Novel herbicides.
The present invention relates to novel, herbicidally active cyclopentanediones, and derivatives thereof, to processes for their preparation, to compositions comprising those compounds, and to their use in controlling weeds, especially in crops of useful plants, or in inhibiting undesired plant growth. Cyclopentanediones having herbicidal action are described, for example, in Novel cyclopentanediones, and derivatives thereof, having herbicidal and growth-inhibiting properties have now been found. The present invention accordingly relates to compounds of formula I wherein A is a mono- or bicyclic aryl or heteroaryl which contains a heteroatom selected from nitrogen, oxygen and sulfur, and which is substituted, wherein A is substituted by halogen, C1-C4alkyl, C1-C4haloalkyl, C2-C4alkenyl, C2-C4haloalkenyl, C2-C4alkynyl, C1-C4alkoxy, C1-C4haloalkoxy, C1-C4alkylthio, C1-C4alkylsulfinyl, C1-C4alkylsulfonyl, C1-C4haloalkylthio, C1-C4haloalkylsulfinyl, C1-C4haloalkylsulfonyl, nitro, cyano, C3-C6cycloalkyl, C1-C3alkylcarbonyl, C1-C4alkoxycarbonyl, aminocarbonyl, C1-C3alkylaminocarbonyl, di-C1-C3alkylaminocarbonyl, C1-C3alkylaminocarbonyloxy, di-C1-C3alkylaminocarbonyloxy, aminothiocarbonyl, C1-C3alkylaminothiocarbonyl, diC1-C3alkylaminothiocarbonyl, C1-C4alkylcarbonylamino, C3-C6cycloalkylcarbonylamino, C1-C4alkoxycarbonylamino, C1-C4alkylthiocarbonylamino, C1-C3alkoxyC1-C3alkyl, C1-C6alkylthioC1-C6alkyl, C1-C6alkylsulfinylC1-C6alkyl, C1-C6alkylsulfonylC1-C6alkyl, C1-C3alkylsulfonyloxy, C1-C3haloalkylsulfonyloxy or diC1-C6alkylaminosulfonyl; or 2 substituents on adjacent carbon atoms of A together form a C3-C4alkylene, wherein 1 or 2 methylene groups are optionally substituted by halogen, or wherein 1 or 2 of these methylene groups are replaced by oxygen; and wherein: In the substituent definitions of the compounds of the formula I, each alkyl moiety either alone or as part of a larger group (such as alkoxy, alkylthio, alkoxycarbonyl, alkylcarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl) is a straight or branched chain and is, for example, methyl, ethyl, When present, the optional substituents on an alkyl moiety (alone or as part of a larger group such as alkoxy, alkoxycarbonyl, alkylcarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl) are one or more of halogen, nitro, cyano, C3-C7cycloalkyl (itself optionally substituted with C1-C6alkyl or halogen), C5-C7cycloalkenyl (itself optionally substituted with C1-C4alkyl or halogen), hydroxy, C1-C10alkoxy, C1-C10alkoxy(C1-C10)alkoxy, tri(C1-C4)alkylsilyl(C1-C6)alkoxy, C1-C6alkoxy-carbonyl(C1-C10)alkoxy, C1-C10haloalkoxy, aryl(C1-C4)alkoxy (where the aryl group is optionally substituted), C3-C7cycloalkyloxy (where the cycloalkyl group is optionally substituted with C1-C6alkyl or halogen), C3-C10alkenyloxy, C3-C10alkynyloxy, mercapto, C1-C10alkylthio, C1-C10haloalkylthio, aryl(C1-C4)alkylthio (where the aryl group is optionally substituted), C3-C7cycloalkylthio (where the cycloalkyl group is optionally substituted with C1-C6alkyl or halogen), tri(C1-C4)alkylsilyl(C1-C6)alkylthio, arylthio (where the aryl group is optionally substituted), C1-C6alkylsulfonyl. C1-C6haloalkylsulfonyl, C1-C6alkylsulfinyl, C1-C6haloalkylsulfinyl, arylsulfonyl (where the aryl group is optionally substituted), tri(C1-C4)alkylsilyl, aryidi(C1-C4)alkylsilyl, (C1-C4)alkyldiarylsilyl, triarylsilyl, aryl(C1-C4)alkylthio(C1-C4)alkyl, aryloxy(C1-C4)alkyl, formyl, C1-C10alkylcarbonyl, HO2C, C1-C10alkoxycarbonyl, aminocarbonyl, C1-C6alkylaminocarbonyl, di(C1-C6 alkyl)aminocarbonyl, Alkenyl and alkynyl moieties can be in the form of straight or branched chains, and the alkenyl moieties, where appropriate, can be of either the ( When present, the optional substituents on alkenyl or alkynyl are those optional substituents given above for an alkyl moiety. Halogen is fluorine, chlorine, bromine or iodine. Haloalkyl groups are alkyl groups which are substituted with one or more of the same or different halogen atoms and are, for example, CF3, CF2Cl, CF2H, CCl2H, FCH2, ClCH2, BrCH2, CH3CHF, (CH3)2CF, CF3CH2 or CHF2CH2. In the context of the present specification the term "aryl" refers to phenyl or naphthyl. A preferred aryl group is phenyl. The term "heteroaryl" refers to an aromatic ring system containing at least one heteroatom and consisting either of a single ring or of two fused rings. Preferably, single rings will contain up to three and bicyclic systems up to four heteroatoms which will preferably be chosen from nitrogen, oxygen and sulphur. Examples of such groups include furyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5-thiadiazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, 1,2,3-triazinyl, 1,2,4-triazinyl, 1,3,5-triazinyl, benzofuryl, benzisofuryl, benzothienyl, benzisothienyl, indolyl, isoindolyl, indazolyl, benzothiazolyl, benzisothiazolyl, benzoxazolyl, benzisoxazolyl, benzimidazolyl, 2,1,3-benzoxadiazole, quinolinyl, isoquinolinyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, naphthyridinyl, benzotriazinyl, purinyl, pteridinyl and indolizinyl. The term "heterocyclyl" refers to a non-aromatic monocyclic or bicyclic ring system containing up to 7 atoms including one or two heteroatoms selected from O, S and N. Examples of such rings include 1,3-dioxolane, oxetane, tetrahydrofuran, morpholine, thiomorpholine and piperazine. When present, the optional substituents on heterocyclyl are C1-C6alkyl or C1-C6haloalkyl or those optional substituents given above for an alkyl moiety. Cycloalkyl includes preferably cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. Cycloalkylalkyl is preferentially cyclopropylmethyl. Cycloalkenyl includes preferably cyclopentenyl and cyclohexenyl. When present, the optional substituents on cycloalkyl or cycloalkenyl are C1-C6alkyl or those optional substituents given above for an alkyl moiety. Carbocyclic rings (carbocyclyl) include aryl, cycloalkyl or carbocyclic groups, and cycloalkenyl groups. When present, the optional substituents on aryl, heteroaryl or carbocyclyl, except where otherwise indicated, are selected, independently, from halogen, nitro, cyano, rhodano, isothiocyanato, C1-C6alkyl, C1-C6haloalkyl, C1-C6alkoxy(C1-C6)alkyl, C2-C6alkenyl, C2-C6haloalkenyl, C2-C6alkynyl, C3-C7cycloalkyl (itself optionally substituted with C1-C6alkyl or halogen), C5-7cycloalkenyl (itself optionally substituted with C1-C6alkyl or halogen), hydroxy, C1-C10alkoxy, C1-C10alkoxy(C1-C10)alkoxy, tri(C1-C4)alkylsilyl(C1-C6)alkoxy, C1-C6alkoxycarbonyl(C1-C10)alkoxy, C1-C10haloalkoxy, aryl(C1-C4)alkoxy (where the aryl group is optionally substituted with halogen or C1-C6alkyl), C3-C7cycloalkyloxy (where the cycloalkyl group is optionally substituted with C1-C6alkyl or halogen), C3-C10alkenyloxy, C3-C10alkynyloxy, mercapto, C1-C10alkylthio, C1-C10haloalkylthio, aryl(C1-C4)alkylthio, C3-C7cycloalkylthio (where the cycloalkyl group is optionally substituted with C1-C6alkyl or halogen), tri(C1-C4)-alkylsilyl(C1-C6)alkylthio, arylthio, C1-C6alkylsulfonyl, C1-C6haloalkylsulfonyl, C1-C6alkylsulfinyl, C1-C6haloalkylsulfinyl, arylsulfonyl, tri(C1-C4)alkylsilyl, aryldi(C1-C4)alkylsilyl, C1-C4alkyldiarylsilyl, triarylsilyl, C1-C10alkylcarbonyl, HO2C, C1-C10alkoxycarbonyl, aminocarbonyl, C1-C6alkylaminocarbonyl, di(C1-C6alkyl)-aminocarbonyl, For substituted heterocyclyl groups it is preferred that one or more substituents are independently selected from halogen, C1-C6alkyl, C1-C6haloalkyl, C1-C6alkoxy, C1-C6haloalkoxy, C1-C6alkylthio, C1-C6alkylsulfinyl, C1-C6alkylsulfonyl, nitro and cyano. It is to be understood that dialkylamino substituents include those where the dialkyl groups together with the N atom to which they are attached form a five, six or seven-membered heterocyclic ring which may contain one or two further heteroatoms selected from O, N or S and which is optionally substituted by one or two independently selected C1-C6alkyl groups. When heterocyclic rings are formed by joining two groups on an N atom, the resulting rings are suitably pyrrolidine, piperidine, thiomorpholine and morpholine each of which may be substituted by one or two independently selected C1-C6alkyl groups. The invention relates also to the agriculturally acceptable salts which the compounds of formula I are able to form with transition metal, alkali metal and alkaline earth metal bases, amines, quaternary ammonium bases or tertiary sulfonium bases. Among the transition metal, alkali metal and alkaline earth metal salt formers, special mention should be made of the hydroxides of copper, iron, lithium, sodium, potassium, magnesium and calcium, and preferably the hydroxides, bicarbonates and carbonates of sodium and potassium. Examples of amines suitable for ammonium salt formation include ammonia as well as primary, secondary and tertiary C1-C18alkylamines, C1-C4hydroxyalkylamines and C2-C4alkoxyalkyl-amines, for example methylamine, ethylamine, n-propylamine, isopropylamine, the four butylamine isomers, n-amylamine, isoamylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, methylethylamine, methylisopropylamine, methylhexylamine, methylnonylamine, methylpentadecylamine, methyloctadecylamine, ethylbutylamine, ethylheptylamine, ethyloctylamine, hexylheptylamine, hexyloctylamine, dimethylamine, diethylamine, di- Preferred quaternary ammonium bases suitable for salt formation correspond, for example, to the formula [N(Ra Rb Rc Rd)]OH, wherein Ra, Rb, Rc and Rd are each independently of the others hydrogen, C1-C4alkyl. Further suitable tetraalkylammonium bases with other anions can be obtained, for example, by anion exchange reactions. Preferred tertiary sulfonium bases suitable for salt formation correspond, for example, to the formula [SReRfRg]OH, wherein Re, Rf and Rg are each independently of the others C1-C4 alkyl. Trimethylsulfonium hydroxide is especially preferred. Suitable sulfonium bases may be obtained from the reaction of thioethers, in particular dialkylsulfides, with alkylhalides, followed by conversion to a suitable base, for example a hydroxide, by anion exchange reactions. It should be understood that in those compounds of formula I, where G is a metal, ammonium or sulfonium as mentioned above and as such represents a cation, the corresponding negative charge is largely delocalised across the O-C=C-C=O unit. The compounds of formula I according to the invention also include hydrates which may be formed during the salt formation. The latentiating groups G are selected to allow its removal by one or a combination of biochemical, chemical or physical processes to afford compounds of formula I where G is H before, during or following application to the treated area or plants. Examples of these processes include enzymatic cleavage, chemical hydrolysis and photoloysis. Compounds bearing such groups G may offer certain advantages, such as improved penetration of the cuticula of the plants treated, increased tolerance of crops, improved compatibility or stability in formulated mixtures containing other herbicides, herbicide safeners, plant growth regulators, fungicides or insecticides, or reduced leaching in soils. The latentiating group G is selected from the groups phenylC1-C6alkyl (wherein the phenyl may optionally be substituted by C1-C3alkyl, C1-C3haloalkyl, C1-C3alkoxy, C1-C3haloalkoxy, C1-C3alkylthio, C1-C3alkylsulfinyl, C1-C3alkylsulfonyl, halogen, cyano or by nitro), heteroarylC1-C8alkyl (wherein the heteroaryl may optionally be substituted by C1-C3alkyl, C1-C3haloalkyl, C1-C3alkoxy, C1-C3haloalkoxy, C1-C3alkylthio, C1-C3alkylsulfinyl, C1-C3 alkylsulfonyl, halogen, cyano or by nitro), C3-C8alkenyl, C3-C8haloalkenyl, C3-C8alkynyl, C(Xa)-Ra, C(Xb)-Xc-Rb, C(Xd)-N(Rc)-Rd, -SO2-Re -P(Xe)(Rf)-Rg and CH2-Xf-Rh; wherein Xa, Xb, Xc, Xd, Xe and Xf are independently of each other oxygen or sulfur; and wherein Ra is H, C1-C18alkyl, C2-C18alkenyl, C2-C18alkynyl, C1-C10haloalkyl, C1-C10cyanoalkyl, C1-C10nitroalkyl, C1-C10aminoalkyl, C1-C5alkylamino(C1-C5)alkyl, C2-C8dialkylamino(C1-C5)alkyl, C3-C7cycloalkyl(C1-C5)alkyl, C1-C5alkoxy(C1-C5)alkyl, C3-C5alkenyloxy(C1-C5)alkyl, C3-(C1-C5)oxyalkyl, C1-C5alkylthio(C1-C5)alkyl, C1-C5alkylsulfinyl(C1-C5)alkyl, C1-C5alkylsulfonyl(C1-C5)alkyl, C2-C8alkylideneaminoxy(C1-C5)alkyl, C1-C5alkylcarbonyl(C1-C5)alkyl, C1-C5alkoxycarbonyl(C1-C5)alkyl, aminocarbonyl(C1-C5)alkyl, C1-C5alkylaminocarbonyl(C1-C5)alkyl, C2-C8dialkylaminocarbonyl(C1-C5)alkyl, C1-C5alkylcarbonylamino(C1-C5)alkyl, In particular, the latentiating group G is a group -C(Xa)-Ra or -C(Xb)-Xc-Rb, and the meanings of Xa, Ra, Xb, Xc and Rb are as defined above. It is preferred that G is hydrogen, an alkali metal or alkaline earth metal, where hydrogen is especially preferred. Depending on the nature of the substituents, compounds of formula I may exist in different isomeric forms. For example, when G is hydrogen and R4 and R5 are different from R6 and R7, compounds of formula I may exist in different tautomeric forms: This invention covers all such isomers and tautomers and mixtures thereof in all proportions. Also, when substituents contain double bonds, Preferably, in the compounds of formula I, A is phenyl, naphthyl, a 5- or a 6-membered heteroaryl or a bicyclic 8- to 10-membered heteroaryl. In the compounds of formula I, A is substituted by halogen, C1-C4alkyl, C1-C4haloalkyl, C2-C4alkenyl, C2-C4haloalkenyl, C2-C4alkynyl, C1-C4alkoxy, C1-C4haloalkoxy, C1-C4alkylthio, C1-C4alkylsulfinyl, C1-C4alkylsulfonyl, C1-C4haloalkylthio, C1-C4haloalkylsulfinyl, C1-C4haloalkylsulfonyl, nitro, cyano, C3-C6cycloalkyl, C1-C3alkylcarbonyl, C1-C4alkoxycarbonyl, aminocarbonyl, C1-C3alkylaminocarbonyl, di-C1-C3alkylaminocarbonyl, C1-C3alkylaminocarbonyloxy, di-C1-C3alkylaminocarbonyloxy, aminothiocarbonyl, C1-C3alkylaminothiocarbonyl, diC1-C3alkylaminothiocarbonyl, C1-C4alkylcarbonylamino, C3-C6cycloalkylcarbonylamino, C1-C4alkoxycarbonylamino, C1-C4alkylthiocarbonylamino, C1-C3alkoxyC1-C3alkyl, C1-C6alkylthioC1-C6alkyl, C1-C6alkylsulfinylC1-C6alkyl, C1-C6alkylsulfonylC1-C6alkyl, C1-C3alkylsulfonyloxy, C1-C3haloalkylsulfonyloxy or diC1-C6alkylaminosulfonyl, or 2 substituents on adjacent carbon atoms of A together form a C3-C4alkylene, wherein 1 or 2 methylene groups are optionally substituted by halogen, or wherein 1 or 2 of these methylene groups are replaced by oxygen. More preferably, A is phenyl, naphthyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, benzothiazolyl, benzoxazolyl, cinnolinyl, quinolinyl, quinazolinyl, quinoxalinyl or benzotriazinyl in each case substituted by halogen, methyl, ethyl, trifluoromethyl, methoxy, difluoromethoxy, trifluoromethoxy, nitro or cyano. R1 is preferably methyl, ethyl, Preferably, R2 is hydrogen, methyl or halogen, especially hydrogen. Preferably, R3 is hydrogen, methyl, ethyl, Preferably, R4, R5, R6 and R7 are independently of each other hydrogen, C1-C6alkyl, C1-C4haloalkyl, C1-C4alkoxyC1-C4alkyl, optionally substituted five- or six-membered heterocyclyl, or optionally substituted five- or six-membered heterocyclylC1-C2alkyl, or R4 and R5, or R6 and R7, together with the atoms to which they are bonded form an optionally substituted saturated or unsaturated five- or six- membered carbocyclyl or heterocyclyl which contains one or two oxygen atoms, or R5 and R6, with the atoms to which they are bonded form an optionally substituted five-or six-membered saturated or unsaturated carbocyclyl which is optionally bridged by C1-C2 alkyldiyl or by oxygen. More preferably, R4 and R7 are hydrogen and R5 and R6, with the atoms to which they are bonded form a six-membered saturated or unsaturated carbocyclyl which is bridged by C1-C2 alkyldiyl or by oxygen. A compound of formula I wherein G is phenylC1-C8alkyl (wherein the phenyl may optionally be substituted by C1-C3alkyl, C1-C3haloalkyl, C1-C3alkoxy, C1-C3haloalkoxy, C1-C3alkylthio, C1-C3alkylsufinyl, C1-C3alkylsulfonyl, halogen, cyano or by nitro), heteroarylC1-C8alkyl (wherein the heteroaryl may optionally be substituted by C1-C3alkyl, C1-C3haloalkyl, C1-C3alkoxy, C1-C3haloalkoxy, C1-C3alkylthio, C1-C3alkylsufinyl, C1-C3alkylsulfonyl, halogen, cyano or by nitro), C3-C8alkenyl, C3-C8haloalkenyl, C3-C8alkynyl, C(Xa)-Ra, C(Xb)-Xc-Rb, C(Xd)-N(Rc)-Rd, -SO2-Re, -P(Xe)(Rf)-Rg or CH2-Xf-Rh, where Xa, Xb, Xc, Xd, Xe, Xf, Ra, Rb, Rc, Rd, Re, Rf, Rg and Rh are as defined above, may be prepared by treating a compound of formula (A), which is a compound of formula (I) wherein G is H, with a reagent G-Z, wherein G-Z is an alkylating agent such as an alkyl halide (the definition of alkyl halides includes simple C1-C8 alkyl halides such as methyl iodide and ethyl iodide, substituted alkyl halides such as chloromethyl alkyl ethers, Cl-CH2-Xf-Rh, wherein Xf is oxygen, and chloromethyl alkyl sulfides Cl-CH2-Xf-Rh, wherein Xf is sulfur), a C1-C8alkyl sulfonate, or a di(C1-C8alkyl) sulfate, or with a C3-C8alkenyl halide, or with a C3-C8alkynyl halide, or with an acylating agent such as a carboxylic acid, HO-C(Xa)Ra, wherein Xa is oxygen, an acid chloride, Cl-C(Xa)Ra, wherein Xa is oxygen, or acid anhydride, [RaC(Xa)]2O, wherein Xa is oxygen, or an isocyanate, RcN=C=O, or a carbamoyl chloride, Cl-C(Xd)-N(Rc)-Rd (wherein Xd is oxygen and with the proviso that neither Rc or Rd is hydrogen), or a thiocarbamoyl chloride Cl-(Xd)-N(Rc)-Rd (wherein Xd is sulfur and with the proviso that neither Rc or Rd is hydrogen) or a chloroformate, Cl-C(Xb)-Xc-Rb, (wherein Xb and Xc are oxygen), or a chlorothioformate Cl-C(Xb)-Xc-Rb (wherein Xb is oxygen and Xc is sulfur), or a chlorodithioformate Cl-C(Xb)-Xc-Rb, (wherein Xb and Xc are sulfur), or an isothiocyanate, RcN=C=S, or by sequential treatment with carbon disulfide and an alkylating agent, or with a phosphorylating agent such as a phosphoryl chloride, Cl-P(Xe)(Rf)-Rg or with a sulfonylating agent such as a sulfonyl chloride Cl-SO2-Re, preferably in the presence of at least one equivalent of base. Where substituents R4 and R5 are not equal to substituents R6 and R7, these reactions may produce, in addition to a compound of formula (I), a second compound of formula (IA). This invention covers both a compound of formula (I) and a compound of formula (IA), together with mixtures of these compounds in any ratio. The O-alkylation of cyclic 1,3-diones is known; suitable methods are described, for example, by The O-acylation of cyclic 1,3-diones may be effected by procedures similar to those described, for example, by Phosphorylation of cyclic 1,3-diones may be effected using a phosphoryl halide or thiophosphoryl halide and a base by procedures analogous to those described by Sulfonylation