COMPOSITE INSULATING BUILDING PANEL AND SYSTEM AND METHOD FOR ATTACHING BUILDING PANELS
This application is a continuation of U.S. Ser. No. 13/005,664, filed Jan. 13, 2011, which claims the benefit under 35 U.S.C. 119( This invention relates in general to composite panels for industrial insulation, and more particularly to composite panels including two composite facings, at least one of which overhangs a foamed-in-place plastic core, with an adhesive placed on the overhang, as well as systems, devices, and methods for manufacturing and installing such panels. With increasing emphasis being placed on thermal performance of industrial insulation and an increasing number of organizations and regulatory bodies such as ASHRAE and the DOE, pressure is being placed on an industry that has lacked an economical solution that encompasses both a continuous insulated envelope and an insulation system that addresses air barrier and energy efficiency in metal buildings. Laminated fiberglass insulation used in pre-manufactured buildings has limitations as it does not provide a continuous insulation envelope. Laminated fiberglass is applied over the exterior of the building structure or sub filming, and roof and siding panels are installed over the top of the insulation. When this method is used, the fiberglass laminate is compressed over the framing by the roof and siding panels, thereby degrading the thermal performance of the insulation. Liner systems have been developed to combat this problem by applying a lining to the inside of the building sub framing, i.e. the girts and perlins, and filling this cavity with fiberglass batty. While this system addresses the issue of compressed fiberglass it still carries most of the drawbacks of a loose fill insulation system. Loose fill fiberglass systems are virtually unable to block air infiltration and water vapor, which can drastically reduce the thermal performance of the insulation system. Additionally these systems are labor intensive and their effectiveness depends heavily on the quality of the installation, which may not be consistent from building to building. An alternative to laminated fiberglass and loose fill insulation includes a wide range of rigid insulation that is currently on the market, none of which fully address the needs of pre-manufactured buildings. Most commonly, rigid insulation having a single layer of an-reinforced facing is installed over the building sub faming in a manner similar to a laminated fiberglass system. Once the rigid insulation is installed, all adjoining seams must be sealed with tape. Such system are not tailored to pre-manufactured building and are labor intensive. Flexible faced insulating system that are available today are not designed to stand up to the exposed industrial environment in which they are used, while providing a quality finish. One aspect of this invention is to provide an improved composite insulation panel system incorporating an integrated seal tab that allows adjoining panels to be jointed during installation with a pre-installed adhesive. This enables the installed panels to have a continuous air and vapor resistant barrier in addition to increased strength and durability of the composite panel through integrated fiber placement. Another aspect of this invention is to provide an improved method of manufacturing a composite panel using textured mold inserts, which allow air trapped between the heated platens and the composite facing to escape. This also imparts an embossed texture onto the panel surfaces that aids in decreasing the amount of blistering and increases the esthetics of the panel. Another aspect of this invention is to provide a method of installation that allows the panel to be installed on the exterior of the framing structure of an industrial steel building, while allowing the building manufacturer to use current trims and flashings. In general, changes will only be made to the lengths of siding and roofing panels, while maintaining an adequate system for securing this sheeting to the building. Another objective of this invention is to provide improved thermal isolation and air/vapor impenetrance to composite panel terminations. The invention and its many attendant objects and advantages will become better understood upon reading the description of the preferred embodiment in conjunction with the following drawings, wherein: Turning now to the drawings, wherein like reference characters designate identical or corresponding parts, and more particularly to Facing 7 further includes reinforcing 2 added to give the facing 7 its desired strength. Reinforcing 2 is comprised of, but not limited to, continuous strands of organic and non-organic fibers. In particular, continuous fibers are orientated in a mesh, or woven, pattern that maximizes composite properties. By way of example, glass and polyester fibers are presented in a tri-directional weave with at least one axis of said weave orientated along the length