УСТРОЙСТВО УПРАВЛЕНИЯ АСИНХРОННЫМ СТАРТЕР-ГЕНЕРАТОРОМ

10-06-2012 дата публикации
Номер:
RU2453034C2
Контакты: 443100, g.Samara, ul. Molodogvardejskaja, 244, Glavnyj korpus SamGTU, patentnyj otdel
Номер заявки: 05-13-201018/07
Дата заявки: 20-07-2010

[1]

Изобретение относится к электротехнике, в частности к электрическим машинам с полупроводниковыми (вентильными) преобразователями электроэнергии, и может быть использовано в автономных объектах, в частности автомобилях, для генерирования электрической энергии и запуска приводного двигателя.

[2]

Известна электрическая система со стартер-генератором на базе асинхронной электрической машины переменного тока [RU 2173020 С2], которая содержит дополнительный преобразователь постоянного тока с управляющим входом, устройство управления этим преобразователем, конденсатор, подключенный к выводам постоянного тока вентильного преобразователя, датчик напряжения статора асинхронной машины, выход которого соединен с входом блока автоматического управления вентильным преобразователем, причем дополнительный преобразователь постоянного тока включен между выводами аккумуляторной батареи и выводами постоянного тока вентильного преобразователя, и управляемым ключом, который в стартерном режиме замкнут, и дополнительный преобразователь постоянного тока не работает, управляющий вход которого соединен с выводами постоянного тока вентильного преобразователя через пороговый элемент, причем устройство управления включает формирователь импульсов управления, имеющий вход регулирования ширины импульсов и вход синхронизации, датчик тока аккумулятора и задатчик тока аккумуляторов, элемент сравнения и регулятор тока, при этом выход датчика тока аккумуляторов подключен на инвертирующий вход элемента сравнения, а на его неинвертирующий вход подключен выход задатчика тока аккумуляторов, выход элемента сравнения через регулятор тока соединен с входом регулирования ширины импульсов формирователя импульсов управления, а вход синхронизации формирователя связан с выходом основной частоты блока автоматического управления вентильным преобразователем.

[3]

Недостатком аналога является то, что он имеет ограниченное быстродействие, поскольку неконкретизирован тип регулятора и постоянные времени стартер-генератора как электрической машины некомпенсированы. Это приводит к низким показателям в динамических режимах -перерегулировании, большим временем переходных процессов.

[4]

В качестве прототипа выбрано устройство управления автомобильным асинхронным стартер-генератором с аккумуляторной батареей в цепи постоянного тока [RU 2104612 С1], которое содержит датчик тока аккумуляторов, датчик напряжения, функциональный преобразователь, выполненный с возможностью уменьшения или увеличения выходного напряжения при уменьшении или увеличении его входного напряжения и последующего ограничения выходного напряжения, вентильный преобразователь регулируемой частоты с системой управления и двумя входами регулирования частоты, выводы переменного тока соединены с выводами обмотки статора асинхронной машины стартер-генератора, а выводы постоянного тока с одноименными выводами аккумуляторной батареи. Первый блок управления с регулятором частоты, выход которого соединен с первым входом регулирования частоты вентильного преобразователя, а выход с выходом элемента сравнения блока. Второй блок управления содержит регулятор коэффициента передачи, вход которого соединен с выходом элемента сравнения блока, на входы которого подключены выходы задатчика фазного напряжения и датчика напряжения. Третий блок управления содержит регулятор, выход которого соединен с вторым входом регулирования частоты вентильного преобразователя, а вход с выходом основного элемента сравнения блока. Указанное устройство обеспечивает получение значительных пусковых моментов при хороших энергетических показателях. Это устройство наиболее близко к предлагаемому решению и содержит вентильный преобразователь регулируемой частоты, выполненный с входом регулирования коэффициента передачи, к которому подключен выход регулятора второго блока управления, вход датчика напряжения соединен с выводами постоянного тока вентильного преобразователя, первый и второй входы регулирования частоты вентильного преобразователя соединены между собой двумя включенными встречно диодными элементами, общая точка которых соединена с входом системы управления вентильного преобразователя, первый блок управления снабжен задатчиком пусковой частоты, а регулятор блока содержит RS-триггер и управляемый переключатель с управляющим, размыкающим и замыкающим входами, выход которого связан с выходом регулятора частоты, а размыкающий вход с выходом задатчика пусковой частоты, соединенным также с одним входом элемента сравнения блока управления, причем замыкающий вход управляемого переключателя соединен с другим входом элемента сравнения и выходом функционального преобразователя, вход которого соединен с выходом датчика напряжения, а управляющий вход переключателя соединен с выходом RS-триггера, управляющий вход которого соединен с входом регулятора частоты блока управления, а второй вход с элементом установки исходного состояния триггера, во втором блоке управления вход задатчика фазного напряжения соединен с общей точкой диодных элементов. Третий блок управления выполнен в виде регулятора тока заряда аккумуляторов, блок управления снабжен задатчиком и регулятором напряжения цепи постоянного тока стартер-генератора, а также дополнительным элементом сравнения, входы которого соединены с выходами задатчика напряжения и датчика напряжения, причем входы основного элемента сравнения третьего блока управления соединены с датчиком тока аккумуляторов и выходом регулятора напряжения.

