SEMICONDUCTOR DEVICE, CONTROL METHOD FOR THE SEMICONDUCTOR DEVICE AND INFORMATION PROCESSING SYSTEM INCLUDING THE SAME
This application is a Continuation application of U.S. patent application Ser. No. 13/911,172, filed on Jun. 6, 2013, which is a Continuation application of U.S. patent application Ser. No. 12/923,714 (Now U.S. Pat. No. 8,473,653) and which claims priority from JPA No. 2009-235486, incorporated herein by reference. 1. Field of the Invention The present invention relates to a semiconductor memory device and an information processing system including the same. More particularly, the present invention relates to a semiconductor memory device that includes plural core chips and an interface chip to control the core chips and an information processing system including the same. 2. Description of Related Art A memory capacity that is required in a semiconductor memory device such as a dynamic random access memory (DRAM) has increased every year. In recent years, a memory device that is called a multi-chip package where plural memory chips are laminated is suggested to satisfy the required memory capacity. However, since the memory chip used in the multi-chip package is a common memory chip capable of operating even though the memory chip is a single chip, a so-called front end unit that performs a function of an interface with an external device (for example, memory controller) is included in each memory chip. For this reason, an area for a memory core in each memory chip is restricted to an area obtained by subtracting the area for the front end unit from a total chip area, and it is difficult to greatly increase a memory capacity for each chip (for each memory chip). In addition, a circuit that constitutes the front end unit is manufactured at the same time as a back end unit including a memory core, regardless of the circuit being a circuit of a logic system. Therefore there has been a further problem that it is difficult to speed up transistors in the front end unit. As a method to resolve the above problem, a method that integrates the front end unit and the back end unit in individual chips and laminates these chips, thereby constituting one semiconductor memory device, is suggested (for example, Japanese Patent Application Laid-Open (JP-A) No. 2007-157266). According to this method, with respect to plural core chips each of which is integrated with the back end unit without the front end unit, it becomes possible to increase a memory capacity for each chip (for each core chip) because an occupied area assignable for the memory core increases. Meanwhile, with respect to an interface chip that is integrated with the front end unit and is common interface to the plural core chips, it becomes possible to form its circuit with a high-speed transistor because the interface chip can be manufactured using a process different from that of the memory core. In addition, since the plural core chips can be allocated to one interface chip, it becomes possible to provide a semiconductor memory device that has a large memory capacity and a high operation speed as a whole. However, since there occurs a deviation in operation speed among the core chips due to the manufacturing process conditions, the period of time from the receipt of a read command to the outputting of read data also varies among the core chips. As a result, the latch margin of the read data for the interface chip becomes smaller, and in some cases, read data cannot be accurately latched. As a method for solving the above problem, FIGS. 11 and 13 of JP-A No. 2006-277870 disclose a method of reproducing a data strobe signal (DQS) that is output from a memory chip and is phase-delayed in an interface chip, and controlling the latch timing of read data on the interface chip with the use of the reproduced data strobe signal in a semiconductor device in which memory chips and the interface chip are stacked, though the semiconductor device is not of a type having a front-end unit and a back-end unit separated from each other. More specifically, as disclosed in paragraphs through of JP-A No. 2006-277870, data strobe signals DQS and /DQS supplied from the memory chips at the time of reading generate an internal strobe signal DQSI having a phase 90-degrees shifted from the data strobe signals DQS and /DQS, via each input buffer INB of a differential amplifier type and the strobe signal generating circuit DSG of the interface chip. The latch circuits L of the interface chip capture data DQ supplied from the memory chips, in synchronization with the internal strobe signal DQSI. The data DQ captured in the interface chip and the strobe signals DQS and /DQS are transmitted to the outside. Accordingly, when seen from outside the semiconductor memory device, the overall read latency is obtained by adding one clock that is the latency of the interface chip to the read latency RL of the memory chips, or RL+1. This relates data latch timing in a semiconductor device having an interface chip added to conventionally known memory chips each operating independently of one another, and has been developed as a solution on the assumption that a delay is caused from the read latency of conventional memory chips as described above. However, the semiconductor device disclosed in JP-A No. 2006-277870 is not a semiconductor device of a type having a front-end unit and a back-end unit separated from each other, but is a semiconductor device in which conventional memory chips operating independently of one another and an interface chip for relaying data and signals between the conventional memory chips and the outside are stacked. Therefore, the read data that are output from the memory chips are serial-converted data. The read data and the data strobe signals that are output