of composite panel 12, which can be produced in custom lengths to fit building dimensions. In some embodiments, reinforcing 2 may comprise fiberglass, Kevlar®, or carbon fiber. The width of the panel can also be customized, but 42 inches is preferable for ease of installation. To further quantify its performance, facing composite 7 should obtain minimum burst strength 25 psi and a minimum puncture resistance of 50 beach units. Furthermore, a minimum tensile strength of 25 lbs/inch width should be obtained Even further, facing 7 should have a class I water vapor transmission rating which range is defined by 0.0 perm to 0.1 perm. The permeance of the composite facing should be equivalent to or greater than the permeance of the foam core 5. Heretofore prior art has put little emphasis on this aspect due to the adequate permeance rating of foam used. When considering the preferred embodiment of the insulating system presented, it becomes apparent that the installed seams should also meet a class I rating. Additionally, all, facings should have a class I rating for flame spread and smoke development. Ideally, the composite insulation panel 12 has a class I or class A rating with regard to flame spreading and smoke propagation when tested to ASTM E84 criteria. Furthermore, Sections 2603.4 through 26017 of the international building code require that foam plastics must be separated from the interior of a building by a 15-minute thermal barrier unless special approvals in outlined in Section 2603.9 of the international building code are met. Preferably, the composite insulation panel 12 of the current invention satisfies the special approvals of Section 2603.9. Facing 7 further includes a backing 4 (often referred to as a “Kraft backing”), which is used as a bonding isolation barrier. This isolation enhances bonding between the foam and the facing and allows for a greater diversity of facings 1 that can be incorporated into the final composite insulation panel 12. Often molecular bonding between dissimilar plastics becomes problematic due a high degree of polymer chain alignment and hydrogen paring at the surface of the material. By way of example, ultra high molecular weight polyethylene has a tremendously low surface energy when compared to polyurethanes. By using backing 4 to isolate the materials, an adhesive 3 can be selected to molecularly and mechanically bond with facing film 1 and Kraft backing 4, thereby locking fiber-reinforcing 3 interstices in place and forming the facing composite 7, which in turn is bonded to the foam core 5 in the same manner that the Kraft paper is attached to the film and reinforcing. Suitable materials to be used as a facing composite include air barriers and vapor retarders available from Lamtec® Corporation, Flanders, N.J., including product numbers WMP-30 and R-3035 HD. Another suitable product is “Gymguard” by Lamtec. The thickness of the foam core 5 can vary from ½ inch to 6 inches depending on the degree of insulation required. The core will have a density of 1.8 to 2.6 pcf (pounds per cubic foot), preferably about 2.3 pcf. By way of example the plastic foam core will be made of polyurethane. Polyurethane foam with the addition of flame retardant is desirable due to its strength characteristics, thermal performance, fire retarding properties, as well as its ability to bond to facings. One example of the polyurethane foam that is suitable for this invention is as follows: Resin; 70 parts Polyol, 12 parts Flame Retardant, 3 Parts Surfactant, 2 parts Catalyst, 5 parts Propylene Carbonate, 15 parts 1,1,1,3,3-pentafluoropropane (HFC-245fa). Isocyanate; 55 parts P-MDI, 38 parts Diphenylmethane-4,4′-diisocyanate (MDI), 10 parts MDI Mixed Isomers. A suitable rigid polyurethane foam system is a two-component polymeric NIDI based system available from BASF and comprises Autofroth® 100-B-0718 resin and Autofroth® isocyanate. The resin components and isocyanate components are mixed individually and in turn are mixed together while being injected into the panel fixture. Heat of reaction along with mold temperatures causes the HFC-245fa to vaporize in the mixture cause foaming to take place. The panel remains in the mold until peak exotherm has occurred. The molding time depends on the panel thickness, but usually falls in the range of 25 to 45 minutes for the range of panels encompassed by this invention. Additionally, polyurethane foam composite can be co-blown. This means that the resin will incorporate more than one blowing agent. By way of further example, a co-blown polyurethane foam resin component is as follows: 70 parts Polyol, 12 parts Flame Retardant, 3 parts Surfactant, 2 parts Catalyst, 5 parts Propylene Carbonate, 5 parts 1,1,1,3,3-pentafluoropropane (HFC-245fa), 12 parts tetrafluoroethane, While polyurethane foam is preferred in this invention, other cellular expanded polymeric materials can be used. For example, urethanes, polystyrenes, Polyvinyl chlorides, isocyanurates, epoxies, phenolics, with