CHIP-SIZED PACKAGE AND FABRICATION METHOD THEREOF

Номер патента: US20120001328A1. Автор: Huang Chien-Ping,Ke Chun-Chi,Chang Chiang-Cheng. Владелец: SILICONWARE PRECISION INDUSTRIES CO., LTD.. Дата публикации: 2012-01-05.

POLYURETHANE RESIN AQUEOUS DISPERSION AND MANUFACTURING METHOD THEREOF

Номер патента: US20120004361A1. Автор: Watanabe Masahiko,Takahashi Manabu,Takigawa Shinya. Владелец: UBE INDUSTRIES, LTD.. Дата публикации: 2012-01-05.

A bioleather production method

Номер патента: AU2022222494A1. Автор: Ece Gözen Akin. Владелец: Gozen Bioworks Corp. Дата публикации: 2023-09-14.

EASY ADHESION POLYAMIDE FILM AND PRODUCTION METHOD THEREFOR

Номер патента: US20120003440A1. Автор: Okuzu Takayoshi,Kuwata Hideki. Владелец: UNITIKA LTD.. Дата публикации: 2012-01-05.

Organic light emitting diode display and fabricating method thereof

Номер патента: US20120001206A1. Автор: Jeong Beung-Hwa,Kim Kwang-Nam,Jung Young-Ro,Ham Yun-Sik. Владелец: . Дата публикации: 2012-01-05.

LUMINESCENT GLASS ELEMENT, PRODUCING METHOD THEREOF AND LUMINESCING METHOD THEREOF

Номер патента: US20120001091A1. Автор: . Владелец: OCEAN'S KING LIGHTING SCIENCE & TECHNOLOGY CO., LTD.. Дата публикации: 2012-01-05.

LUMINESCENT GLASS ELEMENT, PRODUCING METHOD THEREOF AND LUMINESCING METHOD THEREOF

Номер патента: US20120001093A1. Автор: . Владелец: OCEAN'S KING LIGHTING SCIENCE & TECHNOLOGY CO., LTD.. Дата публикации: 2012-01-05.

LUMINESCENT GLASS ELEMENT, PRODUCING METHOD THEREOF AND LUMINESCING METHOD THEREOF

Номер патента: US20120001535A1. Автор: . Владелец: OCEAN'S KING LIGHTING SCIENCE & TECHNOLOGY CO., LTD.. Дата публикации: 2012-01-05.

PROCESSING OF TITANIUM-ALUMINUM-VANADIUM ALLOYS AND PRODUCTS MADE THEREBY

Номер патента: US20120003118A1. Автор: Hebda John J.,Hickman Randall W.,Graham Ronald A.. Владелец: ATI PROPERTIES, INC.. Дата публикации: 2012-01-05.

Methods for Improving Viability and Productivity in Cell Culture

Номер патента: US20120003735A1. Автор: Dorai Haimanti,Ly Celia,Sauerwald McClain Tina M.. Владелец: . Дата публикации: 2012-01-05.

STEREOSCOPIC IMAGE DISPLAY DEVICE AND DRIVING METHOD THEREOF

Номер патента: US20120002123A1. Автор: KANG Dongwoo. Владелец: . Дата публикации: 2012-01-05.

SYNERGISTIC COMBINATION AND METHOD THEREOF

Номер патента: US20120003268A1. Автор: NANDI Dipankar,RAKSHIT Srabanti,PONNUSAMY Manikandan. Владелец: INDIAN INSTITUTE OF SCIENCE. Дата публикации: 2012-01-05.

Reconstituted tobacco production method

Номер патента: RU2357596C1. Автор: Олег Иванович Квасенков. Владелец: Олег Иванович Квасенков. Дата публикации: 2009-06-10.

Production method of glass kremnezite

Номер патента: RU2361739C1. Автор: Юлия Алексеевна Щепочкина. Владелец: Юлия Алексеевна Щепочкина. Дата публикации: 2009-07-20.

"vegetable soup" preserves production method

Номер патента: RU2556626C1. Автор: Олег Иванович Квасенков. Владелец: Олег Иванович Квасенков. Дата публикации: 2015-07-10.

Reconstituted tobacco production method

Номер патента: RU2357605C1. Автор: Олег Иванович Квасенков. Владелец: Олег Иванович Квасенков. Дата публикации: 2009-06-10.

Reconstituted tobacco production method

Номер патента: RU2357603C1. Автор: Олег Иванович Квасенков. Владелец: Олег Иванович Квасенков. Дата публикации: 2009-06-10.

Reconstituted tobacco production method

Номер патента: RU2357602C1. Автор: Олег Иванович Квасенков. Владелец: Олег Иванович Квасенков. Дата публикации: 2009-06-10.

Reconstituted tobacco production method

Номер патента: RU2357606C1. Автор: Олег Иванович Квасенков. Владелец: Олег Иванович Квасенков. Дата публикации: 2009-06-10.

Reconstituted tobacco production method

Номер патента: RU2357604C1. Автор: Олег Иванович Квасенков. Владелец: Олег Иванович Квасенков. Дата публикации: 2009-06-10.

Reconstituted tobacco production method

Номер патента: RU2357580C1. Автор: Олег Иванович Квасенков. Владелец: Олег Иванович Квасенков. Дата публикации: 2009-06-10.

Semiconductor Device and Manufacturing Method Thereof

Номер патента: US20120001332A1. Автор: TANAKA Tetsuhiro. Владелец: . Дата публикации: 2012-01-05.

INPUT/OUTPUT DEVICE AND DRIVING METHOD THEREOF

Номер патента: US20120001874A1. Автор: KUROKAWA Yoshiyuki,IKEDA Takayuki. Владелец: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.. Дата публикации: 2012-01-05.