from the memory chips be supplied directly to a controller chip (to the outside) in the case of a regular semiconductor device, and those data and signals are simply buffered by the interface chip. Due to this buffering, extra time is required for supplying read data to the controller chip in practice, and the access speed becomes lower when seen from the controller chip. As described above, the invention disclosed in JP-A No. 2006-277870 fundamentally differs from a semiconductor device of a type having a front-end unit and a back-end unit separated from each other. Therefore, it is difficult for the invention disclosed in JP-A No. 2006-277870 to solve the above described problem. In one embodiment, there is provided a semiconductor device that includes at least one core chip that outputs parallel data that is a plurality of parallel bits, and an interface chip that converts the parallel data supplied from the core chip into serial data that is a plurality of series bits, and outputs the serial data to the outside. The core chip includes a timing control circuit that outputs a timing signal synchronized with an output of the parallel data to the interface chip. The interface chip includes a data input circuit that captures the parallel data in synchronization with the timing signal generated in the core chip. In one embodiment, there is provided a method for controlling a semiconductor device that includes at least one core chip that outputs parallel data that is a plurality of parallel bits, and an interface chip that converts the parallel data supplied from the core chip into serial data that is a plurality of series bits, and outputs the serial data to the outside. The method includes a process of generating a timing signal in the core chip and output the timing signal to the interface chip, a process of outputting the parallel data from the core chip to the interface chip in synchronization with a timing signal and a process of capturing the parallel data in the interface chip in synchronization with the timing signal generated in the core chip. In another embodiment, there is provided a data processing system that includes the semiconductor device as described above and a controller that is connected to the semiconductor device. The controller issues a command related to a read command, to the interface chip. The interface chip issues the read command to the core chips, upon receipt of the read command from the controller. One of the core chips outputs the parallel data corresponding to the read command to the interface chip, upon receipt of the read command. The interface chip converts the parallel data into the serial data and outputting the serial data to the controller, upon receipt of the parallel data from one of the core chips. According to the present invention, the timing to output parallel data from each core chip and the timing to capture parallel data into an interface chip are both synchronized with a timing signal generated in each core chip. Accordingly, even if there are differences in operation speed among the core chips and/or there are differences in operation speed between the core chips and the interface chip due to the manufacturing conditions and the likes, the parallel data that are output from each core chip can be accurately captured on the interface chip side. Furthermore, there is no need to perform fine adjustment so that the timings to output parallel data match each other on the core chip, or perform fine adjustment so that the timings to capture the parallel data that are output from the respective core chips match each other on the interface chip, based on the differences in operation speed. Accordingly, the above advantageous effects can be achieved with a relatively simple circuit structure. Also, there is not a delay caused in the entire semiconductor device due to a further phase delay of the core chip signal information in the interface chip as in JP-A No. 2006-277870. The above features and advantages of the present invention will be more apparent from the following description of certain preferred embodiments taken in conjunction with the accompanying drawings, in which: The following is a typical example of the technical concept of the present invention to solve the above mentioned problems. However, the contents claimed in this application are not limited to the technical concept, and are of course disclosed in the claims of this application. Specifically, the present invention is based on the technical concept by which a timing signal for defining the timing to output parallel data from the core chip side is output together with the parallel data to the interface chip, and the timing (latch timing) to allow inputting of the parallel data on the interface chip side in synchronization with the timing signal is defined. Accordingly, even if there are differences in operation speed among the core chips and/or there are differences in operation speed between the core chips and the interface chip due to the manufacturing conditions and the likes, the parallel data that are output from the respective core chips can be accurately captured on the interface chip side. Furthermore, there is no need to perform fine adjustment so that the timings to output parallel data become uniform on the core chip side, or perform fine adjustment so that the timings to capture the parallel data that are output from the respective core chips become uniform on the interface chip side, based on the differences in operation speed. Accordingly, the above advantageous effects can be achieved with a relatively simple circuit structure. Also, there is not a delay caused in the entire semiconductor device due to a further phase delay of the core chip signal information in the interface chip as in JP-A