Monovalent, bivalent and trivalent anti human respiratory syncytial virus (HRSV) nanobody constructs for the prevention and/or treatment of respiratory tract infections

03-02-2015 дата публикации
Номер:
US8945567B2
Контакты:
Номер заявки: 37-13-20105357
Дата заявки: 07-06-2010



Amino acid sequences are provided that are directed against and/or that can specifically bind protein F of hRSV, as well as to compounds or constructs, and in particular proteins and polypeptides, that comprise or essentially consist of one or more such amino acid sequences. The amino acid sequences, polypeptides and therapeutic compounds and compositions provided by the invention show an improved stability, less immunogenicity and/or improved affinity and/or avidity for protein F of hRSV. The invention also relates to the uses of such amino acid sequences, polypeptides, compounds or constructs for prophylactic and/or therapeutic purposes.





Цитирование НПИ

Abarca, et al.; "Safety, Tolerability, Pharmacokinetics, and Immunogenicity of Motavizumab, a Humanized, Enhanced-Potency Monoclonal Antibody for the Prevention of Respiratory Syncytial Virus Infection in At-Risk Children"; The Pediatric Infectious Disease Journal; (2009); 28(4): 267-272.
Arbiza, et al.; "Characterization of two antigenic sites recognized by neutralizing monoclonal antibodies directed against the fusion glycoprotein of human respiratory syncytial virus"; Journal of General Virology; (1992); 73: 2225-2234.
Awasthi et al., Imaging findings in rabies encephalitis. AJNR Am J Neuroradiol. Apr. 2001;22(4):677-80.
Baker et al., Structural basis for paramyxovirus-mediated membrane fusion. Mol Cell. Mar. 1999;3(3):309-19.
Barbas et al., Human monoclonal Fab fragments derived from a combinatorial library bind to respiratory syncytial virus F glycoprotein and neutralize infectivity. Proc Natl Acad Sci U S A. Nov. 1, 1992;89(21):10164-8.
Burioni et al., Recombinant human Fab to glycoprotein D neutralizes infectivity and prevents cell-to-cell transmission of herpes simplex viruses 1 and 2 in vitro. Proc Natl Acad Sci U S A. Jan. 4, 1994;91(1):355-9.
Cardoso et al., Nanobodies® with in vitro neutralizing activity protect mice against H5N1 influenza virus infection. Antivirals Congress, Amsterdam, The Netherlands. Nov. 7-9, 2010. Meeting Abstract. 2 pages.
Chen et al., N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA(2) subunit to form an N cap that terminates the triple-stranded coiled coil. Proc Natl Acad Sci U S A. Aug. 3, 1999;96(16):8967-72.
Corral et al., High level expression of soluble glycoproteins in the allantoic fluid of embryonated chicken eggs using a Sendai virus minigenome system. BMC Biotechnol. Apr. 5, 2007;7:17. 9 pages.
Crowe et al., Recombinant human respiratory syncytial virus (RSV) monoclonal antibody Fab is effective therapeutically when introduced directly into the lungs of RSV-infected mice. Proc Natl Acad Sci U S A. Feb. 15, 1994;91(4):1386-90.
De Haard et al., Llama antibodies against a lactococcal protein located at the tip of the phage tail prevent phage infection. J. Bacteriol. Jul. 2005;187(3):4531-41.
Dekker et al., Intracellularly expressed single-domain antibody against p15 matrix protein prevents the production of porcine retroviruses. J Virol. Nov. 2003;77(22):12132-9.
Delagrave et al., Effects of humanization by variable domain resurfacing on the antiviral activity of a single-chain antibody against respiratory syncytial virus. Protein Eng. Apr. 1999;12(4):357-62.
Depla et al., Generation and characterization of ultra-potent RSV neutralising Nanobodies. 7th International Respiratory Syncytial Virus Symposium. Rotterdam. The Netherlands. Dec. 2-5, 2010. Presentation Abstract. 2 pages. Final Programme p. 162.