variations and mixtures of these that have density between 1 and 3 pcf and a closed cell structure ranging from 90-97% closed. A fixture assembly for forming a composite insulation panel is shown in Textured mold insert 9 may be used on the surfaces of the heated platens 8 to allow trapped air to escape from behind composite facing 7 as the foam 11 expands in the molding fixture. Without venting this area, air can become trapped between the facing 7 and the heated platens 8 and the composite panel will not fill properly. The texture is also used to minimize the affect of blisters. Blisters occur when worm holes, bubbles of blowing agent, amass at the interface between the expanding foam 11 and the facing 7. The texture also helps prevent creases in the facing 7 by allowing the facing to be stretched into the texture when the foam expands. The textured insert improves the flow of expanding foam 11 in the mold, decreasing the amount of gas that becomes trapped at the surface of the foam. Any small amount of gas that does become trapped is camouflage by the texture that the panel as taken on. Suitable textures to be used as a textured mold inserts are available from Rigidized® Metals Corporation, Buffalo, N.Y., including product number 1UN. The composite insulation panel can be molded both by discontinuous or continues process. In discontinuous operation shown in Upon exiting the molding fixture, the panel 12 has facings that overhang all major sides of the composite. At this point any number of these sides may become a tape tab. The tape tab 6 can be installed before or after the molding. Preferably the tape is automatically rolled onto the facing as it comes off its roll. Tape that is applied to the width of the panel is usually installed manually after the molding operation. Wall 52 includes frame elements comprising main frame 41 and girts 18. A girt is typically made from cold-rolled galvanized steel ranging from 10 to 18 gauge thickness and is conventionally made into the general shape of a “Z” but can be made in other shapes as well. The girts 18 are typically secured in a horizontal orientation with respect to vertical support posts and support wall panels 21, which are typically painted steel panels fastened to the outside of the building frame through insulation panels 12 disposed between the wall panels 21 and the girts 18. Wall panels 21 are typically made from 20 to 29 gauge material and come in many styles and sizes. The wall panels 21 may secured to (or with respect to) the girts 18 by means of fasteners (not shown), such as self-tapping screws that extend through the panel 21 and the insulation panel 12 and into the girt 18. The fasteners may include a washer formed from an elastomeric material (e.g., neoprene) for sealing the panel and minimizing moisture penetration though the screw hole. Further details concerning the installation assembly of the wall panels 21, girts 18, and the insulation panels 12 are described below. As noted, the insulation panels 12 are disposed between the girts 18 and the wall panels 21, with abutting insulation panels 12 being temporarily secured to one another by facing overhang 7 Roof 54 includes a frame comprising perlins 32 positioned at spaced locations along the span of the roof 54, with an eave strut 42 supporting the free edge of the roof 54. Roof panels 28 are secured with respect to the perlins 32 and cave strut 42, with composite insulation panels 12 disposed between the roof panels 28 and the perlins 32 and cave strut 42. Further details concerning the installation assembly of the roof panels 28, perlins 32, cave strut 42, and the insulation panels 12 are described below. Like the wall panels 21, the roof panels 28 are typically formed from painted steel of 20 to 29 gauge thickness and may be provided in many styles and sizes. Abutting insulation panels 12 can be temporarily secured to one another by the facing overhang 7 Base member 14 is secured with respect to the building's grade beam 13, for example with concrete anchors 15 (or other suitable fasteners), which may be specified by the building manufacturer, extending through openings formed in the web portion 14 The lower ends of the insulation panels 12 then nest into the base member 14, and a bead or layer of sealant 16, for example, non-skinning butyl sealant, is preferably applied between the top of the channel's web 14 The outer side wall 14 A J-channel 24 is secured to the upper flange 42 The J-channel 24 is sized to hold an insulation panel 12. That is, the distance between the top flange 24 The roof panels 28 are secured in place by means of panel fasteners 22, which may comprise self-tapping screws having an elastomeric washer to seal the panel and extending through the panel 28 and into the top flange 24 As shown in The wall panel 21 is secured to the connecting web 24 An eave gutter 30 may be provided. The cave gutter 30 typically is formed from painted steel, preferably