No. 2006-277870. Preferred embodiments of the present invention will be explained below in detail with reference to the accompanying drawings. As shown in Each of the core chips CC0 to CC7 is a semiconductor chip which consists of circuit blocks other than a so-called front end unit (front end function) performing a function of an interface with an external device through an external terminal among circuit blocks included in a 1 Gb DDR3 (Double Data Rate 3)-type SDRAM (Synchronous Dynamic Random Access Memory). The SDRAM is a well-known and common memory chip that includes the front end unit and a so-called back end unit having a plural memory cells and accessing to the memory cells. The SDRAM operates even as a single chip and is capable to communicate directly with a memory controller. That is, each of the core chips CC0 to CC7 is a semiconductor chip where only the circuit blocks belonging to the back end unit are integrated in principle. As the circuit blocks that are included in the front end unit, a parallel-serial converting circuit (data latch circuit) that performs parallel/serial conversion on input/output data between a memory cell array and a data input/output terminal and a DLL (Delay Locked Loop) circuit that controls input/output timing of data are exemplified, which will be described in detail below. The interface chip IF is a semiconductor chip in which only the front end unit is integrated. Accordingly, an operation frequency of the interface chip is higher than an operation frequency of the core chip. Since the circuits that belong to the front end unit are not included in the core chips CC0 to CC7, the core chips CC0 to CC7 cannot be operated as the single chips, except for when the core chips are operated in a wafer state for a test operation in the course of manufacturing the core chips. The interface chip IF is needed to operate the core chips CC0 to CC7. Accordingly, the memory integration of the core chips is denser than the memory integration of a general single chip. In the semiconductor memory device 10 according to this embodiment, the interface chip has a front end function for communicating with the external device at a first operation frequency, and the plural core chips have a back end function for communicating with only the interface chip at a second operation frequency lower than the first operation frequency. Accordingly, each of the plural core chips includes a memory cell array that stores plural information, and a bit number of plural read data for each I/O (DQ) that are supplied from the plural core chips to the interface chip in parallel is plural and associated with a one-time read command provided from the interface chip to the core chips. In this case, the plural bit number corresponds to a prefetch data number to be well-known. The interface chip IF functions as a common front end unit for the eight core chips CC0 to CC7. Accordingly, all external accesses are performed through the interface chip IF and inputs/outputs of data are also performed through the interface chip IF. In this embodiment, the interface chip IF is disposed between the interposer IP and the core chips CC0 to CC7. However, the position of the interface chip IF is not restricted in particular, and the interface chip IF may be disposed on the core chips CC0 to CC7 and may be disposed on the back surface IPb of the interposer IP. When the interface chip IF is disposed on the core chips CC0 to CC7 in a face-down manner or is disposed on the back surface IPb of the interposer IP in a face-up manner, the TSV does not need to be provided in the interface chip IF. The interface chip IF may be disposed to be interposed between the two interposers IP. The interposer IP functions as a rewiring substrate to increase an electrode pitch and secures mechanical strength of the semiconductor memory device 10. That is, an electrode 91 that is formed on a top surface IPa of the interposer IP is drawn to the back surface IPb via a through-hole electrode 92 and the pitch of the external terminals SB is enlarged by the rewiring layer 93 provided on the back surface IPb. In As shown in When most of the TSVs provided in the core chips CC0 to CC7 are two-dimensionally viewed from a lamination direction, that is, viewed from an arrow A shown in Meanwhile, as shown in Another TSV group is short-circuited from the TSVs of other layer provided at the different position in plain view, as shown in As such, as types of the TSVs provided in the core chips CC0 to CC7, three types (TSV1 to TSV3) shown in As shown in An end 83 of the TSV1 at the back surface of the silicon substrate 80 is covered by a back surface bump 84. The back surface bump 84 is an electrode that contacts a surface bump 85 provided in a core chip of a lower layer. The surface bump 85 is connected to an end 86 of the TSV1, through plural pads P0 to P3 provided in wiring layers L0 to L3 and plural through-hole electrodes TH1 to TH3 connecting the pads to each other. Thereby, the surface bump 85 and the back surface bump 84 that are provided at the same position in plain view are short-circuited. Connection with internal circuits (not shown in the drawings) is performed through internal wiring lines (not shown in the drawings) drawn from the pads P0 to P3 provided in the wiring layers L0 to L3. As shown in First, a connection relationship between the external terminals and the interface chip IF performing the front end function and the circuit configuration of the interface chip IF will be described. The clock terminals 11 A DLL circuit 22 is included in the interface chip IF and an input/output clock signal LCLK is generated by the DLL circuit 22. The input/output clock signal LCLK is supplied to an input/output buffer circuit 23 included in the interface chip IF. A