of a compound of formula (A) may be achieved using an alkyl or aryl sulfonyl halide, preferably in the presence of at least one equivalent of base, for example by the procedure of A compound of formula (A) may be prepared via the cyclisation of a compound of formula (B), preferably in the presence of an acid or base, and optionally in the presence of a suitable solvent, by analogous methods to those described by A compound of formula (B) wherein R is alkyl (preferably methyl or ethyl) may be cyclised under acidic or basic conditions, preferably under basic conditions in the presence of at least one equivalent of a strong base such as potassium fert-butoxide, lithium diisopropylamide, sodium bis(trimethylsilyl)amide or sodium hydride and in a solvent such as tetrahydrofuran, toluene, dimethylsulfoxide or A compound of formula (B), wherein R is H may be esterified to a compound of formula (B), wherein R is alkyl, under known conditions (for example by treatment with an alcohol, R-OH, in the presence of an acid catalyst). A compound of formula (B), wherein R is H may be prepared by hydrolysis of a compound of formula (C) wherein R is H or alkyl and R' is alkyl (preferably methyl or ethyl), followed by acidification of the reaction mixture to effect decarboxylation. Alternatively, a compound of formula (B), wherein R is alkyl may be prepared from a compound of formula (C), wherein R is alkyl and R' is methyl or ethyl (preferably methyl) through a Krapcho decarboxylation procedure under known conditions using known reagents (see for example A compound of formula (C), wherein R is H, may be prepared by treating a compound of formula (D) with a suitable base (such as potassium Compounds of formula (D) are known, or may be made by similar methods from known compounds (see, for example, In an alternative approach, a compound of formula (A) may be prepared by cross-coupling a dione of formula (F) with an aryl halide of formula (G). Similar couplings are known in the literature (see for example, Compounds of formula (F) are known, or may be made by known methods from known compounds (see, for example Aryl halides of formula (G) are known compounds or may be made by known methods from known compounds (see, for example, In an alternative approach, a compound of formula I, wherein G is C1-C4alkyl may be prepared by reacting a compound of formula (H) (wherein G is C1-4 alkyl, and Hal is a halogen, preferably bromine or iodine), with an arylboronic acid of formula (I) in the presence of a suitable palladium catalyst (for example 0.001-50% palladium(II) acetate with respect to compound (H)) and a base (for example 1 to 10 equivalents potassium phosphate with respect to compound (H)) and preferably in the presence of a suitable ligand (for example 0.001-50% (2-dicyclohexyl-phosphino)-2',6'-dimethoxybiphenyl with respect to compound (U)), and in a suitable solvent (for example toluene), preferably between 25°C and 200°C. Similar couplings are known in the literature (see for example, A compound of formula (H) may be prepared by halogenating a compound of formula (F), followed by reaction of the resulting halide of formula (J) with a C1-C4alkyl halide or tri-C1-C4-alkylorthoformate under known conditions, for example by the procedures of In a further approach, a compound of formula (A) may be prepared by reacting a compound of formula (F) with an aryllead tricarboxylate, in the presence of a suitable ligand and in a suitable solvent. Similar reactions are described in the literature (for example see, A compound of formula (L) may be prepared from a compound of formula (I) by treatment with lead tetraacetate in a suitable solvent (for example chloroform) at 25°C to 100°C (preferably 25-50°C), and optionally in the presence of a catalyst such as mercury diacetate, according to procedures described in the literature (for example see, An aryl boronic acid of formula (I) may be prepared from an aryl halide of formula (G), wherein Hal is bromine or iodine by known methods (see, for example, In a further approach, a compound of formula (A) may be prepared by derivatisation of a compound of formula (M), which is a compound of formula I wherein G is hydrogen and R5 and R6 together form a bond. Compounds of formula (M) are α,β-unsaturated cyclic diones and undergo reactions in the presence of reagents known to effect transformations of α,β-unsaturated ketones to give additional compounds of formula (A). For example, a compound of formula (M) may be reacted with a suitable nucleophile, Nuc-H, optionally in the presence of a suitable base and a suitable solvent to give compounds of formula (A) wherein R5 is the group Nuc resulting from nucleophilic attack and R6 is hydrogen. Suitable nucleophiles, Nuc-H, include, but are not limited to, optionally substituted C1-C6alkylthiols, optionally substituted arylthiols, optionally substituted heteroarylthiols optionally substituted C1-C6alkyl alcohols and optionally substituted C3-C7cyclic alcohols (including C3-C6 alicyclic alcohols, 4-6 membered heterocyclic alcohols, phenols and heteroaromatic alcohols). A compound of formula (M) will also participate in cycloaddition reactions under suitable conditions to afford additional compounds of formula (A). For example, a compound of formula (M) may be reacted with a suitable 1,3-diene of formula (N), wherein Ra represents a suitable substituent (such as C1-C4alkyl, C1-C4alkoxy or tri-C1-C4alkylsilyloxy), and n is 0,1 or 2, under suitable conditions to give a compound of formula (A) wherein R5 and R6 together with the atoms to which they are joined form an unsaturated six-membered ring. Suitable 1,3-dienes include 1,3- butadiene (or an equivalent, for instance 2,5-dihydrothiophene-1,1-dioxide), and substituted 1,3-butadienes. Similarly, a compound of formula (M) may also be reacted with cyclic dienes of formula (O) such as cyclopentadiene (W is -CH2- and Rb is hydrogen), substituted cyclopentadienes, cyclohexa-1,3-diene (W is -CH2-CH2- and Rb is hydrogen), substituted cyclopentadienes, furan (W is oxygen and Rb is hydrogen) and substituted furans. Those skilled in the art will appreciate that cyclic dienes of formula (O) bearing a wide variety of substituents Rb will undergo cycloaddition reactions with a compound of formula (M) to give new compounds of formula (A), under appropriate conditions (for example, in the presence or absence of Lewis acid catalysts, such as aluminium chloride, bismuth(III) chloride, bismuth(III) trifluoromethanesulfonate, boron trifluoride, cerium(III) chloride, copper(I) trifluoromethanesulfonate, diethylaluminium chloride, hafnium(IV) chloride, iron(III) chloride, lithium perchlorate, lithium trifluoromethanesulfonate, magnesium bromide, magnesium iodide, scandium(III) trifluoromethanesulfonate, tin(IV) chloride, titanium(IV) chloride, titanium(IV) isopropoxide, trimethyl aluminium, The reaction of compounds of formula (M) with compounds of formula (N) or with compounds of formula (O) provides compounds of formula (A) wherein R5 and R6 are joined to form an unsaturated ring. Such compounds are alkenes, which may undergo reactions typical of alkenes (for example reduction, halogenation or cross-coupling) to produce further compounds of formula (A). A compound of formula (M) may also act as a dipolarophile and will therefore undergo a range of 3+2 cycloaddition reactions with suitable dipolar reagents under suitable conditions. For example, a compound of formula (M) may react with a nitrile oxide of formula (P), wherein Rc is a suitable substituent (for example C1-C4alkyl or aryl), or with a nitrone of formula (Q), wherein Re, Rf and Rg are suitable substituents (for example hydrogen or C1-C4alkyl), under appropriate conditions to give further compounds of formula (A), wherein R4 and R7 together with the atoms to which they are attached form an isoxazoline or isoxazolidine ring respectively. Suitable conditions for effecting 3+2 cycloadditions are described, for example, by A compound of formula (M), may be prepared by oxidising a compound of formula (R) in a suitable solvent such as toluene, acetone, chloroform, dichloromethane or 1,4-dioxane. A wide range of oxidants is suitable for effecting this transformation, including inorganic oxidants such as chromium trioxide, pyridinium dichromate, manganese dioxide and aluminium alkoxides such as aluminium isopropoxide, as well as organic oxidants such as 2,3-dichloro-5,6-dicyano-p-benzoquinone and hypervalent iodine oxidants such as 1,1,1,-tris(acetyloxy)-1,1-dihydro-1,2-benziodoxol-3-(1H)-one (Dess-Martin periodinane), Suitable procedures are described, for example, by A compound of formula (R) may be prepared from a compound of formula (S) by treatment with a suitable acid catalyst in the presence of water and optionally in the presence of a suitable solvent. For example, a compound of formula (S) may be converted to a compound of formula (R) in the presence of an aqueous solution of an acid such as phosphoric acid or polyphosphoric acid under conditions described, for example by A compound of formula (S) may be prepared by the addition of a suitable organometallic reagent such as an arylmagnesium halide of formula (T) wherein Hal is a halide such as chloride, bromide or iodide, or an aryllithium reagent of formula (U) or a diarylzinc reagent of formula (V) to a furan-2-carboxaldehyde of formula (W) according to known procedures (see, for example The organometallic reagents of formula (T), formula (U) and formula (V) may be made by known methods from a compound of formula (G). In a further approach, a compound of formula (A), wherein R5 is Nuc (and Nuc is as previously defined) may be prepared by the hydrolysis of a compound of formula (X), which is a compound of formula I wherein G is C1-C4alkyl, under acidic conditions. A compound of formula (X) may be prepared from a compound of formula (Y), which is a compound of formula I wherein R5 is Hal and Hal is chlorine, bromine or iodine, by treatment with a nucleophile, Nuc-H, optionally in the presence of a suitable base and in a suitable solvent. Suitable conditions for effecting nucleophilic substitution reactions are described, for example, by A compound of formula (Y) may be prepared from a compound of formula (Z), which is a compound of formula I wherein R5 is H and G is C1-C4alkyl, by halogenation. For example, a compound of formula (Y) wherein Hal is chlorine may be prepared by reacting a compound of formula (Z) with copper(II) chloride and lithium chloride according to the procedure of A compound of formula (Z) may be prepared reaction of a compound of formula (AA) with a C1-C4alkyl halide in the presence of a base and a solvent, or by reaction with a tri-C1-C4-alkylorthoformate under conditions similar to those described for the preparation of a compound of formula (K). A compound of formula (AA) is a compound of formula I, wherein R5 is hydrogen, and may be made methods described previously for the preparation of a compound of formula (A). Alternatively, a compound of formula (AA) wherein R6 is hydrogen may be prepared by reduction of a compound of formula (M), for example by catalytic hydrogenation, or by the use of a suitable metal (such as zinc) in a suitable solvent (such as acetic acid). In a further approach, a compound of formula I may be prepared by cross-coupling an aryl halide of formula (BB), wherein Hal represents bromine or iodine, with a phenol, A-OH, in the presence of a suitable catalyst, optionally a suitable ligand or additive, a suitable base and a suitable solvent. Suitable conditions for effecting this cross-coupling are described, for example, by Suitable catalysts include palladium and copper catalysts such as palladium(II) acetate, bis(dibenzylideneacetone)palladium(II), copper powder, copper(II) acetate, copper(I) chloride, copper(I) bromide, copper(II) bromide, copper(I) iodide, copper(I) oxide, copper(II) sulfate, copper(I) trifluoromethanesulfonate and copper(II) trifluoromethanesulfonate. Optionally the catalysts are used in conjunction with appropriate ligands or additives, such as The use of copper(I) iodide and copper(II) trifluoromethanesulfonate catalysts is preferred. A compound of formula (BB) may be prepared by one of the methods described previously for the synthesis of a compound of formula (A), using appropriate starting materials. For example, a compound of formula (BB), wherein G is hydrogen, may be prepared from a compound of formula (F) and an aryllead reagent of formula (CC) under conditions described previously. In a further approach, a compound of formula I may be prepared by reacting a compound of formula (DD) with an aryl- or heteroaryl halide of formula A-Hal, wherein Hal represents fluorine, chlorine, bromine or iodine under appropriate conditions. When A-Hal is an aryl bromide or aryl iodide, the reaction may be effected using suitable copper or palladium catalysts under conditions described previously for the preparation of a compound of formula (A) from a compound of formula (BB). Alternatively, when A-Hal is a suitable, electron-deficient, aryl halide (for example an aryl fluroride or aryl chloride additionally bearing one or more electron-withdrawing substituents such as trifluoromethyl, nitro or cyano), or a suitable heteroaryl halide (for example a halopyridine, or halopyrimidine, haloquinoline, haloquinazoline or haloquinoxaline) the reaction may be effected in the presence of a suitable base such as potassium carbonate or cesium carbonate, without the need for a catalyst and a ligand. A compound of formula (DD), wherein G is hydrogen, may be prepared from a compound of formula (BB), wherein G is hydrogen. In one approach, a compound of formula (BB), wherein G is hydrogen, is deprotonated with a base (such as a Grignard reagent or alkyllithium reagent), and then treated with an alkyllithium reagent to effect metal-halogen exchange. The resulting organometallic species may then be converted into a compound of formula (DD) by treatment with a trialkylborate such as trimethyl borate followed by oxidation (for example by hydrogen peroxide, In a further approach, a compound of formula (DD) may be prepared by the deprotection of a compound of formula (EE), werein P is a suitable protecting group. Suitable protecting groups for phenols, and conditions for the removal of the protecting group are described, for example, by Compounds of formula (EE) may be prepared by one or more of the methods similar to those described above for the preparation of compounds of formula I, using appropriate starting materials and appropriate reagents. The compounds of the formula (M) and (DD), have been particularly designed as intermediates in the synthesis of the compounds of formula I. The compounds of formula I according to the invention can be used as crop protection agents in unmodified form, as obtained in the synthesis, but they are generally formulated into crop protection compositions in a variety of ways using formulation adjuvants, such as carriers, solvents and surface-active substances. The formulations can be in various physical forms, for example in the form of dusting powders, gels, wettable powders, coated or impregnated granules for manual or mechanical distribution on target sites, water-dispersible granules, water-soluble granules, emulsifiable granules, water-dispersible tablets, effervescent compressed tablets, water-soluble tapes, emulsifiable concentrates, microemulsifiable concentrates, oil-in-water (EW) or water-in-oil (WO) emulsions, other multiphase systems such as oil/water/oil and water/oil/water products, oil flowables, aqueous dispersions, oily dispersions, suspoemulsions, capsule suspensions, soluble liquids, water-soluble concentrates (with water or a water-miscible organic solvent as carrier), impregnated polymer films or in other forms known, for example, from the The formulations can be prepared, for example, by mixing the active ingredient with formulation adjuvants in order to obtain compositions in the form of finely divided solids, granules, solutions, dispersions or emulsions. The active ingredients can also be contained in fine microcapsules consisting of a core and a polymeric shell. Microcapsules usually have a diameter of from 0.1 to 500 microns. They contain active ingredients in an amount of about from 25 to 95 % by weight of the capsule weight. The active ingredients can be present in the form of liquid technical material, in the form of a suitable solution, in the form of fine particles in solid or liquid dispersion or as a monolithic solid. The encapsulating membranes comprise, for example, natural and synthetic gums, cellulose, styrene-butadiene copolymers or other similar suitable membrane forming material, polyacrylonitrile, polyacrylate, polyester, polyamides, polyureas, polyurethane, aminoplast resins or chemically modified starch or other polymers that are known to the person skilled in the art in this connection. Alternatively it is possible for fine so called "microcapsules" to be formed wherein the active ingredient is present in the form of finely divided particles in a solid matrix of a base substance, but in that case the microcapsule is not encapsulated with a diffusion limiting membrane as outlined in the preceding paragraph. The active ingredients may be adsorbed on a porous carrier. This may enable the active ingredients to be released into their surroundings in controlled amounts (e.g. slow release). Other forms of controlled release formulations are granules or powders in which the active ingredient is dispersed or dissolved in a solid matrix consisting of a polymer, a wax or a suitable solid substance of lower molecular weight. Suitable polymers are polyvinyl acetates, polystyrenes, polyolefins, polyvinyl alcohols, polyvinyl pyrrolidones, alkylated polyvinyl pyrrolidones, copolymers of polyvinyl pyrrolidones and maleic anhydride and esters and half-esters thereof, chemically modified cellulose esters like carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, examples of suitable waxes are polyethylene wax, oxidized polyethylene wax, ester waxes like montan waxes, waxes of natural origin like carnauba wax, candelilla wax, bees wax etc. Other suitable matrix materials for slow release formulations are starch, stearin, lignin. The formulation adjuvants suitable for the preparation of the compositions according to the invention are known Water is generally the carrier of choice for the dilution of the concentrates. Suitable solid carriers are, for example, talc, titanium dioxide, pyrophyllite clay, silica (fumed or precipated