galvanized. It can be fastened to the underside of the endlap of the roof panel 28 using stitch screws 31 or similar fasteners. Gutter 30 may further include additional, secondary support (not shown). Referring again to The J-channel 24 is advantageous for a number of reasons. First, the J-channel helps to finish out the edges of the insulation panels 12 in a way that allows the building manufacturer to use standard trim elements, such as the eve trim 29 and the gutter 30. In addition, because the roof panel 28 is connected directly to the top flange 24 As noted above, the perlin 32 may have a Z-shape cross-section with a top flange 32 The size of the connector 33 is based on the thickness of the insulation panels 12. That is, the height of the web 33 As described above with respect to the J-channel 24, an advantage of the connector 33 is that the roof panel 28 can be secured directly to the top flange 33 The penetration assembly further includes vertical opening J trim 38. This trim is used to cap and finish out the vertical edges of the wall panels 21 at the doors and windows. It is typically made of 22 to 29 gage painted steel. These types of finish trims come in different shapes and sizes depending on the manufacturer. (Although most are in the shape of a J). Header and sill trim 39 is used to cap and finish the top and/or bottom of the wall panel 21 when an envelope penetration is made. Insulation panel trim 40 is used to cover the exposed edges of the insulation panel 12 when penetrating the building envelope. This trim may be color matched to the building manufacturer's trim 38 and 39. Without this trim the building manufacturer would have to redesign the trims (such as, the J trim 38 and the header and sill trim 39) to accommodate a variety of thicknesses of insulation panels 12, and such redesigned trim would not seal properly. The insulation panel trim 40 is preferably in the form of a channel having a thickness of 22-32 gage, preferably 28 gage, and having two legs, one of which is slightly longer than the other, and a connecting web having a width corresponding to the thickness of the insulation panel 12. The longer leg of the insulation panel trim 40, or trim channel, is used to attach the trim to building framing using suitable fasteners, such as tex-screws. Representative widths of the legs of the trim channel 40 are between 1 inch and 3 inches, and the legs are preferably 1.75 inches and 2 inches respectively. Suitable sealant 16 may be provided between the trim channel 40 and the edges of the composite panel 12. An insulation panel includes a foam core with a reinforced and vapor-impervious facing disposed on one or both sides of the core. A portion of the facing extends beyond the core and has an adhesive so that the overhanging portion can be secured to an abutting panel to cover a seam between the abutting panels. A fixture for forming the panel includes two heated platens, preferably provided with a textured surface, held apart by a spacer and between which the facing is mechanically suspended. An installation of the insulation panel includes panel-securing elements attached to frame elements of the building and including first and second flanges spaced apart by the thickness of the panel. A portion of the insulation panel is disposed between the first and second flanges, the first flange is secured to the frame element, and a cover panel disposed over the insulation panel is secured to the second flange. 1-16. (canceled) 17. A composite building insulation panel comprising:
a rigid foam core panel having a planar surface; and a facing bonded to the planar surface, the facing, comprising:
an outer skin layer; and a reinforcing layer between the planar surface and the outer skin layer and comprising woven fibers, wherein the fibers comprise glass and polyester fibers, fiberglass, Kevlar® fibers, or carbon fibers. 18. The composite building insulation panel of 19. The composite building insulation panel of 20. The composite building insulation panel of 21. The composite building insulation panel of 22. The composite building insulation panel of 23. The composite building, insulation panel of 24. The composite building insulation panel of 25. The composite building insulation panel of 26. The composite building insulation panel of 27. The composite building insulation panel of 28. The composite building insulation panel of 29. The composite building insulation panel of 30. The composite building insulation panel of 31. The composite building insulation panel of 32. The composite building insulation panel of 33. The composite building insulation panel of 34. The composite building insulation panel of 35. The composite building insulation panel of 36. The composite building insulation panel of 37. The composite building insulation panel of CROSS-REFERENCE TO RELATED APPLICATIONS
FIELD OF THE INVENTION
BACKGROUND OF INVENTION
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION OF THE INVENTION