DLL function is used to control the front end unit by using the signal LCLK synchronized with a signal of the external device, when the semiconductor memory device 10 communicates with the external device. Accordingly, DLL function is not needed for the core chips CC0 to CC7 as the back end. The command terminals 12 The address terminal 13 is a terminal to which address signals A0 to A15 and BA0 to BA2 are supplied, and the supplied address signals A0 to A15 and BA0 to BA2 are supplied to an address input buffer 41 provided in the interface chip IF. An output of the address input buffer 41 is commonly supplied to the core chips CC0 to CC7 through the TSVs. The address signals A0 to A15 are supplied to a mode register 42 provided in the interface chip IF, when the semiconductor memory device 10 enters a mode register set. The address signals BA0 to BA2 (bank addresses) are decoded by an address decoder (not shown in the drawings) provided in the interface chip IF, and a bank selection signal B that is obtained by the decoding is supplied to a data latch circuit 25. This is because bank selection of the write data is performed in the interface chip IF. The data input/output terminal 14 is used to input/output read data or write data DQ0 to DQ15. The data strobe terminals 15 The calibration circuit 24 includes a replica buffer RB that has the same circuit configuration as the output buffer OB. If the calibration signal ZQ is supplied from the command decoder 32, the calibration circuit 24 refers to a resistance value of an external resistor (not shown in the drawings) connected to the calibration terminal 16 and performs a calibration operation. The calibration operation is an operation for matching the impedance of the replica buffer RB with the resistance value of the external resistor, and the obtained impedance code DRZQ is supplied to the input/output buffer circuit 23. Thereby, the impedance of the output buffer OB is adjusted to a desired value. The input/output buffer circuit 23 is connected to a data latch circuit 25. The data latch circuit 25 includes a FIFO circuit (not shown in the drawings) that realizes a FIFO function which operates by latency control realizing the well-known DDR function and a multiplexer MUX (not shown in the drawings). The input/output buffer circuit 23 converts parallel read data, which is supplied from the core chips CC0 to CC7, into serial read data, and converts serial write data, which is supplied from the input/output buffer, into parallel write data. Accordingly, the data latch circuit 25 and the input/output buffer circuit 23 are connected in serial and the data latch circuit 25 and the core chips CC0 to CC7 are connected in parallel. In this embodiment, each of the core chips CC0 to CC7 is the back end unit of the DDR3-type SDRAM and a prefetch number is 8 bits. The data latch circuit 25 and each banks of the core chips CC0 to CC7 are connected respectively, and the number of banks that are included in each of the core chips CC0 to CC7 is 8. Accordingly, connection of the data latch circuit 25 and the core chips CC0 to CC7 becomes 64 bits (8 bits×8 banks) for each DQ. Parallel data, not converted into serial data, is basically transferred between the data latch circuit 25 and the core chips CC0 to CC7. That is, in a common SDRAM (in the SDRAM, a front end unit and a back end unit are constructed in one chip), between the outside of the chip and the SDRAM, data is input/output in serial (that is, the number of data input/output terminals is one for each DQ). However, in the core chips CC0 to CC7, an input/output of data between the interface chip IF and the core chips is performed in parallel. This point is the important difference between the common SDRAM and the core chips CC0 to CC7. However, all of the prefetched parallel data do not need to be input/output using the different TSVs, and partial parallel/serial conversion may be performed in the core chips CC0 to CC7 and the number of TSVs that are needed for each DQ may be reduced. For example, all of data of 64 bits for each DQ do not need to be input/output using the different TSVs, and 2-bit parallel/serial conversion may be performed in the core chips CC0 to CC7 and the number of TSVs that are needed for each DQ may be reduced to ½ (32). To the data latch circuit 25, a function for enabling a test in an interface chip unit is added. The interface chip does not have the back end unit. For this reason, the interface chip cannot be operated as a single chip in principle. However, if the interface chip never operates as the single chip, an operation test of the interface chip in a wafer state may not be performed. This means that the semiconductor memory device 10 cannot be tested in case an assembly process of the interface chip and the plural core chips is not executed, and the interface chip is tested by testing the semiconductor memory device 10. In this case, when a defect that cannot be recovered exists in the interface chip, the entire semiconductor memory device 10 is not available. In consideration of this point, in this embodiment, a portion of a pseudo back end unit for a test is provided in the data latch circuit 25, and a simple memory function is enabled at the time of a test. The power supply terminals 17 The layer address control circuit 45 changes a layer address due to the I/O configuration of the semiconductor device 10 according to the present embodiment. As described above, the semiconductor memory device 10 includes 16 data input/output terminals 14. Thereby, a maximum I/O number can be set to 16 bits (DQ0 to DQ15). However, the I/O number is not fixed to 16 bits and may be set to 8 bits (DQ0 to DQ7) or 4 bits (DQ0 to DQ3). The address allocation is changed according to the I/O number and the layer