silica and optionally functionalised or treated, for instance silanised), attapulgite clay, kieselguhr, limestone, calcium carbonate, bentonite, calcium montomorillonite, cottonseed husks, wheatmeal, soybean flour, pumice, wood flour, ground walnut shells, lignin and similar materials, as described, for example, in the EPA CFR 180.1001. (c) & (d). Powdered or granulated fertilisers can also be used as solid carriers. A large number of surface-active substances can advantageously be used both in solid and in liquid formulations, especially in those formulations which can be diluted with a carrier prior to use. Surface-active substances may be anionic, cationic, amphoteric, non-ionic or polymeric and they may be used as emulsifiying, wetting, dispersing or suspending agents or for other purposes. Typical surface-active substances include, for example, salts of alkyl sulfates, such as diethanolammonium lauryl sulfate; Sodium lauryl sulfate, salts of alkylarylsulfonates, such as calcium or sodium dodecylbenzenesulfonate; alkylphenol-alkylene oxide addition products, such as nonylphenol ethoxylates; alcohol-alkylene oxide addition products, such as tridecyl alcohol ethoxylate; soaps, such as sodium stearate; salts of alkylnaphthalenesulfonates, such as sodium dibutylnaphthalenesulfonate; dialkyl esters of sulfosuccinate salts, such as sodium di(2-ethylhexyl)sulfosuccinate; sorbitol esters, such as sorbitol oleate; quaternary amines, such as lauryl trimethylammonium chloride, polyethylene glycol esters of fatty acids, such as polyethylene glycol stearate; block copolymers of ethylene oxide and propylene oxide; and salts of mono- and di-alkyl phosphate esters; and also further substances described e.g. in " Further adjuvants which can usually be used in pesticidal formulations include crystallisation inhibitors, viscosity-modifying substances, suspending agents, dyes, anti-oxidants, foaming agents, light absorbers, mixing aids, anti-foams, complexing agents, neutralising or pH-modifying substances and buffers, corrosion-inhibitors, fragrances, wetting agents, absorption improvers, micronutrients, plasticisers, glidants, lubricants, dispersants, thickeners, anti-freezes, microbiocides, compatibility agents and solubilisers and also liquid and solid fertilisers. The formulations may also comprise additional active substances, for example further herbicides, herbicide safeners, plant growth regulators, fungicides or insecticides. The compositions according to the invention can additionally include an additive (commonly referred to as an adjuvant), comprising a mineral oil, an oil of vegetable or animal origin, alkyl esters of such oils or mixtures of such oils and oil derivatives. The amount of oil additive used in the composition according to the invention is generally from 0.01 to 10 %, based on the spray mixture. For example, the oil additive can be added to the spray tank in the desired concentration after the spray mixture has been prepared. Preferred oil additives comprise mineral oils or an oil of vegetable origin, for example rapeseed oil, olive oil or sunflower oil, emulsifiable vegetable oil, such as AMIGO® (Loveland Products Inc.), alkyl esters of oils of vegetable origin, for example the methyl derivatives, or an oil of animal origin, such as fish oil or beef tallow. A preferred additive contains, for example, as active components essentially 80 % by weight alkyl esters of fish oils and 15 % by weight methylated rapeseed oil, and also 5 % by weight of customary emulsifiers and pH modifiers. Especially preferred oil additives comprise alkyl esters of C8-C22 fatty acids, especially the methyl derivatives of C12-C18 fatty acids, for example the methyl esters of lauric acid, palmitic acid and oleic acid, being important. Those esters are known as methyl laurate (CAS-111-82-0), methyl palmitate (CAS-112-39-0) and methyl oleate (CAS-112-62-9). A preferred fatty acid methyl ester derivative is AGNIQUE ME 18 RD-F® (Cognis). Those and other oil derivatives are also known from the The application and action of the oil additives can be further improved by combining them with surface-active substances, such as non-ionic, anionic, cationic or amphoteric surfactants. Examples of suitable anionic, non-ionic, cationic or amphoteric surfactants are listed on pages 7 and 8 of The said surface-active substances may also be used in the formulations alone, that is to say without oil additives. Furthermore, the addition of an organic solvent to the oil additive/surfactant mixture can contribute to a further enhancement of action. Suitable solvents are, for example, SOLVESSO® and AROMATIC® solvents (Exxon Corporation).The concentration of such solvents can be from 10 to 80 % by weight of the total weight. Such oil additives, which may be in admixture with solvents, are described, for example, in In addition to the oil additives listed above, in order to enhance the activity of the compositions according to the invention it is also possible for formulations of alkylpyrrolidones, (e.g. AGRIMAX® from ISP) to be added to the spray mixture. Formulations of synthetic latices, such as, for example, polyacrylamide, polyvinyl compounds or poly-1-p-menthene (e.g. BOND®, COURIER® or EMERALD®) can also be used. Such adjuvant oils as described in the preceding paragraphs may be employed as the carrier liquid in which an active compound is dissolved, emulsified or dispersed as appropriate to the physical form of the active compound. The pesticidal formulations generally contain from 0.1 to 99 % by weight, especially from 0.1 to 95 % by weight, of a compound of formula I and from 1 to 99.9 % by weight of a formulation adjuvant, which preferably includes from 0 to 25 % by weight of a surface-active substance. Whereas commercial products will preferably be formulated as concentrates, the end user will normally employ dilute formulations. The rate of application of the compounds of formula I may vary within wide limits and depends upon the nature of the soil, the method of application (pre- or post-emergence; seed dressing; application to the seed furrow; no tillage application etc.), the crop plant, the weed or grass to be controlled, the prevailing climatic conditions, and other factors governed by the method of application, the time of application and the target crop. The compounds of formula I according to the invention are generally applied at a rate of 1- 2000 g/ha, preferably 1-1000 g / ha and most preferably at 1- 500 g / ha. Preferred formulations have especially the following representative compositions: The following Examples further illustrate, but do not limit, the invention. Emulsions of any desired concentration can be prepared from such concentrates by dilution with water. The solutions are suitable for application undiluted or after dilution with water. The active ingredient is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, yielding wettable powders which can be diluted with water to give suspensions of any desired concentration. The active ingredient is dissolved in methylene chloride, the solution is sprayed onto the carrier and the solvent is subsequently evaporated off The finely ground active ingredient is applied uniformly, in a mixer, to the carrier moistened with polyethylene glycol. Non-dusty coated granules are obtained in this manner. The active ingredient is mixed and ground with the adjuvants and the mixture is moistened with water. The resulting mixture is extruded and then dried in a stream of air. The active ingredient is mixed and ground with the adjuvants and the mixture is moistened with water. The resulting mixture is extruded and then dried in a stream of air. Ready-to-use dusts are obtained by mixing the active ingredient with the carriers and grinding the mixture in a suitable mill. The finely ground active ingredient is intimately mixed with the adjuvants, yielding a suspension concentrate from which suspensions of any desired concentration can be prepared by dilution with water. Crops of useful plants in which the compositions according to the invention can be used include especially cereals, in particular wheat and barley, rice, corn, rape, sugarbeet, sugarcane, soybean, cotton, sunflower, peanut and plantation crops. The term "crops" is to be understood as also including crops that have been rendered tolerant to herbicides or classes of herbicides (for example ALS, GS, EPSPS, PPO and HPPD inhibitors) as a result of conventional methods of breeding or genetic engineering. An example of a crop that has been rendered tolerant e.g. to imidazolinones, such as imazamox, by conventional methods of breeding is Clearfield® summer rape (Canola). Examples of crops that have been rendered tolerant to herbicides by genetic engineering methods include e.g. glyphosate- and glufosinate-resistant maize varieties commercially available under the trade names RoundupReady® and LibertyLink®. The weeds to be controlled may be both monocotyledonous and dicotyledonous weeds, such as, for example, Stellaria, Nasturtium, Agrostis, Digitaria, Avena, Setaria, Sinapis, Lolium, Solanum, Echinochloa, Scirpus, Monochoria, Sagittaria, Bromus, Alopecurus, Sorghum, Rottboellia, Cyperus, Abutilon, Sida, Xanthium, Amaranthus, Chenopodium, Ipomoea, Chrysanthemum, Galium, Viola and Veronica. Control of monocotyledonous weeds, in particular Agrostis, Avena, Setaria, Lolium, Echinochloa, Bromus, Alopecurus and Sorghum is very extensive. Crops are also to be understood as being those which have been rendered resistant to harmful insects by genetic engineering methods, for example Bt maize (resistant to European corn borer), Bt cotton (resistant to cotton boll weevil) and also Bt potatoes (resistant to Colorado beetle). Examples of Bt maize are the Bt-176 maize hybrids of NK® (Syngenta Seeds). The Bt toxin is a protein that is formed naturally by Areas under cultivation are to be understood as including land where the crop plants are already growing as well as land intended for the cultivation of those crop plants. The compounds of formula I according to the invention can also be used in combination with further herbicides. Preferably, in these mixtures, the compound of the formula I is one of those compounds listed in Tables 1 to 52 below. The following mixtures of the compound of formula I are especially important: The mixing partners for the compound of formula I may also be in the form of esters or salts, as mentioned e.g. in For applications in cereals, the following mixtures are preferred: compound of formula I + aclonifen, compound of formula I + amidosulfuron, compound of formula I + aminopyralid, compound of formula I + beflubutamid, compound of formula I + benfluralin, compound of formula I + bifenox, compound of formula I + bromoxynil, compound of formula I + butafenacil, compound of formula I + carbetamide, compound of formula I + carfentrazone, compound of formula I + carfentrazone-ethyl, compound of formula I + chlorotoluron, compound of formula I + chlorpropham, compound of formula I + chlorsulfuron, compound of formula I + cinidon-ethyl, compound of formula I + clodinafop, compound of formula I + clodinafop-propargyl, compound of formula I + clopyralid, compound of formula I + 2,4-D, compound of formula I + dicamba, compound of formula I + dichlobenil, compound of formula I + dichlorprop, compound of formula I + diclofop, compound of formula I + diclofop-methyl, compound of formula I + difenzoquat, compound of formula I + difenzoquat metilsulfate, compound of formula I + diflufenican, compound of formula I + diquat, compound of formula I + diquat dibromide, compound of formula I + fenoxaprop-P, compound of formula I + fenoxaprop-P-ethyl, compound of formula I + flamprop-M, compound of formula I + florasulam, compound of formula I + fluazifop-P-butyl, compound of formula I + flucarbazone, compound of formula I + flucarbazone-sodium, compound of formula I + flufenacet, compound of formula I + flupyrsulfuron, compound of formula I + flupyrsulfuron-methyl-sodium, compound of formula I + flurochloridone, compound of formula I + fluroxypyr, compound of formula I + flurtamone, compound of formula I + imazamethabenz-methyl, compound of formula I + imazamox, compound of formula I + iodosulfuron, compound of formula I + iodosulfuron-methyl-sodium, compound of formula I + ioxynil, compound of formula I + isoproturon, compound of formula I + linuron, compound of formula I + MCPA, compound of formula I + mecoprop, compound of formula I + mecoprop-P, compound of formula I + mesosulfuron, compound of formula I + mesosulfuron-methyl, compound of formula I + mesotrione, compound of formula I + metribuzin, compound of formula I + metsulfuron, compound of formula I + metsulfuron-methyl, compound of formula I + pendimethalin, compound of formula I + picolinafen, compound of formula I + pinoxaden, compound of formula I + prodiamine, compound of formula I + propanil, compound of formula I + propoxycarbazone, compound of formula I + propoxycarbazone-sodium, compound of formula I + prosulfocarb, compound of formula I + pyrasulfotole, compound of formula I + pyridate, compound of formula I + pyroxasulfone (KIH-485), compound of formula I + pyroxsulam compound of formula I + sulfosulfuron, compound of formula 1 + tembotrione, compound of formula I + terbutryn, compound of formula I + thifensulfuron, compound of formula I + thiencarbazone, compound of formula I + thifensulfuron-methyl, compound of formula I + topramezone, compound of formula I + tralkoxydim, compound of formula I + tri-allate, compound of formula I + triasulfuron, compound of formula I + tribenuron, compound of formula I + tribenuron-methyl, compound of formula I + trifluralin, compound of formula I + trinexapac-ethyl and compound of formula I + tritosulfuron, where the mixtures comprising a compound of formula (I) + amidosulfuron, compound of formula (I) + aminopyralid, compound of formula (I) + beflubutamid, compound of formula (I) + bromoxynil, compound of formula (I) + carfentrazone, compound of formula (I) + carfentrazone-ethyl, compound of formula (I) + chlorotoluron, compound of formula (I) + chlorsulfuron, compound of formula (I) + clodinafop, compound of formula (I) + clodinafop-propargyl, compound of formula (I) + clopyralid, 2,4-D, compound of formula (I) + dicamba, compound of formula (I) + difenzoquat, compound of formula (I) + difenzoquat metilsulfate, compound of formula (I) + diflufenican, compound of formula (I) + fenoxaprop-P, compound of formula (I) + fenoxaprop-P-ethyl, compound of formula (I) + florasulam, compound of formula (I) + flucarbazone, compound of formula (I) + flucarbazone-sodium, compound of formula (I) + flufenacet, compound of formula (I) + flupyrsulfuron, compound of formula (I) + flupyrsulfuron-methyl-sodium, compound of formula (I) + fluroxypyr, compound of formula (I) + flurtamone, compound of formula (I) + iodosulfuron, compound of formula (I) + iodosulfuron-methyl-sodium, compound of formula (I) + MCPA, compound of formula (I) + mesosulfuron, compound of formula (I) + mesosulfuron-methyl, compound of formula (I) + metsulfuron, compound of formula (I) + metsulfuron-methyl, compound of formula (I) + pendimethalin, compound of formula (I) + picolinafen, compound of formula (I) + pinoxaden, compound of formula (I) + prosulfocarb, compound of formula (I) + pyrasulfotole, compound of formula (I) + pyroxasulfone (KIH-485), compound of formula (I) + pyroxsulam, compound of formula (I) + sulfosulfuron, compound of formula (I) + thifensulfuron, compound of formula (I) + thifensulfuron-methyl, compound of formula (I) + tralkoxydim, compound of formula (I) + triasulfuron, compound of formula (I) + tribenuron, compound of formula (I) + tribenuron-methyl, compound of formula (I) + trifluralin, compound of formula (I) + trinexapac-ethyl and compound of formula (I) + tritosulfuron are particularly preferred. For applications in rice, the following mixtures are preferred: compound of formula (I) + azimsulfuron, compound of formula (I) + bensulfuron, compound of formula (I) + bensulfuron-methyl, compound of formula (I) + benzobicyclon, compound of formula (I) + benzofenap, compound of formula (I) + bispyribac, compound of formula (I) + bispyribac-sodium, compound of formula (I) + butachlor, compound of formula (I) + cafenstrole, compound of formula (I) + cinosulfuron, compound of formula (I) + clomazone, compound of formula (I) + clomeprop, compound of formula (I) + cyclosulfamuron, compound of formula (I) + cyhalofop, compound of formula (I) + cyhalofop-butyl, compound of formula (I) + 2,4-D, compound of formula (I) + daimuron, compound of formula (I) + dicamba, compound of formula (I) + diquat, compound of formula (I) + diquat dibromide, compound of formula (I) + esprocarb, compound of formula (I) + ethoxysulfuron, compound of formula (I) + fenoxaprop-P, compound of formula (I) + fenoxaprop-P-ethyl, compound of formula 1 + fenoxasulfone (CAS RN 639826-16-7), compound of formula (I) + fentrazamide, compound of formula (I) + florasulam, compound of formula (I) + glufosinate-ammonium, compound of formula (I) + glyphosate, compound of formula (I) + halosulfuron, compound of formula (I) + halosulfuron-methyl, compound of formula (I) + imazosulfuron, compound of formula I + ipfencarbazone (CAS RN 212201-70-2), compound of formula (I) + MCPA, compound of formula (I) + mefenacet, compound of formula (I) + mesotrione, compound of formula (I) + metamifop, compound of formula I + metazosulfuron (NC-620, CAS RN 868680-84-6), compound of formula (I) + metsulfuron, compound of formula (I) + metsulfuron-methyl, compound of formula (I) + n-methyl glyphosate, compound of formula (I) + orthosulfamuron, compound of formula (I) + oryzalin, compound of formula (I) + oxadiargyl, compound of formula (I) + oxadiazon, compound of formula (I) + paraquat dichloride, compound of formula (I) + pendimethalin, compound of formula (I) + penoxsulam, compound of formula (I) + pretilachlor, compound of formula (I) + profoxydim, compound of formula (I) + propanil, compound of formula I + propyrisulfuron (TH-547, CAS RN 570415-88-2),compound of formula (I) + pyrazolynate, compound of formula (I) + pyrazosulfuron, compound of formula (I) + pyrazosulfuron-ethyl, compound of formula (I) + pyrazoxyfen, compound of formula (I) + pyribenzoxim, compound of formula (I) + pyriftalid, compound of formula (I) + pyriminobac, compound of formula (I) + pyriminobac-methyl, compound of formula (I) + pyrimisulfan, compound of formula (I) + quinclorac, compound of formula (I) + tefuryltrione, compound of formula (I) + triasulfuron and compound of formula (I) + trinexapac-ethyl, where the mixtures comprising a compound of formula (I) + azimsulfuron, compound of formula (I) + bensulfuron, compound of formula (I) + bensulfuron-methyl, compound of formula (I) + benzobicyclon, compound of formula (I) + benzofenap, compound of formula (I) + bispyribac, compound of formula (I) + bispyribac-sodium, compound of formula (I) + clomazone, compound of formula (I) + clomeprop, compound of formula (I) + cyhalofop, compound of formula (I) + cyhalofop-butyl, compound of formula (I) + 2,4-D, compound of formula (I) + daimuron, compound of formula (I) + dicamba, compound of formula (I) + esprocarb, compound of formula (I) + ethoxysulfuron, compound of formula (I) + fenoxaprop-P, compound of formula (I) + fenoxaprop-P-ethyl, compound of formula 1 + fenoxasulfone (CAS RN 639826-16-7), compound of formula (I) + fentrazamide, compound of formula (I) + florasulam, compound of formula (I) + halosulfuron, compound of formula (I) + halosulfuron-methyl, compound of formula (I) + imazosulfuron, compound of formula I + ipfencarbazone (CAS RN 212201-70-2), compound of formula (I) + MCPA, compound of formula (I) + mefenacet, compound of formula (I) + mesotrione, compound of formula I + metazosulfuron (NC-620, CAS RN 868680-84-6), compound of formula (I) + metsulfuron, compound of formula (I) + metsulfuron-methyl, compound of formula (I) + orthosulfamuron, compound of formula (I) + oxadiargyl, compound of formula (I) + oxadiazon, compound of formula (I) + pendimethalin, compound of formula (I) + penoxsulam, compound of formula (I) + pretilachlor, compound of formula I + propyrisulfuron (TH-547, CAS RN 570415-88-2), compound of formula (I) + pyrazolynate, compound of formula (I) + pyrazosulfuron, compound of formula (I) + pyrazosulfuron-ethyl, compound of formula (I) + pyrazoxyfen, compound of formula (I) + pyribenzoxim, compound of formula (I) + pyriftalid, compound of formula (I) + pyriminobac, compound of formula (I) + pyriminobac-methyl, compound of formula (I) + pyrimisulfan, compound of formula (I) + quinclorac, compound of formula (I) + tefuryltrione, compound of formula (I) + triasulfuron and compound of formula (I) + trinexapac-ethyl are particularly preferred. The compounds of formula I according to the invention can also be used in combination with safeners. Preferably, in these mixtures, the compound of the formula I is one of those compounds listed in Tables 1 to 52 below. The following mixtures with safeners, especially, come into consideration: The above-mentioned safeners and herbicides are described, for example, in the Benoxacor, cloquintocet-mexyl, cyprosulfamide, mefenpyr-diethyl and N-(2-methoxybenzoyl)-4-[(methylaminocarbonyl)amino]benzenesulfonamide are especially preferred, where cloquintocet-mexyl is particularly valuable. The rate of application of safener relative to the herbicide is largely dependent upon the mode of application. In the case of field treatment, generally from 0.001 to 5.0 kg of safener/ha, preferably from 0.001 to 0.5 kg of safener/ha, and generally from 0.001 to 2 kg of herbicide/ha, but preferably from 0.005 to 1 kg/ha, are applied. The herbicidal compositions according to the invention are suitable for all methods of application customary in agriculture, such as, for example, pre-emergence application, post-emergence application and seed dressing. Depending upon the intended use, the safeners can be used for pretreating the seed material of the crop plant (dressing the seed or seedlings) or introduced into the soil before or after sowing, followed by the application of the (unsafened) compound of the formula (I), optionally in combination with a co-herbicide. It can, however, also be applied alone or together with the herbicide before or after emergence of the plants. The treatment of the plants or the seed material with the safener can therefore take place in principle independently of the time of application of the herbicide. The treatment of the plant by simultaneous application of herbicide and safener (e.g. in the form of a tank mixture) is generally preferred. The rate of application of safener relative to herbicide is largely dependent upon the mode of application. In the case of field treatment, generally from 0.001 to 5.0 kg of safener/ha, preferably from 0.001 to 0.5 kg of safener/ha, are applied. In the case of seed dressing, generally from 0.001 to 10 g of safener/kg of seed, preferably from 0.05 to 2 g of safener/kg of seed, are applied. When the safener is applied in liquid form, with seed soaking, shortly before sowing, it is advantageous to use safener solutions which contain the active ingredient in a concentration of from 1 to 10 000 ppm, preferably from 100 to 1000 ppm. It is preferred to apply the other herbicide together with one of the safeners mentioned above. The following Examples illustrate the invention further but do not limit the invention. Those skilled in the art will appreciate that certain compounds described below are β-ketoenols, and as such may exist as a single tautomer or as a mixture of keto-enol and diketone tautomers, as described, for example by Within the detailed experimental section the diketone tautomer is chosen for naming purposes, even if the predominant tautomer is the enol form. 4-Bromo-2,6-dimethyl-1-iodobenzene (5 g, 16 mmol) is dissolved in dry tetrahydrofuran (20 ml) and cooled to -78 °C under an atmosphere of dry nitrogen. Isopropylmagnesium chloride (2M solution in tetrahydrofuran, 10 ml, 20 mmol) is added dropwise with vigorous stirring over 30 minutes. When the addition is complete, the reaction is allowed to warm to room temperature and is stirred for 30 minutes at room temperature. The reaction mixture is cooled to -78 °C and a solution of 2-furaldehyde (2.4 g, 25 mmol) in dry tetrahydrofuran (10 ml) is added dropwise over 30 minutes. Once the addition is complete, the mixture is allowed to warm to room temperature and stirring continued for 2 hours. A solution of saturated aqueous ammonium chloride (30 ml) is added, and the mixture is extracted with dichloromethane (3 x 25 ml). The organic extracts are combined, washed with brine, dried over anhydrous magnesium sulfate, filtered and the filtrate is evaporated under reduced pressure. The residue is purified by column chromatography on silica gel to give ([4-bromo-2,6-dimethylphenyl]furan-2-yl)methanol (3.71 g). Polyphosphoric acid (500 mg) is added to a warm (55 °C) solution of ([4-bromo-2,6-dimethylphenyl]furan-2-yl)methanol (843 mg, 3 mmol) in acetone (8 ml) and water (2 ml) and the mixture is heated at 55 °C for 24 hours. The mixture is cooled to room temperature and the acetone is removed under reduced pressure. The remaining mixture is partitioned between diethyl ether (20 ml) and water (20 ml). The aqueous phase is extracted with ether (2 x 50 ml), and then the organic phases are combined, washed with saturated aqueous sodium bicarbonate solution (20 ml), and brine (20 ml), dried over anhydrous magnesium sulfate, filtered and the filtrate is evaporated under reduced pressure. The residue is purified by column chromatography on silica gel to give 5-(4-bromo-2,6-dimethylphenyl)-4-hydroxycyclopent-2-enone (596 mg). To a solution of 5-(4-bromo-2,6-dimethylphenyl)-4-hydroxycyclopent-2-enone (18.33 g. 65 mmol) in acetone (200 ml) at 0 °C is added, dropwise, a solution of Jones reagent (1.67 M, 39 ml, 65 mmol) and the resulting yellow solution is stirred at 0 °C for 90 minutes. The reaction is quenched by the addition of propan-2-ol (1 ml) and stirred for a further 2 hours. Brine (300 ml) is added and the reaction is extracted with ethyl acetate (3 x 250 ml). The organic extracts are combined, washed with brine, dried over anhydrous magnesium sulfate, filtered and the filtrate is concentrated under reduced pressure. The residue is purified by column chromatography on silica gel to give 2-(4-bromo-2,6-dimethylphenyl)cyclopent-4-ene-1,3-dione (17.2 g). A suspension of 2-(4-bromo-2,6-dimethylphenyl)cyclopent-4-ene-1,3-dione (30 g, 107 mmol) in furan (250 ml) is stirred at room temperature for 13 days. The reaction mixture is diluted with methanol (200 ml) and silica gel is added. The solvent is evaporated under reduced pressure, and the residue is purified by column chromatography on silica gel to give To a suspension of nickel(II) acetate tetrahydrate (4.98 g, 20 mmol) in ethanol (100 ml) is added, under vigorous stirring, sodium borohydride (760 mg, 20 mmol). The reaction mixture is stirred under nitrogen for 5 minutes, then under hydrogen for 10 min. Under vigorous stirring a suspension of ( A mixture of To a solution of 2,6-dimethyl-4-hydroxybenzaldehyde (15 g, 100 mmol) in dimethylformamide (200 ml) is added potassium carbonate (27.6 g, 200 mmol) and benzyl bromide (14.3 ml, 120 mmol). The reaction mixture is stirred at room temperature for 17 hours. The reaction mixture is filtered and the filtrate is evaporated under reduced pressure. The residue is purified by column chromatography on silica gel to give 4-benzyoxy-2,6-dimethylbenzaldehyde (23.0 g). To a solution of furan (10. 9 ml, 150 mmol) in dry tetrahydrofuran (200 ml) is added dropwise, under nitrogen, Polyphosphoric acid (5g) is added to a warm (55 °C) solution of ([4-benzyloxy-2,6-dimethylphenyl]furan-2-yl)methanol (32 g) in a mixture of acetone (400 ml) and water (100 ml) and the mixture is heated at 55°C for 20 hours. The reaction mixture is cooled to room temperature and most of the acetone is removed under reduced pressure. The mixture is extracted with diethyl ether (3 x 250 ml), and the organic fractions are washed with saturated aqueous sodium bicarbonate solution (2 x 200 ml), dried over anhydrous magnesium sulfate, filtered and the filtrate is evaporated under reduced pressure. The crude product (30.9 g) is used for the next step without further purification. A solution of Jones reagent (1.67 M, 60 ml, 100 mmol) is added, dropwise, to a solution of 5-(4-benzyloxy-2,6-dimethylphenyl)-4-hydroxycyclopent-2-enone (30.9 g) in acetone (500 ml) at 0 °C, and the resulting solution is stirred at 0 °C for 2 hours. Propan-2-ol (50 ml) is added and the mixture is stirred for a further 2 hours, then brine (200 ml) is added and the reaction mixture is extracted with ethyl acetate (2 x 250 ml). The organic extracts are combined, washed with brine, dried over anhydrous magnesium sulfate, filtered and the filtrate is concentrated under reduced pressure. The residue is purified by column chromatography on silica gel to give 2-(4-benzyloxy-2,6-dimethylphenyl)cyclopent-4-ene-1,3-dione (18.1 g). A suspension of 2-(4-benzyloxy-2,6-dimethylphenyl)cyclopent-4-ene-1,3-dione (1 g, 3.3 mmol), furan (20 ml) and magnesium iodide (50 mg) is stirred at room temperature for 5 days. The reaction mixture is diluted with methanol and silica gel is added. After evaporation of the solvent, the residue is purified by column chromatography on silica gel to give 4-(4-benzyloxy-2,6-dimethylphenyl)-10-oxatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione (0.531 g). Triethylamine (5 ml, 35.9 mmol) is added, dropwise, to a solution of 4-(4-benzyloxy-2,6-dimethylphenyl)-10-oxatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione (5.0 g, 13.4 mmol) and trimethylacetyl chloride (5 ml, 40.6 mmol) in dry dichloromethane (75ml). The mixture is stirred for 2 hours at room temperature, then silica gel is added and the solvent is evaporated under reduced pressure. The residue is purified by column chromatography on silica gel to give 10% Palladium on carbon (~ 0.2 g) is added to a solution of A mixture of To stirred 2-(4-benzyloxy-2,6-dimethylphenyl)cyclopent-4-ene-1,3-dione (5.00g, 0.0163mol) at 0°C is added freshly distilled/cracked cyclopentadiene (approx 40ml), followed by additional stirring at this temperature for 2 hours, then at room temperature for 2 days. The resulting suspension is filtered, and the solid is washed with hexane and diethyl ether then dried under vacuum to afford To a solution of To a mixture of A mixture of 2-(4-benzyloxy-2,6-dimethylphenyl)cyclopent-4-ene-1,3-dione (5.00g, 0.0163mol), cyclohexa-1,3-diene (15mls, 0.16mol) and magnesium iodide (1.4g, 0.005mol) is heated at 80°C for 20 hours, then allowed to cool to room temperature. After dilution with methanol (100ml) the suspension is filtered and the filtrate is evaporated to dryness. The crude solid is dissolved in methanol, absorbed onto silica and purified by flash column chromatography (3:97 methanol/dichloromethane eluant ratio) to afford A suspension of A mixture of 2-(4-benzyloxy-2,6-dimethylphenyl)hexahydro-4,7-ethanoindene-1,3-dione (2.9g, 0.008mol), pivaloyl chloride (1.5ml, 0.012mol), triethylamine (2ml, 0.0014mol) and dichloromethane (100ml) is stirred at room temperature for 3 hours. The reaction mixture is next evaporated and the crude product is dissolved in dichloromethane, absorbed on to silica then purified by flash column chromatography (20% ethyl acetate in hexanes as eluant) to afford 2,2-dimethylpropionic acid 2-(4-benzyloxy-2,6-dimethylphenyl)-3-oxo-3a,4,5,6,7,7a-hexahydro-3H-4,7-ethanoinden-1-yl ester. To a solution of 2,2-dimethylpropionic acid 2-(4-benzyloxy-2,6-dimethylphenyl)-3-oxo-3a,4,5,6,7,7a-hexahydro-3H-4,7-ethanoinden-1-yl ester (2.8g, 0.006mol) in methanol (250ml) is added 10% palladium on carbon (0.50g), and the suspension is stirred under a 4 bar hydrogen pressure for 5 hours. The reaction mixture is then filtered through a pad of diatomaceous earth and the filtrate is evaporated under reduced pressure. The crude product is triturated with diethyl ether to afford 2,2-dimethylpropionic acid 2-(4-hydroxy-2,6-dimethylphenyl)-3-oxo-3a,4,5,6,7,7a-hexahydro-3H-4,7-ethanoinden-1-yl ester. To a solution of 2,2-dimethylpropionic acid 2-(4-hydroxy-2,6-dimethylphenyl)-3-oxo-3a,4,5,6,7,7a-hexahydro-3H-4,7-ethanoinden-1-yl ester (1.3g, 0.0034mol) in methanol (50ml) is added potassium carbonate (2.35g, 0.017mol), and the suspension is stirred at room temperature for 2 hours. The reaction mixture is carefully acidified with 2M hydrochloric acid and extracted with ethyl acetate. The organics are separated, dried over anhydrous magnesium sulfate, filtered and the filtrate is evaporated to afford 2-(4-hydroxy-2,6-dimethylphenyl)hexahydro-4,7-ethanoindene-1,3-dione as a white solid. To a mixture of 2-(4-hydroxy-2,6-dimethylphenyl)hexahydro-4,7-ethanoindene-1,3-dione (0.40g, 0.0013mol), 5-chloro-2,3-difluoropyridine (0.20g, 0.0013mol) and potassium carbonate (0.40g, 0.0029mol) is added To a suspension of 2-bromo-3-methoxycyclopent-2-enone (5.00g, 26.0mmol), 4-benzyloxy-2,6-dimethylphenyl boronic acid (7.20g, 28mmol) (described in To a solution of 2-(4-benzyloxy-2,6-dimethylphenyl)-3-methoxycyclopent-2-enone (1.93g, 6.0mmol) in THF (25ml) under a nitrogen atmosphere at -78°C is added a solution of lithium diisopropylamide (3.33ml, 6.0 mmol, 1.8M in tetrahydrofuran) dropwise over 1 minute. The reaction is then stirred at -78°C for 30 minutes followed by the addition of 4-tetrahydropyran carbaldehyde (0.684g, 6.0mmol) in one portion. After a further 5 minutes at -78°C the reaction is allowed to warm to ambient temperature and stir for an additional 1 hour. Potassuim To a solution of 2-(4-benzyloxy-2,6-dimethylphenyl)-3-methoxycyclopent-2-enone (1.50g, 3.59mmol) in ethanol (10ml) is added 5% palladium on carbon (0.150g), and the suspension is stirred for 4 hours under a 4 bar hydrogen atmosphere. The reaction mixture is then filtered through diatomaceous earth, and the filtrate is concentrated A solution of 2-(4-hydroxy-2,6-dimethylphenyl)-3-methoxy-5-(tetrahydropyran-4-ylmethyl)cyclopent-2-enone (0.375g, 0.0014mol) in a mixture of 2M hydrochloric acid (3ml) and acetone (5ml) is heated at 120°C for 30 minutes under microwave irradiation. The reaction mixture is concentrated A suspension of 2-(4-hydroxy-2,6-dimethylphenyl)-4-(tetrahydropyran-4-ylmethyl)cyclopentane-1,3-dione (0.104g, 0.00033mol), 2,6-dichloroquinoline (0.065g, 0.00033mol) and potassium carbonate (0.140g, 0.00101mol) in anhydrous Magnesium turnings (1.16g, 0.048mol) are stirred under a nitrogen atmopsphere for 30 minutes, followed by dropwise addition of 4-bromo-2-ethyl-1-iodobenzene (15.0g, 0.048mol) as a solution in anhydrous tetrahydrofuran (40ml), until the magnesium is just covered. A crystal of iodine is added and the reaction heated to reflux. After initiation begins external heating is stopped and the remaining aryl halide solution is added at such a rate as to maintain a controlled reflux. Once addition is complete the reaction is heated at reflux for 1 hour and the mixture is then cooled to room temperature. A solution of furan-2-carbaldehyde (4.0ml, 0.048mol) in anhydrous tetrahydrofuran (10ml) is then added dropwise, and the suspension is then stirred at room temperature for 20 hours. The reaction is quenched with saturated ammonium chloride (200ml) and extracted with ethyl acetate (200ml). The organic phase is separated, dried over anhydrous magnesium sulfate then evaporated under reduced pressure. The crude product is purified by flash column chromatography (1:4 ethyl acetate/hexane eluant) to afford (4-bromo-2-ethylphenyl)furan-2-yl methanol as a brown oil. To a solution of (4-bromo-2-ethylphenyl)furan-2-yl-methanol (13.6g, 0.039mol) in acetone (300ml) and water (30ml) at 55°C is added polyphosphoric acid (5.0g, 0.05mol). After stirring at this temperature for 20 hours the reaction mixture is cooled to room temperature then concentrated To a solution of 5-(4-bromo-2-ethylphenyl)-4-hydroxycyclopent-2-enone (10.14g, 0.036mol) in acetone (150ml) at 5°C is added chromium trioxide in concentrated sulfuric acid (24ml, 0.039mol, 1.64M solution), at such a rate as to maintain a temperature between 10°C to 15 C. The reaction mixture is further stirred at room temperature for 30 minutes, followed by the addition of isopropanol (150ml) and additional stirring at room temperature for 2 hours. The green suspension is partitioned between ethyl acetate (200ml) and water (300ml), and the organic layer is separated. After drying over anhydrous magnesium sulfate, solvents are removed To a suspension of zinc dust (2.0g, 0.03mol) in glacial acetic acid (30ml) is added a solution of 2-(4-bromo-2-ethylphenyl)cyclopent-4-ene-1,3-dione (1.20g, 0.0043mol) in glacial acetic acid (20ml) dropwise over 10 minutes. After stirring of the resultant suspension for 20 hours at room temperature the reaction mixture is filtered through diatomaceous earth and the filtrate is evaporated under reduced pressure to afford 2-(4-bromo-2-ethylphenyl)cyclopentane-1,3-dione as a pink solid. To a mixture of 2-(4-bromo-2-ethylphenyl)cyclopentane-1,3-dione (0.20g, 0.0007mol), 4-chlorophenol (0.180g, 0.0014mol), cesium carbonate (0.460g, 0.0014mol), copper triflate (10mg, 0.00003mol) and activated 4 A molecular sieves (0.30g) is added anhydrous toluene (7ml). The mixture is then heated at 160°C for 1hour under microwave irradiation, followed by dillution with ethyl acetate (50ml) and 2M hydrochloric acid (50ml). The organic phase is separated, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The crude product is purified by preparative reverse phase HPLC to afford 2-[4-(4-chlorophenoxy)-2-ethylphenyl]-3-hydroxycyclopent-2-enone as a cream solid. Additional compounds in Table T1 and Table P1 below were prepared by similar methods using appropriate starting materials. It should be noted that certain compounds of the invention exist as a mixture in any ratio of isomers, including atropisomers, noted above, under the conditions used to obtain the1H NMR data. Where this has occurred, the characterising data are reported for all isomers present at The compounds of the following Tables 1 to 39 can be obtained in an analogous manner. Table 1 covers compounds of the following type wherein A is as defined in Table 1. Table 2 covers compounds of the following type wherein A is as defined in Table 1. Table 3 covers compounds of the following type wherein A is as defined in Table 1. Table 4 covers compounds of the following type wherein A is as defined in Table 1. Table 5 covers compounds of the following type wherein A is as defined in Table 1. Table 6 covers compounds of the following type wherein A is as defined in Table 1. Table 7 covers compounds of the following type wherein A is as defined in Table 1. Table 8 covers compounds of the following type wherein A is as defined in Table 1. Table 9 covers compounds of the following type wherein A is as defined in Table 1. Table 10 covers compounds of the following type wherein A is as defined in Table 1. Table 11 covers compounds of the following type wherein A is as defined in Table 1. Table 12 covers compounds of the following type wherein A is as defined in Table 1. Table 13 covers compounds of the following type wherein A is as defined in Table 1. Table 14 covers compounds of the following type wherein A is as defined in Table 1. Table 15 covers compounds of the following type wherein A is as defined in Table 1. Table 16 covers compounds of the following type wherein A is as defined in Table 1. Table 17 covers compounds of the following type wherein A is as defined in Table 1. Table 18 covers compounds of the following type wherein A is as defined in Table 1. Table 19 covers compounds of the following type wherein A is as defined in Table 1. Table 20 covers compounds of the following type wherein A is as defined in Table 1. Table 21 covers compounds of the following type wherein A is as defined in Table 1. Table 22 covers compounds of the following type wherein A is as defined in Table 1. Table 23 covers compounds of the following type wherein A is as defined in Table 1. Table 24 covers compounds of the following type wherein A is as defined in Table 1. Table 25 covers compounds of the following type wherein A is as defined in Table 1. Table 26 covers compounds of the following type wherein A is as defined in Table 1. Table 27 covers compounds of the following type wherein A is as defined in Table 1. Table 28 covers compounds of the following type wherein A is as defined in Table 1. Table 29 covers compounds of the following type wherein A is as defined in Table 1. Table 30 covers compounds of the following type wherein A is as defined in Table 1. Table 31 covers compounds of the following type wherein A is as defined in Table 1. Table 32 covers compounds of the following type wherein A is as defined in Table 1. Table 33 covers compounds of the following type wherein A is as defined in Table 1. Table 34 covers compounds of the following type wherein A is as defined in Table 1. Table 35 covers compounds of the following type wherein A is as defined in Table 1. Table 36 covers compounds of the following type wherein A is as defined in Table 1. Table 37 covers compounds of the following type wherein A is as defined in Table 1. Table 38 covers compounds of the following type wherein A is as defined in Table 1. Table 39 covers compounds of the following type wherein A is as defined in Table 1. Table 40 covers compounds of the following type wherein A is as defined in Table 1. Table 41 covers compounds of the following type wherein A is as defined in Table 1. Table 42 covers compounds of the following type wherein A is as defined in Table 1. Table 43 covers compounds of the following type wherein A is as defined in Table 1. Table 44 covers compounds of the following type wherein A is as defined in Table 1. Table 45 covers compounds of the following type wherein A is as defined in Table 1. Table 46 covers compounds of the following type wherein A is as defined in Table 1. Table 47 covers compounds of the following type wherein A is as defined in Table 1. Table 48 covers compounds of the following type wherein A is as defined in Table 1. Table 49 covers compounds of the following type wherein A is as defined in Table 1. Table 50 covers compounds of the following type wherein A is as defined in Table 1. Table 51 covers compounds of the following type wherein A is as defined in Table 1. Table 52 covers compounds of the following type wherein A is as defined in Table 1. Seeds of a variety of test species were sown in standard soil in pots. After cultivation for one day (pre-emergence) or after 8 days cultivation (post-emergence) under controlled conditions in a glasshouse (at 24/16°C, day/night; 14 hours light; 65 % humidity), the plants were sprayed with an aqueous spray solution derived from the formulation of the technical active ingredient in acetone / water (50:50) solution containing 0.5% Tween 20 (polyoxyethelyene sorbitan monolaurate, CAS RN 9005-64-5). The test plants were then grown in a glasshouse under controlled conditions in a glasshouse (at 24/16°C, day/night; 14 hours light; 65 % humidity) and watered twice daily. After 13 days for pre and post-emergence, the test was evaluated (100 = total damage to plant; 0 = no damage to plant). Compounds of Formula (I), wherein the substituents are as defined in claim 1, are suitable for use as herbicides. A compound of formula I
wherein
A is a mono- or bicyclic aryl or heteroaryl which contains a heteroatom selected from nitrogen, oxygen and sulfur, and which is substituted;
wherein A is substituted by halogen, C1-C4alkyl, C1-C4haloalkyl, C2-C4alkenyl, C2-C4haloalkenyl, C2-C4alkynyl, C1-C4alkoxy, C1-C4haloalkoxy, C1-C4alkylthio, C1-C4alkylsulfinyl, C1-C4alkylsulfonyl, C1-C4haloalkylthio, C1-C4haloalkylsulfinyl, C1-C4haloalkylsulfonyl, nitro, cyano, C3-C6cycloalkyl, C1-C3alkylcarbonyl, C1-C4alkoxycarbonyl, aminocarbonyl, C1-C3alkylaminocarbonyl, di-C1-C3alkylaminocarbonyl, C1-C3alkylaminocarbonyloxy, di-C1-C3alkylaminocarbonyloxy, aminothiocarbonyl, C1-C3alkylaminothiocarbonyl, diC1-C3alkylaminothiocarbonyl, C1-C4alkylcarbonylamino, C3-C6cycloalkylcarbonylamino, C1-C4alkoxycarbonylamino, C1-C4alkylthiocarbonylamino, C1-C3alkoxyC1-C3alkyl, C1-C6alkylthioC1-C6alkyl, C1-C6alkylsulfinylC1-C6alkyl, C1-C6alkylsulfonylC1-C6alkyl, C1-C3alkylsulfonyloxy, C1-C3haloalkylsulfonyloxy or diC1-C6alkylaminosulfonyl;
or 2 substituents on adjacent carbon atoms of A together form a C3-C4alkylene, wherein 1 or 2 methylene groups are optionally substituted by halogen, or wherein 1 or 2 of these methylene groups are replaced by oxygen;
and wherein:
R1 is methyl, ethyl, R2 and R3 are independently of each other hydrogen, methyl, ethyl, n-propyl, isopropyl, cyclopropyl, halomethyl, haloethyl, vinyl, propenyl, ethynyl, propynyl, halogen, methoxy, ethoxy, halomethoxy or haloethoxy; and R4, R5, R6, and R7 are independently of each other hydrogen, halogen, optionally substituted C1-C6alkyl, optionally substituted C3-C7cycloalkyl, optionally substituted C2-C6 alkenyl, optionally substituted C5-C7cycloalkenyl, optionally substituted C2-C6alkynyl, optionally substituted C1-C6 alkoxy, optionally substituted C3-C7cycloalkyloxy, optionally substituted C1-C6alkylthio, optionally substituted C1-C6alkylsulfinyl, optionally substituted C1-C6alkylsulfonyl, optionally substituted aryl, optionally substituted aryloxy, optionally substituted arylthio, optionally substituted arylsulfinyl, optionally substituted arylsulfonyl, optionally substituted heterocyclyl, optionally substituted heterocyclyloxy, optionally substituted heterocyclylthio, optionally substituted heterocyclylsulfinyl, optionally substituted heterocyclylsulfonyl, optionally substituted heteroaryl, optionally substituted heteroaryloxy, optionally substitiuted heteroarylthio, optionally substituted heteroarylsulfinyl, optionally substituted heteroarylsulfonyl, cyano or amino; or R4 and R5, or R6 and R7, together with the atoms to which they are bonded, form an optionally substituted saturated or unsaturated carbocyclyl or heterocyclyl which contains one or two heteroatoms selected from nitrogen, oxygen and sulfur; or R5 and R6, together with the atoms to which they are bonded, form an optionally substituted saturated or unsaturated carbocyclyl or heterocyclyl which contains one or two heteroatoms selected from nitrogen, oxygen and sulfur, and which carbocyclyl may further be bridged by optionally substituted C1-C2 alkyldiyl or by oxygen; and G is hydrogen or an agriculturally acceptable metal, sulfonium, ammonium or latentiating group; and wherein, when G is a latentiating group, then G is phenylC1-C8alkyl (wherein the phenyl is optionally substituted by C1-C3alkyl, C1-C3haloalkyl, C1-C3alkoxy, C1-C3haloalkoxy, C1-C3alkylthio, C1-C3alkylsulfinyl, C1-C3alkylsulfonyl, halogen, cyano or by nitro), heteroarylC1-C8alkyl (wherein the heteroaryl is optionally substituted by C1-C3alkyl, C1-C3haloalkyl, C1-C3alkoxy, C1-C3haloalkoxy, C1-C3alkylthio, C1-C3alkylsulfinyl, C1-C3 alkylsulfonyl, halogen, cyano or by nitro), C3-C8alkenyl, C3-C8haloalkenyl, C3-C8alkynyl, C(Xa)-Ra, C(Xb)-Xc-Rb, C(Xd)-N(Rc)-Rd, -SO2-Re, -P(Xe)(Rf)-Rg or CH2-Xf-Rh; wherein Xa, Xb, Xc, Xd, Xe and Xf are independently of each other oxygen or sulfur; and wherein Ra is H, C1-C18alkyl, C2-C18alkenyl, C2-C18alkynyl, C1-C10haloalkyl, C1-C10cyanoalkyl, C1-C10nitroalkyl, C1-C10aminoalkyl, C1-C5alkylamino(C1-C5)alkyl, C2-C8dialkylamino(C1-C5)alkyl, C3-C7cycloalkyl(C1-C5)alkyl, C1-C5alkoxy(C1-C5)alkyl, C3-C5alkenyloxy(C1-C5)alkyl, C1-C5alkylthio(C1-C5)alkyl, C1-C5alkylsulfinyl(C1-C5)alkyl, C1-C5alkylsulfonyl(C1-C5)alkyl, C2-C8alkylideneaminoxy(C1-C5)alkyl, C1-C5alkylcarbonyl(C1-C5)alkyl, C1-C5alkoxycarbonyl(C1-C5)alkyl, aminocarbonyl(C1-C5)alkyl, C1-C5alkylaminocarbonyl(C1-C5)alkyl, C2-C8dialkylaminocarbonyl(C1-C5)alkyl, C1-C5alkylcarbonylamino(C1-C5)alkyl, Rb is C1-C18alkyl, C3-C18alkenyl, C3-C18alkynyl, C2-C10haloalkyl, C1-C10cyanoalkyl, C1-C10nitroalkyl, C2-C10aminoalkyl, C1-C5alkylamino(C1-C5)alkyl, C2-C8dialkylamino(C1-C5)alkyl, C3-C7cycloalkyl(C1-C5)alkyl, C1-C5alkoxy(C1-C5)alkyl, C3-C5alkenyloxy(C1-C5)alkyl, C3-C5alkynyloxy(C1-C5)alkyl, C1-C5alkylthio(C1-C5)alkyl, C1-C5alkylsulfinyl(C1-C5)alkyl, C1-C5alkylsulfonyl(C1-C5)alkyl, C2-C8alkylideneaminoxy(C1-C5)alkyl, C1-C5alkylcarbonyl(C1-C5)alkyl, C1-C5alkoxycarbonyl(C1-C5)alkyl, aminocarbonyl(C1-C5)alkyl, C1-C5alkylaminocarbonyl(C1-C5)alkyl, C2-C8dialkylaminocarbonyl(C1-C5)alkyl, C1-C5alkylcarbonylamino(C1-C5)alkyl, Rc and Rd are each independently of each other hydrogen, C1-C10alkyl, C3-C10alkenyl, C3-C10alkynyl, C2-C10haloalkyl, C1-C10cyanoalkyl, C1-C10nitroalkyl, C1-C10aminoalkyl, C1-C5alkylamino(C1-C5)alkyl, C2-C8dialkylamino(C1-C5)alkyl, C3-C7cycloalkyl(C1-C5)alkyl, C1-C5alkoxy(C1-C5)alkyl, C3-C5alkenyloxy(C1-C5)alkyl, C3-C5alkynyloxy(C1-C5)alkyl, C1-C5alkylthio(C1-C5)alkyl, C1-C5alkylsulfinyl(C1-C5)alkyl, C1-C5alkylsulfonyl(C1-C5)alkyl, C2-C8alkylideneaminoxy(C1-C5)alkyl, C1-C5alkylcarbonyl(C1-C5)alkyl, C1-C5alkoxycarbonyl(C1-C5)alkyl, aminocarbonyl(C1-C5)alkyl, C1-C5alkylaminocarbonyl(C1-C5)alkyl, C2-C8dialkylaminocarbonyl(C1-C5)alkyl, C1-C5alkylcarbonylamino(C1-C5)alkyl, Re is C1-C10alkyl, C2-C10alkenyl, C2-C10alkynyl, C1-C10haloalkyl, C1-C10cyanoalkyl, C1-C10nitroalkyl, C1-C10aminoalkyl, C1-C5alkylamino(C1-C5)alkyl, C2-C8dialkylamino(C1-C5)alkyl, C3-C7cycloalkyl(C1-C5)alkyl, C1-C5alkoxy(C1-C5)alkyl, C3-C5alkenyloxy(C1-C5)alkyl, C3-C5alkynyloxy(C1-C5)alkyl, C1-C5alkylthio(C1-C5)alkyl, C1-C5alkylsulfinyl(C1-C5)alkyl, C1-C5alkylsulfonyl(C1-C5)alkyl, C2-C8alkylideneaminoxy(C1-C5)alkyl, C1-C5alkylcarbonyl(C1-C5)alkyl, C1-C5alkoxycarbonyl(C1-C5)alkyl, aminocarbonyl(C1-C5)alkyl, C1-C5alkylaminocarbonyl(C1-C5)alkyl, C2-C8dialkylaminocarbonyl(C1-C5)alkyl, C1-C5alkylcarbonylamino(C1-C5)alkyl, Rf and Rg are each independently of each other C1-C10alkyl, C2-C10alkenyl, C2-C10alkynyl, C1-C10alkoxy, C1-C10haloalkyl, C1-C10cyanoalkyl, C1-C10nitroalkyl, C1-C10aminoalkyl, C1-C5alkylamino(C1-C5)alkyl, C2-C8dialkylamino(C1-C5)alkyl, C3-C7cycloalkyl(C1-C5)alkyl, C1-C5alkoxy(C1-C5)alkyl, C3-C5alkenyloxy(C1-C5)alkyl, C3-C5alkynyloxy(C1-C5)alkyl, C1-C5alkylthio(C1-C5)alkyl, C1-C5alkylsulfinyl(C1-C5)alkyl, C1-C5alkylsulfonyl(C1-C5)alkyl, C2-C8alkylideneaminoxy(C1-C5)alkyl, C1-C5alkylcarbonyl(C1-Cs)al kyl, C1-C5alkoxycarbonyl(C1-C5)alkyl, aminocarbonyl(C1-C5)alkyl, C1-C5alkylaminocarbonyl(C1-C5)alkyl, C2-C8dialkylaminocarbonyl(C1-C5)alkyl, C1-C5alkylcarbonylamino(C1-C5)alkyl, Rh is C1-C10alkyl, C3-C10alkenyl, C3-C10alkynyl, C1-C10haloalkyl, C1-C10cyanoalkyl, C1-C10nitroalkyl, C2-C10aminoalkyl, C1-C5alkylamino(C1-C5)alkyl, C2-C8dialkylamino(C1-C5)alkyl, C3-C7cycloalkyl(C1-C5)alkyl, C1-C5alkoxy(C1-C5)alkyl, C3-C5alkenyloxy(C1-C5)alkyl, C3-C5alkynyloxy(C1-C5)alkyl, C1-C5alkylthio(C1-C5)alkyl, C1-C5alkylsulfinyl(C1-C5)alkyl, C1-C5alkylsulfonyl(C1-C5)alkyl, C2-C8alkylideneaminoxy(C1-C5)alkyl, C1-C5alkylcarbonyl(C1-C5)alkyl, C1-C5alkoxycarbonyl(C1-C5)alkyl, aminocarbonyl(C1-C5)alkyl, C1-C5alkylaminocarbonyl(C1-C5)alkyl, C2-C8dialkylaminocarbonyl(C1-C5)alkyl, C1-C5alkylcarbonylamino(C1-C5)alkyl, and wherein:
"aryl" means phenyl or naphthyl; "heteroaryl" means an aromatic ring system containing at least one heteroatom and consisting either of a single ring or of two fused rings; and "heterocyclyl" means a non-aromatic monocyclic or bicyclic ring system containing up to 7 atoms including one or two heteroatoms selected from O, S and N; and wherein:
when present, the optional substituents on an alkyl moiety, either alone or as part of a larger group, are one or more of halogen, nitro, cyano, C3-C7cycloalkyl (itself optionally substituted with C1-C6alkyl or halogen), C5-C7cycloalkenyl (itself optionally substituted with C1-C4alkyl or halogen), hydroxy, C1-C10alkoxy, C1-C10alkoxy(C1-C10)alkoxy, tri(C1-C4)alkylsilyl(C1-C6)alkoxy, C1-C6alkoxy-carbonyl(C1-C10)alkoxy, C1-C10haloalkoxy, aryl(C1-C4)alkoxy (where the aryl group is optionally substituted), C3-C7cycloalkyloxy (where the cycloalkyl group is optionally substituted with C1-C6alkyl or halogen), C3-C10alkenyloxy, C3-C10alkynyloxy, mercapto, C1-C10alkylthio, C1-C10haloalkylthio, aryl(C1-C4)alkylthio (where the aryl group is optionally substituted), C3-C7cycloalkylthio (where the cycloalkyl group is optionally substituted with C1-C6alkyl or halogen), tri(C1-C4)alkylsilyl(C1-C6)alkylthio, arylthio (where the aryl group is optionally substituted), C1-C6alkylsulfonyl, C1-C6haloalkylsulfonyl, C1-C6alkylsulfinyl, C1-C6haloalkylsulfinyl, arylsulfonyl (where the aryl group is optionally substituted), tri(C1-C4)alkylsilyl, aryldi(C1-C4)alkylsilyl, (C1-C4)alkyldiaryisilyl, triarylsilyl, aryl(C1-C4)alkylthio(C1-C4)alkyl, aryloxy(C1-C4)alkyl, formyl, C1-C10alkylcarbonyl, HO2C, C1-C10alkoxycarbonyl, aminocarbonyl, C1-C6alkylaminocarbonyl, di(C1-C6 alkyl)aminocarbonyl, when present, the optional substituents on alkenyl or alkynyl are the optional substituents as defined for an alkyl moiety; when present, the optional substituents on heterocyclyl are C1-C6alkyl or C1-C6haloalkyl or are the optional substituents as defined for an alkyl moiety; when present, the optional substituents on cycloalkyl or cycloalkenyl are C1-C3alkyl or are the optional substituents as defined for an alkyl moiety; and when present, the optional substituents on aryl, heteroaryl or carbocyclyl, except where otherwise indicated, are selected, independently, from halogen, nitro, cyano, rhodano, isothiocyanato, C1-C6alkyl, C1-C6haloalkyl, C1-C6alkoxy(C1-C6) alkyl, C2-C6alkenyl, C2-C6haloalkenyl, C2-C6alkynyl, C3-C7cycloalkyl (itself optionally substituted with C1-C6alkyl or halogen), C5-7cycloalkenyl (itself optionally substituted with C1-C6alkyl or halogen), hydroxy, C1-C10alkoxy, C1-C10alkoxy(C1-C10)alkoxy, tri(C1-C4)alkylsilyl(C1-C6)alkoxy, C1-C6alkoxycarbonyl(C1-C10)alkoxy, C1-C10haloalkoxy, aryl(C1-C4)alkoxy (where the aryl group is optionally substituted with halogen or C1-C6alkyl), C3-C7cycloalkyloxy (where the cycloalkyl group is optionally substituted with C1-C6alkyl or halogen), C3-C10alkenyloxy, C3-C10alkynyloxy, mercapto, C1-C10alkylthio, C1-C10haloalkylthio, aryl(C1-C4)alkylthio, C3-C7cycloalkylthio (where the cycloalkyl group is optionally substituted with C1-C6alkyl or halogen), tri(C1-C4)-alkylsilyl(C1-C6)alkylthio, arylthio, C1-C6alkylsulfonyl, C1-C6haloalkylsulfonyl, C1-C6alkylsulfinyl, C1-C6haloalkylsulfinyl, arylsulfonyl, tri(C1-C4)alkylsilyl, aryldi(C1-C4)alkylsilyl, C1-C4alkyldiarylsilyl, triarylsilyl, C1-C10alkylcarbonyl, HO2C, C1-C10alkoxycarbonyl, aminocarbonyl, C1-C6alkylaminocarbonyl, di(C1-C6alkyl)-aminocarbonyl, A compound according to claim 1, wherein A is phenyl, naphthyl, a 5- or a 6-membered heteroaryl or a bicyclic 8- to 10-membered heteroaryl. A compound according to claim 1, wherein A is phenyl, naphthyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, benzothiazolyl, benzoxazolyl, cinnolinyl, quinolinyl, quinazolinyl, quinoxalinyl or benzotriazinyl, in each case substituted by halogen, methyl, ethyl, trifluoromethyl, methoxy, difluoromethoxy, trifluoromethoxy, nitro or cyano. A compound according to claim 1, wherein R1 is methyl, ethyl, A compound according to claim 4, wherein R1 is methyl or ethyl. A compound according to claim 1, wherein R2 is hydrogen, methyl or halogen. A compound according to claim 6, wherein R2 is hydrogen. A compound according to claim 1, wherein R3 is hydrogen, methyl, ethyl, n-propyl, cyclopropyl, halogen, halomethoxy or haloethoxy. A compound according to claim 8, wherein R3 is hydrogen, methyl or ethyl. A compound according to claim 1, wherein R4, R5, R6 and R7 are independently of each other hydrogen, C1-C6alkyl, C1-C4haloalkyl, C1-C4alkoxyC1-C4alkyl, optionally substituted five- or six-membered heterocyclyl, or optionally substituted five- or six-membered heterocyclylC1-C2alkyl;
or R4 and R5, or R6 and R7, together with the atoms to which they are bonded, form an optionally substituted saturated or unsaturated five- or six- membered carbocyclyl or heterocyclyl which contains one or two oxygen atoms;
or R5 and R8, with the atoms to which they are bonded, form an optionally substituted five- or six-membered saturated or unsaturated carbocyclyl which is optionally bridged by C1-C2 alkyldiyl or by oxygen. A compound according to claim 10, wherein R4 and R7 are hydrogen and R5 and R6, with the atoms to which they are bonded, form a six-membered saturated or unsaturated carbocyclyl which is bridged by C1-C2 alkyldiyl or by oxygen. A compound according to claim 1, wherein "aryl" means phenyl. A compound according to claim 1, wherein, when G is a latentiating group, then G is a group -C(Xa)-Ra or -C(Xb)-Xc-Rb, and the meanings of Xa, Ra, Xb, Xc and Rb are as defined in claim 1. A compound according to claim 1, wherein G is hydrogen, an alkali metal or an alkaline earth metal. A process for the preparation of a compound of formula I according to claim 1, wherein G is hydrogen, which comprises reacting a compound of formula (BB)
wherein Hal is bromine or iodine and R1 to R7 are as defined in claim 1, with a compound A-OH, wherein A is as defined in claim 1, in the presence of a catalyst, a ligand or additive, a base and a solvent. A process for the preparation of a compound of formula I according to claim 1, wherein G is hydrogen, which comprises reacting a compound of formula (DD)
wherein R1 to R7 are as defined in claim 1, with a compound A-Hal, wherein A is as defined in claim 1 and Hal is fluorine, chlorine, bromine or iodine, in the presence of a base and a solvent, and in the presence or absence of a catalyst and a ligand. A process for the preparation of a compound of formula I according to claim 1, wherein G is hydrogen and R5 and R6, together with the atoms to which they are bonded, form an optionally substituted unsaturated carbocyclyl which is further bridged by optionally substituted C1-C2 alkyldiyl or oxygen, which comprises reacting a compound of formula (M)
wherein A, R1 to R4 and R7 are as defined in claim 1, with a compound of formula (O)
wherein W is optionally substituted C1-C2 alkyldiyl or oxygen, and Rb is hydrogen or a substituent suitable for preparing the compound of formula I,
in the presence of a catalyst and a solvent. A compound of formula (M)
wherein A, R1 to R4 and R7 are as defined in claim 1. A herbicidal composition, which, in addition to comprising formulation adjuvants, comprises a herbicidally effective amount of a compound of formula I as defined in any of claims 1 to 14. A herbicidal composition according to claim 19, which, in addition to comprising formulation adjuvants, comprises a herbicidally effective amount of the compound of formula I as defined in any of claims 1 to 14, a further herbicide, and optionally a safener. A herbicidal composition according to claim 19, which, in addition to comprising formulation adjuvants, comprises a herbicidally effective amount of the compound of formula I as defined in any of claims 1 to 14, a safener, and optionally a further herbicide. A method of controlling grasses and weeds in crops of useful plants, which comprises applying a herbicidally effective amount of a compound of formula I as defined in any of claims 1 to 14, or of a composition comprising such a compound, to the plants or to the locus thereof. A method according to claim 22, which comprises applying a herbicidally effective amount of the composition comprising the compound to the plants or to the locus thereof, and wherein the crops of useful plants are cereals, rice, corn, rape, sugarbeet, sugarcane, soybean, cotton, sunflower, peanut or plantation crops. A mixture of a compound of formula I, as defined in any of claims 1 to 14, in combination with a further herbicide, wherein the mixture of the compound of formula I is selected from:
compound of formula I + acetochlor, compound of formula I + acifluorfen, compound of formula I + acifluorfen-sodium, compound of formula I + aclonifen, compound of formula I + acrolein, compound of formula I + alachlor, compound of formula I + alloxydim, compound of formula I + allyl alcohol, compound of formula I + ametryn, compound of formula I + amicarbazone, compound of formula I + amidosulfuron, compound of formula I + aminopyralid, compound of formula I + amitrole, compound of formula I + ammonium sulfamate, compound of formula I + anilofos, compound of formula I + asulam, compound of formula I + atraton, compound of formula I + atrazine, compound of formula I + azimsulfuron, compound of formula I + BCPC, compound of formula I + beflubutamid, compound of formula I + benazolin, compound of formula I + benfluralin, compound of formula I + benfuresate, compound of formula I + bensulfuron, compound of formula I + bensulfuron-methyl, compound of formula I + bensulide, compound of formula I + bentazone, compound of formula I + benzfendizone, compound of formula I + benzobicyclon, compound of formula I + benzofenap, compound of formula I + bifenox, compound of formula I + bilanafos, compound of formula I + bispyribac, compound of formula I + bispyribac-sodium, compound of formula I + borax, compound of formula I + bromacil, compound of formula I + bromobutide, compound of formula I + bromoxynil, compound of formula I + butachlor, compound of formula I + butafenacil, compound of formula I + butamifos, compound of formula I + butralin, compound of formula I + butroxydim, compound of formula I + butylate, compound of formula I + cacodylic acid, compound of formula I + calcium chlorate, compound of formula I + cafenstrole, compound of formula I + carbetamide, compound of formula I + carfentrazone, compound of formula I + carfentrazone-ethyl, compound of formula I + CDEA, compound of formula I + CEPC, compound of formula I + chlorflurenol, compound of formula I + chlorflurenol-methyl, compound of formula I + chloridazon, compound of formula I + chlorimuron, compound of formula I + chlorimuron-ethyl, compound of formula I + chloroacetic acid, compound of formula I + chlorotoluron, compound of formula I + chlorpropham, compound of formula I + chlorsulfuron, compound of formula I + chlorthal, compound of formula I + chlorthal-dimethyl, compound of formula I + cinidon-ethyl, compound of formula I + cinmethylin, compound of formula I + cinosulfuron, compound of formula I + cisanilide, compound of formula I + clethodim, compound of formula I + clodinafop, compound of formula I + clodinafop-propargyl, compound of formula I + clomazone, compound of formula I + clomeprop, compound of formula I + clopyralid, compound of formula I + cloransulam, compound of formula I + cloransulam-methyl, compound of formula I + CMA, compound of formula I + 4-CPB, compound of formula I + CPMF, compound of formula I + 4-CPP, compound of formula I + CPPC, compound of formula I + cresol, compound of formula I + cumyluron, compound of formula I + cyanamide, compound of formula I + cyanazine, compound of formula I + cycloate, compound of formula I + cyclosulfamuron, compound of formula I + cycloxydim, compound of formula I + cyhalofop, compound of formula I + cyhalofop-butyl, compound of formula I + 2,4-D, compound of formula I + 3,4-DA, compound of formula I + daimuron, compound of formula I + dalapon, compound of formula I + dazomet, compound of formula I + 2,4-DB, compound of formula I + 3,4-DB, compound of formula I + 2,4-DEB, compound of formula I + desmedipham, compound of formula I + dicamba, compound of formula I + dichlobenil, compound of formula I + ortho-dichlorobenzene, compound of formula I + para-dichlorobenzene, compound of formula I + dichlorprop, compound of formula I + dichlorprop-P, compound of formula I + diclofop, compound of formula I + diclofop-methyl, compound of formula I + diclosulam, compound of formula I + difenzoquat, compound of formula I + difenzoquat metilsulfate, compound of formula I + diflufenican, compound of formula I + diflufenzopyr, compound of formula I + dimefuron, compound of formula I + dimepiperate, compound of formula I + dimethachlor, compound of formula I + dimethametryn, compound of formula I + dimethenamid, compound of formula I + dimethenamid-P, compound of formula I + dimethipin, compound of formula I + dimethylarsinic acid, compound of formula I + dinitramine, compound of formula I + dinoterb, compound of formula I + diphenamid, compound of formula I + diquat, compound of formula I + diquat dibromide, compound of formula I + dithiopyr, compound of formula I + diuron, compound of formula I + DNOC, compound of formula I + 3,4-DP, compound of formula I + DSMA, compound of formula I + EBEP, compound of formula I + endothal, compound of formula I + EPTC, compound of formula I + esprocarb, compound of formula I + ethalfluralin, compound of formula I + ethametsulfuron, compound of formula I + ethametsulfuron-methyl, compound of formula I + ethofumesate, compound of formula I + ethoxyfen, compound of formula I + ethoxysulfuron, compound of formula I + etobenzanid, compound of formula I + fenoxaprop-P, compound of formula I + fenoxaprop-P-ethyl, compound of formula I + fentrazamide, compound of formula I + ferrous sulfate, compound of formula I + flamprop-M, compound of formula I + flazasulfuron, compound of formula I + florasulam, compound of formula I + fluazifop, compound of formula I + fluazifop-butyl, compound of formula I + fluazifop-P, compound of formula I + fluazifop-P-butyl, compound of formula I + flucarbazone, compound of formula I + flucarbazone-sodium, compound of formula I + flucetosulfuron, compound of formula I + fluchloralin, compound of formula I + flufenacet, compound of formula I + flufenpyr, compound of formula I + flufenpyr-ethyl, compound of formula I + flumetsulam, compound of formula I + flumiclorac, compound of formula I + flumiclorac-pentyl, compound of formula I + flumioxazin, compound of formula I + fluometuron, compound of formula I + fluoroglycofen, compound of formula I + fluoroglycofen-ethyl, compound of formula I + flupropanate, compound of formula I + flupyrsulfuron, compound of formula I + flupyrsulfuron-methyl-sodium, compound of formula I + flurenol, compound of formula I + fluridone, compound of formula I + flurochloridone, compound of formula I + fluroxypyr, compound of formula I + flurtamone, compound of formula I + fluthiacet, compound of formula I + fluthiacet-methyl, compound of formula I + fomesafen, compound of formula I + foramsulfuron, compound of formula I + fosamine, compound of formula I + glufosinate, compound of formula I + glufosinate-ammonium, compound of formula I + glyphosate, compound of formula I + halosulfuron, compound of formula I + halosulfuron-methyl, compound of formula I + haloxyfop, compound of formula I + haloxyfop-P, compound of formula I + HC-252, compound of formula I + hexazinone, compound of formula I + imazamethabenz, compound of formula I + imazamethabenz-methyl, compound of formula I + imazamox, compound of formula I + imazapic, compound of formula I + imazapyr, compound of formula I + imazaquin, compound of formula I + imazethapyr, compound of formula I + imazosulfuron, compound of formula I + indanofan, compound of formula I + iodomethane, compound of formula I + iodosulfuron, compound of formula I + iodosulfuron-methyl-sodium, compound of formula I + ioxynil, compound of formula I + isoproturon, compound of formula + isouron, compound of formula I + isoxaben, compound of formula I + isoxachlortole, compound of formula I + isoxaflutole, compound of formula I + karbutilate, compound of formula I + lactofen, compound of formula I + lenacil, compound of formula I + linuron, compound of formula I + MAA, compound of formula I + MAMA, compound of formula I + MCPA, compound of formula I + MCPA-thioethyl, compound of formula I + MCPB, compound of formula I + mecoprop, compound of formula I + mecoprop-P, compound of formula I + mefenacet, compound of formula I + mefluidide, compound of formula I + mesosulfuron, compound of formula 1 + mesosulfuron-methyl, compound of formula I + mesotrione, compound of formula I + metam, compound of formula I + metamifop, compound of formula I + metamitron, compound of formula I + metazachlor, compound of formula I + methabenzthiazuron, compound of formula I + methylarsonic acid, compound of formula I + methyldymron, compound of formula I + methyl isothiocyanate, compound of formula I + metobenzuron, compound of formula I + metolachlor, compound of formula I + S-metolachlor, compound of formula I + metosulam, compound of formula I + metoxuron, compound of formula I + metribuzin, compound of formula I + metsulfuron, compound of formula I + metsulfuronmethyl, compound of formula I + MK-616, compound of formula I + molinate, compound of formula I + monolinuron, compound of formula I + MSMA, compound of formula I + naproanilide, compound of formula I + napropamide, compound of formula I + naptalam, compound of formula I + neburon, compound of formula I + nicosulfuron, compound of formula I + nonanoic acid, compound of formula I + norflurazon, compound of formula I + oleic acid (fatty acids), compound of formula I + orbencarb, compound of formula I + orthosulfamuron, compound of formula I + oryzalin, compound of formula I + oxadiargyl, compound of formula I + oxadiazon, compound of formula I + oxasulfuron, compound of formula I + oxaziclomefone, compound of formula I + oxyfluorfen, compound of formula I + paraquat, compound of formula I + paraquat dichloride, compound of formula I + pebulate, compound of formula I + pendimethalin, compound of formula I + penoxsulam, compound of formula I + pentachlorophenol, compound of formula I + pentanochlor, compound of formula I + pentoxazone, compound of formula I + pethoxamid, compound of formula I + petrolium oils, compound of formula I + phenmedipham, compound of formula I + phenmedipham-ethyl, compound of formula I + picloram, compound of formula I + picolinafen, compound of formula I + pinoxaden, compound of formula I + piperophos, compound of formula I + potassium arsenite, compound of formula I + potassium azide, compound of formula I + pretilachlor, compound of formula I + primisulfuron, compound of formula I + primisulfuronmethyl, compound of formula I + prodiamine, compound of formula I + profluazol, compound of formula I + profoxydim, compound of formula I + prometon, compound of formula I + prometryn, compound of formula I + propachlor, compound of formula I + propanil, compound of formula I + propaquizafop, compound of formula I + propazine, compound of formula I + propham, compound of formula I + propisochlor, compound of formula I + propoxycarbazone, compound of formula I + propoxycarbazone-sodium, compound of formula I + propyzamide, compound of formula I + prosulfocarb, compound of formula I + prosulfuron, compound of formula I + pyraclonil, compound of formula I + pyraflufen, compound of formula I + pyraflufen-ethyl, compound of formula I + pyrazolynate, compound of formula I + pyrazosulfuron, compound of formula I + pyrazosulfuron-ethyl, compound of formula I + pyrazoxyfen, compound of formula I + pyribenzoxim, compound of formula I + pyributicarb, compound of formula I + pyridafol, compound of formula I + pyridate, compound of formula I + pyriftalid, compound of formula I + pyriminobac, compound of formula I + pyriminobac-methyl, compound of formula I + pyrimisulfan, compound of formula I + pyrithiobac, compound of formula I + pyrithiobac-sodium, compound of formula I + quinclorac, compound of formula I + quinmerac, compound of formula I + quinoclamine, compound of formula I + quizalofop, compound of formula I + quizalofop-P, compound of formula I + rimsulfuron, compound of formula I + sethoxydim, compound of formula I + siduron, compound of formula I + simazine, compound of formula I + simetryn, compound of formula I + SMA, compound of formula I + sodium arsenite, compound of formula I + sodium azide, compound of formula I + sodium chlorate, compound of formula I + sulcotrione, compound of formula I + sulfentrazone, compound of formula I + sulfometuron, compound of formula I + sulfometuron-methyl, compound of formula I + sulfosate, compound of formula I + sulfosulfuron, compound of formula I + sulfuric acid, compound of formula I + tar oils, compound of formula I + 2,3,6-TBA, compound of formula I + TCA, compound of formula I + TCA-sodium, compound of formula I + tebuthiuron, compound of formula I + tepraloxydim, compound of formula I + terbacil, compound of formula I + terbumeton, compound of formula I + terbuthylazine, compound of formula I + terbutryn, compound of formula I + thenylchlor, compound of formula I + thiazopyr, compound of formula I + thifensulfuron, compound of formula I + thifensulfuron-methyl, compound of formula I + thiobencarb, compound of formula I + tiocarbazil, compound of formula I + topramezone, compound of formula I + tralkoxydim, compound of formula I + tri-allate, compound of formula I + triasulfuron, compound of formula I + triaziflam, compound of formula I + tribenuron, compound of formula I + tribenuronmethyl, compound of formula I + tricamba, compound of formula I + triclopyr, compound of formula I + trietazine, compound of formula I + trifloxysulfuron, compound of formula I + trifloxysulfuron-sodium, compound of formula I + trifluralin, compound of formula I + triflusulfuron, compound of formula I + triflusulfuron-methyl, compound of formula I + trihydroxytriazine, compound of formula I + tritosulfuron, compound of formula I + [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetic acid ethyl ester, compound of formula I + 4-[(4,5-dihydro-3-methoxy-4-methyl-5-oxo)-1H-1,2,4-triazol-1-ylcarbonylsulfamoyl]-5-methylthiophene-3-carboxylic acid, compound of formula I + BAY747 as defined by Chemical Abstracts Service Registry Number 335104-84-2, compound of formula I + topramezone, compound of formula I + 4-hydroxy-3-[[2-[(2-methoxyethoxy)methyl]-6-(trifluoromethyl)-3-pyridinyl]carbonyl]-bicyclo[3.2.1]oct-3-en-2-one, and compound of formula I + 4-hydroxy-3-[[2-(3-methoxypropyl)-6-(difluoromethyl)-3-pyridinyl]carbonyl]-bicycfo[3.2.1]oct-3-en-2-one;
and wherein the mixture partner for the compound of formula I is optionally in the form of an ester or a salt.
and wherein "aryl", "heteroaryl" and "heterocyclyl" are as defined herein; and wherein the optional substituents on an alkyl moiety, the optional substituents on alkenyl or alkynyl, the optional substituents on heterocyclyl, the optional substituents on cycloalkyl or cycloalkenyl, and the optional substituents on aryl, heteroaryl or carbocyclyl, are as defined herein.active ingredient: 1 to 95 %, preferably 60 to 90 % surface-active agents: 1 to 30 %, preferably 5 to 20 % solvents as liquid carrier: 1 to 80 %, preferably 1 to 35 % active ingredient: 0.1 to 10 %, preferably 0.1 to 5 % solid carriers: 99.9 to 90 %, preferably 99.9 to 99 % active ingredient: 5 to 75 %, preferably 10 to 50 % water: 94 to 24 %, preferably 88 to 30 % surface-active agents: 1 to 40 %, preferably 2 to 30 % active ingredient: 0.5 to 90 %, preferably 1 to 80 % surface-active agents: 0.5 to 20 %, preferably 1 to 15 % solid carriers: 5 to 95 %, preferably 15 to 90 % active ingredient: 0.1 to 30 %, preferably 0.1 to 15 % solid carriers: 99.5 to 70 %, preferably 97 to 85 % active ingredient: 1 to 90 %, preferably 10 to 80 % surface-active agents: 0.5 to 80 %, preferably 5 to 30 % solid carriers: 90 to 10 %, preferably 70 to 30 % active ingredient 5 % 10% 25 % 50 % calcium dodecylbenzenesulfonate 6 % 8 % 6 % 8 % castor oil polyglycol ether 4 % - 4 % 4 % (36 mol of ethylene oxide) octylphenol polyglycol ether - 4 % - 2 % (7-8 mol of ethylene oxide) NMP - 10 % 20 % arom. hydrocarbon 85 % 68 % 65 % 16 % mixture C9-C12 active ingredient 5 % 10 % 50 % 90 % 1-methoxy-3-(3-methoxy-propoxy)-propane 40 % 50 % - polyethylene glycol MW 400 20 % 10 % - - NMP - 50 % 10 % arm. hydrocarbon 35 % 30 % - - mixture C9-C12 active ingredient 5 % 25 % 50 % 80 % sodium lignosulfonate 4 % - 3 % - sodium lauryl sulfate 2 % 3 % - 4 % sodium diisobutylnaphthalene-sulfonate - 6 % 5 % 6 % octylphenol polyglycol ether 1 % 2 % - (7-8 mol of ethylene oxide) highly disperse silicic acid 1 % 3 % 5 % 10 % kaolin 88 % 62 % 35 % - active ingredient 0.1 % 5 % 15 % highly dispersed silica 0.9 % 2 % 2 % inorg. carrier 99.0 % 93 % 83 % (diameter 0.1 - 1 mm) e.g. CaCO3 or SiO2 active ingredient 0.1 % 5 % 15 % polyethylene glycol MW 200 1.0 % 2 % 3 % highly dispersed silica 0.9 % 1 % 2 % inorg. carrier 98.0 % 92 % 80 % (diameter 0.1 - 1 mm) e.g. CaCO3 or SiO2 active ingredient 0.1 % 3 % 5 % 15 % sodium lignosulfonate 1.5 % 2 % 3 % 4 % carboxymethylcellulose 1.4 % 2 % 2 % 2 % kaolin 97.0 % 93 % 90 % 79 % active ingredient 5 % 10 % 40 % 90 % sodium lignosulfonate 20 % 20 % 15 % 7 % dibutyl naphthalene sulfonate 5 % 5 % 4 % 2 % Gum arabic 2 % 1 % 1 % 1 % Diatomaceous earth 20 % 30 % 5 % Sodium sulfate 4 % 5 % kaolin 48 % 30 % 30 % active ingredient 0.1 % 1 % 5 % talcum 39.9 % 49 % 35 % kaolin 60.0 % 50 % 60 % active ingredient 3 % 10 % 25 % 50 % propylene glycol 5 % 5 % 5 % 5 % nonylphenol polyglycol ether - 1 % 2 % - (15 mol of ethylene oxide) sodium lignosulfonate 3 % 3 % 7 % 6 % heteropolysacharide (Xanthan) 0.2 % 0.2 % 0.2 % 0.2 % 1,2-Benzisothiazolin-3-on 0.1 % 0.1 % 0.1 % 0.1 % silicone oil emulsion 0.7 % 0.7 % 0.7 % 0.7 % water 87 % 79 % 62 % 38 % PreparationExamples:
Example 1: Preparation of
Step 1: Preparation of ([4-bromo-2,6-dimethylphenyl]furan-2-yl)methanol.
Step 2: Preparation of 5-(4-bromo-2,6-dimethylphenyl)-4-hydroxycyclopent-2-enone.
Step 3: Preparation of 2-(4-bromo-2,6-dimethylphenyl)cyclopent-4-ene-1,3-dione.
Step 4: Preparation of
Step 5: Preparation of
Step 6: Preparation of
Example 2
Preparation of
Step 1: Preparation of 4-benzyloxy-2,6-dimethylbenzaldehyde.
Step 2: Synthesis of ([4-benzyloxy-2,6-dimethylphenyl]furan-2-yl)methanol.
Step 3: Synthesis of 5-(4-benzyloxy-2,6-dimethylphenyl)-4-hydroxycyclopent-2-enone.
Step 4: Synthesis of 2-(4-benzyloxy-2,6-dimethylphenyl)cyclopent-4-ene-1,3-dione.
Step 5: Synthesis of
Step 6: Synthesis of
Step 7: Synthesis of
Step 8: Synthesis of
Example 3
Preparation of
Step 1: Preparation of
Step 2: Preparation of
Step 3 : Preparation of
Example 4
Preparation of 2-[4-(5-chloro-3-fluoropyridin-2-yloxy)-2,6-dimethylphenyl]hexahydro-4,7-ethanoindene-1,3-dione
Step 1 : Preparation of
Step 2: Preparation of 2-(4-benzyloxy-2,6-dimethylphenyl)-hexahydro-4,7-ethanoindene-1,3-dione
Step 3: Preparation of 2,2-dimethylpropionic acid 2-(4-benzyloxy-2,6-dimethylphenyl)-3-oxo-3a,4,5,6,7,7a-hexahydro-3H-4,7-ethanoinden-1-yl ester
Step 4 : Preparation of 2,2-dimethylpropionic acid 2-(4-hydroxy-2,6-dimethylphenyl)-3-oxo-3a,4,5,6,7,7a-hexahydro-3H-4,7-ethanoinden-1-yl ester
Step 5 Preparation of 2-(4-hydroxy-2,6-dimethylphenyl)hexahydro-4,7-ethanoindene-1,3-dione
Step 6: Preparation of 2-[4-(5-chloro-3-fluoropyridin-2-yloxy)-2,6-dimethylphenyl]hexahydro-4,7-ethanoindene-1,3-dione
Example 5
Preparation of 2-[4-(6-chloroquinolin-2-yloxy)-2,6-dimethylphenyl]-4-(tetrahydropyran-4-ylmethyl)cyclopentane-1,3-dione
Step 1: Preparation of 2-(4-benzyloxy-2,6-dimethylphenyl)-3-methoxycyclopent-2-enone
Step 2 : Preparation of 2-(4-benzyloxy-2,6-dimethylphenyl)-3-methoxy-5-[1-(tetrahydropyran-4-yl)-methylidene]cyclopent-2-enone
Step 3 : Preparation of 2-(4-hydroxy-2,6-dimethylphenyl)-3-methoxy-5-(tetrahydropyran-4-ylmethyl)cyclopent-2-enone
Step 4 : Preparation of 2-(4-hydroxy-2,6-dimethylphenyl)-4-(tetrahydropyran-4-ylmethyl)-cyclopentane-1,3-dione
Step 5 : Preparation of 2-[4-(6-chloroquinolin-2-yloxy)-2,6-dimethylphenyl]-4-(tetrahydropyran-4-ylmethyl)cyclopentane-1,3-dione
Example 6 : Preparation of 2-[4-(4-chlorophenoxy)-2-ethylphenyl]cyclopentane-1,3-dione
Step 1: Preparation of (4-bromo-2-ethylphenyl)furan-2-yl methanol
Step 2: Preparation of
Step 3: Preparation of 2-(4-bromo-2-ethylphenyl)cyclopent-4-ene-1,3-dione
Step 4: Preparation of 2-(4-bromo-2-ethylphenyl)cyclopentane-1,3-dione
Step 5: Preparation of 2-[4-(4-chlorophenoxy)-2-ethylphenyl]-cyclopentane-1,3-dione
A-1 d4-MeOH: δ 7.49 (m, 1H), 7.34 (m, 1H), 7.05 (d, 1H), 7.01 (d, 1H), 6.92 (dd, 1H), 6.80 (m, 1H), 4.62 (br. t, 2H), 2.86 (s, 2H), 2.47 (q, 2H), 1.88-1.79 (m, 2H), 1.65-1.71 (m, 2H), 1.08 (t, 3H) A-2 d4-MeOH: δ 7.35 (m, 2H), 7.01 (m, 3H), 6.94 (m, 1H), 6.83 (dd, 1H), 4.62 (m, 2H), 2.86 (s, 2H), 2.47 (q, 2H), 1.89-1.79 (m, 2H), 1.68 (m, 2H), 1.08 (t, 3H) A-3 d4-MeOH: δ 7.45 (dd, 1H), 7.29 (m, 1H), 6.99 (t, 1H), 6.66 (s, 2H), 4.59 (t, 2H), 2.85 (s, 2H), 2.05 (s, 6H), 1.84-1.76 (m, 2H), 1.69-1.62 (m, 2H). A-4 d4-MeOH: 5 7.33 (m, 2H), 6.99 (m, 2H), 6.72 (s, 2H), 4.62 (m, 2H), 2.89 (s, 2H), 2.08 (s, 6H), 1.89-1.80 (m, 2H), 1 69 (m, 2H). A-5 d4-MeOH: δ 7.29-7.05 (m, 4H), 6.66 (s, 2H), 4.64-4.57 (m, 2H), 2.88 (s, 2H), 2.07 (s, 6H), 1.87-1.78 (m, 2H), 1.72-1.63 (m, 2H). A-6 d4-MeOH: δ 7.20-7.08 (m, 2H), 6.97 (m, 1H), 6.65 (s, 2H), 4.64-4.58 (m, 2H), 2.87 (s, 2H), 2.07 (s, 6H), 1.88-1.79 (m, 2H), 1.72-1.64 (m, 2H). A-7 d4-MeOH: δ 7.35 (dd, 1H), 7.19 (m, 1H), 7.08 (t, 1H), 6.69 (s, 2H), 4.66-4.57 (m, 2H), 2.87 (s, 2H), 2.08 (s, 6H), 1.88-1.78 (m, 2H), 1.72-1.65 (m, 2H). A-8 d4-MeOH: δ 7.16-7.01 (m, 2H), 6.88 (t, 1H), 6.72 (s, 2H), 4.64-4.59 (m, 2H), 2.88 (s, 2H), 2.09 (s, 6H), 1.88-1.79 (m, 2H), 1.73-1.65 (m, 2H). A-9 d4-MeOH: δ 7.21 (m, 1H), 6.88-6.75 (m, 2H), 6.70 (s, 2H), 4.62-4.56 (m, 2H), 2.85 (s, 2H), 2.07 (s, 6H), 1.84-1.76 (m, 2H), 1.70-1.61 (m, 2H). A-10 d4-MeOH: δ 7.49 (dd, 1H), 7.28 (m, 1H), 7.13 (m, 1H), 7.03 (dd, 1H), 6.62 (s, 2H), 4.62-4.55 (m, 2H), 2.84 (s, 2H), 2.05 (s, 6H), 1.85-1.76 (m, 2H), 1.70-1.61 (m, 2H). A-11 d4-MeOH: δ 7.44 (m, 2H), 6.90 (m, 2H), 6.69 (s, 2H), 4.594 (m, 2H), 2.85 (s, 2H), 2.05 (s, 6H), 1.84-1.77 (m, 2H), 1.66 (m, 2H). A-12 d4-MeOH: δ 7.66 (d, 1H), 7.40 (dd, 1H), 6.91 (d, 1H), 6.65 (s, 2H), 4.59 (m, 2H), 2.85 (s, 2H), 2.05 (s, 6H), 1.84-1.76 (m, 2H), 1.69-1.62 (m, 2H). A-13 d4-MeOH + 2 drops d6-DMSO: δ 7.46 (d, 1H), 7.33 (dd, 1H), 6.82 (d, 1H), 6.62 (s, 2H), 4.62 (m, 2H), 2.88 (s, 2H), 2.25 (s, 3H), 2.07 (s, 6H), 1.87-1.79 (m, 2H), 1.73-1.65 (m, 2H). A-14 d4-MeOH: δ 7.28 (t, 1H), 7.06 (m, 1 H), 6.96 (t, 1H), 6.91 (dd, 1H), 6.72 (s, 2H), 4.60 (t, 2H), 2.86 (s, 2H), 2.07 (s, 6H), 1.85-1.77 (m, 2H), 1.70-1.62 (m, 2H). A-15 d4-MeOH: δ 7.13-6.96 (m, 4H), 6.68 (s, 2H), 4.62 (m, 2H), 2.88 (s, 2H), 2.07 (s, 6H), 1.88-1.77 (m, 2H), 1.72-1.63 (m, 2H). A-16 δ 8.30 (s, 1H), 8.02 (d, 1H), 7.68 (d, 1H), 7.68 (dd, 1 H), 6.92 (s, 2H), 3.27 (m, 1H), 3.01 (m, 1H), 2.73 (m, 2H), 2.22 (s, 3H), 2.11 (s, 3H), 1.80-1.49 (m, 6H). A-17 δ 8.47 (s, 1H), 8.34 (dd, 1H), 7.45 (d, 1H), 6.88 (s, 2H), 3.30 (m, 2H), 2.76 (m, 2H), 2.23 (s, 3H), 2.10 (s, 3H), 1.83 (d, 1H), 1.75 (d 1H), 1.64 (d, 2H), 1.43 (d 2H). A-18 δ 7.86 (s, 1H), 7.71(d, 1H), 6.84 (s, 2H), 3.28 (m, 2H), 2.74 (m, 2H), 2.20 (s, 3H), 2.07 (s, 3H), 1.81 (d, 1H), 1.75 (d 1H), 1.63 (d, 2H), 1.41 (d 2H). A-19 δ 8.37 (s, 1H), 7.91 (dd, 1H), 7.08(d, 1H), 6.87 (s, 2H), 3.00 (m, 1H), 2.69 (m, 1H), 2.23 (s, 3H), 2.14 (s, 3H), 2.14 (m, 1H), 1.83-1.40 (m, 9H). A-20 δ 7.82(s, 1H), 7.52(d, 1H), 6.86 (s, 2H), 3.38 (s, 1H), , 2.77 (m, 2H), 2.19 (s, 3H), 2.15 (m, 2H), 2.11 (s, 3H), 1.81-1.55 (m, 6H), 1.45 (m 2H). A-21 δ 8.67 (s, 1H), 8.04 (d, 1H), 7.75 (d, 1H), 7.62(dd, 1H), 6.96 (s, 2H), 2.94 (m, 1H), 2.62 (m, 1H), 2.26 (s, 3H), 2.20 (m, 2H), 2.18 (s, 3H), 1.80-1.6 (m, 6H), 1.45 (m, 2H). A-22 δ 8.26 (s, 1H), 8.01 (d, 1H), 7.70-7.58 (m, 2H), 6.93 (s, 1H), 6.88 (s, 1H), 4.77(m, 2H), 3.01 (m, 1H), 2.75 (m, 1H), 2.15 (s, 3H), 2.11 (s, 3H), 2.00-1.50 (m, 4H). A-23 δ 8.31 (s, 1H), 7.91 (dd, 1H), 7.06 (d, 1H), 6.83 (s, 2H), 4.69 (m, 2H), 2.82 (m, 2H), , 2.14 (s, 3H), 2.13 (s, 3H), 1.85 (m, 2H), 1.60 (m, 2H). A-24 δ 7.76(s, 1H), 7.51 (d, 1H), 6.81 (s, 2H), 4.63(m, 2H), 2.76 (m, 2H), , 2.11 (s, 3H), 2.09 (s, 3H), 1.81 (m, 2H), 1.55 (m, 2H). A-25 δ 7.93 (d, 1H), 7.62 (s, 1H), 7.56 (d, 1H), 7.40 (dd, 1H), 6.95 (d, 1H), 6.73 (s, 2H), 4.5(m, 2H), 2.63 (m, 2H), 1.98 (s, 3H). 1.97 (s, 3H), 1.66 (m, 2H), 1.43 (m, 2H). A-26 δ 7.81 (s, 1H), 7.65 (s, 1H), 6.86 (s, 2H), 4.52(m, 2H), 2.64 (m, 2H), , 1.98 (s, 3H), 1.97 (s, 3H), 1.69 (m, 2H), 1.45 (m, 2H). A-27 δ 6.90 (s, 2H), 2.50 (m, 2H), 2.17(s, 3H), 2.09 (s, 5H), 1.56 (m, 6H), 1.34 (m, 2H). A-28 δ 6.97(s, 2H), 4.70(m, 2H), 2.62 (s, 2H), 2.19(s, 3H), 2.17 (s, 3H), 1.85 (m, 2H), 1.60 (m, 2H). A-29 δ 9.83 (s, 1H), 7.98 (s,1H), 6.98(s, 2H), 4.77(s, 2H), 2.99 (s, 2H), 2.14 (s, 6H), 1.91 (m, 2H), 1.65 (m, 2H). A-30 δ 9.69 (s, 1H), 6.63 (s, 2H), 4.68 (m, 2H), 3.77 (s, 3H), 2.78 (s, 2H), 2.13 (s, 3H), 2.11 (s, 3H), 1.84 (m, 2H), 1.58 (m, 2H). A-31 δ 8.05 (d, 1H), 7.75 (m, 1 H), 7.64 (d, 1H), 7.52 (m, 1H), 7.20-7.00 (m, 4H), 4.72 (m, 2H), 2.88 (m, 2H), 2.52 (m, 2H), 1.87 (m, 2H), 1.60 (m, 2H), 1.13 (t, 3H). A-32 δ 7.29 (m, 2H), 7.04 (d, 1H), 6.96 (m, 2H), 6.92 (m, 1H), 6.80 (m, 1H), 2.67 (s, 4H), 2.48 (q, 2H), 1.10 (t, 3H) A-33 δ 7.10-6.95 (m, 5H), 6.90 (m, 1H), 6.77 (m, 1H), 2.66 (s, 4H), , 2.48 (q, 2H), 1.10 (t, 3H) A-34 δ 7.28 (m, 2H), 6.96 (m, 2H), 6.68 (s, 2H), 3.98 (m, 2H), 3.42 (m, 2H), 2.83 (m, 2H), 2.38(d, 1H), 2.09 (s, 3H), 2.08 (s, 3H), 1.93 ( m, 1H), 1.80-1.60 (m, 3H), 1.50-1.25 (m, 3H). A35 δ 8.12 (d, 1H), 7.78 (m, 1H), , 7.73 (d, 1H), 7.58 (m, 1H), 7.19 (d, 1H), 7.13 (m, 2H), 7.04 (m, 1H), 2.71 (s, 4H), 2.52 (q, 2H), 1.13 (t, 3H) A-36 δ 9.67 (s, 1H), 7.04 (d, 1H), 6.95 (m, 1H), 6.75 (m, 1H), 3.84 (s, 3H), 2.70 (s, 4H), 2.49 (q, 2H), 1.11 (t, 3H) A-37 δ 8.68 (d, 1H), 8.10 (d, 1H), 8.04 (m, 1H), 7.93 (m, 1H), 7.54 (d, 1H), 6.95 (s, 2H), 4.20 (m, 2H), 3.60 (m, 2H), 3.06 (m, 2H), 2.55 (m, 1H), 2.15 (s, 3H), 2.14 (s. 3H), 2.00 (m, 1H) 1.78 (m, 3H), 1.48 (m, 3H). A-38 δ 8.05 (d, 1H), 7.75 (m, 1H), 7.64 (d, 1H), 7.52 (m, 1H), 7.20-7.00 (m, 4H), 4.72 (m, 2H), 2.88 (m, 2H), 2.52 (m, 2H), 1.87 (m, 2H), 1.60 (m, 2H), 1.13 (t, 3H). A-39 δ 7.90 (m, 1H), 7.78 (m, 1H), 6.96 (m, 1H), 6.84 (s, 2H), 3.95 (m, 2H), 3.39 (m, 2H), 2.83 (m, 2H), 2.32 (m, 1H), 2.11 (s, 3H), 2.10 (s, 3H), 1.90 (m, 1H) 1.64 (m, 3H), 1.34 (m, 3H). P-1 δ 7.82-7.74 (m, 2H) 7.08 (m, 1H), 6.48 (m, 2H), 4.79 (d, 2H), 3.20 (d, 1H), 2.82 (d, 1H), 2.08 (s, 3H), 2.04 (s, 3H), 1.99-1.82 (m, 2H), 1.68-1.55 (m, 2H), 1.27 (s, 9H). P-2 δ 8.16 (d, 1H), 7.82 (dd, 1H), 6.96 (d, 1H), 6.52 (dd, 2H), 4.79 (t, 2H), 3.22 (d, 1H), 2.83 (d, 1H), 2.13 (s, 3H), 2.06 (s, 3H), 1.99-1.81 (m, 2H), 1.67-1.59 (m, 2H), 1.28 (s, 9H). P-3 δ 7.27 (d, 2H), 6.91 (d, 2H), 6.67 (d, 2H), 4.76 (d, 1H), 4.56 (d, 1H), 3.45 (d, 1H), 2.80 (d, 1H), 2.11 (s, 3H), 2.04 (s, 3H), 1.96-1.79 (m, 2H), 1.69-1.54 (m, 2H), 1.13 (s, 9H). P-4 δ 7.04-6.91 (m, 4H), 6.63 (d, 2H), 4.75 (d, 1H), 4.56 (d, 1H), 3.45 (d, 1H), 2.80 (d, 1H), 2.10 (s, 3H), 2.03 (s, 3H), 1.95-1.78 (m, 2H), 1.68-1.53 (m, 2H), 1.13 (s, 9H). P-5 δ 7.33 (d, 1H), 7.05 (dd, 1H), 6.88 (d, 1H), 6.64 (m, 2H), 4.77 (m, 1H), 4.65 (m, 1H), 3.08 (d, 1H), 2.77 (d, 1H), 2.15 (s, 3H), 2.08 (s, 3H), 1.89-1.76 (m, 2H), 1.64-1.53 (m, 2H), 1.32 (s, 9H). P-6 δ 8.56 (s, 1H), 8.04 (d, 1H), 7.75 (d, 1H), 7.72 (dd, 1H), 6.59 (d, 1H), 6.52 (d, 1H) 4.80 (d, 1H), 4.69 (d, 1H) 3.69 (d, 1H), 2.89 (d 1H), 2.18(s, 3H), 2.09 (s, 3H), 1.88 (m, 2H), 1.64 (m, 2H), 1.28 (s, 9H). P-7 δ 7.80 (s, 1H), 7.35 (d, 1H), 6.57 (d, 1H), 6.54 (d, 1H) 4.76 (d, 1H), 4.73 (d, 1H) 3.34 (d, 1H), 2.82 (d 1H), 2.11 (s, 3H), 2.06(s, 3H), 1.86 (m, 2H), 1.60 (m, 2H), 1.31 (s, 9H).
ambient temperature in the specified solvent. Unless otherwise stated, proton NMR spectra were recorded at ambient temperature.1.049 3-chloro-4-methylphenyl 1.050 3-chloro-4-nitrophenyl 1.051 3-chloro-4-trifluoromethoxyphenyl 1.052 3-chloro-4-trifluoromethylphenyl 1.053 2-bromo-4-chlorophenyl 1.054 4-chloro-2-difluoromethoxyphenyl 1.055 4-chloro-2-cyanophenyl 1.056 4-chloro-2-methoxyphenyl 1.057 4-chloro-2-fluorophenyl 1.058 4-chloro-2-nitrophenyl 1.059 4-chloro-2-methylphenyl 1.060 4-chloro-2-trifluoromethylphenyl 1.061 4-chloro-2-trifluoromethoxyphenyl 1.062 4-chloro-3-trifluoromethoxyphenyl 1.063 3-bromo-4-chlorophenyl 1.064 4-chloro-3-difluoromethoxyphenyl 1.065 4-chloro-3-cyanophenyl 1.066 4-chloro-3-methoxyphenyl 1.067 4-chloro-3-fluorophenyl 1.068 4-chloro-3-nitrophenyl 1.069 4-chloro-3-methylphenyl 1.070 4-chloro-3-trifluoromethylphenyl 1.071 4-bromo-2-fluorophenyl 1.072 2-difluoro-4-difl uoromethoxyphenyl 1.073 4-cyano-2-fluorophenyl 1.074 2-fluoro-4-methoxyphenyl 1.075 2,4-fluorophenyl 1.076 2-fluoro-4-nitrophenyl 1.077 2-fluoro-4-methylphenyl 1.078 2-fluoro-4-trifluoromethylphenyl 1.079 2-fluoro-4-trifluoromethoxyphenyl 1.080 4-bromo-3-fluorophenyl 1.081 4-cyano-3-fluorophenyl 1.082 3-difluoro-4-difluoromethoxyphenyl 1.083 3,4-fluorophenyl 1.084 3-fluoro-4-methoxyphenyl 1.085 3-fluoro-4-methylphenyl 1.086 3-fluoro-4-nitrophenyl 1.087 3-fluoro-4-trifluoromethoxyphenyl 1.088 3-fluoro-4-trifluoromethylphenyl 1.089 4-chloro-2,3-difluorophenyl 1.090 4-chloro-2,5-difluorophenyl 1.091 4-chloro-2,6-difluorophenyl 1.092 4-chloro-3,5-difluorophenyl 1.093 2,4-dichloro-3-fluorophenyl 1.094 2,4-dichloro-5-fluorophenyl 1.095 2,4-dichloro-6-fluorophenyl 1.096 2,3,4-trifluorophenyl 1.097 2,4,6-trifluorophenyl 1.098 2,4,5-trifluorophenyl 1.099 3,4,5-trifluorophenyl 1.100 pentafluorophenyl 1.101 2-bromo-4-cyanophenyl 1.102 3-bromo-4-cyanophenyl 1.103 4-bromo-2-cyanophenyl 1.104 4-bromo-3-cyanophenyl 1.105 2-cyano-4-nitrophenyl 1.106 3-cyano-4-nitrophenyl 1.107 2-cyano-4-trifluoromethylphenyl 1.108 3-cyano-4-trifluoromethylphenyl 1.109 2,4-dicyanophenyl 1.110 3,4-dicyanophenyl 1.111 3-chloropyridin-2-yl 1.112 4-chloropyridin-2-yl 1.113 5-chloropyridin-2-yl 1.114 6-chloropyridin-2-yl 1.115 2-chloropyridin-3-yl 1.116 4-chloropyridin-3-yl 1.117 5-chloropyridin-3-yl 1.118 6-chloropyridin-3-yl 1.119 2-chloropyridin-4-yl 1.120 3-chloropyridin-4-yl 1.121 3,4-dichloropyridin-2-yl 1.122 3,5-dichloropyridin-2-yl 1.123 3,6-dichloropyridin-2-yl 1.124 2,5-dichloropyridin-3-yl 1.125 2,6-dichloropyridin-3-yl 1.126 2,3-dichloropyridin-4-yl 1.001 phenyl (reference compound) 1.002 2-bromophenyl 1.003 2-chlorophenyl 1.004 2-cyanophenyl 1.005 2-difluoromethoxyphenyl 1.006 2-fluorophenyl 1.007 2-methoxyphenyl 1.008 2-methylphenyl 1.009 2-nitrophenyl 1.010 2-trifluoromethoxyphenyl 1.011 2-trifluoromethylphenyl 1.012 3-bromophenyl 1.013 3-chlorophenyl 1.014 3-cyanophenyl 1.015 3-difluoromethoxyphenyl 1.016 3-fluorophenyl 1.017 3-methoxyphenyl 1.018 3-methylphenyl 1.019 3-nitrophenyl 1.020 3-trifluoromethoxyphenyl 1.021 3-trifluoromethylphenyl 1.022 4-bromophenyl 1.023 4-chlorophenyl 1.024 4-cyanophenyl 1.025 4-difluoromethoxyphenyl 1.026 4-fluorophenyl 1.027 4-methanesulfonyl 1.028 4-methoxyphenyl 1.029 4-methylphenyl 1.030 4-nitrophenyl 1.031 4-trifluoromethoxyphenyl 1.032 4-trifluoromethylphenyl 1.033 4-bromo-2-chlorophenyl 1.034 2,4-dichlorophenyl 1.035 2-chloro-4-cyanophenyl 1.036 2-chloro-4-difluoromethoxyphenyl 1.037 2-chloro-4-fluorophenyl 1.038 2-chloro-4-methoxyphenyl 1.039 2-chloro-4-methylphenyl 1.040 2-chloro-4-nitrophenyl 1.041 2-chloro-4-trifluoromethoxyphenyl 1.042 2-chloro-4-trifluoromethylphenyl 1.043 4-bromo-3-chlorophenyl 1.044 3,4-dichlorophenyl 1.045 3-chloro-4-cyanophenyl 1.046 3-chloro-4-difluoromethoxyphenyl 1.047 3-chloro-4-fluorophenyl 1.048 3-chloro-4-methoxyphenyl 1.127 2,5-dichloropyridin-4-yl 1.128 3,5,6-trichloropyridin-2-yl 1.129 3-fluoropyridin-2-yl 1.130 4-fluoropyridin-2-yl 1.131 5-fluoropyridin-2-yl 1.132 6-fluoropyridin-2-yl 1.133 2-fluoropyridin-3-yl 1.134 4-fluoropyridin-3-yl 1.135 5-fluoropyridin-3-yl 1.136 6-fluoropyridin-3-yl 1.137 2-fluoropyridin-4-yl 1.138 3-fluoropyridin-4-yl 1.139 3,4-difluoropyridin-2-yl 1.140 3,5-difluoropyridin-2-yl 1.141 3,6-difluoropyridin-2-yl 1.142 2,5-difluoropyridin-3-yl 1.143 2,6-difluoropyridin-3-yl 1.144 2,3-difluoropyridin-4-yl 1.145 2,5-difluoropyridin-4-yl 1.146 3,5,6-trifluoropyridin-2-yl 1.147 3-trifluoromethylpyridin-2-yl 1.148 4-trifluoromethylpyridin-2-yl 1.149 5-trifluoromethylpyridin-2-yl 1.150 6-trifluoromethylpyridin-2-yl 1.151 2-trifluoromethylpyridin-3-yl 1.152 4-trifluoromethylpyridin-3-yl 1.153 5-trifluoromethylpyridin-3-yl 1.154 6-trifluoromethylpyridin-3-yl 1.155 2-trifluoromethylpyridin-4-yl 1.156 3-trifluoromethylpyridin-4-yl 1.157 4-chloro-3-fluoropyridin-2-yl 1.158 5-chloro-3-fluoropyridin-2-yl 1.159 6-chloro-3-fluoropyridin-2-yl 1.160 3-chloro-4-fluoropyridin-2-yl 1.161 3-chloro-5-fluoropyridin-2-yl 1.162 3-chloro-6-fluoropyridin-2-yl 1.163 3-chloro-5-trifluoromethylpyridin-2-yl 1.164 3-fluoro-5-trifluoromethylpyridin-2-yl 1.165 6-fluoro-3,4,5-trichloropyridin-2-yl 1.166 4-methyl-3,5,6-trifluoropyridin-2-yl 1.167 pyrimidin-2-yl (reference compound) 1.168 5-fluoropyrimidin-2-yl 1.169 5-chloropyrimidin-2-yl 1.170 5-bromopyrimidin-2-yl 1.171 6-chloropyridazin-3-yl 1.172 6-bromopyridazin-3-yl 1.173 quinolin-2-yl (reference compound) 1.174 6-fluoroquinolin-2-yl 1.175 7-fluoroquinolin-2-yl 1.176 6-chloroquinolin-2-yl 1.177 7-chloroquinolin-2-yl 1.178 6-bromoquinolin-2-yl 1.179 7-bromoquinolin-2-yl 1.180 6-trifluoromethylquinolin-2-yl 1.181 7-trifluoromethylquinolin-2-yl 1.182 quinoxalin-2-yl (reference compound) 1.183 6-fluoroquinoxazin-2-yl 1.184 7-fluoroquinoxalin-2-yl 1.185 6-chloroquinoxalin-2-yl 1.186 7-chloroquinoxalin-2-yl 1.187 6-bromoquinoxalin-2-yl 1.188 7-bromoquinoxalin-2-yl 1.189 6-trifluoromethylquinoxalin-2-yl 1.190 7-trifluoromethylquinoxalin-2-yl 1.191 quinazolin-2-yl (reference compound) 1.192 6-fluoroquinazolin-2-yl 1.193 7-fluoroquinazolin-2-yl 1.194 6-chloroquinazolin-2-yl 1.195 7-chloroquinazolin-2-yl 1.196 6-bromoquinazolin-2-y 1.197 7-bromoquinazolin-2-yl 1.198 6-trifluoromethylquinazolin-2-yl 1.199 7-trifluoromethylquinazolin-2-yl 1.200 benzoxazol-2-yl (reference compound) 1.201 5-fluorobenzoxazol-2-yl 1.202 6-fluorobenzoxazol-2-yl 1.203 5-chlorobenzoxazol-2-yl 1.204 6-chlorobenzoxazol-2-yl 1.205 5-bromobenzoxazol-2-yl 1.206 6-bromobenzoxazol-2-yl 1.207 5-trifluoromethylbenzoxazol-2-yl 1.208 6-trifluoromethylbenzoxazol-2-yl 1.209 benzothiazol-2-yl (reference compound) 1.210 5-fluorobenzothiazol-2-yl 1.211 6-fluorobenzothiazol-2-yl 1.212 5-chlorobenzothiazol-2-yl 1.213 6-chlorobenzothiazol-2-yl 1.214 5-bromobenzothiazol-2-yl 1.215 6-bromobenzothiazol-2-yl 1.216 5-trifluoromethylbenzothiazol-2-yl 1.217 6-trifluoromethylbenzothiazol-2-yl 1.218 benzo[1,2,4]triazin-3-yl (reference compound) 1.219 6-fluorobenzo[1,2,4]triazin-3-yl 1.220 7-fluorobenzo[1,2,4]triazin-3-yl 1.221 6-chlorobenzo[1,2,4]triazin-3-yl 1.222 7-chlorobenzo[1,2,4]triazin-3-yl 1.223 6-bromobenzo[1,2,4]triazin-3-yl 1.224 7-bromo benzo[1,2,4]triazin-3-yl 1.225 6-trifluoromethylbenzo[1,2,4]-triazin-3-yl 1.226 7-trifluoromethylbenzo-[1,2,4]triazin-3-yl Biological Examples
Test plants:
A-1 250 20 20 30 0 A-2 250 60 30 30 0 A-3 250 80 80 90 30 A-4 250 80 100 90 70 A-5 250 50 40 60 30 A-6 250 80 70 70 30 A-7 250 90 70 100 90 A-8 250 30 40 40 0 A-9 250 60 20 50 0 A-10 250 20 10 10 0 A-11 250 100 90 70 90 A-12 250 70 40 60 10 A-13 250 60 60 70 0 A-14 250 70 40 80 0 A-15 250 90 60 70 70 A-16 250 0 0 10 0 A-17 250 0 0 30 0 A-18 250 0 10 40 0 A-19 250 0 0 10 0 A-20 250 20 40 60 0 A-21 250 30 10 50 0 A-22 250 80 50 90 50 A-23 250 90 30 90 20 A-24 250 80 100 70 60 A-25 250 80 40 70 30 A-26 250 100 90 100 60 A-32 250 10 0 50 0 A-34 250 70 80 70 30 A35 250 0 0 70 0 A-37 250 0 10 90 10 A-38 250 70 80 100 0 P-3 250 90 100 100 90 P-4 250 90 80 100 70 A-1 250 70 70 100 80 A-2 250 80 90 100 90 A-3 250 90 100 100 90 A-4 250 100 100 100 90 A-5 250 70 60 90 50 A-6 250 70 90 90 70 A-7 250 100 100 100 90 A-8 250 80 80 90 40 A-9 250 60 60 90 40 A-10 250 30 10 40 0 A-11 250 90 90 100 90 A-12 250 70 80 100 70 A-13 250 60 80 50 30 A-14 250 70 70 80 30 A-15 250 90 90 100 90 A-16 250 0 30 60 0 A-17 250 10 10 40 10 A-18 250 10 30 70 30 A-19 250 0 10 60 10 A-20 250 30 50 70 20 A-21 250 0 10 70 0 A-22 250 100 100 90 100 A-23 250 50 60 70 80 A-24 250 90 80 90 80 A-25 250 80 90 70 70 A-26 250 100 100 90 70 A-32 250 0 0 0 0 A-34 250 70 80 80 60 A35 250 20 0 80 0 A-37 250 40 50 80 60 A-38 250 80 90 100 80 P-3 250 100 90 100 100 P-4 250 70 90 90 60