PRINTING APPARATUS AND PRINTING POSITION ADJUSTING METHOD THEREOF

Номер патента: US20120001972A1. Автор: . Владелец: CANON KABUSHIKI KAISHA. Дата публикации: 2012-01-05.

Reconstituted tobacco production method

Номер патента: RU2374953C1. Автор: Олег Иванович Квасенков. Владелец: Олег Иванович Квасенков. Дата публикации: 2009-12-10.

Reconstituted tobacco production method

Номер патента: RU2374955C1. Автор: Олег Иванович Квасенков. Владелец: Олег Иванович Квасенков. Дата публикации: 2009-12-10.

Reconstituted tobacco production method

Номер патента: RU2357619C1. Автор: Олег Иванович Квасенков. Владелец: Олег Иванович Квасенков. Дата публикации: 2009-06-10.

Reconstituted tobacco production method

Номер патента: RU2374956C1. Автор: Олег Иванович Квасенков. Владелец: Олег Иванович Квасенков. Дата публикации: 2009-12-10.

Reconstituted tobacco production method

Номер патента: RU2357590C1. Автор: Олег Иванович Квасенков. Владелец: Олег Иванович Квасенков. Дата публикации: 2009-06-10.

Reconstituted tobacco production method

Номер патента: RU2357574C1. Автор: Олег Иванович Квасенков. Владелец: Олег Иванович Квасенков. Дата публикации: 2009-06-10.

Reconstituted tobacco production method

Номер патента: RU2357620C1. Автор: Олег Иванович Квасенков. Владелец: Олег Иванович Квасенков. Дата публикации: 2009-06-10.

Reconstituted tobacco production method

Номер патента: RU2357593C1. Автор: Олег Иванович Квасенков. Владелец: Олег Иванович Квасенков. Дата публикации: 2009-06-10.

SUBSTRATE FOR SUSPENSION, AND PRODUCTION PROCESS THEREOF

Номер патента: US20120000698A1. Автор: . Владелец: Dai Nippon Printing Co., Ltd.. Дата публикации: 2012-01-05.

IMAGE CAPTURE APPARATUS, CONTROL METHOD THEREOF, AND RECORDING MEDIUM

Номер патента: US20120002098A1. Автор: . Владелец: CANON KABUSHIKI KAISHA. Дата публикации: 2012-01-05.

TEST MODE CONTROL CIRCUIT IN SEMICONDUCTOR MEMORY DEVICE AND TEST MODE ENTERING METHOD THEREOF

Номер патента: US20120002494A1. Автор: Jo Jun-Ho,PARK Kyu-Min,KIM BYOUNGSUL,LEE Hakyong. Владелец: . Дата публикации: 2012-01-05.

Production method for nanofiber aggregates, production apparatus for nanofiber aggregates, and nanofiber aggregates

Номер патента: OA20520A. Автор: Hiroyoshi Sota. Владелец: M-Techx Inc. Дата публикации: 2022-09-30.

Milk product and production method thereof

Номер патента: RU2595416C2. Автор: Витаутас Фядаравичюс. Владелец: ТОО &#34;Марс-2&#34;. Дата публикации: 2016-08-27.

11/2% fat milk product made of recombined milk and production method thereof

Номер патента: RU2595418C2. Автор: Витаутас Фядаравичюс. Владелец: ТОО &#34;Марс-2&#34;. Дата публикации: 2016-08-27.

Dairy product made of recombined milk and production method thereof

Номер патента: RU2595414C2. Автор: Витаутас Фядаравичюс. Владелец: ТОО &#34;Марс-2&#34;. Дата публикации: 2016-08-27.

DISPLAY DEVICE COMPRISING MULTIFUNCTION GLASS, PRODUCTION METHOD, AND OPTICAL ELEMENT HAVING A FRESNEL STRUCTURE

Номер патента: US20120002295A1. Автор: . Владелец: CARL ZEISS AG. Дата публикации: 2012-01-05.

NITRIDE COMPOUND SEMICONDUCTOR ELEMENT AND METHOD FOR MANUFACTURING SAME

Номер патента: US20120002693A1. Автор: . Владелец: Panasonic Corporation. Дата публикации: 2012-01-05.

31/2% fat yoghurt beverage made of recombined milk and production method thereof

Номер патента: RU2595412C2. Автор: Витаутас Фядаравичюс. Владелец: ТОО &#34;Марс-2&#34;. Дата публикации: 2016-08-27.

1?% fat yoghurt beverage made of recombined milk and production method thereof

Номер патента: RU2595411C2. Автор: Витаутас Фядаравичюс. Владелец: ТОО &#34;Марс-2&#34;. Дата публикации: 2016-08-27.

A chewable tablet with calcium and vitamin D and preparation method thereof

Номер патента: NZ778421A. Автор: Wu Yue. Владелец: Super Foods New Zealand Limited. Дата публикации: 2021-07-30.

Recombined condensed milk and production method thereof

Номер патента: RU2595413C2. Автор: Витаутас Фядаравичюс. Владелец: ТОО &#34;Марс-2&#34;. Дата публикации: 2016-08-27.

Transport vehicle heater and manufacturing method thereof

Номер патента: RU2435335C1. Автор: Косиро ТАГУТИ. Владелец: Косиро ТАГУТИ. Дата публикации: 2011-11-27.

Dietary cereal product and production method thereof

Номер патента: RS20110432A2. Автор: Zorica TUCOVIĆ. Владелец: Zorica TUCOVIĆ. Дата публикации: 2012-02-29.