address is also changed. The layer address control circuit 45 changes the address allocation according to the I/O number and is commonly connected to the core chips CC0 to CC7 through the TSVs. The interface chip IF is also provided with a layer address setting circuit 44. The layer address setting circuit 44 is connected to the core chips CC0 to CC7 through the TSVs. The layer address setting circuit 44 is cascade-connected to the layer address generating circuit 46 of the core chips CC0 to CC7 using the TSV2 of the type shown in The interface chip IF is also provided with a defective chip information holding circuit 33. When a defective core chip that does not normally operates is discovered after an assembly, the defective chip information holding circuit 33 holds its chip number. The defective chip information holding circuit 33 is connected to the core chips CC0 to CC7 through the TSVs. The defective chip information holding circuit 33 is connected to the core chips CC0 to CC7 while being shifted, using the TSV3 of the type shown in The above description is the outline of the connection relationship between the external terminals and the interface chip IF and the circuit configuration of the interface chip IF. Next, the circuit configuration of the core chips CC0 to CC7 will be described. As shown in The row decoder 51 is controlled by a row address supplied from a row control circuit 61. The row control circuit 61 includes an address buffer 61 The column decoder 52 is controlled by a column address supplied from a column control circuit 62. The column control circuit 62 includes an address buffer 62 The sense amplifier SA selected by the column decoder 52 is connected to the data control circuit 54 through some amplifiers (sub-amplifiers or data amplifiers or the like) which are not shown in the drawings. Thereby, read data of 8 bits (=prefetch number) for each I/O (DQ) is output from the data control circuit 54 at reading, and write data of 8 bits is input to the data control circuit 54 at writing. The data control circuit 54 and the interface chip IF are connected in parallel through the TSV. The control logic circuit 63 receives an internal command ICMD supplied from the interface chip IF through the TSV and controls the row control circuit 61 and the column control circuit 62, based on the internal command ICMD. As shown in In the layer address generating circuit 46, unique layer addresses are set to the core chips CC0 to CC7, respectively, at initialization. A method of setting the layer addresses is as follows. First, after the semiconductor memory device 10 is initialized, a minimum value (0, 0, 0) as an initial value is set to the layer address generating circuits 46 of the core chips CC0 to CC7. The layer address generating circuits 46 of the core chips CC0 to CC7 are cascade-connected using the TSVs of the type shown in The layer address generating circuit 46 is provided with a defective chip signal DEF supplied from the defective chip information holding circuit 33 of the interface chip IF, through the TSV. As the defective chip signal DEF is supplied to the individual core chips CC0 to CC7 using the TSV3 of the type shown in An output of the control logic circuit 63 is also supplied to a mode register 64. When an output of the control logic circuit 63 shows a mode register set, the mode register 64 is updated by an address signal. Thereby, operation modes of the core chips CC0 to CC7 are set. Each of the core chips CC0 to CC7 has an internal voltage generating circuit 70. The internal voltage generating circuit 70 is provided with power supply potentials VDD and VSS. The internal voltage generating circuit 70 receives these power supply potentials and generates various internal voltages. As the internal voltages that are generated by the internal voltage generating circuit 70, an internal voltage VPERI (≈VDD) for operation power of various peripheral circuits, an internal voltage VARY (<VDD) for an array voltage of the memory cell array 50, and an internal voltage VPP (>VDD) for an activation potential of the word line WL are included. In each of the core chips CC0 to CC7, a power-on detecting circuit 71 is also provided. When the supply of power is detected, the power-on detecting circuit 71 resets various internal circuits. The peripheral circuits in the core chips CC0 to CC7 operates in synchronization with the internal clock signal ICLK that is supplied form the interface chip IF through the TSV. The internal clock signal ICLK supplied through the TSV is supplied to the various peripheral circuits through the input buffer B2. The above description is the basic circuit configuration of the core chips CC0 to CC7. In the core chips CC0 to CC7, the front end unit for an interface with the external device is not provided. Therefore the core chip cannot operate as a single chip in principle. However, if the core chip never operates as the single chip, an operation test of the core chip in a wafer state may not be performed. In this embodiment, the core chips CC0 to CC7 are provided with some test pads TP. An address signal and test data or a command signal can be input from the test pads TP. Kinds of the test pads TP are almost the same as those of the external terminals provided in the interposer IP. Specifically, the test pads include a test pad TP1 to which a clock signal is input, a test pad TP2 to which an address signal is input, a test pad TP3 to which a command signal is input, a test pad TP4 for input/output test data, a test pad TP5 for input/output a data strobe signal, and a test pad TP6 for a power supply potential. A common external command (not decoded) is input at testing. Therefore, the test command decoder 65 is also provided in each of the core chips CC0 to CC7. Because serial test