Depla et al., Prophylactic and therapeutic efficacy of anti-RSV Nanobody in a cotton rat challenge model. 7th International Respiratory Syncytial Virus Symposium. Rotterdam, The Netherlands, Dec. 2-5, 2010. Poster Abstract. 2 pages. Final Programme p. 169.
Deschacht et al., A novel promiscuous class of camelid single-domain antibody contributes to the antigen-binding repertoire. J Immunol. May 15, 2010;184(10):5696-704. doi:10.4049/jimmuno1.0903722. Epub Apr. 19, 2010.
Detalle et al., Assessment of in vivo and in vitro efficacy of an anti-RSV Nanobody®: superior potency over palivizumab and prophylactic effect after pulmonary administration. 1st Symposium on Single Domain Antibodies. Ghent, Belgium. Oct. 14-15, 2010. Meeting Abstract P12.
Deyev and Lebedenko; "Multivalency: the hallmark of antibodies used for optimization of tumor targeting by design"; BioEssays; (2008); 30(9): 904-918.
Dietzschold et al., Differences in cell-to-cell spread of pathogenic and apathogenic rabies virus in vivo and in vitro. J Virol. Oct. 1985;56(1):12-8.
Dimitrov, Cell biology of virus entry. Cell. Jun. 23, 2000;101(7):697-702.
Earp et al., The many mechanisms of viral membrane fusion proteins. Curr Top Microbiol Immunol. 2004;285:25-66.
Fiers et al., A "universal" human influenza A vaccine. Virus Res. Jul. 2004;103(1-2):173-6.
Forsman et al., Neutralising llama antibody fragments as HIV-1 entry Inhibitors. Eu-WHO Neut workshop. Italy. Mar. 2007. Abstract.
Fujinami et al., Antiviral antibody reacting on the plasma membrane alters measles virus expression inside the cell. Nature. Jun. 7, 1979;279(5713):529-30.
Gerhard, The role of the antibody response in influenza virus infection. Curr Top Microbiol Immunol. 2001;260:171-90.
Goldman et al., Facile generation of heat-stable antiviral and antitoxin single domain antibodies from a semisynthetic llama library. Anal Chem. Dec. 15, 2006;78(24):8245-55.
Greenspan et al., Defining epitopes: It's not as easy as it seems, Nat Biotechnol. Oct. 1999;17(10):936-7.
Hanson et al., Passive immunoprophylaxis and therapy with humanized monoclonal antibody specific for influenza A H5 hemagglutinin in mice. Respir Res. Oct. 14, 2006;7:126.
Harmsen and De Haard, et al.; "Properties, production, and applications of camelid single-domain antibody fragments"; Appl. Microbiol. Biotechnol.; (2007); 77: 13-22.
Harmsen et al., Appl Micro Biotechnology 2007, vol. 77, pp. 13-22.
Harmsen et al., Passive immunization of guinea pigs with llama single-domain antibody fragments against foot-and-mouth disease. Vet Microbiol. Mar. 10, 2007;120(3-4):193-206. Epub Oct. 28, 2006.
Harmsen et al., Passive immunization of pigs with bispecific llama single-domain antibody fragments against foot-and-mouth disease and porcine immunoglobulin. Vet Microbiol. Nov. 25, 2008;132(1-2):56-64. doi: 10.1016/j.vetmic.2008.04.030. Epub Apr. 30, 2008.
Haynes, Progress and challenges in RSV prophylaxis and vaccine development. J Infect Dis. Dec. 15, 2013;208 Suppl 3:S177-83. doi: 10.1093/infdis/jit512.
Heldwein et al., Crystal structure of glycoprotein B from herpes simplex virus 1. Science. Jul. 14, 2006;313(5784):217-20.
Helenius et al., On the entry of Semliki forest virus into BHK-21 cells. J Cell Biol. Feb. 1980;84(2):404-20.
Holliger and Hudson; "Engineered antibody fragments and the rise of single domains"; Nature Biotechnology; (2005); 23(9): 1126-1136.
Hultberg et al., Lactobacillli expressing llama VHH fragments neutralise Lactococcus phages. BMC Biotechnol. Sep. 17, 2007;7:58.
Hultberg et al., Llama-derived immunoglobulin single variable domains to build multivalent superpotent and broadened neutralizing anti-viral molecules. XIV International Conference on Negative Stand Viruses. Brugge, Belgium. Jun. 20-25, 2010. Abstract No. 345.
Hultberg et al., Llama-derived single domain antibodies to build multivalent, superpotent and broadened neutralizing anti-viral molecules. PLoS One. Apr. 1, 2011;6(4):e17665. doi: 10.1371/journal.pone.0017665.
Ibanez et al., Nanobodies® with in vitro neutralizing activity protect mice against H5N1 influenza virus infection. XIV International Conference on Negative Strand Viruses. Brugge, Belgium. Jun. 20-25, 2010. Abstract 307.
Ibanez et al., Single domain antibodies with in vitro and in vivo neutralizing activity protect mice against H5N1influenza virus infection. 1st Symposium on Single Domain Antibodies. Ghent, Belgium. Oct. 14-15, 2010. Meeting Abstract P19.
Ibanez et al., Single-domain antibodies with in vitro and in vivo neutralizing activity protect mice against H5N1 influenza virus infection. Options for the Control of Influenza VII. Abstract Book. Hong Kong SAR, China. Sep. 3-7, 2010. Abstract P-174.
Ibañez et al., Nanobodies with in vitro neutralizing activity protect mice against H5N1 influenza virus infection. J Infect Dis. Apr. 15, 2011;203(8):1063-72.
Jain et al., Engineering antibodies for clinical applications. Trends Biotechnol. Jul. 2007;25(7):307-16.
Johnson et al., J Infect Dis. (1999) vol. 180 (1): pp. 35-40.
Kashmiri et al., SDR grafting-a new approach to antibody humanization. Methods. May 2005;36(1):25-34.
Kielian et al., Virus membrane-fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol. Jan. 2006;4(1):67-76.
Kielian, Class II virus membrane fusion proteins. Virology. Jan. 5, 2006;344(1):38-47.
Kim et al., Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol. Apr. 1969;89(4):422-34.
Kodama et al., Specific and effective targeting cancer immunotherapy with a combination of three bispecific antibodies. Immunol Lett. Apr. 22, 2002;81(2):99-106.
Lamarre et al., Protection from lethal coronavirus infection by immunoglobulin fragments. J Immunol. Apr. 15, 1995;154(8):3975-84.
Ledeboer et al., Preventing phage lysis of Lactococcus lactis in cheese production using a neutralizing heavy-chain antibody fragment from llama. J Dairy Sci. Jun. 2002;85(6):1376-82.
Lescar et al., The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell. Apr. 6, 2001;105(1):137-48.
Levine et al., Antibody-mediated clearance of alphavirus infection from neurons. Science. Nov. 8, 1991;254(5033):856-60.
Lu et al., Passive immunotherapy for influenza A H5N1 virus infection with equine hyperimmune globulin F(ab')2 in mice. Respir Res. Mar. 23, 2006;7:43.
Mason et al., Cloning and expression of a single-chain antibody fragment specific for foot-and-mouth disease virus. Virology. Oct. 15, 1996;224(2):548-54.
Modis et al., A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A. Jun. 10, 2003;100(12):6986-91. Epub May 20, 2003.
Monegal, et al.; "Immunological applications of single-domain llama recombinant antibodies isolated from a naïve library"; Protein Engineering, Design & Selection: (2009); 22(4): 273-280.
Montano-Hirose et al., Protective activity of a murine monoclonal antibody against European bat lyssavirus 1 (EBL1) infection in mice. Vaccine. Sep. 1993;11(12):1259-66.
Moore et al., The entry of entry inhibitors: a fusion of science and medicine. Proc Natl Acad Sci U S A. Sep. 16, 2003;100(19):10598-602. Epub Sep. 5, 2003.
Morton, et al.; "Structural characterization of respiratory syncytial virus fusion inhibitor escape mutants: homology model of the F protein and a syncytium formation assay"; Virology; (2003); 311: 275-288.
Murphy, et al.; "Current approaches to the development of vaccines effective against parainfluenza and respiratory syncytial viruses"; Virus Research; (1988); 11: 1-15.
Nguyen et al., Efficient generation of respiratory syncytial virus (RSV)-neutralizing human MoAbs via human peripheral blood lymphocyte (hu-PBL)-SCID mice and scFv phage display libraries. Clin Exp Immunol. Oct. 2000;122(1):85-93.
Ogra; "Respiratory syncytial virus: The virus, the disease and the immune response"; Paediatric Resp. Reviews; (2004); 5(Suppl A): S119-S126.
Okuno et al., A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains. J Virol. May 1993;67(5):2552-8.
Palladino et al., Virus-neutralizing antibodies of immunoglobulin G (IgG) but not of IgM or IgA isotypes can cure influenza virus pneumonia in SCID mice. J Virol. Apr. 1995;69(4):2075-81.
Pantaleo et al., Effect of anti-V3 antibodies on cell-free and cell-to-cell human immunodeficiency virus transmission. Eur J Immunol. Jan. 1995;25(1):226-31.
Prince et al., Mechanism of antibody-mediated viral clearance in immunotherapy of respiratory syncytial virus infection of cotton rats. J Virol Jun. 1990;64(6):3091-2.
Renegar et al., Role of IgA versus IgG in the control of influenza viral infection in the murine respiratory tract. J Immunol. Aug. 1, 2004;173(3):1978-86.
Rey et al., The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature. May 25, 1995;375(6529):291-8.
Roche et al., Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G. Science. Jul. 14, 2006;313(5784):187-91. Erratum in: Science. Sep. 8, 2006;313(5792):1389.
Rosseels et al., Prophylactic treatment with anti-rabies Nanobodies® can protect mice from lethal rabies virus challenge. XIV International Conference on Negative Strand Viruses. Brugge, Belgium. Jun. 20-25, 2010. Abstract 301.
Rosseels et al., VHH selected against the viral spike protein can protect mice against lethal rabies virus challenge. Annual Scientific Meeting of the Institute Pasteur International Network. Hong Kong. Nov. 22-23, 2010. Abstract P025.
Rosseels et al., VHH-based Nanobodies® selected against the viral spike protein can protect mice against lethal rabies virus challenge. WIV-ISP Scientific Report. 2008-2009. pp. 92-95.
Rudikoff et al., Single amino acid substitution altering antigen-binding specificity. Proc Natl Acad Sci U S A. Mar. 1982;79(6):1979-83.
Sawyer, Antibodies for the prevention and treatment of viral diseases. Antiviral Res. Aug. 2000;47(2):57-77.
Schepens et al., J Infect Dis. (2011) vol. 204 (11): pp. 1692-1701.
Schepens et al., Nanobodies® protect mice against human respiratory syncytial virus infection by inhibiting viral fusion. 1st Symposium on Single Domain Antibodies. Ghent, Belgium. Oct. 14-15, 2010. Meeting Abstract. P30.
Schepens et al., Nanobodies® protect mice against human respiratory syncytial virus infection by inhibiting viral fusion.7th International Respiratory Syncytial Virus Symposium. Rotterdam, The Netherlands. Dec. 2-5, 2010. Presentation Abstract. Final Programme p. 178.
Schepens et al., Nanobodies® protect mice against human respiratory syncytial virus infection. XIV International Conference on Negative Strand Viruses. Brugge, Belgium. Jun. 20-25, 2010. Abstract 318.
Schofield et al., Variations in the neutralizing and haemagglutination-inhibiting activities of five influenza A virus-specific IgGs and their antibody fragments. J Gen Virol. Oct. 1997;78 (Pt 10):2431-9.
Schumacher et al., Inhibition of immune responses against rabies virus by monoclonal antibodies directed against rabies virus antigens. Vaccine. 1992;10(11):754-60.
Serruys et al., HBsAg-specific single-domain intrabodies reduce the secretion of Hepatitis B virus and HBsAg in vivo, Novel Compounds and Strategies to Combat Pathogenic Microorganisms (Symposium Belgian Society for Microbiology), Nov. 24, 2006, Brussels (Poster).
Serruys et al., In vitro inhibition of HbsAg secretion by single-domain intrabodies, 12th International Symposium on Viral Hepatitis and Liver Disease, Jul. 1-5, 2006, Paris (Poster).
Serruys, In vitro inhibition of HbsAg secretion by single-domain intrabodies. 12th International Symposium on Viral Hepatitis and Liver Disease. 2006. Abstract P.026. p. S69.
Souriau and Hudson; "Recombinant antibodies for cancer diagnosis and therapy"; Expert Opin. Biol. Ther.; (2003); 3(2): 305-318.
Spinelli et al., Lactococcal bacteriophage p2 receptor-binding protein structure suggests a common ancestor gene with bacterial and mammalian viruses. Nat Struct Mol Biol. Jan. 2006;13(1):85-9.
Spinelli et al., The crystal structure of a llama heavy chain variable domain. Nat Struct Biol. Sep. 1996;3(9):752-7.
Subbarao et al., Scientific barriers to developing vaccines against avian influenza viruses. Nat Rev Immunol. Apr. 2007;7(4):267-78.
Tremblay et al., Receptor-binding protein of Lactococcus lactis phages: identification and characterization of the saccharide receptor-binding site. J Bacteriol. Apr. 2006;188(7):2400-10.
Verschueren, Design of experiments in the framework of a cell based potency assay. BEBPA's 3rd Annual biological Assay Conference. Pre-Conference Workshop: Practical Tools for the Bioassay Scientist. Barcelona, Spain. Sep. 29-Oct. 1, 2010. 9:30am-10:15am. Abstract.
Weissenhorn et al., Virus membrane fusion. FEBS Lett. May 22, 2007;581(11):2150-5. Epub Feb. 16, 2007.
Woldehiwet, Rabies: recent developments. Res Vet Sci. Aug. 2002;73(1):17-25.
Wright et al., The efficacy of current rabies vaccines and novel Nanobody®-based antivirals against highly pathogenic phylogroup-1 and -2 members of the Lyssavirus genus. XXI International meeting on Rabies in the Americas (RITA XXI). Guadalajara, Jal. Oct. 17-22, 2010.
Wright et al., The efficacy of current vaccines and novel nanobody-based antivirals against highly pathogenic rabies and Lyssaviruses. SGM Spring 2010 Meeting. Edinburgh International Conference Centre. Edinburgh, UK. Mar. 29-Apr. 1, 2010. Abstract. p. 81-82.
Wu et al., Current Topics in Micro and Immuno 2008, vol. 317, pp. 103-123.
Wu, et al.; "Development of Motavizumab, an Ultra-potent Antibody for the Prevention of Respiratory Syuncytial Virus Infection in the Upper and Lower Respiratory Tract"; J. Mol. Biol.; (2007); 368: 652-665.
Wu, et al.; "Immunoprophylaxis of RSV Infection: Advancing from RSV-IGIV to Palivizumab and Motavizumab"; Curr. Topics in Microbiology and Immunology; (2008); 317: 103-123.
[No Author Listed] ALEXION Pharmaceuticals#Antibody Therapy Shown Effective in Model for Severe Allergic Asthma. Last accessed at http://www.alxn.com/news/article.aspx?relid=216307 on Aug. 14, 2012.
[No Author Listed], Rabies Antibody Combination. Crucell. http://www.crucell.com/R-and-D-Clinical-Development-Rabies-Antibody-Product. Last accessed on Dec. 16, 2010. 2 pages.
[No Author Listed], Rabies Monoclonal Antibody Cocktail. Crucell. http://www.crucell.com/R-and-D-Clinical-Development-Rabies-Antibody-Product. Last accessed on Oct. 30, 2008. 2 pages.
[No Author Listed], Rabies. WHO Fact Sheet No. 99. World Heath Organization. Sep. 2006. http://www.who.int/mediacentre/factsheets/fs099/en/print.html. Last accessed on Oct. 30, 2008. 3 pages.
[No Author Listed], Rabies. WHO Fact Sheet No. 99. World Heath Organization. Updated Sep. 2010. http://www.who.int/mediacentre/factsheets/fs099/en/index.html. Last accessed on Dec. 16, 2010. 4 pages.
Получить PDF