[5]

К недостаткам прототипа относится то, что он имеет ограниченное быстродействие, поскольку неконкретизирован тип регулятора и постоянные времени стартер-генератора как электрической машины некомпенсированы. Это приводит к низким показателям в динамических режимах-перерегулировании, большим временем переходных процессов.

[6]

Технический результат заключается в расширении диапазона рабочих частот вращения в генераторном режиме и достигается за счет повышения быстродействия управления при одновременном повышении ресурса безотказной работы с унифицированным перерегулированием переходного процесса из двигательного в генераторный режим.

[7]

Задачей изобретения является разработка структурного регулятора, который будет меняться от математического описания, параметров системы и режима работы (стартерный режим или генераторный режим). Он может быть пропорционально-интегральным (ПИ) и пропорционально-интегрально-дифференциальным (ПИД) регулятором.

[8]

Технический результат решается благодаря тому, что в устройстве управления асинхронным стартер-генератором, содержащем аккумуляторную батарею в цепи постоянного тока, датчик тока аккумуляторов, датчик напряжения, функциональный преобразователь, выполненный с возможностью уменьшения или увеличения выходного напряжения при уменьшении или увеличении его входного напряжения и последующего ограничения выходного напряжения, вентильный преобразователь регулируемой частоты с системой управления и двумя входами вентильного преобразователя регулируемой частоты, выводы переменного тока которого соединены с выводами обмотки статора асинхронной машины стартер-генератора, а выводы постоянного тока - с одноименными выводами аккумуляторной батареи, первый блок управления с регулятором частоты, выход которого соединен с первым входом вентильного преобразователя регулируемой частоты, а выход - с выходом элемента сравнения блока, второй блок управления с регулятором коэффициента передачи, вход которого соединен с выходом элемента сравнения блока, на входы которого подключены выходы задатчика фазного напряжения и датчика напряжения, и третий блок управления с регулятором, выход которого соединен со вторым входом вентильного преобразователя регулируемой частоты, а вход - с выходом основного элемента сравнения блока, вентильный преобразователь регулируемой частоты выполнен с входом регулирования коэффициента передачи, к которому подключен выход регулятора второго блока управления, вход датчика напряжения соединен с выводами постоянного тока вентильного преобразователя регулируемой частоты, первый и второй входы вентильного преобразователя регулируемой частоты соединены между собой двумя включенными встречно диодными элементами, общая точка которых соединена с входом системы управления вентильного преобразователя, первый блок управления снабжен задатчиком пусковой частоты, а регулятор блока содержит RS-триггер и управляемый переключатель с управляющим, размыкающим и замыкающим входами, выход которого связан с выходом регулятора частоты, а размыкающий вход с выходом задатчика пусковой частоты, соединенным также с одним входом элемента сравнения блока управления, причем замыкающий вход управляемого переключателя соединен с другим входом элемента сравнения и выходом функционального преобразователя, вход которого соединен с выходом датчика напряжения, а управляющий вход переключателя соединен с выходом RS-триггера, управляющий вход которого соединен с входом регулятора частоты блока управления, а второй вход - с элементом установки исходного состояния триггера, во втором блоке управления вход задатчика фазного напряжения соединен с общей точкой диодных элементов, третий блок управления снабжен задатчиком напряжения и устройством сравнения, а также дополнительным элементом сравнения, входы которого соединены с выходами задатчика напряжения и датчика напряжения, причем входы основного элемента сравнения третьего блока управления соединены с датчиком тока аккумуляторов и выходом регулятора напряжения, предусмотрены следующие отличия: третий блок управления выполнен в виде регулятора тока заряда аккумуляторов пропорционально-интегрально-дифференциального типа на операционном усилителе, к выходу и общей точке которого подключены последовательно соединенные сопротивление и емкость, точка соединения которых через последовательное соединение сопротивления и емкости подключена ко входу операционного усилителя, причем регулятор тока заряда аккумуляторов настраивают на компенсацию электромагнитной и механической постоянных времени стартер-генератора при работе в генераторном режиме, регулятор напряжения цепи постоянного тока в виде операционного усилителя пропорционально-интегрального типа, в обратную связь которого последовательно включены сопротивление и емкость, причем регулятор напряжения цепи постоянного тока настраивают на компенсацию эквивалентной механической постоянной времени стартер-генератора при работе в стартерном режиме.

[9]

Изобретение позволяет сделать третий блок управления с задатчиком напряжения и устройством сравнения, а также дополнительным элементом сравнения, входы элемента сравнения соединены с выходами задатчика напряжения и датчика напряжения, причем входы основного элемента сравнения третьего блока управления соединены с датчиком тока аккумуляторов и выходом регулятора напряжения.

[10]

Техническая сущность предлагаемого изобретения поясняется на фиг.1. Предлагаемое устройство управления асинхронным стартер-генератором состоит из:

[11]

1 - асинхронная машина; 2 - приводной двигатель; 3 - вентильный преобразователь регулируемой частоты; 4 - система управления; 5 - первый вход вентильного преобразователя регулируемой частоты; 6 - второй вход вентильного преобразователя регулируемой частоты; 7, 8 - встречно включенные диоды; 9, 10 - выводы постоянного тока вентильного преобразователя (шина постоянного тока); 11 - аккумуляторная батарея; 12 - датчик тока аккумуляторов; 13 - датчик напряжения; 14 - бортовая сеть автомобиля; 15 - первый блок управления; 16 - функциональный преобразователь; 17 - элемент сравнения первого блока; 18 - задатчик пусковой частоты; 19 - вход регулятора частоты; 20 - регулятор частоты; 21 - управляемый переключатель; 22 - RS-триггер; 23 - диод; 24 - элемент установки исходного состояния RS-триггера; 25 - замыкающий контакт реле; 26 - размыкающий контакт реле; 27 - замыкающий вход; 28 - размыкающий вход; 29 - элемент сравнения второго блока; 30 - задатчик фазного напряжения; 31 - регулятор коэффициента передачи; 32 - второй блок управления; 33 - третий блок управления; 34 - регулятор тока заряда аккумуляторов; 35 - регулятор напряжения цепи постоянного тока; 36 - задатчик напряжения цепи постоянного тока; 37 - основное устройство сравнения; 38 - дополнительный элемент сравнения.

[12]

Перечисленные выше конструктивные элементы выполнены следующим образом: устройство управления асинхронным стартер-генератором с аккумуляторной батареей 11 в цепи постоянного тока содержит датчик тока аккумуляторов 12, датчик напряжения 13, функциональный преобразователь 16, выполненный с возможностью уменьшения или увеличения выходного напряжения при уменьшении или увеличении его входного напряжения и последующего ограничения выходного напряжения, вентильный преобразователь регулируемой частоты 3 с системой управления 4 и двумя входами вентильного преобразователя регулируемой частоты 5 и 6, выводы переменного тока которого соединены с выводами обмотки статора асинхронной машины стартер-генератора, а выводы постоянного тока - с одноименными выводами аккумуляторной батареи 11. Первый блок управления 15 содержит регулятор частоты 20, выход которого соединен с первым входом вентильного преобразователя регулируемой частоты 5 вентильного преобразователя регулируемой частоты 3, а выход - с выходом элемента сравнения первого блока 17. Второй блок управления 32 содержит регулятор коэффициента передачи 31, вход которого соединен с выходом элемента сравнения второго блока 29. На входы элемента сравнения второго блока 29 подключены выходы задатчика фазного напряжения 30 и датчика напряжения 13. Третий блок управления содержит регулятор тока заряда аккумуляторов 34, выход которого соединен со вторым входом вентильного преобразователя регулируемой частоты 6, а вход с выходом основного устройства сравнения третьего блока 37. Вентильный преобразователь регулируемой частоты 3 выполнен с входом регулирования коэффициента передачи, к которому подключен выход регулятора коэффициента передачи второго блока управления 31. Вход датчика напряжения 13 соединен с выводами постоянного тока вентильного преобразователя 9 и 10, первый и второй входы вентильного преобразователя регулируемой частоты 5,6 которого соединены между собой двумя включенными встречно диодными элементами 7 и 8, общая точка которых соединена с входом системы управления 4 вентильного преобразователя регулируемой частоты 3. Первый блок управления 15 снабжен задатчиком пусковой частоты 18, а регулятор частоты первого блока 20 содержит RS-триггер 22 и управляемый переключатель 21 с управляющим, размыкающим и замыкающим входами. Выход управляемого переключателя 21 связан с выходом регулятора частоты 20, а размыкающий вход 28 - с выходом задатчика пусковой частоты 18, соединенным также с одним входом элемента сравнения 17 первого блока управления. Причем замыкающий вход управляемого переключателя 27 соединен с другим входом элемента сравнения 17 и выходом функционального преобразователя 16. Вход функционального преобразователя 16 соединен с выходом датчика напряжения 13, а управляющий вход переключателя 21 соединен с выходом RS-триггера 22. Управляющий вход RS-триггера 22 соединен с входом регулятора частоты 20 первого блока управления 15, а второй вход - с элементом установки исходного состояния RS-триггера 24. Во втором блоке управления 32 вход задатчика фазного напряжения 30 соединен с общей точкой диодных элементов 7 и 8. Третий блок управления 33 снабжен задатчиком напряжения цепи постоянного тока 36 и основным устройством сравнения 37, а также дополнительным элементом сравнения 38, входы которого соединены с выходами задатчика напряжения цепи постоянного тока 36 и датчика напряжения 13, причем входы основного элемента сравнения 37 третьего блока управления соединены с датчиком тока аккумуляторов 12 и выходом регулятора напряжения цепи постоянного тока 35.

[13]

Поясним синтез регуляторов электрической системы асинхронного стартер-генератором. Представим функциональную схему регулирования на фиг.2, на которой обозначены: задатчик 39, фильтр 40, регулятор 41, динамические звенья стартера 42 и 43, обратную связь на основе операционного усилителя 44, элемент сравнения 45.

[14]

Настраивая контур на оптимум по модулю (ОМ) определим тип необходимого регулятора 41. Настройка на ОМ даст перерегулирование Хвых

[15]

величиной 4,3% при запасе по фазе 64°. Для реализации показателей желаемая передаточная функция разомкнутого контура должна быть:

[16]

[17]

Будем считать, что фильтр 40 является апериодическим звеном с параметрами:

[18]

[19]

При представлении объекта регулирования (ОР), которым является стартер-генератор, двумя апериодическими звеньями имеем передаточную функцию:

[20]

[21]

[22]

[23]

Из соотношения видно, что для компенсации двух постоянных времени Т1 и Т2, которые являются электромагнитной и механической постоянными времени стартер-генератора при работе в генераторном режиме и определяются параметрами стартер-генератора, необходим ПИД регулятор, схема которого представлена на фиг.3

[24]

Аналогично представим функциональную схему регулирования с одним динамическим звеном для компенсации одной постоянной времени. Представим функциональную схему регулирования на фиг.4, на котором обозначены: задатчик 46, фильтр 47, регулятор 48, динамическое звено стартера 49, обратную связь на основе операционного усилителя 50, элемент сравнения 51.

[25]

Настраивая контур на оптимум по модулю (ОМ) определим тип необходимого регулятора 48. Настройка на ОМ даст перерегулирование Xвых величиной 4,3% при запасе по фазе 64°. Для реализации этих показателей желаемая передаточная функция разомкнутого контура должна быть:

[26]

[27]

Будем считать, что фильтр 47 является апериодическим звеном с параметрами:

[28]

[29]

При представлении объекта регулирования (ОР), которым является стартер-генератор при работе в стартерном режиме, апериодическим звеном имеем передаточную функцию стартер-генератора:

[30]

и передаточную функцию Wраз разомкнутого контура

[31]

Отсюда определяется передаточная функция необходимого регулятора:

[32]

[33]

Из соотношения видно, что для компенсации постоянной времени Т1, которая определяется параметрами стартер-генератора, необходим ПИ-регулятор, схема которого представлена на фиг.5

[34]

Предлагаемые регуляторы реализуются на операционных усилителях КР140УД12.

[35]

Повышение быстродействия управления объясняется следующим образом. На фиг.6 показано, как пропорционально-интегрально-дифференциальный регулятор на скачок управляющего воздействия откликается мощным начальным пиком (дифференциальная составляющая) с последующим экспонециальным изменением выходного напряжения - пропорционально-интегрального изменения. На фиг.7 видно, что пропорционально-интегральный регулятор на скачок напряжения (пропорциональное воздействие) реагирует не форсированно, а медленно прямолинейно нарастает до напряжения насыщения (интегральная составляющая).

[36]

В целом пропорционально-интегрально-дифференциальный регулятор и пропорционально-интегральный регулятор предназначены для повышения быстродействия управления при одновременном повышении ресурса безотказной работы с унифицированным перерегулированием переходного процесса из двигательного в генераторный режим.



Изобретение относится к области электротехники и может быть использовано в автономных объектах, в частности автомобилях, для генерирования электрической энергии и запуска приводного двигателя. Техническим результатом является повышение быстродействия управления при одновременном повышении ресурса безотказной работы с унифицированным перерегулированием переходного процесса из двигательного режима в генераторный. В устройстве управления асинхронным стартер-генератором третий блок управления выполнен в виде регулятора тока заряда аккумуляторов пропорционально-интегрально-дифференциального типа на операционном усилителе, к выходу и общей точке которого подключены последовательно соединенные сопротивление и емкость, точка соединения которых через последовательное соединение сопротивления и емкости подключена ко входу операционного усилителя, причем регулятор тока заряда аккумуляторов настраивают на компенсацию электромагнитной и механической постоянных времени стартер-генератора при работе в генераторном режиме, а регулятор напряжения цепи постоянного тока - в виде операционного усилителя пропорционально-интегрального типа, в обратную связь которого последовательно включены сопротивление и емкость, и настраивают его на компенсацию эквивалентной механической постоянной времени стартер-генератора при работе в стартерном режиме. 7 ил.



Устройство управления асинхронным стартер-генератором, содержащее аккумуляторную батарею в цепи постоянного тока, датчик тока аккумуляторов, датчик напряжения, функциональный преобразователь, выполненный с возможностью уменьшения или увеличения выходного напряжения при уменьшении или увеличении его входного напряжения и последующего ограничения выходного напряжения, вентильный преобразователь регулируемой частоты с системой управления и двумя входами вентильного преобразователя регулируемой частоты, выводы переменного тока которого соединены с выводами обмотки статора асинхронной машины стартер-генератора, а выводы постоянного тока с одноименными выводами аккумуляторной батареи, первый блок управления с регулятором частоты, выход которого соединен с первым входом вентильного преобразователя регулируемой частоты, а выход с выходом элемента сравнения блока, второй блок управления с регулятором коэффициента передачи, вход которого соединен с выходом элемента сравнения блока, на входы которого подключены выходы задатчика фазного напряжения и датчика напряжения, и третий блок управления с регулятором, выход которого соединен со вторым входом вентильного преобразователя регулируемой частоты, а вход с выходом основного элемента сравнения блока, вентильный преобразователь регулируемой частоты выполнен с входом регулирования коэффициента передачи, к которому подключен выход регулятора второго блока управления, вход датчика напряжения соединен с выводами постоянного тока вентильного преобразователя регулируемой частоты, первый и второй входы вентильного преобразователя регулируемой частоты соединены между собой двумя включенными встречно диодными элементами, общая точка которых соединена с входом системы управления вентильного преобразователя, первый блок управления снабжен задатчиком пусковой частоты, а регулятор блока содержит RS-триггер и управляемый переключатель с управляющим, размыкающим и замыкающим входами, выход которого связан с выходом регулятора частоты, а размыкающий вход с выходом задатчика пусковой частоты, соединенным также с одним входом элемента сравнения блока управления, причем замыкающий вход управляемого переключателя соединен с другим входом элемента сравнения и выходом функционального преобразователя, вход которого соединен с выходом датчика напряжения, а управляющий вход переключателя соединен с выходом RS-триггера, управляющий вход которого соединен с входом регулятора частоты блока управления, а второй вход с элементом установки исходного состояния триггера, во втором блоке управления вход задатчика фазного напряжения соединен с общей точкой диодных элементов, третий блок управления снабжен задатчиком напряжения и устройством сравнения, а также дополнительным элементом сравнения, входы которого соединены с выходами задатчика напряжения и датчика напряжения, причем входы основного элемента сравнения третьего блока управления соединены с датчиком тока аккумуляторов и выходом регулятора напряжения, отличающееся тем, что третий блок управления выполнен в виде регулятора тока заряда аккумуляторов пропорционально-интегрально-дифференциального типа на операционном усилителе, к выходу и общей точке которого подключены последовательно соединенные сопротивление и емкость, точка соединения которых через последовательное соединение сопротивления и емкости подключена ко входу операционного усилителя, причем регулятор тока заряда аккумуляторов настраивают на компенсацию электромагнитной и механической постоянных времени стартер-генератора при работе в генераторном режиме, регулятор напряжения цепи постоянного тока в виде операционного усилителя пропорционально-интегрального типа, в обратную связь которого последовательно включены сопротивление и емкость, причем регулятор напряжения цепи постоянного тока настраивают на компенсацию эквивалентной механической постоянной времени стартер-генератора при работе в стартерном режиме.