data is input and output at testing, a test input/output circuit 55 is also provided in each of the core chips CC0 to CC7. This is the entire configuration of the semiconductor memory device 10. Because in the semiconductor memory device 10, the 8 core chips of 1 Gb are laminated, the semiconductor memory device 10 has a memory capacity of 8 Gb in total. Because the chip selection signal /CS is input to one terminal (chip selection terminal), the semiconductor memory device is recognized as a single DRAM having the memory capacity of 8 Gb, in view of the controller. Although the read command and the address signal concerning the read command are commonly supplied from the interface chip IF to the respective core chips CC0 through CC7, only one of the core chips CC0 through CC7 outputs read data to the interface chip IF, and two or more of the core chips CC0 through CC7 do not simultaneously output read data. Therefore, in the read data transfer from the core chips utilizing TSV1 of the type illustrated in As shown in The timing signal DRAOi (i=0 through 7) is supplied to the data output circuit 54 The parallel read data (a read data signal) that is input to the interface chip IF via the TSV is supplied to a data input circuit 25 The timing signal DRAOIF of the interface chip IF is supplied to the data input circuit 25 As shown in With this structure, the internal operation speed varies depending on the manufacturing conditions and the likes of the respective core chips CC0 through CC7, and the specific timings to output read data from the core chips via the respective data output circuits 540 at the specific operation speeds are certainly synchronized with the respective capture allowing timings (the capture timings) to input sets of read data that are output at the specific timings in the data input circuit 25 As shown in In comparison with the case illustrated in In this embodiment, on the other hand, the timing signal DRAOIF for controlling the clocked driver of the interface chip IF is generated based on the timing signal DRAOi (i=0 through 7) that is generated in the core chips CC0 through CC7 and controls the clocked driver. The latch timing of the input buffer 25 The TSVs (DATA) and the TSVs (DRAO: clock) are preferably placed physically close to one another. In other words, the clocked drivers, the clocked receiver, and the buffers BUF should preferably be placed close to one another. When a plurality of TSVs (DATA) are provided for transferring various data, it is preferable to place the TSVs (DATA) and the TSVs (DRAO: clock) close to one another. Through this configuration, the accuracy of the latch timing of the clocked receiver becomes higher. The aspects of the second embodiment that differ from the first embodiment are mainly described herein. In this embodiment, FIFO circuits 25 As shown in Here, the FIFO circuits 25 Meanwhile, the operation timing of the FIFO control circuit 27 is synchronized with the input/output clock signal LCLK that is the output of the DLL circuit 22. Accordingly, as shown in The aspects of the third embodiment that differ from the first embodiment are mainly described herein. This embodiment is an embodiment preferred in a case where parallel read data (parallel data) that are output from banks are supplied to the interface chip IF via TSVs (DATA) different from one another. In this embodiment, banks are provided in each of the respective core chips CC0 through CC7, and TSV buffers 54 As shown in In the interface chip IF, on the other hand, the TSV buffers 25 With this structure, the read data read from the respective banks are supplied to the interface chip IF via the TSVs (DATA) different from one another, and are then supplied to the same read/write bus 25 The aspects of the fourth embodiment that differ from the third embodiment are mainly described herein. This embodiment is another embodiment preferred in a case where parallel read data (parallel data) that are output from banks are supplied to the interface chip IF via TSVs (DATA) different from one another. In this embodiment, the TSV buffers 54 As shown in The interface chip IF is the same as that of the embodiment illustrated in With this structure, the read data that is output from a selected bank can be appropriately supplied to the read/write bus 25 The aspects of the fifth embodiment that differ from the first embodiment are mainly described herein. This embodiment is an embodiment preferred in a case where there is only one core chip. Where there is only one core chip CC as shown in The data processing system 500 shown in In Examples of the storage device 540 include a hard disk drive, an optical disk drive, and a flash memory. Examples of the I/O device 550 include a display device such as a liquid crystal display, and an input device such as a keyboard and a mouse. Regarding the I/O device 550, it is only necessary to provide either one of the input device or the output device. Further, for the sake of simplicity, each constituent element shown in In the embodiments of the present invention, the controller issues commands concerning read commands to the interface chip. Upon receipt of a command from the controller, the interface chip issues read commands to core chips. Upon receipt of a read command, one of the core chips outputs read data that is the information about the memory cell array corresponding to the read command, to the interface chip. Receiving the read data from the one of the core chips, the interface chip outputs the read data to the controller. The commands (read commands in systems) issued by the controller are commands that are standardized by industry organizations specializing in controlling known semiconductor devices. The read commands issued from the interface chip to the core chips are control signals inside the semiconductor chips. The same goes for the read data. It is apparent that the present invention is not limited to the above embodiments, but may be modified and changed without departing from the scope and spirit of the invention. For example, in the embodiment, the DDR3-type SDRAMs are used as the plural core chips having the same function. However, the present invention is not limited thereto. Accordingly, the core chip may be a DRAM other than the DDR3-type and a semiconductor memory (SRAM (Static Random Access Memory), PRAM (Phase-change Random Access Memory), MRAM (Magnetic Random Access Memory) or a flash memory) other than the DRAM. The core chips may be plural semiconductor chips that have functions other than the functions of the semiconductor memory, which are equal to or different from each other. All of the core chips do not need to be laminated and all or part of the core chips may be two-dimensionally disposed. The number of core chips is not restricted to 8. The fundamental technical concept of the present invention is not limited to that. For example, the core chips have been described as chips of semiconductor memories having the same function. However, the fundamental technical concept of the present invention is not limited to that, and the core chips may have the same function as one another or different functions from one another. Specifically, the interface chip and the core chips may be silicon chips each having a unique function. For example, the core chips may be DSP chips having the same function, and may have an interface chip (ASIC) shared among the core chips. Preferably, the core chips have the same function as one another, and are manufactured with the use of the same mask. However, the characteristics after the manufacture might vary due to the in-plane distribution in the same wafer, differences among wafers, differences among lots, and the likes. Further, the core chips each have a memory function, but may also have different functions from one another (a first core chip is a DRAM, a second chip is a SRAM, a third chip is a nonvolatile memory, and a fourth chip is a DSP). The core chips may be manufactured with the use of different manufacturing masks from one another, and may have an interface chip (ASIC) shared among the core chips. The present invention may also be applied to all semiconductor products such as CPUs (Central Processing Units), MCUs (Micro Control Units), DSPs (Digital Signal Processors), ASICs (Application Specific Integrated Circuits), and ASSPs (Application Specific Standard Circuits), as long as they are COCs (Chip-on-Chips) that use TSVs. The devices to which the present invention is applied may also be used as the semiconductor devices in SOCs (System-on-Chips), MCPs (Multi Chip Packages), POPs (Package-On-Packages), and the likes. The transistors may be field effect transistors (FETs) or bipolar transistors. The present invention may be applied to various kinds of FETs such as MISs (Metal-Insulator Semiconductors) and TFTs (Thin Film Transistors), other than MOSs (Metal Oxide Semiconductors). The present invention may be applied to various kinds of FETs such as transistors. The transistors may be other transistors than FETs. The transistors may partially include bipolar transistors. Also, p-channel transistors or PMOS transistors are typical examples of the transistors of the first conductivity type, and n-channel transistors or NMOS transistors are typical examples of the transistors of the second conductivity type. Further, the substrate may not necessarily be a p-type semiconductor substrate, and may be an n-type semiconductor substrate, or a semiconductor substrate of a SOI (Silicon on Insulator) structure, or a semiconductor substrate of some other type. Further, the circuit forms of various circuits (such as amplifiers, drivers, receivers, FIFO, MUX, DQ drivers (DQS drivers), counters, and DLL circuits) are not limited to the circuit forms disclosed in the embodiments. Further, the structures of TSVs are not particularly limited. Further, the circuit forms of the TSV buffers (drivers and receivers) are not particularly limited. Various combinations and selections of the components disclosed herein may be made within the scope of the invention. In other words, the present invention of course includes various changes and modifications that are obvious to those skilled in the art according to all the disclosure including the claims and the technical concept. The core chips each include a timing control circuit that outputs a timing signal synchronized with the outputting of parallel data to the interface chip. The interface chip includes a data input circuit that captures parallel data in synchronization with the timing signal. With this arrangement, the timing to output the parallel data and the timing to capture the parallel data are both synchronized with the timing signal generated in the core chips. Therefore, even if there is a difference in operation speed between each core chip and the interface chip, the parallel data can be accurately captured on the interface chip side. 1. A device comprising:
a first semiconductor chip that comprises:
a plurality of first terminals; a plurality of second terminals; a plurality of first memory blocks each including a plurality of first memory cells, each of the first memory blocks being configured to be accessed to produce first data; a plurality of first circuits each producing a first output timing control signal; a plurality of first buffers each coupled to an associated one of the first terminals, an associated one of the first memory blocks and an associated one of the first circuits and configured to respond to the first output timing control signal produced from the associated one of the first circuits to drive the associated one of the first terminals in accordance with the first data produced from the associated one of the first memory blocks; and a plurality of second buffers each coupled to an associated one of the second terminals and an associated one of the first circuits and configured to respond to the first output timing control signal produced from the associated one of the first circuits to drive the associated one of the second terminals; a second semiconductor chip that comprises:
a plurality of first through-vias each penetrating the second semiconductor chip and having first and second ends; a plurality of second through-vias each penetrating the second semiconductor chip and having third and fourth ends; a plurality of second memory blocks each including a plurality of second memory cells, each of the second memory blocks being configured to be accessed to produce second data; a plurality of second circuits each producing a second output timing control signal; a plurality of third buffers each coupled to an associated one of the first through-vias, an associated one of the second memory blocks and an associated one of the second circuits and configured to respond to the second output timing control signal produced from the associated one of the second circuits to drive the associated one of the first through-vias in accordance with the second data produced from an associated one of the second memory blocks; and a plurality of fourth buffers each coupled to an associated one of the second through-vias and an associated one of the second circuits and configured to respond to the second output timing control signal produced from the associated one of the second circuits to drive the associated one of the second through-vias; and a third semiconductor chip that comprises:
a plurality of third terminals; and a plurality of fourth terminals; wherein the first and second semiconductor chips are stacked with each other such that each of the first terminals is connected to the first end of an associated one of the first through vias and each of the second terminals is connected to the third end of an associated one of the second through-vias; and wherein the third semiconductor chip is coupled to the second semiconductor chip such that each of the third terminals is electrically connected to the second end of an associated one the first through-vias and each of the fourth terminals is electrically connected to the fourth end of an associated one of the second through-vias. 2. The device as claimed in 3. The device as claimed in 4. The device as claimed in 5. The device as claimed in 6. The device as claimed in 7. A device comprising:
a first semiconductor chip that comprises:
a plurality of first terminals; a plurality of second terminals; a plurality of first memory banks each including a plurality of first memory cells, each of the first memory banks being configured to produce first data read out from a selected one of the first memory cells; a plurality of first buffers each configured to drive, when the first semiconductor chip selected, an associated one of the first terminals to produce a first data signal thereon in response to the first data; and a plurality of second buffers each configured to drive, when the first semiconductor chip is selected, an associated one of the second terminals to assert a first control signal that indicates the first data signal on the associated one of the first terminals being valid; and a second semiconductor chip that comprises:
a plurality of third terminals; a plurality of fourth terminals; a plurality of second memory banks each including a plurality of second memory cells, each of the second memory banks being configured to produce second data read out from a selected one of the second memory cells; a plurality of third buffers each configured to drive, when the second semiconductor chip selected, an associated one of the third terminals to produce a second data signal thereon in response to the second data; a plurality of fourth buffers each configured to drive, when the second semiconductor chip selected, an associated one of the fourth terminals to assert a second control signal that indicates the second data signal on the associated one of the third terminals being valid; a plurality of first through-vias each penetrating the second semiconductor chip and including first and second ends, the first end of each of the first through-vias being connected to an associated one of the third terminals; and a plurality of second through-vias each penetrating the second semiconductor chip and including third and fourth ends, the third end of each of the second through-vias being connected to an associated one of the fourth terminals; and the first and second semiconductor chips being stacked with each other such that each of the first terminals is connected to the second end of an associated one of the first through-vias and each of the second terminals is connected to the fourth end of an associated one of the second through-vias. 8. The device as claimed in 9. The device as claimed in when the first semiconductor chip is selected, the third semiconductor chip is supplied at at least one of the fifth terminals with the first data signal and at an associated one of the sixth terminals with the first control signal; and when the second semiconductor chip is selected, the third semiconductor chip is supplied at at least one of the fifth terminals with the second data signal and at an associated one of the sixth terminals with the second control signal. 10. The device as claimed in 11. The device as claimed in 12. The device as claimed in BACKGROUND OF THE INVENTION
SUMMARY
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS











