Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 1059. Отображено 189.
12-03-2020 дата публикации

Номер: RU2018132426A3
Автор:
Принадлежит:

Подробнее
14-11-2022 дата публикации

Сырьевая смесь для изготовления высокотемпературных теплоизоляционных изделий (варианты) и способ их изготовления

Номер: RU2783462C1

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении высокотемпературных теплоизоляционных изделий. Сырьевая смесь содержит аморфную кремнеземистую породу в виде диатомита и карбонатную породу в виде мела или известняка, а в качестве огнеупорного пористого заполнителя содержит вспученный вермикулит при следующем соотношении компонентов, мас.%: диатомит 33,0-35,28, карбонатная порода 28,22-39,6, вспученный вермикулит 27,4-36,5. По второму варианту исполнения сырьевая смесь в качестве огнеупорного пористого заполнителя содержит вспученный перлит при следующем соотношении компонентов, мас.%: диатомит 20,33-32,64, карбонатная порода 16,27-39,16, вспученный перлит 28,2-63,4. Способ получения сырьевой смеси включает сушку и дробление диатомита и карбонатной породы в виде мела или известняка, их совместную механохимическую активацию в планетарной шаровой мельнице в течение 20-60 мин при центробежных перегрузках внутри стаканов мельницы 10G или ...

Подробнее
23-09-2024 дата публикации

Композиционный керамический материал для режущих инструментов

Номер: RU2827207C1

Изобретение относится к композиционным керамическим материалам, которые могут быть использованы для изготовления режущего инструмента и машиностроительных изделий. Керамический композиционный материал для режущих инструментов, включающий в себя глинозем (α-Al2O3) и карбид титана (TiC), дополнительно содержит диборид титана (TiB2) при следующем соотношении компонентов, мас.%: глинозем (α-Al2O3) 30-33; карбид титана (TiC) 27-30; диборид титана (TiB2) 40-41. Технический результат - улучшение физико-механических характеристик композиционного керамического материала, а именно увеличение прочности при изгибе, трещиностойкости и твердости. 1 табл., 3 пр.

Подробнее
29-03-2023 дата публикации

Вакуумплотный слабопроводящий керамический материал и способ его получения

Номер: RU2793109C1

Изобретение относится к области керамического материаловедения и может быть использовано в производстве слабопроводящего вакуумплотного керамического материала для применения в электронной технике в качестве элемента вакуумной системы для снятия статического заряда, а также в качестве составляющей структурной керамики. Вакуумплотный слабопроводящий керамический материал на основе оксида алюминия дополнительно содержит BaO, Fe2O3, Li2О при следующем соотношении компонентов, мас. %: Al2O3 61,7; BaO 18,5; Fe2O3 19,4; Li2О 0,4. Способ получения вакуумплотного слабопроводящего керамического материала, состоит в том, что из вышеуказанного состава готовят порошковую композицию, осуществляют механоактивацию состава в центробежной планетарной мельнице, получают формовочную смесь путём смешивания порошковой композиции с дистиллированной водой, влажность формовочной смеси доводят до 9 %, формуют заготовки методом полусухого прессования при давлении 200 МПа, высушивают при температуре 200 °С до остаточной ...

Подробнее
22-04-2019 дата публикации

СПОСОБ ПОЛУЧЕНИЯ ПЛОТНОЙ НАНОКЕРАМИКИ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ В СИСТЕМЕ AlO-ZrO(YO)

Номер: RU2685604C1

Изобретение относится к технологии получения композиционной нанокерамики с высокими показателями микротвердости и прочности на изгиб, которая может найти широкое применение в различных областях современной техники. Способ характеризуется тем, что водные растворы солей Al(NO), ZrO(NO)и Y(NO)приливают к NHOH, а полученные гелеобразные осадки промывают дистиллированной водой и фильтруют с помощью водоструйного насоса, затем осадок гидроксида алюминия нагревают до температуры 300°С и выдерживают до образования фазы бемита AlOOH, а гелеобразный осадок гидроксидов циркония и иттрия обжигают при 400°С до получения метастабильного твердого раствора на основе (c'-ZrO) с псевдокубической структурой. Порошки-прекурсоры AlOOH и c'-ZrOсмешивают в заданном соотношении, порошковые смеси в системе AlO-ZrO(YO) подвергают механохимической активации в планетарной мельнице с мелющими шарами из высокоплотной алюмооксидной керамики в режиме сухого помола при соблюдении отношения массы мелющих шаров к общей массе ...

Подробнее
22-04-2021 дата публикации

Способ получения прозрачной ИАГ-керамики

Номер: RU2746912C1

FIELD: photonics; laser technology.SUBSTANCE: invention relates to a method for producing transparent ceramics of yttrium-aluminum garnet (hereinafter – YAG), including those doped with neodymium ions, for use as an active medium in the field of photonics and laser technology. The method for producing transparent YAG ceramics includes a joint high-energy grinding in ethanol of the initial powders of Y2O3, Nd2O3and Al2O3oxides to form a weakly aggregated powder system of YAG stoichiometry with a particle size in the range of 50-500 nm, drying at a temperature of 70ºC for 24 hours, followed by granulation of the powder through a sieve with an effective cell size of 200 mesh and annealing in an air atmosphere at a temperature of 600ºC for 4 hours, spark plasma sintering of the resulting material at the first stage by heating at a speed of 100ºC /min to 1000ºC, shutter speed, annealing of the obtained sample in an air atmosphere. The method differs in that the high-energy grinding in ethanol of the powders of the initial oxides Y2O3, Nd2O3and Al2O3is carried out using LiF as a sintering additive in an amount of 0.2 wt.% at 300 rpm for 12 hours. Spark plasma sintering is carried out at an external pressure of 50-70 MPa, and at the second stage at a speed of 25ºC min to 1475ºC with the material holding at this pressure and temperature for 45-60 minutes. Annealing of the resulting sample is carried out for 10 hours at a temperature of 900-1000ºC, followed by natural cooling. In addition, the annealing of the resulting sample is carried out at an average heating rate of 10ºC /min.EFFECT: technical result is expressed in the production of monophasic ceramics YAG:Nd with increased optical transparency while maintaining high mechanical characteristics.2 cl, 1 dwg, 1 tbl РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 746 912 C1 (51) МПК C04B 35/101 (2006.01) C04B 35/115 (2006.01) C04B 35/44 (2006.01) C04B 35/626 (2006.01) C04B 35/645 (2006.01) C30B 29/28 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ...

Подробнее
23-12-2021 дата публикации

Способ получения порошка карбида высокоэнтропийного сплава со сферической формой частиц

Номер: RU2762897C1

FIELD: powder metallurgy. SUBSTANCE: invention relates to powder metallurgy and processing of non-ferrous metals and can be used in additive technologies to create high-quality end products of complex shape and in the production of ceramic ware. 4-6 initial elemental powders from the Ti, V, Zr, Nb, Hf, Ta, W, Mo series with a purity of at least 99.5% in an equiatomic ratio are taken and mixed in a gravity mixer in air. The resulting mixture is placed in a planetary mill or attritor with the addition of a grinding agent: ethanol, isopropanol or polymethylmethacrylate, and grinding balls with a diameter of 5-15 mm, with a mass ratio of the mixture to the grinding balls (1:10)-(1:40), accordingly. After that, mechanical alloying is carried out for 1-50 hours in an argon atmosphere at the rotation speed of the main disk of the planetary mill 100-400 rpm and its cups 100-1200 rpm or at the rotation speed of the attritor stirrer 100-600 rpm. The formed high-entropy alloy, homogeneous in chemical composition, is dried in vacuum at 90-130°C for 1-2 hours, cooled in air to ambient temperature and filtered out from grinding balls. Further, fractions of 15-63 and 63-125 mcm are isolated from the powder. Then low-temperature plasma spheroidization and carbidization are carried out, using as a working atmosphere a plasma jet of argon-acetylene mixture, which is a plasma-forming gas. EFFECT: resulting melt droplets are cooled in a carrier gas jet, namely argon; the formed particles of ultra-high-temperature high-entropy carbide powder have a spherical or rounded shape with a shape factor of no more than 1.6 and a size of 20-120 mcm, and are characterized by high fluidity and zero porosity. 6 cl РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 762 897 C1 (51) МПК C01B 32/907 (2017.01) C22C 29/06 (2006.01) C04B 35/626 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК C01B 32/907 (2021.05); C04B 35/62615 (2021.05); C04B 35/6265 (2021 ...

Подробнее
11-01-2024 дата публикации

Шихта для изготовления керамического материала(варианты)

Номер: RU2811115C1

Изобретение относится к области керамического материаловедения, а именно к составам шихты для производства керамического материала конструкционного назначения. Шихта содержит смесь γ-оксида алюминия, карбоната бария и оксидной добавки. Согласно первому варианту, в качестве добавки шихта содержит оксид железа (III) при следующем соотношении компонентов, моль: γ-Al2O3 5-5,5; BaСO3 1; Fe2O3 0,5-1. Согласно второму варианту, в качестве добавки шихта содержит оксид марганца (III) при следующем соотношении компонентов, моль: -Al2O3 5-5,5; BaСO3 1; Mn2O3 0,5-1. Технический результат: повышение предела прочности при сжатии заявляемых керамических материалов до 276,9-562,5 МПа. 2 н.п. ф-лы, 1 табл.

Подробнее
25-04-2018 дата публикации

Sintered polycrystalline cubic boron nitride material

Номер: GB0201803960D0
Автор:
Принадлежит:

Подробнее
03-05-2023 дата публикации

Novel multiferroix R-type hexaferrite, a composite and an article comprising the R-type hexaferrite, and a method of making the same

Номер: GB0002612488A
Принадлежит:

In an aspect, an R-type ferrite has the formula: Me'3Me2TiFe12O25, wherein Me' is at least one of Ba2+ or Sr2+ and Me is at least one of Co2+, Mg2+, Cu2+, or Zn2+. In another aspect, a composite or an article comprises the R-type ferrite. In yet another aspect, a method of making a R-type ferrite comprises milling ferrite precursor compounds comprising oxides of at least Fe, Ti, Me, and Me', to form an oxide mixture; wherein Me' comprises at least one of Ba2+ or Sr2+; Me is at least one of Co2+, Mg2+, Cu2+, or Zn2+; and calcining the oxide mixture in an oxygen or air atmosphere to form the R-type ferrite.

Подробнее
15-07-2014 дата публикации

METHOD FOR PREPARING CERAMIC POWDERS IN THE PRESENCE OF A CARBON SOURCE, POWDERS OBTAINED AND USE THEREOF

Номер: CA0002487320C
Принадлежит: HYDRO-QUEBEC

... ²²²La presence invention est relative a un procede de preparation dune poudre ²ceremique en presence dune poudre de carbone comportant au moins une etape ²d'homogeneisation du melange des particules susceptibles de resulter en une ²ceramique par traitement thermique. Ce procede peut etre realise en presence ²d'un solvant accelere permet d'obtenir, a un coat energetique reduit, des ²poudres ceramiques enrobees de carbone puis des ceramiques.² ...

Подробнее
02-12-2003 дата публикации

METHOD FOR MAKING SUBMICROMETER CARBIDES, SUBMICROMETER SOLID SOLUTION CARBIDES, AND THE MATERIAL RESULTING THEREFROM

Номер: CA0002166319C

A method for making submicrometer metallic carbides and submicrometer solid solution metallic carbides from a source of at least one metallic oxide and carbon involves the rapid heating of a reactive particulate mixture of the source(s) and carbon in order to a chieve a resulting particulate size of less than 1 micrometer. The rapid heating may produce either a finished product or a precursor. If a precursor is produced, it may be admixed with additional carbon and subjected to a second rapid heating step to prepare a finished p roduct. Submicrometer sized metallic carbides and solid solution metallic carbides were suitable for use in commercial ceramic applications. The smaller sized particles produce a product having superior toughness and hardness.

Подробнее
25-03-2008 дата публикации

СПОСІБ ХЕМОМЕХАНІЧНОГО ОДЕРЖАННЯ ФУНКЦІОНАЛЬНИХ КОЛОЇДІВ ТА ФУНКЦІОНАЛЬНИХ КОЛОЇДНИХ ЧАСТИНОК, ФУНКЦІОНАЛЬНИЙ КОЛОЇД, ФУНКЦІОНАЛЬНА КОЛОЇДНА ЧАСТИНКА ТА ЇХ ЗАСТОСУВАННЯ

Номер: UA0000082218C2
Принадлежит: БЮЛЕР ПАРТЕК ГМБХ, DE

Винахід належить до способу одержання функціонального колоїду, під час якого частинки матеріалу механічно подрібнюють в диспергаторі в присутності хімічно активного модифікатора, у якому модифікатор принаймні частково хімічно зв'язується з подрібненими колоїдними частинками.

Подробнее
27-02-2009 дата публикации

СПОСОБ ХИМИКО-МЕХАНИЧЕСКОГО ПОЛУЧЕНИЯ ФУНКЦИОНАЛЬНЫХ КОЛЛОИДОВ, ФУНКЦИОНАЛЬНЫЕ КОЛЛОИДЫ, ПОЛУЧЕННЫЕ ЭТИМ СПОСОБОМ, И ИХ ПРИМЕНЕНИЕ

Номер: EA0000011356B1
Принадлежит: БЮЛЕР ПАРТЕК ГМБХ (DE)

Описан способ получения функционального коллоида, при котором частицы подвергают механическому реакционному измельчению в диспергирующем средстве в присутствии модификатора, при этом модификатор, по меньшей мере частично, химически связывается с измельченными коллоидными частицами. Описан также функциональный коллоид, полученный указанным способом, а также его применение.

Подробнее
29-10-2019 дата публикации

A high-performance SiC/W metal ceramic composite nozzle and its preparation method

Номер: CN0106986649B
Автор:
Принадлежит:

Подробнее
10-02-2014 дата публикации

ALLOY POWDER FOR AW MATERIAL OF INORGANIC FUNCTIONAL MATERIAL AND PHOSPHOR

Номер: KR1020140016976A
Автор:
Принадлежит:

Подробнее
05-01-2012 дата публикации

SINTERED CUBIC BORON NITRIDE CUTTING TOOL

Номер: WO2012003443A2
Автор: MALIK, Abds-sami
Принадлежит:

A cutting tool having a sintered compact including 30 to 80 vol.% cubic boron nitride and a binder phase, wherein the binder phase includes about 2 to about 6 vol.% ZrN, is disclosed. In more specific examples, the cutting tool has a sintered compact including 30 to 80 vol. % cubic boron nitride, between about 4 vol. % and about 1 5 vol. % aluminum and/or aluminum compound and/or aluminum alloy and/or combinations thereof, and a binder phase, wherein the binder phase includes TiN and about 3 to about 5 vol. % ZrN, and wherein the cubic boron nitride has a grain size of less than 20 microns. Cutting tools of the disclosed composition display improved performance, particularly at higher operating speeds, e.g., about 200 m/min or greater.

Подробнее
13-11-2003 дата публикации

NANOCOMPOSITE CERAMICS OF OXIDE AND NON-OXIDE PHASES AND METHODS FOR PRODUCING SAME

Номер: WO2003093193A3
Принадлежит:

A composite of nanoscale oxide ceramic phases is dispersed in a non-oxide ceramic matrix material. The non-oxide ceramic phase may be silicon-carbon-nitrogen-based, and imparts resistance to mechanical degradation, resistance to chemical degradation, and resistance to oxidation at temperatures up to 1800°C. The nanodispersed oxide phase is selected according to desired functional properties, including coefficient of thermal expansion, rheology, ferromagnetic and superparamagnetic properties, superdielectric properties, and superpiezolectric and electrostrictive properties. A method is provided for making a nanocomposite ceramic fiber having a nanodispersion of zirconia in a silicon-carbon-nitrogen ceramic phase. A method is provided for making a soft ferromagnetic ceramic having a nanodispersion of ferrite in a zirconia in a silicon-carbon-nitrogen ceramic phase.

Подробнее
07-07-2005 дата публикации

SILICON CARBIDE WHISKER-REINFORCED CERAMICS WITH LOW RATE OF GRAIN SIZE INCREASE UPON DENSIFICATION

Номер: WO2005060549A3
Принадлежит:

A highly dense composite of a ceramic material and silicon carbide whiskers with grain sizes in the nano-sized range is formed by mechanical activation of the ceramic material in the form of a nano-sized powder, followed by compressing a mixture of the mechanically activated ceramic material and silicon carbide whiskers into a fused mass while passing an electric current through the mixture, preferably by electric field-assisted sintering. The nano-sized grains in the final microstructure provide the composite with superior mechanical properties, notably strength and toughness.

Подробнее
20-02-2020 дата публикации

PRODUCTION METHOD OF CALCIUM CARBONATE POROUS SINTERED BODY

Номер: US20200055783A1
Принадлежит: SHIRAISHI CENTRAL LABORATORIES CO. LTD.

Provided is a production method that can easily produce a calcium carbonate porous sintered body. The production method includes the steps of: preparing a dispersion liquid containing calcium carbonate and a gelling agent; adding a foaming agent to the dispersion liquid, followed by stirring until foamy to make a foam; turning the foam into a gel; and sintering the gelled foam to produce a calcium carbonate porous sintered body.

Подробнее
13-07-2010 дата публикации

Superabrasive element, structures utilizing same, and method of fabricating same

Номер: US0007753143B1

According to various aspects of the present invention, a superabrasive element includes a plurality of superabrasive grains (e.g., as diamond grains and/or cubic boron nitride grains). The superabrasive element further includes a binder constituent that bonds at least a portion of the superabrasive grains together. The binder constituent includes predominantly one or more inorganic-compound phases, such as boron or silicon compounds. Applications utilizing such superabrasive elements and methods of fabricating such superabrasive elements are also disclosed.

Подробнее
01-10-2020 дата публикации

SPINEL-REINFORCED MAGNESIUM OXIDE-BASED FOAM CERAMIC FILTER AND PREPARATION METHOD THEREFOR

Номер: US20200306675A1

A spinel-reinforced magnesium oxide-based foam ceramic filter that is obtained by by coating onto a polyurethane foam carrier a slurry of light calcined magnesium oxide-based ceramic comprising a nanometer lanthanum oxide sintering aid, and then drying and sintering. A method for preparing the foam ceramic filter comprising: 1) preparing a ceramic slurry having a solid content of 60%-70% by dosing 15%-25% by mass of a nanometer alumina sol, 0.8%-1.5% by mass of a rheological agent, and the balance magnesium oxide ceramic powder comprising a nanometer lanthanum oxide sintering aid, and then adding absolute ethanol and ball milling to mix until uniform; 2) soaking a polyurethane foam template into the ceramic slurry, squeezing by a roller press the polyurethane foam template to remove redundant slurry therein to make a biscuit, and then removing the ethanol solvent in a ventilation chamber at a temperature of 40° C.-50° C. to dry the biscuit; 3) putting the dried biscuit into a sintering furnace, elevating the temperature to 1350° C.-1550° C. and performing a high temperature sintering, cooling to the room temperature with the furnace to obtain the magnesium oxide-based ceramic foam filter.

Подробнее
13-09-2022 дата публикации

Solid electrolyte and all-solid battery

Номер: US0011444316B2

A solid electrolyte having a garnet type crystal structure. The garnet type crystal structure contains Li, La, Zr, O and Ga and at least one element selected from Al, Mg, Zn and Sc.

Подробнее
26-12-2023 дата публикации

Modified Ni—Ti—Ta dielectric material for multi-layer ceramic capacitor and low-temperature preparation method thereof

Номер: US0011854745B2

A modified Ni—Ti—Ta dielectric material for multi-layer ceramic capacitor (MLCC) and a low-temperature preparation method thereof are provided. By using characteristics that radii of the Cu2+ ion and (Al1/2Nb1/2)4+ ion are close to those of Ni and Ti elements, respectively, Cu2+, Al3+ and Nb5+ ions are introduced into a Ni0.5Ti0.5TaO4matrix for partial substitution, a negative temperature coefficient of dielectric constant of −220±30 ppm/° C. is provided while a sintering temperature is significantly reduced, and deterioration factors of loss caused by sintering aids is reduced, so that the dielectric material applied to radio frequency MLCC with low loss, low cost and good process stability is prepared.

Подробнее
26-09-2023 дата публикации

Method for making YBCO superconductor

Номер: US0011767267B2
Автор: Yassine Slimani

A method of producing polycrystalline Y3Ba5Cu8Oy(Y-358) whereby powders of yttrium (III) oxide, a barium (II) salt, and copper (II) oxide are pelletized, calcined at 850 to 950° C. for 8 to 16 hours, ball milled under controlled conditions, pelletized again and sintered in an oxygen atmosphere at 900 to 1000° C. for up to 72 hours. The polycrystalline Y3Ba5Cu8Oythus produced is in the form of elongated crystals having an average length of 2 to 10 μm and an average width of 1 to 2 μm, and embedded with spherical nanoparticles of yttrium deficient Y3Ba5Cu8Oyhaving an average diameter of 5 to 20 nm. The spherical nanoparticles are present as agglomerates having flower-like morphology with an average particles size of 30 to 60 nm. The ball milled polycrystalline Y3Ba5Cu8Oyprepared under controlled conditions shows significant enhancement of superconducting and flux pinning properties.

Подробнее
13-06-2007 дата публикации

A ZIRCONIA CERAMIC

Номер: EP0001794087A1
Принадлежит:

Подробнее
28-07-1976 дата публикации

GASEOUS DISCHARGE DISPLAY DEVICE

Номер: GB0001444162A
Автор:
Принадлежит:

... 1444162 Sintered composites PANEL TECHNOLOGY Inc 8 Oct 1973 46831/73 Heading C7 [ Also in Division H1 ] In the formation of metal electrodes 4 in contact with a cavity 2 of'a gaseous discharge display device, the cavity 2 is formed in an unsintered body 1 comprising ceramic particles and a temporary binder therefor, and the electrodes 4 are provided in the form of a metallization composition comprising metal particles and a temporary binder therefor, sintering then being effected. The body 1 may be a laminate and the ceramic material may be alumina, steatite, zircon, aluminium silicate, zirconium dioxide, titanium dioxide, beryllium oxide or magnesium silicate. The metal is preferably a precious metal such as Pt, Pd, Ag, Au or alloys or mixtures thereof. Mo or Mn may be used if the sintering is effected in a non-oxidizing atmosphere suitable binders include PVC polymers, polystyrene polymers, polymethyl methacrylate resins, ethyl cellulose, cellulose acetate polymers, polyester polymers ...

Подробнее
15-03-2017 дата публикации

Method for coating metal nanoparticles on surface of oxide ceramic powder

Номер: GB0002542321A
Принадлежит:

A method for uniformly coating carbon impurity-free metal nanoparticles on the surface of oxide ceramic powder, comprising: grinding and mixing a metal organic raw material and an oxide ceramic powder, then putting same into a rotary reaction chamber, then, under rotary and heating conditions, introducing an oxidizing gas to oxidize the metal organic raw material into a metal oxide, and finally introducing a reductive gas to reduce the metal oxide into metal-state nanoparticles. Uniform coating of the metal-state nanoparticles is realized, and the problems of the roughening and growing of the nanoparticles caused by a coating reaction with a long time at a high temperature are avoided. The method of the present invention is simple, and is short in preparation period. The prepared metal nanoparticles are dispersed uniformly, and have a wide application prospect in a plurality of fields as a catalytic material, a conductive ceramic, and the like.

Подробнее
11-07-2018 дата публикации

Alumina diffusion barrier for sensing elements

Номер: GB0201808771D0
Автор:
Принадлежит:

Подробнее
23-08-2007 дата публикации

Crystalline ternary ceramic precursors

Номер: AU2007215394A1
Принадлежит:

Подробнее
25-01-2018 дата публикации

LOW-COST PROCESS OF MANUFACTURING TRANSPARENT SPINEL

Номер: CA0003030635A1
Принадлежит:

The invention provides ballistic-resistant transparent objects of complex shapes consisting of magnesium aluminate spinel. The invention also provides a cost-effective industrial process for making the objects, including slip casting and sintering.

Подробнее
27-09-1993 дата публикации

ZONE INFILTRATION METHOD OF FORMING A SILICON CARBIDE BODY

Номер: CA0002089277A1
Принадлежит:

RD-21,824 A method for infiltrating a porous carbonaceous preform with a silicon or silicon alloy infiltrant to form a silicon carbide body is disclosed. An assembly is formed of the preform and an infiltration means for bringing the infiltrant into contact with the preform at least along a traversing dimension of the preform. A zone in the assembly is heated in an inert atmosphere or partial vacuum to an infiltration temperature that provides for wicking of the infiltrant into a section of the preform in the zone. The heating zone traverses the assembly along the traversing dimension. A silicon carbide body is formed from reaction of the infiltrant with the preform.

Подробнее
24-02-2006 дата публикации

CHEMICAL - MECHANICAL PRODUCTION OF FUNCTIONAL COLLOIDS

Номер: EA0200501254A1
Автор:
Принадлежит:

Подробнее
09-01-2020 дата публикации

BINDING MATERIALS FOR USE IN PRODUCTION OF CERAMIC PARTICLES

Номер: EA0201991963A1
Автор:
Принадлежит:

Подробнее
25-02-2013 дата публикации

ТОНКОДИСПЕРСНЫЕ ТИТАНАТЫ СВИНЦА-ЦИРКОНИЯ, ТИТАНАТЫ ЦИРКОНИЯ, СПОСОБЫ ПОЛУЧЕНИЯ И ПРИМЕНЕНИЯ ТИТАНАТОВ СВИНЦА-ЦИРКОНИЯ

Номер: UA0000100965C2

Изобретение относится к тонкодисперсным титанатам циркония или титанатам свинца-циркония, а также к способу их получения путем реакции частиц диоксида титана с соединением циркония, соответственно с соединением свинца и циркония, причем частицы диоксида титана имеют поверхность по БЕТ 200-380 м2/г, а соединения циркония более 50 м2/г, причем титанаты свинца-циркония могут применяться для получения микроэлектронных деталей.

Подробнее
09-10-2018 дата публикации

Ceramic capable of accelerating fermentation process and preparation method of ceramic

Номер: CN0108623297A
Автор: GAO ZHONGQING
Принадлежит:

Подробнее
24-04-2018 дата публикации

Boron carbide ceramic plate

Номер: CN0107954716A
Принадлежит:

Подробнее
30-04-2019 дата публикации

Cellulose nano crystal modification the ceramic body and its preparation method

Номер: CN0106495671B
Автор:
Принадлежит:

Подробнее
13-09-2002 дата публикации

Mixed ions containing conductor and device using the same

Номер: KR0100352097B1
Автор:
Принадлежит:

Подробнее
17-08-2017 дата публикации

SEMICONDUCTOR CERAMIC COMPOSITION AND PTC THERMISTOR

Номер: KR1020170094085A
Принадлежит:

Provided are a semiconductor ceramic composition, and a PTC thermistor having the same. A curie point is shifted to a high temperature side which is higher than 120°C, and 25°C specific resistance is maintained at a commercializable level. A resistant change rate, Δρ/ρ_0, is low, and an excellent withstanding voltage is ensured. The semiconductor ceramic composition is represented by formula (1), (Ba_vBi_xA_yRE_w)_m (Ti_uTM_z)O_3 (A is at least one selected from Na and K, and RE is at least one selected from Y, La, Ce, Pr, Nd, Sm, Gd, Dy, and Er.) Herein, (2) 0.750y <= x <= 1.50y, (3) 0.007 <= y <= 0.125, (4) 0 <= (w+z) <= 0.010, (5) v + x + y + w = 1, (6) u + z = 1, and (7) 0.950 <= m <= 1.050. Moreover, 0.001 to 0.055 mol of Ca is included, and 0.0005 to 0.005 mol of at least one of Mg, Al, Fe, Co, Cu, and Zn is included. COPYRIGHT KIPO 2017 ...

Подробнее
15-12-2020 дата публикации

Methods for manufacture of capillary sintering body for package wire bonding

Номер: KR1020200139896A
Автор:
Принадлежит:

Подробнее
12-03-2018 дата публикации

MANUFACTURING METHOD OF NEGATIVE ELECTRODE ACTIVE MATERIAL FOR SECONDARY BATTERY

Номер: KR1020180026357A
Принадлежит:

A manufacturing method of a negative electrode active material for a secondary battery according to one embodiment of the present invention includes: a mixing step of mixing the NbO_2 and a conductive polymer to prepare a mixture, and a crushing step of crushing the mixture to a predetermined size, wherein the crushing step uses a ball mill process. Accordingly, an objective of the present invention is to provide a manufacturing method of a negative electrode of a secondary battery having excellent electrical characteristics, while containing a metal oxide as a negative electrode active material. COPYRIGHT KIPO 2018 (S10) Step of mixing NbO_2 and conductive polymer (S20) Step of crushing ...

Подробнее
16-12-2004 дата публикации

ELECTRICALLY CONDUCTIVE SI-TI-C-N CERAMICS

Номер: WO2004109762A2
Принадлежит:

Composite materials containing silicon, titanium, carbon, and nitrogen, formed by spark plasma sintering of ceramic starting materials to a high relative density, demonstrate unusually high electrical conductivity as well as high-performance mechanical and chemical properties including hardness, fracture toughness, and corrosion resistance. This combination of electrical, mechanical, and chemical properties makes these composites useful as electrical conductors in applications where high-performance materials are needed due to exposure to extreme conditions such as high temperatures, mechanical stresses, and corrosive environments.

Подробнее
20-05-2014 дата публикации

Method for manufacturing thermoelectric material

Номер: US0008728340B2

The method of manufacturing the thermoelectric material including a plurality of phases that are phase-separated from a supersaturated solid solution includes: a process of performing a mechanical alloying treatment to a starting raw material that is prepared with a composition deviated from a composition range existing in an equilibrium state of a compound to generate the supersaturated solid solution; and a process of performing phase separation into the plurality of phases and solidification by heating and pressing the supersaturated solid solution, or by further performing a heat treatment according to the circumstances.

Подробнее
24-11-2011 дата публикации

CHEMOMECHANICAL MANUFACTURE OF FUNCTIONAL COLLOIDS

Номер: US20110288183A1
Принадлежит: BUEHLER PARTEC GMBH

A method for producing a functional colloid during which particles are reactively fragmented in a mechanical manner in a dispersant in the presence of a modifying agent so that the modifying agent is chemically bound, at least in part, to the fragmented colloid particles.

Подробнее
17-09-2008 дата публикации

CERAMIC CUTTING TOOLS AND CUTTING TOOL INSERTS, AND METHODS OF MAKING THE SAME

Номер: EP1968763A1
Принадлежит:

Подробнее
27-08-2008 дата публикации

HIGHLY FILLED DISPERSION CONTAINING TRANSITION ALUMINIUM OXIDE

Номер: EP0001960312A2
Принадлежит:

Подробнее
19-11-2008 дата публикации

Chemo-mechanical surface modification of particles

Номер: EP1918021A3
Принадлежит:

Beschrieben wird ein Verfahren zur chemomechanischen Oberflächenmodifizierung von Partikeln, die durch Flammpyrolyse hergestellt sind, wobei flammpyrolytisch hergestellte Partikel in einem Dispergiermittel in Anwesenheit eines Modifizierungsmittels einer mechanischen Beanspruchung ausgesetzt werden, und wobei das Modifizierungsmittel zumindest teilweise an die gescherten Partikel chemisch gebunden wird.

Подробнее
13-04-2020 дата публикации

Способ изготовления керамики на основе карбида кремния, армированного волокнами карбида кремния

Номер: RU2718682C2

FIELD: chemistry. SUBSTANCE: invention relates to a method of producing ceramic composite from silicon carbide reinforced with silicon carbide fibre, which can be used for operation in acidic and aggressive media, in conditions of high temperatures and prolonged mechanical action. Method of producing ceramics involves mixing silicon carbide powder containing sintering additive in form of aluminium and yttrium oxides with silicone carbide fibres obtained by siliconisation. Dried mixture was added 3 wt. % of 10 % solution of polyvinylpyrrolidone is moulded preform bilateral cold uniaxial pressing, followed by sintering by hot pressing at 1850 °C with a maximum specific pressure of 30 MPa. EFFECT: method allows to obtain densely sintered ceramic materials having strength up to 524 MPa, a fracture toughness K IC = 6,1 MPa⋅m 1/2 . 1 cl, 2 ex, 1 tbl, 2 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 718 682 C2 (51) МПК C04B 35/577 (2006.01) C04B 35/645 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК C04B 35/565 (2020.02); C04B 35/806 (2020.02); C04B 35/575 (2020.02); C04B 35/62615 (2020.02); C04B 35/62281 (2020.02); C04B 35/63444 (2020.02); C04B 35/645 (2020.02); C04B 2235/3826 (2020.02); C04B 2235/5244 (2020.02); C04B 2235/96 (2020.02) (21)(22) Заявка: 2018132426, 12.09.2018 12.09.2018 Дата регистрации: Приоритет(ы): (22) Дата подачи заявки: 12.09.2018 (43) Дата публикации заявки: 12.03.2020 Бюл. № 8 2 7 1 8 6 8 2 R U Адрес для переписки: 119334, Москва, Ленинский пр-кт, 49, Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) (56) Список документов, цитированных в отчете о поиске: CN 103449818 A, 18.12.2013. RU 2402507 C2, 27.10.2010. CN 105967712 A, 28.09.2016. SU 665793 A3, 30.05.1979. US 6217997 B1, 17.04.2001. WO 1995003370 A1, 02.02.1995. EP 861219 B1, 27.03.2002. WO 2001034535 A1, 17.05.2001. (54) Способ ...

Подробнее
08-08-2017 дата публикации

КЕРАМИЧЕСКИЙ МАТЕРИАЛ НА ОСНОВЕ КОРУНДА И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Номер: RU2627522C2

FIELD: chemistry. SUBSTANCE: high hardness is achieved by modifying the grain boundaries of corundum with carbon. All carbon is distributed along grain boundaries. The synthesis method includes coating corundum grains with single fullerene layers by treating corundum and fullerene in a planetary mill. The resulting modified nanopowder of corundum with an average particle size of 30 nm is either compacted by uniaxial two-sided pressing and sintered at 1600-1800°C, or it is hot pressed at the pressure of 0.5-2 GPa at the temperature of 1600-1800°C. EFFECT: developing a ceramic corundum-based material with a high hardness exceeding the hardness of monocrystalline corundum. 2 cl, 5 dwg, 6 ex РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 627 522 C2 (51) МПК C04B 35/117 (2006.01) C04B 35/628 (2006.01) B82Y 30/00 (2011.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (21)(22) Заявка: 2015153904, 16.12.2015 (24) Дата начала отсчета срока действия патента: 16.12.2015 Дата регистрации: Приоритет(ы): (22) Дата подачи заявки: 16.12.2015 (43) Дата публикации заявки: 21.06.2017 Бюл. № 18 (54) КЕРАМИЧЕСКИЙ МАТЕРИАЛ НА ОСНОВЕ КОРУНДА И СПОСОБ ЕГО ПОЛУЧЕНИЯ (57) Реферат: Изобретение относится к способу синтеза при этом весь углерод распределен по границам керамического материала на основе корунда, зерен. Способ синтеза включает в себя покрытие модифицированного углеродом. Материал может зерен корунда единичными слоями фуллерена быть использован для изготовления пластин для путем обработки корунда и фуллерена в бронежилетов, а также различных компонент планетарной мельнице. Полученный изделий, требующих повышенной твердости. модифицированный нанопорошок корунда со Техническим результатом изобретения является средним размером частиц 30 нм либо разработка керамического материала на основе компактируют методом одноосного корунда с высокой твердостью, превышающей двустороннего прессования и спекают при твердость монокристаллического корунда. ...

Подробнее
02-08-2018 дата публикации

Способ получения пьезокерамического материала

Номер: RU2663223C1

Изобретение относится к технологии пьезоэлектрической керамики и может быть использовано при изготовлении керамики на основе ниобата-цирконата-титаната свинца для ультразвуковых устройств, различных пьезодатчиков. Технический результат изобретения - повышение значений пьезоэлектрических параметров пьезокерамического материала и снижение энергоемкости технологического процесса за счёт снижения температуры синтеза и спекания. В способе получения пьезокерамического материала, включающем приготовление навесок исходных компонентов: PbO, ZnO, NbO, ТiO, и ZrO, механическую активацию с помощью тонкодисперсного помола, синтез до получения твердого раствора, прессование и спекание, согласно изобретению механическую активацию проводят мокрым измельчением в течение 3 часов в кислой среде, содержащей лимонную кислоту, олеиновую кислоту, изопропиловый спирт и воду, при следующем соотношении компонентов, мас.%: лимонная кислота 0,2-1,8, олеиновая кислота 0,1-0,3, изопропиловый спирт 1-5, вода дистиллированная ...

Подробнее
20-01-2022 дата публикации

Материал на основе кордиерита для керамических субстратов и способ его получения

Номер: RU2764731C1

Группа изобретений относится к технологии производства кордиеритовых изделий (субстратов), которые могут быть использованы в качестве носителя каталитического нейтрализатора систем снижения токсичности отработанных газов двигателей внутреннего сгорания автомобилей (ДВС). Материал получен из смеси магнийсодержащего компонента (талька, серпентинита), термообработанного при температуре выше его разложения, а также каолинитсодержащего и глиноземсодержащего компонентов. Компоненты смеси из 35-50 мас.% термообработанного при температуре 1000°С магнийсодержащего компонента - талька, 35-52 мас.% каолинитсодержащего компонента и 9-30 мас.% алюминийсодержащего компонента в виде оксида или гидроксида алюминия подвергают совместному мокрому тонкому помолу при общей влажности 40-60% до размера частиц менее 10 мкм, полученный шликер обезвоживают до влажности 15-28%, формуют пластическим способом, высушивают до влажности не более 1% и подвергают обжигу при температуре 1300-1360°С с выдержкой 10-30 ч. Получают кордиеритовые изделия пористостью 30-38%, содержащие 90-97 мас.% кордиерита и 2-9 мас.% муллита. Технический результат изобретения - расширение арсенала технических средств для производства пористых керамических субстратов из кордиерита. 2 н. и 1 з.п. ф-лы, 1 пр., 1 табл. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 764 731 C1 (51) МПК C04B 35/195 (2006.01) C04B 38/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК C04B 35/195 (2021.08); C04B 35/62615 (2021.08); C04B 38/0006 (2021.08) (21)(22) Заявка: 2020142163, 20.12.2020 (24) Дата начала отсчета срока действия патента: Дата регистрации: 20.01.2022 (45) Опубликовано: 20.01.2022 Бюл. № 2 2 7 6 4 7 3 1 R U (56) Список документов, цитированных в отчете о поиске: US 6004501 A1, 21.12.1999. RU 2016878 C1, 30.07.1994. RU 2245307 C2, 27.01.2005. RU 2494995 C2, 10.10.2013. RU 2458886 C1, 20.08.2012. EP 1979290 B1, 07.07.2010. EP 2247553 B1, 05.04.2017. (54) Материал на основе ...

Подробнее
24-03-2022 дата публикации

Способ получения плотной конструкционной циркониевой керамики из бадделеита

Номер: RU2768519C1

FIELD: ceramics production. SUBSTANCE: invention relates to the production of dense structural ceramics from zirconium dioxide. A molding nanopowder with a particle size of zirconium dioxide less than 20 nm, containing (wt.%): calcium oxide 2-5 and baddeleyite concentrate 98-95, is obtained after joint grinding of the components in an aqueous medium for 5 hours using beads from stabilized zirconium dioxide with a diameter of 1.5 mm at a ratio of the mass of the composition of powders of the initial components to the mass of distilled water 1:3, and to the mass of grinding bodies - 1:10 and drying the grinding product at a temperature of 80-90°C for a day at atmospheric pressure. The powder is pressed and sintered at a temperature of 1200-1300°C. In terms of hardness and Young's modulus, zirconium ceramics obtained from the indicated powder containing 2 wt.% CaO corresponds to engineering ceramics from synthetic zirconium dioxide stabilized with yttrium oxide, and surpasses it in terms of crack resistance. EFFECT: invention allows to produce dense structural ceramics from zirconium dioxide. 1 cl, 4 tbl РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 768 519 C1 (51) МПК C04B 35/486 (2006.01) B82Y 40/00 (2011.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК C04B 35/486 (2022.02); C04B 35/62615 (2022.02); B82Y 40/00 (2022.02); C04B 2235/3246 (2022.02); C04B 2235/5454 (2022.02); C04B 2235/61 (2022.02) (21)(22) Заявка: 2021124473, 18.08.2021 18.08.2021 Дата регистрации: 24.03.2022 (45) Опубликовано: 24.03.2022 Бюл. № 9 2 7 6 8 5 1 9 R U (56) Список документов, цитированных в отчете о поиске: RU 2735791 C1, 09.11.2020. RU 2731751 C1, 08.09.2020. BY 10759 C1, 30.06.2008. RU 2017123397 A, 09.01.2019. US 6309749 B1, 30.10.2001. (54) Способ получения плотной конструкционной циркониевой керамики из бадделеита (57) Реферат: Изобретение относится к области получения мелющих тел – 1:10 и сушки продукта помола плотной ...

Подробнее
01-10-2024 дата публикации

Композиционный керамический материал для режущих инструментов

Номер: RU2827754C1

Изобретение относится к изготовлению композиционного керамического материала, который может быть использован для изготовления режущего инструмента и машиностроительных изделий. Керамический композиционный материал для режущих инструментов, включающий в себя глинозем (α-Al2O3) и карбид титана (TiC), дополнительно содержит диборид титана (TiB2) при следующем соотношении компонентов, мас.%: глинозем (α-Al2O3) 15-20; карбид титана (TiC) 19-22; диборид титана (TiB2) 61-64. Технический результат - улучшение физико-механических характеристик композиционного керамического материала, а именно увеличение прочности при изгибе, трещиностойкости и твердости. 1 табл., 3 пр.

Подробнее
02-04-2021 дата публикации

Способ получения бифазной термоэлектрической керамики

Номер: RU2745910C1

Изобретение относится к нанотехнологиям, а именно к способам получения новых бифазных керамических материалов для нужд термоэлектрогенерации. Способ получения бифазной термоэлектрической керамики включает приготовление порошковой системы из исходных порошков карбоната стронция SrCO3и диоксида титана TiO2путем их совместного высокоэнергетического помола в этаноле, отжига и сушки, после чего полученный материал спекают под механической нагрузкой. Порошковую систему формируют из субмикронного порошка карбоната стронция SrCO3и наноразмерного порошка диоксида титана TiO2, взятых в количестве, обеспечивающем соотношение формирующихся после спекания фаз титаната стронция SrTiO3и диоксида титана TiO2в форме рутила по объёму 1:1. Сушку ведут при температуре 60-80°С в течение 24-48 часов с последующей грануляцией порошковой системы через сито с эффективным размером ячеек 75 мкм и с последующим отжигом в атмосфере воздуха при 600-800°С в течение 2-4 часов. Полученный материал подвергают реакционному ...

Подробнее
11-12-2003 дата публикации

METHOD FOR PREPARING CERAMIC POWDERS IN THE PRESENCE OF A CARBON SOURCE, POWDERS OBTAINED AND USE THEREOF

Номер: CA0002487320A1
Принадлежит:

La presence invention est relative a un procede de preparation dune poudre ceremique en presence dune poudre de carbone comportant au moins une etape d'homogeneisation du melange des particules susceptibles de resulter en une ceramique par traitement thermique. Ce procede peut etre realise en presence d'un solvant accelere permet d'obtenir, a un coat energetique reduit, des poudres ceramiques enrobees de carbone puis des ceramiques.

Подробнее
17-08-2000 дата публикации

MIXED IONIC CONDUCTOR AND DEVICE USING THE SAME

Номер: CA0002298850A1
Принадлежит: Matsushita Electric Industrial Co Ltd

A mixed ionic conductor with an ion conductive oxide has a perovskite structure of the formula Ba a(Ce1-b M1b)L c O3-.alpha. , wherein M1 is at least one trivalent rare earth element other than Ce; L is at least one element selected from the group consisting of Zr, Ti, V, Nb, Cr, Mo, W, Fe, Co, Ni, Cu, Ag, Au, Pd, Pt, Bi, Sb, Sn, Pb and Ga; with 0.9 ~ a ~ 1; 0.16 ~ b ~ 0.26; 0.01 ~ c ~ 0.1; and (2 + b - 2a)/2~ .alpha. < 1.5. Such a mixed ionic conductor has not only the necessary conductivity for electrochemical devices such as fuel cells, but also superior moisture resistance.

Подробнее
08-05-2018 дата публикации

High-temperature-resistance special ceramic and preparing method thereof

Номер: CN0108002856A
Автор: ZHANG PEILEI
Принадлежит:

Подробнее
04-04-1997 дата публикации

COVERED FIBRES

Номер: FR0002729659B1
Автор:
Принадлежит:

Подробнее
09-03-2020 дата публикации

METHOD FOR MANUFACTURING SIALON-BASED CERAMIC MATERIALS FOR CUTTING TOOLS HAVING ENHANCED TOUGHNESS AND MATERIALS MANUFACTURED THEREBY

Номер: KR0102086569B1
Автор: 김성원, 이성민, 한윤수
Принадлежит: 한국세라믹기술원

본 발명은 향상된 인성을 가지는 절삭공구용 사이알론 세라믹스 소재의 제조방법 및 이에 의해 제조된 소재에 대한 것으로서, 보다 상세하게는, (a) 3종 이상의 세라믹 원료 분말을 준비하는 단계; (b) 상기 3종 이상의 세라믹 원료 분말을 혼합하고 과립화하는 단계; (c) 상기 단계 (b)에서 얻어진 혼합 분말을 일축가압성형을 통해 성형체를 제조하고 탈지하는 단계; 및 (d) 상기 단계 (c)에서 얻어진 탈지성형체를 가스압반응소결에 의해 치밀 소재를 제조하는 단계를 포함하는, 향상된 인성을 가지는 절삭공구용 사이알론 세라믹스 소재의 제조방법 및 이에 의해 제조된 소재에 관한 것이다. 본 발명에 의하면, 질화규소(Si 3 N 4 ), 질화알루미늄(AlN), 알루미나(Al 2 O 3 ), 및 이터비아(Yb 2 O 3 )를 원료로 가스압반응소결을 소결 수단으로 이용함으로써, 80 내지 100 중량%의 β-사이알론을 가지면서 기공을 최대한 줄인 사이알론 세라믹스 소재를 제조할 수 있기 때문에 파괴인성의 향상에 의해 절삭성능이 증진된 절삭공구용 사이알론 세라믹스 소재를 제공할 수 있다. The present invention relates to a method for producing a sialon ceramic material for cutting tools having improved toughness and a material produced by the same, more specifically, (a) preparing at least three kinds of ceramic raw material powders; (b) mixing and granulating the three or more ceramic raw powders; (c) preparing and degreasing the molded body by uniaxial pressure molding the mixed powder obtained in step (b); And (d) manufacturing the dense material by gas pressure reaction sintering of the degreasing molded body obtained in the step (c), to a method for producing a sialon ceramic material for cutting tools having improved toughness and to the material produced thereby. It is about. According to the present invention, by using gaseous reaction sintering as a sintering means by using silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), alumina (Al 2 O 3 ), and iterbia (Yb 2 O 3 ) as raw materials, Since it is possible to manufacture a sialon ceramic material having as much as 100% by weight of β-sialon and reducing pores as much as possible, it is possible to provide a sialon ceramic material for cutting tools with improved cutting performance by improving fracture toughness.

Подробнее
12-01-2012 дата публикации

BARIUM TITANATE NANO POWDER AND METHOD FOR FABRICATING THE SAME

Номер: KR0101104627B1
Принадлежит: 씨큐브 주식회사

본 발명은 나노크기를 갖는 티탄산바륨 입자 및 그의 제조 방법에 관한 것으로, 혼합비즈를 사용하여 균일분쇄와 분산효과를 동시에 얻을 수 있도록 하고, BaCO 3 출발원료를 나노 분쇄한 후 나노크기의 TiO 2 와 혼합하는 방법을 사용하되, 1차 0.65mm, 1mm 혼합비즈와 1600rpm의 저속으로 고에너지밀에 의하여 분산을 행하고, 직렬로 연결된 0.1mm, 0.3mm 나노분쇄분산용 고에너지밀에 장입하여 분쇄 및 분산이 동시에 수행될 수 있도록 하는 발명에 관한 것이다. 아울러, 본 발명은 TiO 2 출발원료를 사용하는 경우 루틸(58.2%) + 아나타제(41.8%)로 혼합된 것을 사용하여, 원활한 확산경로를 얻을 수 있도록 하고, 루틸 상의 높은 결정화도를 동시에 이용할 수 있도록 하여, 다른 출발원료를 즉 루틸이나 아나타제 단일상을 사용하는 것에 비하여 높은 반응성과 정방정비(c/a)를 얻을 수 있도록 하는 발명에 관한 것이다. The present invention, by using the mixed beads and to obtain a uniform pulverization and dispersion effects at the same time, BaCO 3 nanosized after starting nano-milling the raw materials TiO 2 and about the barium titanate particles and a process for producing with a nanoscale Mixing method is used, but it is dispersed by high energy mill at the first 0.65mm, 1mm mixing beads and 1600rpm at low speed, and charged into a high-energy mill for 0.1mm and 0.3mm nano grinding dispersion connected in series to grind and disperse. It relates to an invention that can be performed at the same time. In addition, the present invention uses a mixture of rutile (58.2%) + anatase (41.8%) when using a TiO 2 starting material, so that a smooth diffusion path can be obtained and high crystallinity of rutile phase can be used simultaneously The present invention relates to a method for obtaining high reactivity and tetragonality (c / a) compared to using other starting materials, ie, rutile or anatase single phase.

Подробнее
20-04-2018 дата публикации

방전 플라즈마 소결 공정을 이용한 단일벽 탄소나노튜브 강화 금속기지 복합재료의 제조방법 및 이에 의해 제조된 복합재료

Номер: KR0101850934B1
Автор: 권한상
Принадлежит: 부경대학교 산학협력단

... 본 발명은, (a) 금속 분말 및 단일벽 탄소나노튜브 분말을 볼밀링하여 복합분말을 제조하는 단계; 및 (b) 상기 단계 (a)에서 제조한 복합분말을 방전 플라즈마 소결(spark plasma sintering, SPS)하여 금속-탄소나노튜브 복합재료를 제조하는 단계를 포함하는 단일벽 탄소나노튜브 강화 금속기지 복합재료의 제조방법을 제공한다. 본 발명에 따른 단일벽 탄소나노튜브 강화 금속기지 복합재료의 제조방법에 따르면, 고강도 및 내마모성을 요구하는 소재 부품을 제조하기 위해서, 단일벽 탄소나노튜브 분말을 다양한 금속 기지에 첨가하고, 볼밀링하여 균일한 분산도를 갖는 복합분말을 제조한 후, 제조한 복합분말을 방전 플라즈마 소결(spark plasma sintering, SPS) 공정을 이용해 단시간에 복합화함으로써 손쉽게 물성이 우수한 벌크형 단일벽 탄소나노튜브 강화 금속기지 복합재료를 제조할 수 있다.

Подробнее
09-02-2012 дата публикации

METHOD FOR OBTAINING NANOCRYSTALLINE CORUNDUM FROM NATURAL OR SYNTHETIC ALUMS

Номер: WO2012017124A1
Принадлежит:

This invention relates to a method for obtaining nanocrystalline corundum, characterized in that it comprises a first step of heat treatment, at ordinary pressure, of the raw material used in the method, up to a temperature above that of the last endothermic accident in the log of differential thermal analysis of the raw material carried out up to 925°C; and a second step of rapid cooling from the maximum temperature reached in the preceding step down to ambient temperature. This invention also relates to the nanocrystalline corundum that may be obtained using the method described, and to many uses for said corundum. Furthermore, the material in question may be broken up, for example by high-power milling, to produce a fine dust that may be used as an abrasive or functional filler in plastic polymers or other types of material.

Подробнее
16-02-1995 дата публикации

METHOD FOR MAKING SUBMICROMETER CARBIDES, SUBMICROMETER SOLID SOLLUTION CARBIDES, AND THE MATERIAL RESULTING THEREFROM

Номер: WO1995004703A1
Принадлежит:

A method for making submicrometer metallic carbides and submicrometer solid solution metallic carbides from a source of at least one metallic oxide and carbon involves the rapid heating of a reactive particulate mixture of the source(s) and carbon in order to achieve a resulting particulate size of less than 1 micrometer. The rapid heating may produce either a finished product or a precursor. If a precursor is produced, it may be admixed with additional carbon and subjected to a second rapid heating step to prepare a finished product. Submicrometer sized metallic carbides and solid solution metallic carbides were suitable for use in commercial ceramic applications. The smaller sized particles produce a product having superior toughness and hardness.

Подробнее
16-09-2004 дата публикации

Silicon nitride/silicon carbide nano-nano composites

Номер: US20040179969A1

Densified composites of silicon nitride and silicon carbide that exhibit high creep resistance are obtained by mechanically activating a mixture of amorphous powders of silicon nitride and silicon carbide and sintering the mechanically activated mixture in the presence of an electric field under high pressure. The grain size in the resulting composite is less than 100 nanometers for all components of the composite, and the composite exhibits high creep resistance.

Подробнее
01-09-2020 дата публикации

Proton conductor and membrane electrode assembly

Номер: US0010763531B2

A proton conductor of the present disclosure has a composition formula of BaaZr1-x-yYbxNiyO3-δ (0.95≤a≤1.05, 0.1≤x≤0.4, and 0.15≤y≤0.30).

Подробнее
26-03-2020 дата публикации

METHOD OF PRODUCING POLYCRYSTALLINE Y-358 SUPERCONDUCTOR

Номер: US20200095167A1
Принадлежит: Imam Abdulrahman Bin Faisal University

A method of producing polycrystalline YBaCuO(Y-358) whereby powders of yttrium (III) oxide, a barium (II) salt, and copper (II) oxide are pelletized, calcined at 850 to 950° C. for 8 to 16 hours, ball milled under controlled conditions, pelletized again and sintered in an oxygen atmosphere at 900 to 1000° C. for up to 72 hours. The polycrystalline YBaCuOthus produced is in the form of elongated crystals having an average length of 2 to 10 μm and an average width of 1 to 2 μm, and embedded with spherical nanoparticles of yttrium deficient YBaCuOhaving an average diameter of 5 to 20 nm. The spherical nanoparticles are present as agglomerates having flower-like morphology with an average particles size of 30 to 60 nm. The ball milled polycrystalline YBaCuOprepared under controlled conditions shows significant enhancement of superconducting and flux pinning properties. 1: A method of producing polycrystalline YBaCuO , comprising:pelletizing powders of yttrium (III) oxide, barium (II) salt, and copper (II) oxide to produce a pelletized mixture;calcining the pelletized mixture two times at 900° C. for 12 hours;ball milling the calcined mixture to produce a ball milled sample; andsintering the ball milled sample at 950° C. for 48 hours,{'sub': 3', '5', '8', 'y, 'claim-text': elongated crystals having an average length of 2 to 10 μm and an average width of 1 to 2 μm, and', 'embedded with spherical nanoparticles having an average diameter of 5 to 20 nm disposed on the elongated crystals., 'wherein the polycrystalline YBaCuOis in the form of'}2: The method of claim 1 , wherein the barium (II) salt is a barium carbonate BaCO.3: The method of claim 1 , wherein the mixed powders are uniaxially pressed/pelletized under an applied pressure of about 100 MPa.4: The method of claim 1 , wherein the pelletized mixture is calcined two times at 850 to 950° C. for 8 to 16 hours each with intermediate grinding for the aim of producing an oxide precursor without residue of any carbonates.5: ...

Подробнее
24-11-2005 дата публикации

Mixed ionic conductor and device using the same

Номер: US2005260477A1
Автор: TANIGUCHI NOBORU
Принадлежит:

A mixed ionic conductor with an ion conductive oxide has a perovskite structure of the formula Baa(Ce1-bM1b)LcO3-alpha, wherein M1 is at least one trivalent rare earth element other than Ce; L is at least one element selected from the group consisting of Zr, Ti, V, Nb, Cr, Mo, W, Fe, Co, Ni, Cu, Ag, Au, Pd, Pt, Bi, Sb, Sn, Pb and Ga; with 0.9<=a<=1; 0.16<=b<=0.26; 0.01<=c<=0.1; Подробнее

08-04-2008 дата публикации

Corrosion-resistant member and producing method thereof

Номер: US0007354652B2

A corrosion-resistant member, which is exposed to a corrosive environment is provided. The corrosion-resistant member is made of a corrosion-resistant material that contains at least one of an oxide of calcium and aluminum, and a calcium aluminum oxide. The corrosion-resistant material includes a rare earth element in an amount of less than 5 wt %.

Подробнее
23-11-2023 дата публикации

METHOD FOR MAKING A SUPERCONDUCTING YBCO WIRE OR TAPE

Номер: US20230373865A1
Автор: Yassine SLIMANI
Принадлежит: Imam Abdulrahman Bin Faisal University

A method of producing polycrystalline Y3Ba5Cu8Oy(Y-358) whereby powders of yttrium (III) oxide, a barium (II) salt, and copper (II) oxide are pelletized, calcined at 850 to 950° C. for 8 to 16 hours, ball milled under controlled conditions, pelletized again and sintered in an oxygen atmosphere at 900 to 1000° C. for up to 72 hours. The polycrystalline Y3Ba5Cu8Oythus produced is in the form of elongated crystals having an average length of 2 to 10 μm and an average width of 1 to 2 μm, and embedded with spherical nanoparticles of yttrium deficient Y3Ba5Cu8Oyhaving an average diameter of 5 to 20 nm. The spherical nanoparticles are present as agglomerates having flower-like morphology with an average particles size of 30 to 60 nm. The ball milled polycrystalline Y3Ba5Cu8Oyprepared under controlled conditions shows significant enhancement of superconducting and flux pinning properties.

Подробнее
11-06-2024 дата публикации

Ceramic composites and methods of making and using the same

Номер: US0012006267B2
Автор: Chengying Xu

The present disclosure provides for ceramic composite materials and methods of making ceramic composite materials. In an aspect, the ceramic composite materials can be made of polymer derived ceramics (PDCs) as the matrix, while substrates can be used as the microwave absorbing phases.

Подробнее
21-06-2018 дата публикации

Thermoelektrisches Material und Verfahren zum Erstellen desselben

Номер: DE102017111627A1
Принадлежит:

Thermoelektrisches Material und ein Verfahren zum Erstellen desselben, wobei das thermoelektrische Material exzellente thermoelektrische Leistung und gute mechanische Eigenschaften (insbesondere Bruchzähigkeit) hat, und daher, wenn das thermoelektrische Material auf ein thermoelektrisches Modul angewendet wird, das thermoelektrische Modul exzellente Leistung und Effizienz und eine hohe Lebensdauer hat.

Подробнее
24-04-2008 дата публикации

THE MANUFACTURING METHOD OF CONSTRUCTION MATERIALS USING WATERWORKS SLUDGE

Номер: CA0002663806A1
Принадлежит:

Disclosed are a soundproof construction composition using waterworks slud ge and a method for preparing the same. The soundproof construction composit ion using waterworks sludge manufactured by mixing 22% by weight of a first processed clean water sludge made by firing waterworks sludge for 3-5 hours at 800°C-850°C, with 18% by weight of clay, 36% by weight of terra alba, 14% by weight of agalmatolite, and 10% by weight of dolomite to obtain a body; mixing 31.5% by weight of the body with 2.3% by weight of calcined gypsum, 1 1.3% by weight of cement, 0.05% by weight of aluminum powder, 0.5% by weight of starch, 0.5% by weight of titanium dioxide to prepare a powdery mixture; and mixing the powdery mixture with 10.8% by weight of phosphoric acid and 43.05% by weight of water.

Подробнее
19-08-2004 дата публикации

CHEMOMECHANICAL MANUFACTURE OF FUNCTIONAL COLLOIDS

Номер: CA0002514699A1
Принадлежит:

The invention relates to a method for producing a functional colloid during which particles are reactively fragmented in a mechanical manner in a dispersant in the presence of a modifying agent so that the modifying agent is chemically bound, at least in part, to the fragmented colloid particles.

Подробнее
15-10-2008 дата публикации

The manufacturing method of construction materials using waterworks sludge

Номер: KR0100863139B1
Автор:
Принадлежит:

Подробнее
23-07-2014 дата публикации

TARGET FOR LIGHT ABSORPTION LAYER OF THIN FILM SOLAR CELL, METHOD FOR THE SAME AND THE THIN FILM SOLAR CELL

Номер: KR0101418831B1
Автор:
Принадлежит:

Подробнее
13-02-2017 дата публикации

내피로성이 강화된 납-부재 압전 재료

Номер: KR0101706417B1

... 납-부재 압전 세라믹 재료는 하기 화학식 3을 갖는다:화학식 3xBi(A0.5Ti0.5)O3-y(Bi0.5K0.5)TiO3-z(Bi0.5Na0.5)TiO3상기 식에서, x+y+z는 1이고;x ≠ 0이고;A는 Ni 또는 Mg이다.

Подробнее
25-06-2018 дата публикации

JOINING MATERIAL FOR CERAMICS AND PRODUCTION METHOD OF CERAMIC BONDED BODY USING SAME

Номер: KR101871104B1

The present application relates to a joining material for ceramics and a production method of a ceramic bonded body using same. The joining material for ceramics of the present application contains ceramic powder having the same composition as ceramic powder contained in a ceramic base material in a state of being dispersed in wax, thereby inducing a homogeneous microstructure of a ceramic bonded body, and having mechanical properties similar to those of a bulk material after sintering. A large and complicated ceramic bonded body can be produced by a simple process by using the joining material of the present application. COPYRIGHT KIPO 2018 ...

Подробнее
16-10-2015 дата публикации

Method for making ceramic thin exterior part of hand-held terminal product

Номер: TW0201538454A
Принадлежит:

The invention relates to a method for making ceramic thin exterior part of hand-held terminal product. A casting solution is formed. The casting solution includes ceramic powder, dispersant, solvent, binder, and plasticizer. Weight percentages of each parts are: 50~60 wt% of ceramic powder, 0.5~1.5wt% of dispersant, 30~40wt% of solvent, 3~7wt% of binder, and 3~9wt% of plasticizer. The casting solution is casted to form a single-layer unburnt earthenware. A casting solution is formed on a surface of the single-layer unburnt earthenware. At least two single-layer unburnt earthenwares are stacked together and pressed to form a lamination. The lamination is dried to remove the solvent and formed into desired shape and size. The shaped lamination is heated to remove the binder, plasticizer and dispersant, and calcined.

Подробнее
31-03-2011 дата публикации

METHOD FOR OBTAINING TRANSPARENT CERAMIC MATERIALS OF CERIA-DOPED POLYCRYSTALLINE ALPHA ALUMINA, AND PRODUCT OBTAINED BY MEANS OF SAID METHOD

Номер: WO2011036327A1
Принадлежит:

The invention relates to a method which includes the following steps: preparing a suspension of α-alumina powder in a solvent by agitation, adding a solution of cerium salt as a dopant by agitation, drying the product from the previous step to eliminate the solvent, calcining the product from the previous step, grinding the product from the previous step, drying the product from the previous step, screening the product from the previous step, shaping the product from the previous step, and sintering the product from the previous step. The invention also relates to a ceria-doped polycrystalline α-alumina material obtained according to said method, with a density of more than 98%, transmittance of more than 70% in the infrared range, hardness values of more than 19 GPa, a ceria percentage of between 5 ppm and 5 wt % and grain size of less than one micron.

Подробнее
16-12-2004 дата публикации

ELECTRICALLY CONDUCTIVE SI-TI-C-N CERAMICS

Номер: WO2004109762A3
Принадлежит:

Composite materials containing silicon, titanium, carbon, and nitrogen, formed by spark plasma sintering of ceramic starting materials to a high relative density, demonstrate unusually high electrical conductivity as well as high-performance mechanical and chemical properties including hardness, fracture toughness, and corrosion resistance. This combination of electrical, mechanical, and chemical properties makes these composites useful as electrical conductors in applications where high-performance materials are needed due to exposure to extreme conditions such as high temperatures, mechanical stresses, and corrosive environments.

Подробнее
12-06-2007 дата публикации

Method of deagglomerating ceramic powder, deagglomeration mill used therefor and method of preparing highly dispersed slurry using the deagglomerated powder

Номер: US0007229035B2

Disclosed herein is a method of deagglomerating ceramic powder to inhibit agglomeration and provide a uniform particle size, a deagglomeration mill used for the above method, and a method of preparing uniformly mixed ceramic slurry using the deagglomerated ceramic powder. The deagglomeration method of the ceramic powder includes loading a mixture of ceramic powder and solvent into the deagglomeration mill which includes a hollow cylindrical mill cover having a diameter larger than a length and having a plurality of beads therein; rotating an impeller of a main shaft disposed longitudinally at an internal center portion of the mill cover at a peripheral velocity of 6-10 m/s, using a driving means; deagglomerating the ceramic powder by the action of beads which are moved by a rotational force of the impeller; and discharging the mixture of ceramic powder and solvent from the deagglomeration mill.

Подробнее
21-03-2024 дата публикации

METHOD FOR MAKING SUPERCONDUCTING COIL FOR MAGNETIC RESONANCE IMAGING

Номер: US20240092698A1
Автор: Yassine SLIMANI
Принадлежит: Imam Abdulrahman Bin Faisal University

A method of producing polycrystalline Y3Ba5Cu8Oy(Y-358) whereby powders of yttrium (III) oxide, a barium (II) salt, and copper (II) oxide are pelletized, calcined at 850 to 950° C. for 8 to 16 hours, ball milled under controlled conditions, pelletized again and sintered in an oxygen atmosphere at 900 to 1000° C. for up to 72 hours. The polycrystalline Y3Ba5Cu8Oythus produced is in the form of elongated crystals having an average length of 2 to 10 μm and an average width of 1 to 2 μm, and embedded with spherical nanoparticles of yttrium deficient Y3Ba5Cu8Oyhaving an average diameter of 5 to 20 nm. The spherical nanoparticles are present as agglomerates having flower-like morphology with an average particles size of 30 to 60 nm. The ball milled polycrystalline Y3Ba5Cu8Oyprepared under controlled conditions shows significant enhancement of superconducting and flux pinning properties.

Подробнее
14-12-2011 дата публикации

NANOPARTICLES PREPARED USING CARBON NANOTUBE AND PREPARATION METHOD THEREFOR

Номер: EP2394952A2
Принадлежит:

Disclosed are a method for preparing a nanoparticle by using a carbon nanotube, and the nanoparticle prepared by the method. In the disclosed method, by using a carbon nanotube having a physically solid structure and a chemically solid bond, a powder particle made of metal, polymer, ceramic or the like is milled to a nano-size. Also, the nanoparticle prepared by the method has a small size and includes the carbon nanotube. Thus, when the method is applied to a highly oxidative metal, the nanoparticle can be applied to related fields requiring ignitability such as solid fuel, gunpowder, and the like. Also, the carbon nanotube has good mechanical properties and electrical conductivity, and thus can be applied to the related products.

Подробнее
20-08-2001 дата публикации

Ceramic composite foams with high mechanical strength

Номер: AU0003351701A
Принадлежит:

Подробнее
02-01-2014 дата публикации

ALLOY POWDER FOR AW MATERIAL OF INORGANIC FUNCTIONAL MATERIAL AND PHOSPHOR

Номер: KR0101346580B1
Автор:
Принадлежит:

Подробнее
14-08-2012 дата публикации

Nanoparticle fabricated by using carbon nanotubes and fabrication method thereof

Номер: KR0101173847B1
Автор:
Принадлежит:

Подробнее
04-05-2020 дата публикации

Method for manufacturing a ceramic plate, and an apparatus for manufacturing a ceramic plate

Номер: KR1020200045095A
Автор:
Принадлежит:

Подробнее
18-07-2013 дата публикации

Process for obtaining nanocrystalline corundum from natural or synthetic alums

Номер: US20130183527A1
Принадлежит: UNIVERSITAT DE VALENCIA

The present invention relates to a process for obtaining nanocrystalline corundum, characterised in that it comprises a first step of thermal treatment of the raw material used in the process at standard pressure, to a temperature greater than that of the last endothermic accident of the differential thermal analysis record of the raw material, performed to 925° C.; and a second step of fast cooling from the maximum temperature reached in the preceding step to room temperature. Moreover, the present invention relates to the nanocrystalline corundum obtainable from the process described, as well as to multiple uses of said corundum. Furthermore, this material may be disaggregated, for example by means of high-energy grinding, to produce a fine aggregate that may be used as an abrasive or as a functional load in plastic polymers or other types of materials.

Подробнее
12-09-2013 дата публикации

Methods of Synthesizing Thermoelectric Materials

Номер: US20130234375A1

Methods for synthesis of thermoelectric materials are disclosed. In some embodiments, a method of fabricating a thermoelectric material includes generating a plurality of nanoparticles from a starting material comprising one or more chalcogens and one or more transition metals; and consolidating the nanoparticles under elevated pressure and temperature, wherein the nanoparticles are heated and cooled at a controlled rate.

Подробнее
17-01-2019 дата публикации

Cellulose nanocrystal-modified ceramic blank and preparation method thereof

Номер: US20190016642A1
Принадлежит: Wuhan University of Technology WUT

A cellulose nanocrystal-modified ceramic blank and a preparation method thereof are disclosed. Cellulose nanocrystals are added into a ceramic blank in gelcasting. The cellulose nanocrystal-modified ceramic blank comprises, by weight, 0.1 to 10 parts of cellulose nanocrystals, 0.1 to 30 parts of organic gel and 70 to 99 parts of ceramic powder. The cellulose nanocrystal has length of 100 to 300 nm, a diameter of 10 to 20 nm, a slenderness ratio of 10 to 15 , and an elastic modulus of 100 to 150 GPa. The drying strength of the ceramic blank with the cellulose nanocrystals is obviously improved.

Подробнее
26-01-2017 дата публикации

Processes and materials for casting and sintering green garnet thin films

Номер: US20170022112A1
Принадлежит: Quantumscape Corp

Set forth herein are processes and materials for making ceramic thin films by casting ceramic source powders and precursor reactants, binders, and functional additives into unsintered thin films and subsequently sintering the thin films under controlled atmospheres and on specific substrates.

Подробнее
27-02-2020 дата публикации

METHOD OF PREPARING CERIUM BORIDE POWDER

Номер: US20200062655A1
Принадлежит:

A method of preparing cerium boride powder, according to the present invention, includes a first step for generating mixed powder by mixing at least one selected from among cerium chloride (CeCl) powder and cerium oxide (CeO) powder, at least one selected from among magnesium hydride (MgH) powder and magnesium (Mg) powder, and boron oxide (BO) powder, a second step for generating composite powder including cerium boride (CeB) and at least one selected from among magnesium oxide (MgO) and magnesium chloride (MgCl), by causing reaction in the mixed powder at room temperature based on a ball milling process, and a third step for selectively depositing cerium boride powder by dispersing the composite powder in a solution. 1. A method of preparing cerium boride powder , the method comprising:{'sub': 3', '2', '2', '2', '3, 'a first step, for generating a mixed powder by mixing at least one selected from among cerium chloride (CeCl) powder and cerium oxide (CeO) powder, at least one selected from among magnesium hydride (MgH) powder and magnesium (Mg) powder, and boron oxide (BO) powder;'}{'sub': x', 'y', '2, 'a second step, for generating a composite powder comprising cerium boride (CeB) and at least one selected from among magnesium oxide (MgO) and magnesium chloride (MgCl), by causing reaction in the mixed powder at room temperature based on a ball milling process; and'}a third step, for selectively depositing cerium boride powder by dispersing the composite powder in a solution.2. The method of claim 1 , wherein the first step comprises generating the mixed powder by mixing the CeClpowder claim 1 , the MgHpowder claim 1 , and the BOpowder claim 1 , and{'sub': '2', 'wherein the third step comprises selectively dissolving MgCland MgO and selectively depositing the cerium boride powder by dispersing the composite powder in an acidic solution.'}3. The method of claim 1 , wherein the first step comprises generating the mixed powder by mixing the CeClpowder claim 1 , the ...

Подробнее
24-03-2022 дата публикации

MAGNESIUM-BASED RAW MATERIAL WITH LOW THERMAL CONDUCTIVITY AND LOW THERMAL EXPANSION AND PREPARATION METHOD THEREOF

Номер: US20220089497A1

The present disclosure relates to a magnesium-based raw material with low thermal conductivity and low thermal expansion and a preparation method thereof. According to the technical solution, 40-60 wt % fused magnesia particles, 30-40 wt % fine monoclinic zirconia powder, 5-20 wt % fine zirconium oxychloride powder, 0.5-1.5 wt % calcium hydroxide nanopowder, 0.2-0.5 wt % calcium hydroxide nanopowder, and 0.1-0.3 wt % maleic acid are stirred for 15 min to mix well in a high-speed mixing mill at a constant temperature of 25° C. to obtain a mixed powder; and the mixed powder is mixed through a ball mill at a constant temperature of 25° C. for 3 min, roasted in a high temperature furnace at 250-400° C. for 0.5-3 h, and finally cooled to room temperature. The magnesium-based refractory material prepared has the advantages of relatively low thermal conductivity, low thermal expansion coefficient, excellent dispersibility, and strong resistance to slag penetration and erosion. 1. A method for preparing a magnesium-based raw material with low thermal conductivity and low thermal expansion , comprising:stirring 40-60 wt % fused magnesia particles, 30-40 wt % fine monoclinic zirconia powder, 5-20 wt % fine zirconium oxychloride powder, 0.5-2 wt % calcium hydroxide nanopowder, 0.2-0.5 wt % of fine light calcined magnesia powder, and 0.1-0.3 wt % maleic acid to mix well in a high-speed mixing mill at a constant temperature of 25° C. for 15 min to obtain a mixed powder; andmixing the mixed powder through a ball mill at a constant temperature of 25° C. for 3 min, roasting in a high temperature furnace at 250-400° C. for 0.5-3 h, and cooling to room temperature to form the magnesium-based raw material with low thermal conductivity and low thermal expansion.2. The method for preparing a magnesium-based raw material with low thermal conductivity and low thermal expansion according to claim 1 , wherein the fused magnesia particles is ≤1 mm in particle size claim 1 , and MgO content ...

Подробнее
17-03-2016 дата публикации

SiOx/Si/C Composite Material and Process of Producing thereof, and Anode for Lithium Ion Battery Comprising Said Composite Material

Номер: US20160079591A1

An SiOx/Si/C composite material, includes SiOx/Si composite particles and a carbon coating layer coated on the SiOx/Si composite particles. The SiOx/Si composite particles include nano-silicon crystallites embedded in an SiOx (0<x≦2) amorphous matrix phase. The SiOx/Si composite particles have an Si:O molar ratio of 5:1-1.1:1, preferably 2:1-1.2:1. A process for producing an SiOx/Si/C composite material, includes a) milling SiO powder together with a metal reductant in a molar ratio of 125:1-10:1, preferably 2:11-5:1, b) totally removing the oxidation product of the metal reductant to obtain SiOx/Si composite particles, and c) coating the SiOx/Si composite particles with carbon to obtain the SiOx/Si/C composite material.

Подробнее
14-03-2019 дата публикации

SPARK PLASMA METHOD FOR MAKING CBN/SIALON CERAMIC

Номер: US20190077716A1

A method for producing a composite of cubic boron nitride dispersed in a SiAlON ceramic. This method involves mixing silicon nitride nanoparticles, aluminum nitride nanoparticles, silica nanoparticles, calcium oxide nanoparticles, and cubic boron nitride microparticles to produce a mixture. The cubic boron nitride may be coated with nickel. The mixture is sintered to produce the composite, and this sintering may involve spark plasma sintering and/or sintering at a relatively low temperature. The composite may comprise a mixture of Ca-α-SiAlON and β-SiAlON ceramic reinforced by boron nitride in either or both cubic and hexagonal phases. 1. A spark plasma method for producing a composite of cubic boron nitride (cBN) dispersed in a SiAlON ceramic , the method comprising: silicon nitride nanoparticles,', 'aluminum nitride nanoparticles,', 'silica nanoparticles,', 'calcium oxide nanoparticles, and', 'cubic boron nitride (cBN) microparticles to produce a mixture, and spark plasma sintering the mixture at a temperature ranging from 1400-1600° C. while applying a uniaxial pressure ranging from 30-80 MPa to the mixture to produce the composite., 'mixing'}2. The method of claim 1 , wherein the mixing involves sonication.3. The method of claim 1 , wherein the mixing involves ball milling.4. The method of claim 1 , wherein the cBN microparticles have a largest linear dimension of 10-50 μm and are present in the mixture at a weight percentage of 5-40 wt % claim 1 , relative to a total weight of the mixture.5. The method of claim 4 , wherein the mixture comprises nickel claim 4 , the nickel located on an exterior surface of the cBN microparticles.6. The method of claim 5 , wherein the cBN microparticles are coated with nickel and comprise 20-80 wt % nickel claim 5 , based on a total weight of the cBN microparticles.7. The method of claim 6 , wherein the composite has a higher fracture toughness than an otherwise identical composite sintered from cBN microparticles that do not ...

Подробнее
14-03-2019 дата публикации

METHOD INCLUDING SONICATION AND SPARK PLASMA SINTERING FOR FORMING A CERAMIC MATERIAL

Номер: US20190077717A1

A method for producing a composite of cubic boron nitride dispersed in a SiAlON ceramic. This method involves mixing silicon nitride nanoparticles, aluminum nitride nanoparticles, silica nanoparticles, calcium oxide nanoparticles, and cubic boron nitride microparticles to produce a mixture. The cubic boron nitride may be coated with nickel. The mixture is sintered to produce the composite, and this sintering may involve spark plasma sintering and/or sintering at a relatively low temperature. The composite may comprise a mixture of Ca-α-SiAlON and β-SiAlON ceramic reinforced by boron nitride in either or both cubic and hexagonal phases. 1. A spark plasma sintering and sonication method for producing a composite of cubic boron nitride (cBN) dispersed in a SiAlON ceramic , the method comprising: [{'sub': 3', '4, 'α-SiNnanoparticles,'}, 'aluminum nitride nanoparticles,', 'silica nanoparticles,', 'calcium oxide nanoparticles, and', 'cubic boron nitride (cBN) microparticles to produce a mixture, and, 'sonicating a precursor composition comprising'}spark plasma sintering the mixture to produce the composite.23-. (canceled)4. The method of claim 1 , wherein the cBN microparticles have a largest linear dimension of 10-50 μm and are present in the mixture at a weight percentage of 5-40 wt % claim 1 , relative to a total weight of the mixture.5. The method of claim 4 , wherein the mixture comprises nickel claim 4 , the nickel located on an exterior surface of the cBN microparticles.6. The method of claim 5 , wherein the cBN microparticles are coated with nickel and comprise 20-80 wt % nickel claim 5 , based on a total weight of the cBN microparticles.7. The method of claim 6 , wherein the composite has a higher fracture toughness than an otherwise identical composite sintered from cBN microparticles that do not have nickel.8. (canceled)9. The method of claim 1 , wherein the aluminum nitride nanoparticles have a longest linear dimension of 30-120 nm.10. The method of claim 1 , ...

Подробнее
16-04-2020 дата публикации

PREPARATION METHOD OF NANOMETRIC SIZE METAL OXIDE ADDITIVES THAT REDUCE THE TEMPERATURE OF SINTERIZED AND/OR INCREASE PRODUCTIVITY IN THE MANUFACTURE OF CERAMIC PARTS, IMPROVING MECHANICAL PROPERTIES WITHOUT AFFECTING THE GRESIFICATION PROPERTIES OF CERAMIC BODIES, TILES OR COATINGS

Номер: US20200115287A1
Принадлежит:

The object of this invention is a process for manufacturing, conditioning and stabilization of a family of base additives sodium, potassium, boron, silicon, zinc, calcium oxides, among others, prepared by physicochemical and chemical synthesis methods that form nanometric structures, reformulated with deflocculant, sequestrants and dispersants additives that allow to obtain a dispersion or powder capable to decrease the sintering temperature of a ceramic body due to the high fluxing power, which is maximized by the use of nanotechnology in the structures obtained. The process consists in the preparation of nucleation seeds of metal, silicates and carbonates oxides by means of a physicochemical process, and which allow nanometric structures to grow by means of a chemical process in a chemical synthesis process wet basis of sodium, boron, silicon, zinc, potassium and calcium oxides. The combination of these oxides allows structuring elements of high fluxing power due to their high surface area and physicochemical composition. The additives prepared in this invention are chemically stabilized with deflocculating agents, which allow the additives to be incorporated into the aqueous medium grinding process of the ceramic body. Applications made with the additives of this invention allow the sintering temperature of a red body to be reduced from 1150° C. to 1000° C. and in porcelain bodies from 1180° C. to 1050° C., with the use of 0.2 to 5% of the additive, or increasing the speed of the heat treatment by up to 20%, and it can be used in the manufacture of bathroom fittings, molding parts, components for tooling, coatings, valances, enamels, vitrified pastes and other ceramic components. The present invention proposes several nanostructured additive formulations with high performance fluxing properties, which allow to optimize and standardize the sintering process and to improve the mechanical properties of the ceramic body. It also proposes different methods of ...

Подробнее
01-09-2022 дата публикации

INFRARED SELECTIVE RADIATION COOLING NANO-FUNCTIONAL COMPOSITION AND PREPARATION METHOD THEREOF

Номер: US20220274882A1
Принадлежит: NANJING TECH UNIVERSITY

An infrared selective radiation cooling nano-functional composition and a preparation method thereof, wherein the composition is prepared from silica, a rare earth silicate compound and a molybdate compound according to a mass ratio of 1:(0.5-2):(0.5-2) by ball milling and uniform mixing, and the silica, the rare earth silicate compound and the molybdate compound have high infrared selective radiation performance at 8-10 μm, 9-12 μm and 10-14 μm. The rare earth silicate and molybdate compound are prepared by a sol-gel and a high-temperature solid phase process according to stoichiometric ratios SiO-(0.5-2)ReO-(0.1-1.0)NaO (Re═La, Sm, Eu, Gd, Tb, Dy, Er, Tm, Yb, Y or Sc) and RMoO(R═Mg, Ca, Sr or Ba). The infrared selective radiation cooling nano-functional composition prepares functional devices such as day and night double-effect radiation coolers to provide zero-energy cooling, energy saving and efficiency improvement functions for buildings, grain and oil stores, solar battery back plates and the like. 1. An infrared selective radiation cooling nano-functional composition , prepared from nano-silica , a rare earth silicate compound and a molybdate compound according to a mass ratio of 1:(0.5-2):(0.5-2) by ball milling and uniform mixing , wherein the rare earth silicate compound meets a stoichiometric ratio SiO-(0.5-2)ReO-(0.1-1.0)NaO and has high infrared selective radiation performance at 9-12 μm , and Re is La , Sm , Eu , Gd , Tb , Dy , Er , Tm , Yb , Y or Sc; the molybdate compound meets a stoichiometric ratio RMoOand has high infrared selective radiation performance at 10-14 μm , and R is Mg , Ca , Sr or Ba.2. The infrared selective radiation cooling nano-functional composition according to claim 1 , wherein the nano-functional composition has high selective absorption-radiation performance in an atmospheric window of 8-14 μm and is transparent to ultraviolet-visible-near infrared sunlight.3. A preparation method of the infrared selective radiation cooling ...

Подробнее
07-06-2018 дата публикации

METHOD OF MAKING AN ALUMINA-SILICATE OXYNITRIDE AND CUBIC BORON NITRIDE CERAMIC COMPOSITE

Номер: US20180155250A1

A method for producing a composite of cubic boron nitride dispersed in a SiAlON ceramic. This method involves mixing silicon nitride nanoparticles, aluminum nitride nanoparticles, silica nanoparticles, calcium oxide nanoparticles, and cubic boron nitride microparticles to produce a mixture. The cubic boron nitride may be coated with nickel. The mixture is sintered to produce the composite, and this sintering may involve spark plasma sintering and/or sintering at a relatively low temperature. The composite may comprise a mixture of Ca-α-SiAlON and β-SiAlON ceramic reinforced by boron nitride in either or both cubic and hexagonal phases. 1: A method for producing a composite of cubic boron nitride (cBN) dispersed in a SiAlON ceramic , the method comprising: silicon nitride nanoparticles,', 'aluminum nitride nanoparticles,', 'silica nanoparticles,', 'calcium oxide nanoparticles, and', 'cubic boron nitride (cBN) microparticles to produce a mixture, and, 'mixing'}sintering the mixture to produce the composite.2: The method of claim 1 , wherein the mixing involves sonication.3: The method of claim 1 , wherein the mixing involves ball milling.4: The method of claim 1 , wherein the cBN microparticles have a largest linear dimension of 10-50 μm and are present in the mixture at a weight percentage of 5-40 wt % claim 1 , relative to a total weight of the mixture.5: The method of claim 4 , wherein the mixture comprises nickel claim 4 , the nickel located on an exterior surface of the cBN microparticles.6: The method of claim 5 , wherein the cBN microparticles are coated with nickel and comprise 20-80 wt % nickel claim 5 , based on a total weight of the cBN microparticles.7: The method of claim 6 , wherein the composite has a higher fracture toughness than an otherwise identical composite sintered from cBN microparticles that do not have nickel.8: The method of claim 1 , wherein the silicon nitride nanoparticles comprise α-SiN.9: The method of claim 1 , wherein the aluminum ...

Подробнее
29-09-2022 дата публикации

METHOD FOR PREPARING BORON CARBIDE MATERIAL

Номер: US20220306543A1
Принадлежит:

A method for preparing a boron carbide material includes: providing raw materials of a boron material, a carbon material and a rare earth oxide, wherein an element molar ratio B:C of the boron material to the carbon material is in a range of 4:1 to 4:7, and the rare earth oxide is in an amount of 5 wt % or less based on a total weight of the raw materials, mixing and milling the raw materials to obtain a mixture, compressing the mixture into a tablet form by a tablet press, and sintering the compressed mixture by a laser, wherein the laser has a laser wavelength of 980 nm, a laser power in a range of 100 to 3000 W, and a laser irradiation time of 3 to 60 s. 1. A method for preparing a boron carbide material , comprising:providing raw materials of a boron material, a carbon material and a rare earth oxide, wherein an element molar ratio B:C of the boron material to the carbon material is in a range of 4:1 to 4:7, and the rare earth oxide is in an amount of 5 wt % or less based on a total weight of the raw materials,mixing and milling the raw materials to obtain a mixture,compressing the mixture into a tablet form by a tablet press, andsintering the compressed mixture by a laser, wherein the laser has a laser wavelength of 980 nm, a laser power in a range of 100 to 3000 W, and a laser irradiation time of 3 to 60 s.2. The method according to claim 1 , wherein the rare earth oxide comprises at least one of oxides of lanthanide elements claim 1 , scandium (Sc) and yttrium (Y).3. The method according to claim 1 , wherein the boron material comprises at least one of boric acid (HBO) claim 1 , and boron oxide (BO).4. The method according to claim 1 , wherein the carbon material comprises at least one of graphite claim 1 , sucrose claim 1 , glucose claim 1 , and graphene.5. The method according to claim 1 , wherein the milling is a high-energy ball milling.6. The method according to claim 5 , wherein a medium for the high-energy ball milling is one or more selected from ...

Подробнее
21-06-2018 дата публикации

Thermoelectric material and method for preparing the same

Номер: US20180175270A1

Provided herein are a thermoelectric material and a method for preparing the same, wherein the thermoelectric material has excellent thermoelectric performance and high mechanical properties (in particular, fracture toughness), and thus, when the thermoelectric material is applied to a thermoelectric module, the thermoelectric module has excellent performance and efficiency and a long lifespan.

Подробнее
02-10-2014 дата публикации

Transformation Enabled Nitride Magnets Absent Rare Earths and a Process of Making the Same

Номер: US20140290434A1
Автор: David Matthiesen
Принадлежит: CASE WESTERN RESERVE UNIVERSITY

A process for producing an ordered martensitic iron nitride powder that is suitable for use as a permanent magnetic material is provided. The process includes fabricating an iron alloy powder having a desired composition and uniformity; nitriding the iron alloy powder by contacting the material with a nitrogen source in a fluidized bed reactor to produce a nitride iron powder; transforming the nitride iron powder to a disordered martensitic phase; annealing the disordered martensitic phase to an ordered martensitic phase; and separating the ordered martensitic phase from the iron nitride powder to yield an ordered martensitic iron nitride powder.

Подробнее
18-06-2020 дата публикации

Electrolyte, battery, electronic apparatus, and methods for producing electrolyte and battery

Номер: US20200194830A1
Автор: Hitoshi Yamamoto
Принадлежит: Seiko Epson Corp

In the formula, 0.1≤x≤1.0, 0.0<y≤1.0, and A represents two or more types of Ta, Nb, and Sb.

Подробнее
17-08-2017 дата публикации

CUBIC BORON NITRIDE SINTERED BODY AND COATED CUBIC BORON NITRIDE SINTERED BODY

Номер: US20170233296A1
Автор: SHIRO KENTARO
Принадлежит:

A cubic boron nitride sintered body has between 50% and 75% cubic boron nitride by volume and between 25% and 50% binder phase by volume, and inevitable impurities. The binder phase contains an Al compound and a Zr compound. The Al compound contains Al and one or more of N, O and B; and the Zr compound contains Zr and one or more of C, N, O and B. At a polished surface of the cubic boron nitride sintered body, 40% or more of the Zr compounds satisfy the ratio 0.25≦n/N≦0.8, where: N represents the number of line segments drawn radially at equal intervals from a center of gravity of a given Zr compound to a boundary with a non-Zr compound; and n represents the number among those N line segments which intersect a boundary between the given Zr compound and cubic boron nitride. 1. A cubic boron nitride sintered body which comprises50% by volume or more and 75% by volume or less of a cubic boron nitride, and 25% by volume or more and 50% by volume or less of a binder phase and inevitable impurities, wherein,the binder phase contains an Al compound and a Zr compound,the Al compound contains an Al element, and at least one element selected from the group consisting of N, O and B,the Zr compound contains a Zr element, and at least one element selected from the group consisting of C, N, O and B, andat a polished surface of the cubic boron nitride sintered body,when a number of a plurality of line segments drawn radially at equal intervals from a center of gravity of the Zr compound to a boundary of the Zr compound and a portion of a composition other than the Zr compound is made N (provided that N is 8 or more),and among the line segments, at the boundary of the Zr compound and the portion of a composition other than the Zr compound, a number of the line segments contacting with the cubic boron nitride is made n,then a number of the Zr compound satisfying a relation of n/N being 0.25 or more and 0.8 or less is 40% or more based on a total number of the Zr compound.2. The ...

Подробнее
21-09-2017 дата публикации

Composite sintered body for cutting tool and cutting tool using the same

Номер: US20170267588A1
Автор: Dongkyun SHIN, Heesub PARK
Принадлежит: Iljin Diamond Co Ltd

Disclosed are a composite sintered body for a cutting tool and a cutting tool using the same. The composite sintered body for a cutting tool has enhanced heat conductivity and electrical conductivity to be strong against abrasion by heat and impact and to be capable of minimizing an influence on an edge during an Electrical Discharge Machine (EDM) operation.

Подробнее
27-08-2020 дата публикации

Method For Manufacturing Spherical Ceramic-Glass Nanocomposite Dielectrics For Multilayer Ceramic Capacitor Applications

Номер: US20200273620A1
Автор: Chunhu Tan, Zhigang Lin
Принадлежит: Aegis Technology Inc

Spherical ceramic-glass nanocomposite dielectrics made from ceramics and glasses that are separately pre-milled by mechanical ball milling using selected ball-to-powder weight ratios and combined to form a mixture that is ball milled. A stable liquid suspension of the milled mixture including an added dispersant such as polyacrylic acid to improve uniformity is spray dried through a nozzle and recovered product is annealed. The novel dielectrics have a microstructure where ceramic primary particles are uniformly distributed and fully embedded in a glass matrix. The dielectrics have a mean particle size of about 1-20 um and a sphericity of about 0.8 or higher which are suitable for fabricating multilayer ceramic capacitors for high temperature applications. The novel dielectrics afford decreased sintering temperature, enhanced breakdown strength, lower dielectric lose tangent, and lower costs. Calcium titanate zirconate with manganese-doping-based or barium titanate-based dielectric ceramics and alkali-free borosilicate glass produce superior nanocomposite dielectrics.

Подробнее
18-10-2018 дата публикации

Transformation enabled nitride magnets absent rare earths and a process of making the same

Номер: US20180301259A1
Автор: David Matthiesen
Принадлежит: CASE WESTERN RESERVE UNIVERSITY

A process for producing an ordered martensitic iron nitride powder that is suitable for use as a permanent magnetic material is provided. The process includes fabricating an iron alloy powder having a desired composition and uniformity; nitriding the iron alloy powder by contacting the material with a nitrogen source in a fluidized bed reactor to produce a nitride iron powder; transforming the nitride iron powder to a disordered martensitic phase; annealing the disordered martensitic phase to an ordered martensitic phase; and separating the ordered martensitic phase from the iron nitride powder to yield an ordered martensitic iron nitride powder.

Подробнее
18-10-2018 дата публикации

Lithium-garnet solid electrolyte composite, tape articles, and methods thereof

Номер: US20180301754A1

A composite ceramic including: a lithium garnet major phase; and a grain growth inhibitor minor phase, as defined herein. Also disclosed is a method of making composite ceramic, pellets and tapes thereof, a solid electrolyte, and an electrochemical device including the solid electrolyte, as defined herein.

Подробнее
03-11-2016 дата публикации

Insertion of elements within boron carbide

Номер: US20160318810A1
Принадлежит: US Department of Navy

A method and resulting composition made by: providing boron carbide and a dopant selected from silicon, aluminum, magnesium, and beryllium; and ball milling the boron carbide with the dopant until at least one out of fifteen of the boron and/or carbon atoms of the boron carbide are substituted with the dopant.

Подробнее
01-12-2016 дата публикации

Composite Tungsten Carbide Insert With Heterogeneous Composition And Structure And Manufacturing Method Thereof

Номер: US20160347669A1
Принадлежит: Shanghai Gogoal Industry Co., Ltd

A composite tungsten carbide insert (B, I) with heterogeneous composition and structure has a working part (W) and a non-working part (N). The working part (W) is made of a tungsten carbide material consisting of tungsten carbide powder and cobalt powder or nickel. The non-working part (N) is made of a low density tungsten carbide material consisting of titanium carbide powder, tungsten carbide powder, and cobalt powder or nickel powder. During pressing, the tungsten carbide material for the working part (W) and the low density tungsten carbide material for the non-working part (N) are weighed and added to a steel die successively for molding and then sintering. The non-working part (N) which accounts for most of the overall product volume has low density and less material consumption, and can greatly reduce the raw material costs of the product, significantly improving the performance-cost ratio of the insert (B, I). 1. A composite tungsten carbide insert with heterogeneous composition and structure , comprising:the insert consists of a working part and a non-working part;the working part is made of a tungsten carbide material consisting of uniformly mixed tungsten carbide powder (80-92%) and cobalt powder or nickel powder (8-20%) by weight, with a layer thickness of 5-30 mm;the non-working part is made of a low density tungsten carbide material consisting of 30-60% of titanium carbide powder (with a density of 4.93 g/cm3), 20-60% of tungsten carbide powder (with a density of 15.79 g/cm3), and 10-20% of cobalt powder or nickel powder (with a density of 8.9 g/cm3) by weight; andwherein during pressing, the tungsten carbide material for the working part is weighed and added to a steel die, then the low density tungsten carbide material for the non-working part is weighed and added to the die, a pressure is exerted on the two materials for molding, then the molded product is placed in a sintering furnace for sintering, and the resulting sintered product forms two ...

Подробнее
17-10-2017 дата публикации

코어쉘 구조를 갖는 저온소성용 무연압전 세라믹 및 그 제조 방법

Номер: KR101786056B1
Автор: 김승연
Принадлежит: 주식회사 레비스

낮은 소결온도에서도 우수한 압전특성을 나타내는 코어쉘 구조를 갖는 저온소성용 무연압전 세라믹 분말 및 그 제조 방법에 대하여 개시한다. 본 발명에 따른 코어쉘 구조를 갖는 저온소성용 무연압전 세라믹 제조 방법은 (a) (Na 1-x K x ) 0.5 Bi 0.5 TiO 3 (여기서, x는 0.1 ~ 0.3임)의 조성을 갖는 BNKT 분말을 합성하는 단계; (b) Bi(NO 3 ) 3 , NaNO 3 및 KNO 3 를 BNK(Bi 2 O 3 -0.78Na 2 O-0.22K 2 O)의 조성을 갖도록 칙량한 후, 산성용액을 첨가하고 교반하여 BNK 코팅 용액을 형성하는 단계; (c) 상기 BNKT 분말에 BNK 코팅 용액 및 바인더를 혼합하고 볼 밀링한 후, 건조 및 분쇄하는 단계; 및 (d) 상기 분쇄된 분말을 550 ~ 650℃에서 1 ~ 3시간 동안 하소하는 단계;를 포함하는 것을 특징으로 한다.

Подробнее
01-09-2014 дата публикации

Method for manufacturing refractory material using waste fire brick

Номер: KR101436523B1
Автор: 김동한
Принадлежит: (주)포스코켐텍

본 발명의 일측면은 종래의 내화벽돌 재생기술에 비하여 비용적 손실, 에너지 소비 및 환경오염을 방지할 수 있는 새로운 내화벽돌 재생기술을 제공하고자 한다. An aspect of the present invention is to provide a new refractory brick recovery technology that can prevent cost loss, energy consumption, and environmental pollution compared to the conventional refractory brick recovery technology.

Подробнее
11-08-2020 дата публикации

一种微波磁控管用陶瓷支持体及其制备方法

Номер: CN111517803A

本发明公开一种微波磁控管用陶瓷支持体及其制备方法,涉及金属化陶瓷加工技术领域。本发明公开的微波磁控管用陶瓷支持体,包括陶瓷基体和金属化层,其中陶瓷基体用碳化硅‑三唑硅烷‑氮化铝网状基体、高炉矿渣、分散剂和除泡剂等原料,经碳化硅‑三唑硅烷‑氮化铝网状覆膜基体的制备、混料、造粒和烧结等步骤而制成;金属化层原料包括钛粉、铜粉、黏土和粘结剂,并公开了用金属化层和陶瓷基体组成的陶瓷支持体的制备方法。本发明提供的微波磁控管用陶瓷支持体,具有高的致密度和抗拉强度,具有优异的抗拉强度、韧性、耐高温性能和热导性,并能降低原料成本,达到节能环保的目的。

Подробнее
15-01-2019 дата публикации

一种均相熔融石英坩埚的制备方法

Номер: CN106336208B
Автор: 麦浩

本发明公开了一种均相熔融石英坩埚的制备方法,包括步骤A:制备料浆:将SiO 2 粉体、氧化锆研磨球、去离子水以质量比1:2.6:0.4放置于球磨罐中进行初次球磨;研磨完毕后,在球磨罐中加入聚乙烯醇、乳酸、酒石酸、碳酸氢三钠继续研磨,研磨结束后,将过滤得到的料浆用去离子水定容,制成固含量为75‑80vol%的料浆,即为所需料浆;B:振动注浆成型;C:干燥:将步骤B中的生坯在室温空气中干燥;然后再将生坯放置于鼓风干燥箱进行干燥;D:烧成:将步骤C中干燥完毕的生坯在高温炉中以1200‑1300℃温度烧制成型,保温、即制成所需熔融石英坩埚。本发明提供的技术方案从制备浆料入手,严格控制每一项工艺的参数,以达到制备均相熔融石英坩埚的目的。

Подробнее
11-03-2015 дата публикации

一种高强度陶瓷结合剂及其制备方法

Номер: CN104400674A
Автор: 高杏祖
Принадлежит: CHANGSHU HAIYU GRINDING WHEEL Co Ltd

本发明公开了一种高强度陶瓷结合剂及其制备方法,该陶瓷结合剂由下列重量分数的物质组成:SiO 2 37~44份,B 2 O 3 26~38份,Al 2 O 3 23~28份,TiO 2 6~9份,Li 2 NO 3 5~10份,K 2 CO 3 15~22份,Zn1~7份,Sn2~6份。将所有原料在球磨机中充分混合,在加入水,球磨6~8h,然后静置3~4h,将水倒出,在95~105℃条件下烘干,再球磨、过筛制备得到陶瓷结合剂。本发明所制备的陶瓷结合剂具有耐火度低、强度高的特点。

Подробнее
14-04-2020 дата публикации

Sintering method in discharge plasma for making composite with metal matrix reinforced with single-wall carbon nanotubes, and composite material obtained by such method

Номер: RU2718723C1

FIELD: chemistry.SUBSTANCE: invention relates to production of complex material with metal matrix reinforced with single-walled carbon nanotubes. This method includes the following: (a) complex powder is obtained by grinding 99.9 vol. % of copper powder and 0.1 vol. % of powder of single-wall carbon nanotubes in a ball mill; and (b) producing complex material containing metal and carbon nanotubes by means of spark plasma sintering (IPA) of complex powder obtained at stage (a) at temperature of 600 °C and pressure of 600 MPa during 5 minutes.EFFECT: invention provides a denser microstructure with smaller content of single-wall carbon nanotubes, high hardness and wear resistance of parts made from said complex material.4 cl, 15 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 718 723 C1 (51) МПК C01B 32/178 (2017.01) C04B 35/52 (2006.01) C04B 35/64 (2006.01) C04B 35/626 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК C01B 32/178 (2020.02); C04B 35/52 (2020.02); C04B 35/64 (2020.02); C04B 35/626 (2020.02) (21)(22) Заявка: 2019111138, 24.08.2017 (24) Дата начала отсчета срока действия патента: 14.04.2020 Приоритет(ы): (30) Конвенционный приоритет: 22.09.2016 KR 10-2016-0121414 (45) Опубликовано: 14.04.2020 Бюл. № 11 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 15.04.2019 (86) Заявка PCT: (56) Список документов, цитированных в отчете о поиске: Badis Bendjemil и др. Single Walled Carbon Nanotubes Reinforced Intermetallic TiNi Matrix Nanocomposites by Spark Plasma Sintering, Chemical and Materials Engineering 3(3), 2015, стр.46-55. KR 20130028378 A, 19.03.2013. KR 20130108890 A, 07.10.2013. RU 2570691 C1, 10.12.2015. 2 7 1 8 7 2 3 Дата регистрации: (73) Патентообладатель(и): ПХУКХЁН НЭШНЛ ЮНИВЕРСИТИ ИНДАСТРИ-ЮНИВЕРСИТИ КООПЕРЕЙШН ФАУНДЕЙШН (KR) R U 24.08.2017 (72) Автор(ы): КВОН, Хан Сан (KR) 2 7 1 8 7 2 3 R U (87) Публикация заявки PCT: WO 2018/056595 (29.03.2018) Адрес для переписки: 101000, Москва ...

Подробнее
28-09-2016 дата публикации

A high-performance ferrite core material

Номер: CN105967671A

本发明公开了一种高性能铁氧体磁芯材料,由以下重量份的原料制备制成:氧化铁50‑55、氧化铜4‑5、氧化锌28‑32、氧化锰32‑35、氧化铱1.5‑1.8、氧化锆2.0‑2.4、藻酸并二醇酯0.3‑0.4、硅烷偶联剂kh5502‑2.4、硬脂酸丁酯0.4‑0.6、聚氧乙烯季戊四醇醚0.3‑0.5、烷基苯磺酸钙0.4‑0.5、石膏粉2‑2.5、聚酰胺树脂2‑2.5、硅酸钠2‑2.5、石蜡1‑1.4、硅溶胶1.3‑2、聚乙烯醇1.4‑2、尼龙纤维1.1‑1.4、磁性碳粉1.6‑2、纳米氧化镧1.3‑1.5、去离子水适量;本发明使用该方法制备的永磁材料,在高温使用过程中磁性能损耗较低,应用前景广。

Подробнее
05-08-2022 дата публикации

Thermoelectric material and method for manufacturing the same

Номер: KR102429486B1

본 발명은 열전재료 및 이의 제조방법에 관한 것으로, 상기 열전재료는 열전성능이 우수하고 기계적 특성(특히, 파괴인성)이 높기 때문에 이를 열전모듈에 적용할 경우, 성능 및 효율이 우수하면서도 장수명을 가지는 열전모듈을 제공할 수 있다. The present invention relates to a thermoelectric material and a method for manufacturing the same, wherein the thermoelectric material has excellent thermoelectric performance and high mechanical properties (especially fracture toughness). A thermoelectric module may be provided.

Подробнее
02-07-2020 дата публикации

Heteromodule ceramic composite material and method for production thereof

Номер: RU2725329C1

FIELD: chemistry.SUBSTANCE: invention relates to production of high-strength, wear-resistant ceramic materials (composites) based on refractory compounds and can be used for production of parts of tribo nodes, including those operating under conditions of high extreme temperatures. Hetero-module ceramic composite material based on zirconium diboride contains boron nitride, silicon carbide and additionally - carbon inclusions in the form of multilayer nanotubes or pyrolytic carbon particles; zirconium carbide, or titanium carbide, or titanium nitride and aluminium oxide nanoparticles, with the following ratio of components, wt. %: boron nitride 3–5; silicon carbide 8–10; carbon inclusions in form of multilayer nanotubes or pyrolytic carbon particles 3–5; zirconium carbide, or titanium carbide, or titanium nitride 35–40; aluminium oxide nanoparticles 0.05–0.1; zirconium diboride is the rest. In the process of preparation of powder charge components boron nitride powder is subjected to high-energy mechanical activation. Powders were mixed in argon media, the preform is moulded and sintered under pressure of 20–25 MPa at temperature of 1800–2050 °C with an isothermal soaking for 10–45 minutes.EFFECT: technical result of the invention is obtaining a ceramic composite with high strength and wear resistance characteristics.7 cl, 5 ex РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 725 329 C1 (51) МПК C04B 35/58 (2006.01) C04B 35/645 (2006.01) B82Y 40/00 (2011.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК C04B 35/58078 (2020.02); C04B 35/58014 (2020.02); C04B 35/5611 (2020.02); C04B 35/5622 (2020.02); C04B 35/62615 (2020.02); C04B 35/645 (2020.02); B82Y 40/00 (2020.02) (21)(22) Заявка: 2019134290, 25.10.2019 25.10.2019 Дата регистрации: 02.07.2020 (45) Опубликовано: 02.07.2020 Бюл. № 19 2 7 2 5 3 2 9 R U (56) Список документов, цитированных в отчете о поиске: US 4668643 A, 26.05.1987. RU 2588079 C1, 27.06.2016. RU 2618567 С1, ...

Подробнее
21-03-2022 дата публикации

Cubic boron nitride sintered compact and manufacturing method thereof

Номер: KR20220035124A

입방정 질화붕소 소결체는, 20 체적% 이상 80 체적% 미만의 입방정 질화붕소 입자와, 20 체적% 초과 80 체적% 이하의 결합상을 구비하는 입방정 질화붕소 소결체로서, 결합상은, 주기율표의 제4족 원소, 제5족 원소, 제6족 원소 및 알루미늄으로 이루어지는 군에서 선택되는 적어도 1종의 원소와, 질소, 탄소, 붕소 및 산소로 이루어지는 군에서 선택되는 적어도 1종의 원소를 포함하는 화합물, 및 상기 화합물 유래의 고용체로 이루어지는 군에서 선택되는 적어도 1종을 포함하고, TEM-EDX를 이용하여 입방정 질화붕소 입자와 결합상의 계면에 수직인 방향으로, 입방정 질화붕소 입자로부터 결합상에 걸쳐 탄소 함유량을 측정한 경우, 결합상의 탄소 함유량의 평균값보다 탄소 함유량이 큰 제1 영역이 존재하고, 제1 영역 내에 상기 계면이 존재하고, 또한 제1 영역의 길이는 0.1 ㎚ 이상 10 ㎚ 이하이다.

Подробнее
12-03-2007 дата публикации

Chemomechanical production of functional colloids

Номер: KR100693970B1
Принадлежит: 뷜러 파르텍 게엠베하

본 발명은 개질제의 존재하에서 입자를 분산제 중에서 기계적 방식으로 단편화하여 개질제가 단편화된 콜로이드 입자에 적어도 부분적으로 화학 결합되도록 하는, 관능성 콜로이드의 제조 방법에 관한 것이다. The present invention relates to a process for preparing functional colloids in which the particles are mechanically fragmented in the dispersant in the presence of the modifier such that the modifier is at least partially chemically bonded to the fragmented colloidal particles. 관능성 콜로이드, 화학기계적 제조, 반응성 분쇄, 개질제, 분산제 Functional Colloids, Chemical Mechanical Manufacturing, Reactive Grinding, Modifiers, Dispersants

Подробнее
17-10-2017 дата публикации

Lead-free piezoelectric seramic for low temperature firing having core-shell structure and method of manufacturing the same

Номер: KR101786056B9
Автор: [UNK]
Принадлежит: [UNK]

Подробнее
27-01-2009 дата публикации

Anisotropic thermal and electrical applications of composites of ceramics and carbon nanotubes

Номер: US7481267B2
Принадлежит: UNIVERSITY OF CALIFORNIA

Ceramic materials are converted to materials with anisotropic thermal properties, electrical properties, or both, by forming the ceramics into composites with carbon nanotubes dispersed therein and uniaxially compressing the composites in a direction in which a lower thermal or electrical conductivity is desired.

Подробнее
20-12-2005 дата публикации

Anisotropic thermal applications of composites of ceramics and carbon nanotubes

Номер: US6976532B2
Принадлежит: UNIVERSITY OF CALIFORNIA

Ceramic materials are converted to materials with anisotropic thermal properties by forming the ceramics into composites with carbon nanotubes dispersed therein and uniaxially compressing the composites in a direction in which a lower thermal conductivity is desired.

Подробнее
29-12-2022 дата публикации

Textured lead-free piezoelectric ceramic composition and preparation method of the same

Номер: KR20220169975A
Принадлежит: 고려대학교 산학협력단

본 발명은 (Na,K)(Nb,Sb)O 3 -SrZrO 3 및 NaNbO 3 시드입자를 포함하고 입자의 결정방향이 <001> 방향으로 배향하는 것을 특징으로 하는 배향 무연 압전 세라믹 조성물 및 이의 제조방법에 관한 것이다.

Подробнее
20-09-2010 дата публикации

Method of making non-shrinking structural ceramic article

Номер: RU2399601C2

FIELD: chemistry. SUBSTANCE: invention can be used to make articles from high-strength, non-shrinking ceramic materials working in high thermal-cycle loads in an oxidative, corrosive and aggressive atmosphere, and particularly in power generation installations. The starting material undergoes screening and deep cleaning. A mixture is prepared from components in the following ratio in mol %: boron nitride 12.5-17.5, aluminium 37-43, silicon carbide 42.5-46 and the mixture is mechanically activated. Primary workpieces are moulded from the mixture, dried and vacuum sintering is carried out at temperature between 1150 and 1250°C with residual pressure of 0.05 atm. The sintered workpieces are ground up and mechanically activated, after which articles are moulded and then vacuum sintered in conditions given above, mechanically processed, nitrogen hardened and oxidised. EFFECT: stable and good properties of material along with low shrinkage. 5 cl, 3 ex, 1 tbl РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 2 399 601 (13) C2 (51) МПК C04B 35/569 (2006.01) C04B 35/582 (2006.01) C04B 35/65 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (21), (22) Заявка: 2008145313/03, 19.11.2008 (24) Дата начала отсчета срока действия патента: 19.11.2008 (43) Дата публикации заявки: 27.05.2010 2 3 9 9 6 0 1 R U (54) СПОСОБ ПОЛУЧЕНИЯ БЕЗУСАДОЧНОГО КОНСТРУКЦИОННОГО КЕРАМИЧЕСКОГО ИЗДЕЛИЯ (57) Реферат: Изобретение относится к области химии, энергетики и технологии производства изделий из конструкционных материалов на основе нитрида бора, алюминия и карбида кремния и может быть использовано для изготовления изделий из высокопрочных, безусадочных керамических материалов, работающих в условиях высоких термоциклических нагрузок в окислительной, коррозионной и агрессивной атмосфере, в частности в энергетических установках. Исходное сырье подвергают рассеву и глубокой очистке, готовят шихту из компонентов в следующем соотношении, мол.%: ...

Подробнее
01-06-1998 дата публикации

Magnesia zirconia tib2 composite material and its manufacturing method

Номер: KR0140419B1
Автор: 박동수
Принадлежит: 서상기, 한국기계연구원

본 발명은 방전가공이 가능한 전기전도성 마그네시아 부분안정화 지르코니아 - 이붕화티탄 복합소재및 제조방법에 관한 것으로, 특히 마그네시아 부분안정화 지르코니아(Mg-PSZ)를 기지로 하여 25중량% ~ 40중량%의 이붕화티탄(TiB 2 )을 혼합시킨 것을 특징으로 하는 방전가공이 가능한 전기전도성 마그네시아 부분안정화 지르코니아 - 이붕화티탄 복합소재와, 마그네시아 부분안정화 지르코니아(Mg-PSZ)와 이붕화 티탄(TiB 2 )을 정량하여 아세톤을 매체로 하여 70 ~ 75시간동안 볼밀(BaLL Mill)로 혼합·건조하여 혼합 분말을 만든 다음 금형에서 10㎫로 1차 성형하고, 다시 250㎫ 의 압력으로 2차 성형하여 성형체를 만드는 단계와, 상기 성형체를 비활성 가스분위기 1기압 하에서 1800 ~ 1900℃의 소결 온도로 소결 후 800℃ 까지 10℃/min 미만으로 서냉시키는 소결체 제작단계와, 상기 소결체를 비활성 가스분위기 1기압 하에서 1100 ~ 1400℃의 온도범위로 0.5 ~ 12시간동안 행해지는 에이징 열처리(Aging)단계로 구성되는 것을 특징으로 하는 방전가공이 가능한 전기전도성 마그네시아 부분 안정화 지르코니아 - 이붕화 티탄 복합소재의 제조방법에 관한 것이다. The present invention relates to an electrically conductive magnesia partially stabilized zirconia-titanium diboride composite material and a method for manufacturing the discharge process, in particular, 25 wt% to 40 wt% diboride based on magnesia partially stabilized zirconia (Mg-PSZ). Electrically conductive magnesia partially stabilized zirconia-titanium diboride composite material capable of discharging, characterized by mixing titanium (TiB 2 ), magnesia partially stabilized zirconia (Mg-PSZ) and titanium diboride (TiB 2 ) Acetone is used as a medium for 70 to 75 hours by mixing and drying with a ball mill (BaLL Mill) to form a mixed powder, and then primary molding at 10 MPa in a mold, and second molding at 250 MPa to form a molded body, and Sintering the molded body by sintering at a sintering temperature of 1800 ~ 1900 ℃ under 1 atmosphere of inert gas atmosphere to slow cooling to less than 10 ℃ / min to 800 ℃ Electrically conductive magnesia partially stabilized zirconia, characterized in that the sintered body is composed of an aging heat treatment (Aging) step is carried out for 0.5 to 12 hours in the temperature range of 1100 ~ 1400 ℃ under 1 atmosphere of inert gas atmosphere. It relates to a method for producing a titanium diboride composite material.

Подробнее
27-06-2012 дата публикации

Manufacturing method of zirconium diboride-silicon carbide composite

Номер: KR101160140B1
Принадлежит: 한국세라믹기술원

본 발명은, ZrO 2 , SiO 2 , B 4 C 및 C의 원료분말을 원하는 조성의 ZrB 2 -SiC 복합소재가 되도록 칭량하고, 원료분말을 혼합하여 분쇄하는 단계와, 분쇄된 혼합 분말을 몰드에 충진하고 상기 몰드를 고온가압소결로에 장입하는 단계와, 상기 고온가압소결로의 온도를 목표하는 제1 열처리 온도로 상승시키고, 비산화 가스 분위기로 제1 열처리 온도에서 소결하는 단계와, 인-시추 공정으로 상기 고온가압소결로의 온도를 상기 제1 열처리 온도보다 높은 제2 열처리 온도로 상승시키는 단계 및 상기 제2 열처리 온도에서 비산화 가스 분위기에서 가압하면서 열처리하여 치밀화하는 단계를 포함하는 지르코늄디보라이드-실리콘카바이드 복합소재의 제조방법에 관한 것이다. 본 발명에 의하면, 열차폐재로 사용될 수 있고, 공정이 간단하여 대량 생산에 유리하며, 비중이 작은 가벼운 다공체 형태로 제조할 수 있으면서도, 인-시추(In-situ) 치밀화 공정을 통해 기공을 가지면서도 기계적 강도가 유지될 수 있다. The present invention comprises the steps of weighing ZrO 2 , SiO 2 , B 4 C and C raw powder to a ZrB 2 -SiC composite material having a desired composition, mixing and grinding the raw powder, and pulverizing the mixed powder into a mold. Filling and charging the mold to a hot press sintering furnace, raising the temperature of the hot press sintering furnace to a target first heat treatment temperature, sintering at a first heat treatment temperature in a non-oxidizing gas atmosphere, and Zirconium divo comprising the step of raising the temperature of the high-temperature pressurizing furnace to a second heat treatment temperature higher than the first heat treatment temperature by a drilling process and performing heat treatment while pressurizing in a non-oxidizing gas atmosphere at the second heat treatment temperature. The present invention relates to a method for preparing a ride-silicon carbide composite material. According to the present invention, it can be used as a heat shield, and the process is simple, which is advantageous for mass production, and can be manufactured in the form of a light porous body having a small specific gravity, while having pores through an in-situ densification process. Mechanical strength can be maintained. 열차폐재, 지르코늄디보라이드(zirconium diboride), 실리콘카바이드(silicon carbide), 복합소재, 치밀화(densification), 소결(sintering) Thermal barrier materials, zirconium diboride, silicon carbide, composites, densification, sintering

Подробнее
20-04-2018 дата публикации

A kind of ceramic material with special micro-structure and preparation method thereof

Номер: CN107935572A
Принадлежит: Dalian University of Technology

一种具有特殊微结构的陶瓷材料及其制备方法,属于新材料制备技术领域。陶瓷材料为大尺寸氧化铝‑氧化锆共晶陶瓷,包括Al 2 O 3 、Y 2 O 3 和ZrO 2 ,按摩尔含量计,Al 2 O 3 为59%~63%,Y 2 O 3 为4.5%~8.5%,ZrO 2 为32.5%~36.5%。制备方法为:1)陶瓷粉体混合;2)烧结成体;3)熔凝、坩埚下降法定向凝固及退火处理;4)二次加热至半固态相区温度进行保温熟化处理等。本发明充分利用Al 2 O 3 /ZrO 2 (Y 2 O 3 )体系的凝固特征,使得制备的陶瓷具有大尺寸、缺陷少、常温和高温力学性能突出、易加工、成品率高等优点,能够解决大体积氧化铝‑氧化锆共晶陶瓷在制备过程中发生成分过冷而引起生长缺陷多、共晶质量差的问题。

Подробнее
15-02-2017 дата публикации

Silicon nitride based charge and method for production of articles thereof

Номер: RU2610744C1

FIELD: chemisty. SUBSTANCE: invention refers to the field of production of articles of silicon nitride based high-temperature construction materials which may be used in engine production, mechanical engineering and other high-technology industrial branches, in particular in manufacture of complex geometry parts requiring mechanical treatment, e.g., ceramic ball bearings. Silicon nitride based charge contains 10-15% wt% sintering additives and technological connective with sintering additives containing fraction of nanodispersive powders at the level 40-60%. Nanodispersive powders with specific surface of 30-50 m 2 /g are produced by methods of heterophase precipitation or co-precipitation. A method for production of articles using above silicon nitride based charge includes grinding of silicon nitride powders and sintering additive powders in planetary-type mill, introduction of technological connective (PVAL), pressing of blank and sintering under nitrogen pressure. The pressed blank is subject preliminarily to mechanical treatment using hard-alloy tools, then technological connective is removed in the air at temperatures of 500-1100°C, then sintering is carried out in vacuum with heating up to a temperature of 1600°C and after that in nitrogen medium under pressure of 3-4 MPa and temperature of 1800-1850°C. The final mechanical treatment is performed using suspensions based on super-hard abrasive materials. EFFECT: production of ceramics with porosity max 0,1%, strength min 800 MPa and simplified technology for manufacture of complex geometry articles. 4 cl, 2 ex, 4 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 610 744 C1 (51) МПК C04B 35/593 (2006.01) B82Y 40/00 (2011.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ФОРМУЛА (21)(22) Заявка: ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 2015155127, 22.12.2015 (24) Дата начала отсчета срока действия патента: 22.12.2015 Дата регистрации: (73) Патентообладатель(и): Открытое акционерное общество "Композит" ( ...

Подробнее
17-04-2019 дата публикации

Method of obtaining transparent ceramics of yttrium-aluminum garnet

Номер: RU2685305C1

Изобретение относится к нанотехнологиям, а именно к способам получения новых прозрачных консолидированных функциональных материалов (керамик) с высокими механическими характеристиками для фотоники и лазерной техники. Способ получения прозрачной керамики иттрий-алюминиевого граната (ИАГ) включает получение нанопорошка ИАГ с его сушкой и последующим искровым плазменным спеканием при внешнем давлении, при этом путем совместного высокоэнергетического помола в этаноле исходных порошков оксидов YO, NdOи AlOформируют слабоагрегированную порошковую систему стехиометрии ИАГ с соотношением средних размеров частиц YO, NdO:AlO1:2,5-1:6 в диапазоне 50-500 нм, сушку ведут при температуре 60-80°С в течение 24-48 ч с последующей грануляцией порошка через сито с эффективным размером ячеек 75 мкм и с последующим отжигом в атмосфере воздуха при 600-800°С в течение 2-4 ч, после чего полученный материал нагревают при внешнем давлении 30 МПа со скоростью 100°С/мин до 1000°С, а затем со скоростью 30°С/мин до 1350°С и выдерживают при этой температуре и давлении 5-10 мин, кроме того, полученный образец отжигают в воздушной атмосфере в течение 1 ч при 900°С со скоростью нагрева и охлаждения - 200°С/ч и 400°С/ч, соответственно. Отжиг порошковой системы стехиометрии ИАГ осуществляют со скоростью нагрева и охлаждения 2,5°С/мин. Изобретение позволяет получить монофазную прозрачную керамику ИАГ:Nd (≤ 4 ат.%), имеющую средний размер зерна 500-700 нм, микротвердость 14-15 ГПа и коэффициент линейного оптического пропускания 70-75% в видимом диапазоне длин волн. 1 з.п. ф-лы, 2 ил., 1 табл. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 685 305 C1 (51) МПК C04B 35/101 (2006.01) C04B 35/44 (2006.01) C04B 35/626 (2006.01) C04B 35/645 (2006.01) C30B 29/28 (2006.01) H01S 3/16 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ B82B 3/00 (2006.01) B82Y 20/00 (2011.01) B82Y 40/00 (2011.01) (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК (21) (22) Заявка: 2018119380, 28.05.2018 28.05.2018 Дата регистрации: ...

Подробнее
27-05-2010 дата публикации

NON-SHADOW CONSTRUCTION CERAMIC MATERIAL FOR POWER PLANTS AND METHOD FOR PRODUCING IT

Номер: RU2008145313A

1. Безусадочный конструкционный керамический материал для энергетических установок на основе нитрида бора и алюминия, отличающийся тем, что в его состав включен карбид кремния в следующей концентрации (мол.%) к ингредиентам: ! нитрид бора 12,5-17,5 алюминий 37-43 карбид кремния 42,5-46 ! 2. Способ получения безусадочного конструкционного керамического материала по п.1, заключающийся в предварительном рассеве исходного сырья, подготовке из него шихты, из которой формируют первичные заготовки, которые последовательно подвергают сушке, механической обработке и окислению, отличающийся тем, что после рассева осуществляют глубокую очистку исходного сырья, перед формовкой первичных заготовок проводят механическую активацию шихты, а после сушки первичных заготовок проводят их вакуумное спекание в интервале температур от 1150 до 1250°С с остаточным давлением 0,05 атм., последующую сушку заготовок и их высокотемпературный обжиг. ! 3. Способ по п.2, отличающийся тем, что механическую активацию проводят в планетарных мельницах. ! 4. Способ по п.3 отличающийся тем, что механическую активацию проводят с ускорением не менее 8 g. ! 5. Способ по п.2, отличающийся тем, что вакуумное спекание проводят в течение не менее 1 ч со скоростью подъема температуры 7-10°С в минуту. ! 6. Способ по п.2, отличающийся тем, что высокотемпературный обжиг проводят в низкоградиентных печах с градиентом температуры на 10 см ниже 1°С с продолжительностью не менее 100 ч при температуре 1200-1300°С на воздухе. (19) РОССИЙСКАЯ ФЕДЕРАЦИЯ RU (11) 2008 145 313 (13) A (51) МПК C04B 35/582 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21), (22) Заявка: 2008145313/03, 19.11.2008 R U (57) Формула изобретения 1. Безусадочный конструкционный керамический материал для энергетических установок на основе нитрида бора и алюминия, отличающийся тем, что в его состав включен карбид кремния в следующей концентрации (мол.%) к ингредиентам: нитрид бора ...

Подробнее
20-07-1995 дата публикации

Manufacturing method of high purity ultra fine alumina

Номер: KR950017837A
Автор: 김효중, 서태수, 이종만
Принадлежит: 강박광, 재단법인한국화학연구소

본발명은 고순도 초미립 알루미나의 제조방법에 관한 것으로서, 더욱 상세하게는 나트륨 성분을 함유한 수산화알루미늄에 규석분을 첨가하여 소성하고 소성물중 나트륨 흡착 규석분을 체분리하고 염산수용액 분위기 하에서 세정분쇄함으로써 알루미나중 나트륨 성분의 함량이 적고 순도가 높아서 내연기관의 점화전 등의 전자부품의 절연재료의 원료로 사용되는 고순도 초미립 알루미나의 제조 방법에 관한 것이다.

Подробнее
15-07-2022 дата публикации

Modified Ni-Ti-Ta dielectric material for multilayer ceramic capacitor and low-temperature preparation method thereof

Номер: CN114751743A

本发明属于电子陶瓷及其制造领域,具体为一种多层陶瓷电容器用改性Ni‑Ti‑Ta介质材料及其低温制备方法,是利用Cu 2+ 离子以及(Al 1/ 2 Nb 1/2 ) 4+ 离子分别与Ni及Ti元素半径相近,的特点,在Ni 0.5 Ti 0.5 TaO 4 基料中引入复合离子Cu 2+ 、Al 3+ 以及Nb 5+ 离子进行部分取代,显著降低烧结温度的同时提供‑220±30ppm/℃的负介电常数温度系数,并减少由于助烧剂带来的损耗恶化因素,制备出具有低损耗、低成本且具有良好工艺稳定性的应用于射频MLCC的介质材料。

Подробнее
13-10-2017 дата публикации

Carborundum injection forming sintering method

Номер: CN107244920A

本发明公开了一种碳化硅注浆成型烧结方法,所述方法采用碱洗的方式对碳化硅粉体进行改性,并加入CMC作为分散剂,Al 2 O 3 和Y 2 O 3 (摩尔比3:2)作为烧结助剂制作碳化硅注浆成型浆料,注浆成型并烧结,对烧结完成的碳化硅试件进行形貌表征,得出如下结论:1、6wt%烧结助剂碳化硅在1200℃、1400℃、1800℃烧结,1800℃下碳化硅的二次重排效果最好,缝隙与气孔率也最小,烧结效果最好。2、烧结温度为1800℃时,烧结助剂含量分别为8wt%和10wt%时,10wt%烧结助剂的碳化硅试件穿晶断裂的情况减少,表面更加平整。

Подробнее
27-03-2020 дата публикации

Preparation method of fused quartz crucible for high-performance polycrystalline silicon ingot casting

Номер: CN110922175A

一种高性能多晶硅铸锭用熔融石英坩埚的制备方法,使用了一定比例的整形砂作为骨料,降低了料浆水分和浆砂比,调整了骨料配方里粗、中端的占比,实现了体密的明显提升,也提升了抗折强度,同时减少了析晶比例和增加了坩埚的高温蠕变性。本发明技术方案实现了体密2%~8%的提升,抗折强度提升4%~15%,在铸锭端的具体表现包括缩短铸锭时间2~7小时/炉,极大地提升了生产效率。以此同时,坩埚的抗热震稳定性和高温低蠕变性得到保障,坩埚的安全性得到明显提升。

Подробнее
20-05-2010 дата публикации

Gallium oxide/zinc oxide sputtering target, method of forming transparent electro-conductive film and transparent electro-conductive film

Номер: RU2389824C2
Автор: Кодзо ОСАДА

FIELD: metallurgy. ^ SUBSTANCE: high density gallium oxide-zinc oxide sintered sputtering target for forming transparent electro-conductive film contains 20 mln-1 by weight or more of each of oxides of zirconium and oxide of aluminium, at that common contents are less than 250 mln-1, also value of volume resistance of target is 3.0 mOhm cy or less. Transparent electro-conductive film is formed on glass substrate by means of sputtering with implementation of gallium oxide-zinc oxide target. Film contains zirconium oxide and aluminium oxide, amount of each is 20 mln-1 by weight or more, while common contents are less, than 250 mln-1. Method of forming transparent electro-conductive film includes sputtering with implementation of gallium oxide-zinc oxide target. ^ EFFECT: production of transparent electro-conductive film capable to maintain preferable coefficient of transmission in optic region and electric conductivity. ^ 7 cl, 1 tbl, 10 ex РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 2 389 824 (13) C2 (51) МПК C23C 14/34 C04B 35/01 (2006.01) (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (21), (22) Заявка: 2008122925/02, 17.11.2006 (24) Дата начала отсчета срока действия патента: 17.11.2006 (73) Патентообладатель(и): НИППОН МАЙНИНГ ЭНД МЕТАЛЗ КО., ЛТД. (JP) (43) Дата публикации заявки: 20.12.2009 2 3 8 9 8 2 4 (45) Опубликовано: 20.05.2010 Бюл. № 14 (56) Список документов, цитированных в отчете о поиске: JP 2000-195101 А, 14.07.2000. RU 2039846 C1, 20.07.1995. RU 2019576 C1, 15.09.1994. JP 10306367 А, 17.11.1998. JP 2005-219982 A, 18.08.2005. 2 3 8 9 8 2 4 R U (86) Заявка PCT: JP 2006/322944 (17.11.2006) C 2 C 2 (85) Дата перевода заявки PCT на национальную фазу: 06.06.2008 (87) Публикация PCT: WO 2007/066490 (14.06.2007) Адрес для переписки: 129090, Москва, ул.Б.Спасская, 25, стр.3, ООО "Юридическая фирма Городисский и Партнеры", А.В.Мицу (54) ГАЛЛИЙОКСИД/ЦИНКОКСИДНАЯ РАСПЫЛЯЕМАЯ МИШЕНЬ, СПОСОБ ...

Подробнее
24-12-2009 дата публикации

JNT-based piezoceramic and its manufacturing method

Номер: KR100933718B1
Автор: 어순철, 윤만순, 이영근
Принадлежит: 충주대학교 산학협력단

본 발명은 BNBT계 압전세라믹스와 그 제조방법에 관한 것이다. 본 발명의 BNBT계 압전세라믹스는, (Bi 0.5 Na 0.5 ) 0.94 Ba 0.06 TiO 3 에 CaO 및 MnO가 첨가되어 형성된 것을 특징으로 한다. The present invention relates to a BNBT piezoceramic and a method of manufacturing the same. The BNBT piezoceramic of the present invention is characterized by being formed by adding CaO and MnO to (Bi 0.5 Na 0.5 ) 0.94 Ba 0.06 TiO 3 . 본 발명에 의한 BNBT계 압전세라믹스는 납이 함유되지 않은 친환경 압전소재인 BNBT계 압전세라믹스에 CaO와 MnO를 동시 첨가함으로써, BNBT계 압전세라믹스의 유전상수(d 33 ), 전기기계결합계수(k p ) 및 비유전율(K 33 T ) 등의 특성뿐만 아니라 소결밀도, 기계적품질계수(Q m ) 및 강유전체상의 안정도 등의 특성을 향상된다. 또한, 본 발명의 BNBT계 압전세라믹스는 CaO 및 MnO의 첨가비율을 조절함으로써 적용 분야의 목적에 맞도록 상기 특성들이 조절된 다양한 특성의 BNBT계 압전세라믹스를 제조할 수 있다. BNBT piezoelectric ceramics according to the present invention by adding CaO and MnO simultaneously to the BNBT piezoceramic material, which is an environmentally friendly piezoelectric material containing no lead, the dielectric constant of the BNBT piezoelectric ceramics (d 33 ), electromechanical coupling coefficient (k p ) And properties such as sintered density, mechanical quality factor (Q m ), and stability of ferroelectric phase, as well as properties such as the dielectric constant (K 33 T ) and the like. In addition, the BNBT-based piezoceramic of the present invention can produce a BNBT-based piezoceramic having various properties in which the above properties are adjusted to suit the purpose of the application by adjusting the addition ratio of CaO and MnO. BNBT 압전세라믹스, 페로브스카이트, CaO, MnO BNBT Piezoceramic, Perovskite, CaO, MnO

Подробнее
25-01-1996 дата публикации

Magnesia powder and preparation method thereof

Номер: KR960000772A

MgO 함유량이 적어도 90중량%, 비표면적이 5㎡/g 이하, 평균 입경이 50μm 이하이고 학진법 4(마그네시아 클링커의 소화성 시험방법)에 의한 중량 증가율이 2.0중량% 이하인 마그네시아 분말. 이 마그네시아 분말은 MgO 함유량이 적어도 98중량%, 비표면적이 5㎡/g 이하, 그리고 평균 입경이 50μm 이하인 마그네시아 원료 분말과 유기 규소 화합물의 혼합물을 준비하고, 이 혼합물을 350∼600℃의 범위의 온도에서 가열함으로써 제조된다.

Подробнее
12-04-2018 дата публикации

Method for base materials of ceramic bead using mechano-chemical milling and beads using the same

Номер: KR101848349B1
Принадлежит: 주식회사 쎄노텍

본 발명은 나노급의 입자 분포와 균질의 성분 균일도를 갖는 세라믹 비드 분체를 위하여 지르코니아 전구체 및 세리아 전구체 원료를 조합하여 기계-화학적 밀링 공정으로 원료를 혼합하고 합성을 유도하는 제조방법에 관한 것이다.

Подробнее
22-03-2017 дата публикации

Method for preparing micro-nano zirconia/ aluminium oxide composite material

Номер: CN106518028A
Принадлежит: NANCHANG HANGKONG UNIVERSITY

本发明公开了一种制备微纳米氧化锆/氧化铝复合材料的方法。在该方法中,首先称取适量3mol%Y 2 O 3 稳定的ZrO 2 粉体,将ZrO 2 粉体经特定球形模具冷等静压成型,然后常规烧结ZrO 2 球至半熟状态。再称取适量的Al 2 O 3 粉体,将ZrO 2 球与Al 2 O 3 粉体混合球磨,干燥后,可以得到微纳米ZrO 2 /Al 2 O 3 复合粉体。将复合粉体进行造粒、干压成型、冷等静压成型、排塑等工艺后烧结成型,最后可以得到如图1所示的ZrO 2 /Al 2 O 3 复合材料。本发明的复合粉体分散均匀,ZrO 2 晶粒尺寸较小,操作简单,重复性好,绿色环保,且未使用任何表面活性剂或溶剂。

Подробнее
17-08-2021 дата публикации

Method for manufacturing spherical ceramic-glass nanocomposite dielectrics for multilayer ceramic capacitor applications

Номер: US11094463B2
Автор: Chunhu Tan, Zhigang Lin
Принадлежит: Aegis Technology Inc

Spherical ceramic-glass nanocomposite dielectrics made from ceramics and glasses that are separately pre-milled by mechanical ball milling using selected ball-to-powder weight ratios and combined to form a mixture that is ball milled. A stable liquid suspension of the milled mixture including an added dispersant such as polyacrylic acid to improve uniformity is spray dried through a nozzle and recovered product is annealed. The novel dielectrics have a microstructure where ceramic primary particles are uniformly distributed and fully embedded in a glass matrix. The dielectrics have a mean particle size of about 1-20 um and a sphericity of about 0.8 or higher which are suitable for fabricating multilayer ceramic capacitors for high temperature applications. The novel dielectrics afford decreased sintering temperature, enhanced breakdown strength, lower dielectric lose tangent, and lower costs. Calcium titanate zirconate with manganese-doping-based or barium titanate-based dielectric ceramics and alkali-free borosilicate glass produce superior nanocomposite dielectrics.

Подробнее
24-09-2019 дата публикации

A kind of Zinc-oxide piezoresistor and porcelain powder with positive temperature coefficient

Номер: CN110272274A
Автор: 王建文

本发明涉及电阻领域,尤其涉及一种具有正温度系数的氧化锌压敏电阻以及瓷粉。配方是一种宽梯度范围(150~320V/mm)的氧化锌压敏电阻专用瓷粉配方,组份及含量包括ZnO 88~98mol%、Bi 2 O 3 0.2~16.0mol%、Sb 2 O 3 0.1~10.0mol%、Co 3 O 4 0.2~6.0mol%、Ni 2 O 3 0.1~4.0mol%、MnCO 3 0.1~5.0mol%、B 2 O 3 0.1~10.0mol%.材料制备方法依次包括:“添加物预磨、与主料混料、细磨、喷雾干燥”得到瓷粉。瓷粉再经过“干压成型、排塑、烧结、被银、焊接、包封”制成压敏电阻器件。

Подробнее
28-12-2018 дата публикации

A kind of method that liquid phase auxiliary combustion is synthetically prepared high purity silicon nitride silicon powder

Номер: CN109095443A

本发明公开了属于无机非金属粉末制备技术领域的一种液相辅助燃烧合成高纯氮化硅粉体的方法。本发明的具体步骤为:将硅粉与氮化硅稀释剂按比例混合,将混合料球磨使其混合均匀,然后烘干得到原料粉体;将原料粉体与酒精混匀,布料于燃烧合成反应装置中,在特定压力下诱发反应,得到高纯氮化硅粉体。本发明的合成工艺中不使用任何额外添加剂,具有无污染、无毒害的特点,所合成的氮化硅粉体结晶性好、纯度高,无需复杂后处理工艺。

Подробнее
15-11-2005 дата публикации

Negative active material for rechargeable lithium battery, method of preparing same and recahrgeable lithium battery

Номер: KR100529103B1
Принадлежит: 삼성에스디아이 주식회사

음극 활물질의 미분화를 억제하여 사이클 특성을 향상시키는 것이 가능한 음극 활물질을 제공한다. The negative electrode active material which can suppress micronization of a negative electrode active material and can improve cycling characteristics is provided. Si상 및 SiM상을 포함하고, X상 또는 SiX상 중 어느 하나 또는 둘을 포함하고, 상기 각상의 결정입경이 100nm 이상, 500nm 이하 범위의 결정질 조직으로 이루어진 것을 특징으로 하는 리튬 이차 전지용 음극 활물질을 채용한다. 단, 상기 M은 Ni, C, B, Cr, Cu, Fe, Mn, Ti 및 Y로 이루어진 군에서 선택되는 적어도 1종 이상의 원소이고, 원소 X는 Ag, Cu 및 Au로 이루어진 군에서 선택되는 1종 이상의 원소이다. A negative electrode active material for a lithium secondary battery comprising a Si phase and a SiM phase, including any one or two of an X phase or a SiX phase, and the crystal grain diameter of each phase is 100 nm or more and 500 nm or less. Adopt. However, M is at least one or more elements selected from the group consisting of Ni, C, B, Cr, Cu, Fe, Mn, Ti and Y, element X is 1 selected from the group consisting of Ag, Cu and Au. It is a kind of element or more.

Подробнее
30-08-2018 дата публикации

Aluminum nitride Ceramic Materials with Low Dielectric Loss And Ceramic Heater And Manufacturing thereof

Номер: KR20180097052A

본 출원은 일반적인 상압소결방법으로 열전도도를 크게 저하시키지 않으면서 낮은 유전손실을 갖는 질화 알루미늄 세라믹 소재, 세라믹히터 및 이의 제조방법을 제공한다.

Подробнее
27-03-2011 дата публикации

Finely dispersed lead-zirconium titanates, zirconium titanate hydrates and zirconium titanates and production method thereof

Номер: RU2415083C2
Принадлежит: Кренокс Гмбх

Изобретение может быть использовано в микроэлектронной промышленности. Для получения титанатов циркония соединения циркония приводят во взаимодействие с частицами диоксида титана, имеющими удельную площадь поверхности по БЭТ более 200 м2/г. Для получения титанатов свинца-циркония осуществляют взаимодействие соединений свинца и циркония с частицами диоксида титана с удельной площадью поверхности по БЭТ более 200 м2/г. Содержание галогенидов в используемых частицах диоксида титана менее 1000 ч/млн в расчете на TiO2. Титанаты свинца-циркония измельчают и затем прессуют с образованием неспеченных формовок или перерабатывают в пленку, после чего спекают с получением микроэлектронной детали. Изобретение позволяет получить тонкодисперсные, хорошо спекаемые титанаты циркония и титанаты свинца-циркония. 10 н. и 37 з.п. ф-лы. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 2 415 083 (13) C2 (51) МПК C01G C01G C01G C04B C04B 25/00 23/00 21/00 35/462 35/622 (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (21)(22) Заявка: 2007126649/05, 13.12.2005 (24) Дата начала отсчета срока действия патента: 13.12.2005 (43) Дата публикации заявки: 20.01.2009 Бюл. № 2 2 4 1 5 0 8 3 R U (56) Список документов, цитированных в отчете о поиске: JP 6144835 A, 24.05.1994. WO 02062724 A2, 15.08.2002. SU 509553 A1, 05.04.1976. US 2002135971 A1, 26.09.2002. JP 1009818 A, 13.01.1989. JP 1009819 A, 13.01.1989. OLEDZKA M. et al. Influence of Precursor on Microstructure and Phase Composition of Epitaxial Hydrothermal PbZr0 . 7Ti0 . 3 O3 Films, Chem. Mater., 2003, Vol.15, No.5, p.1090-1098. (85) Дата начала рассмотрения заявки PCT на национальной фазе: 13.07.2007 (86) Заявка PCT: EP 2005/013341 (13.12.2005) (87) Публикация заявки РСТ: WO 2006/063784 (22.06.2006) Адрес для переписки: 129090, Москва, ул. Б.Спасская, 25, стр.3, ООО "Юридическая фирма Городисский и Партнеры", пат.пов. Е.Е.Назиной (54) ...

Подробнее
21-06-2017 дата публикации

CERAMIC MATERIAL BASED ON CORUNDUM AND METHOD FOR PRODUCING IT

Номер: RU2015153904A

РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2015 153 904 A (51) МПК C04B 35/117 (2006.01) C04B 35/628 (2006.01) B82Y 30/00 (2011.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2015153904, 16.12.2015 Приоритет(ы): (22) Дата подачи заявки: 16.12.2015 (43) Дата публикации заявки: 21.06.2017 Бюл. № 18 (72) Автор(ы): Пономарев Олег Валерьевич (RU), Попов Михаил Юрьевич (RU), Тюкалова Елизавета Васильевна (RU), Бланк Владимир Давыдович (RU) A R U A 2 0 1 5 1 5 3 9 0 4 (57) Формула изобретения 1. Керамический материал на основе нанопорошка корунда Al2O3, отличающийся тем, что границы зерен керамического материала модифицированы углеродом. 2. Способ получения керамического материала на основе корунда, включающий обработку корунда и углеродного материала в планетарной мельнице, отличающийся тем, что в качестве углеродного материала используют фуллерен и концентрацию фуллерена определяют из условия покрытия монослоем фуллерена получаемых в результате обработки в планетарной мельнице наночастиц корунда. 2 0 1 5 1 5 3 9 0 4 (54) КЕРАМИЧЕСКИЙ МАТЕРИАЛ НА ОСНОВЕ КОРУНДА И СПОСОБ ЕГО ПОЛУЧЕНИЯ R U Адрес для переписки: 142190, Москва, г. Троицк, ул. Центральная, 7а, ФГБНУ ТИСНУМ (71) Заявитель(и): Федеральное государственное бюджетное научное учреждение "Технологический институт сверхтвердых и новых углеродных материалов" (ФГБНУ ТИСНУМ) (RU) Стр.: 1

Подробнее
10-01-2007 дата публикации

High efficiency psn-pmn-pzt piezoelectric ceramics for piezoelectric transformer

Номер: KR100667256B1
Автор: 어순철, 윤만순
Принадлежит: 충주대학교 산학협력단

High efficiency PSN-PMN-PZT piezoelectric ceramics useful for piezoelectric transformer are provided to be proper for driving strong electric-field and applied in the piezoelectric transformer by adopting Pb(Sb0.5Nb0.5)O3-PbZrO3-PbTiO3 three components system and Pb(Mn1/3Nb2/3)O3-PbZrO3-PbTiO3 three components system. The PZN-PMN-PZT piezoelectric ceramics are formed by the steps of: preparing each of PbO, ZrO2, TiO2, Nb2O5, MnCO3 and Sb2O3 powder provided that Zr/Ti ratio is 0.475/0.465; milling all of the powder by using zirconia ball and distilled water for 24 hours; drying and sizing the milled powder to particle size of less than 100mesh; calcining the sized powder at 1123K for 2 hours; grinding the calcined powder; heating and completely drying the powder under stirring, then sizing the dried powder; press molding the ground powder; and removing binder fraction from the powder through heat-sintering after molding.

Подробнее
18-02-2015 дата публикации

Alloy powder for inorganic funtional material precursor and phosphor

Номер: EP2781575A3
Принадлежит: Mitsubishi Chemical Corp

The present invention provides a method for producing a phosphor, comprising a step of heating an alloy, containing two or more metal elements for forming the phosphor, in a nitrogen-containing atmosphere; a composition containing a phosphor produced by the method; and a light-emitting device, display and lighting system using the phosphor. Further, the present invention provides a phosphor made of a nitride or an oxynitride, wherein the phosphor is dispersed in a tenfold weight of water and the electric conductivity of a supernatant liquid obtained by allowing the dispersion to stand for one hour is 50 mS/m or less; a composition containing the phosphor; and a light-emitting device, display and lighting system using the phosphor. An alloy powder that is a material for producing inorganic functional materials such as phosphors, a phosphor with high brightness, and a method for producing the phosphor. An alloy powder for an inorganic functional material precursor contains at least one metal element and at least one activating element M 1 and has a weight-average median diameter D 50 of 5 µ m to 40 µ m. A method for producing a phosphor includes a step of heating an alloy, containing two or more metal elements for forming the phosphor, in a nitrogen-containing atmosphere.

Подробнее
02-04-2014 дата публикации

Method for producing ceramic slurry

Номер: JP5459951B2
Принадлежит: Samsung Electro Mechanics Co Ltd

Подробнее
10-08-2021 дата публикации

Rare earth-free nitride magnet capable of transformation and method for manufacturing same

Номер: CN107253703B
Принадлежит: CASE WESTERN RESERVE UNIVERSITY

本发明涉及一种不含稀土的能够转变的氮化物磁体及其制造方法。具体提供了一种用于生产适合用作永磁材料的有序马氏体铁氮化物粉末的方法。该方法包括:制备具有所期望的组合物和均匀度的铁合金粉末;通过在流化床反应器中使铁合金粉末与氮源接触来对该铁合金粉末进行氮化以产生铁氮化物粉末;将铁氮化物粉末转变成无序马氏体相;将无序马氏体相退火成有序马氏体相;以及从铁氮化物粉末中分离出有序马氏体相以产生有序马氏体铁氮化物粉末。

Подробнее
03-05-2018 дата публикации

CERAMIC NANOSTRUCTURED MATERIAL BASED ON SILICON NITRIDE AND METHOD FOR PRODUCING IT

Номер: RU2016142907A

РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (51) МПК C04B 35/593 C04B 35/626 B82Y 30/00 B82Y 40/00 (11) (13) 2016 142 907 A (2006.01) (2006.01) (2011.01) (2011.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2016142907, 01.11.2016 Приоритет(ы): (22) Дата подачи заявки: 01.11.2016 (43) Дата публикации заявки: 03.05.2018 Бюл. № 13 (72) Автор(ы): Иллич-Свитыч Иван Павлович (RU), Попов Михаил Юрьевич (RU), Хохлов Николай Владимирович (RU) A R U A 2 0 1 6 1 4 2 9 0 7 (57) Формула изобретения 1. Керамический наноструктурированный материал на основе нитрида кремния, отличающийся тем, что границы зерен керамического материала модифицированы углеродом. 2. Способ получения наноструктурированного керамического материала на основе нитрида кремния, включающий обработку нитрида кремния и углеродного материала в планетарной мельнице, отличающийся тем, что в качестве углеродного материала используют фуллерен и концентрацию фуллерена определяют из условия покрытия монослоем фуллерена, получаемых в результате обработки в планетарной мельнице наночастиц нитрида кремния. 2 0 1 6 1 4 2 9 0 7 (54) КЕРАМИЧЕСКИЙ НАНОСТРУКТУРИРОВАННЫЙ МАТЕРИАЛ НА ОСНОВЕ НИТРИДА КРЕМНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ R U Адрес для переписки: 108840, Москва, г. Троицк, ул. Центральная, 7а, ФГБНУ ТИСНУМ (71) Заявитель(и): Федеральное государственное бюджетное научное учреждение "Технологический институт сверхтвердых и новых углеродных материалов" (ФГБНУ ТИСНУМ) (RU) Стр.: 1

Подробнее
21-01-2019 дата публикации

Piezoceramic material production method

Номер: RU2677723C1

Изобретение относится к технологии пьезоэлектрической керамики с низкими температурами синтеза и спекания, обладающей высокими значениями пьезоэлектрических параметров, и может быть использовано при изготовлении керамики на основе ниобата-цирконата-титаната свинца для ультразвуковых устройств, различных пьезодатчиков. Способ получения пьезокерамического материала включает приготовление навесок исходных компонентов: PbO, ZnO, NbO, TiOи ZrO, механическую активацию с помощью тонкого помола, синтез до получения твердого раствора, прессование и спекание. Механическую активацию проводят мокрым измельчением в течение 3 часов в кислой среде, содержащей лимонную кислоту, олеиновую кислоту, изопропиловый спирт, триэтаноламин и воду при следующем соотношении компонентов, мас.%: лимонная кислота 0,2-1,0; олеиновая кислота 0,1-0,3; изопропиловый спирт 1,0-5,0; триэтаноламин 1,0-3,0; вода дистиллированная 44,0-48,0; компоненты шихты остальное. Синтез проводят при температуре 740-760°C. Предлагаемое техническое решение позволяет повысить качество пьезокерамического материала и снизить энергоемкость технологического процесса за счёт сокращения времени механоактивации, снижения температур синтеза и спекания материала. 1 табл., 1 пр. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 677 723 C1 (51) МПК C04B 35/493 (2006.01) C04B 35/626 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК C04B 35/493 (2018.08); C04B 35/62615 (2018.08); C04B 35/6264 (2018.08); C04B 2235/3249 (2018.08); C04B 2235/3255 (2018.08) (21)(22) Заявка: 2018115948, 27.04.2018 27.04.2018 Дата регистрации: 21.01.2019 (45) Опубликовано: 21.01.2019 Бюл. № 3 2 6 7 7 7 2 3 R U (54) Способ получения пьезокерамического материала (57) Реферат: Изобретение относится к технологии пьезоэлектрической керамики с низкими температурами синтеза и спекания, обладающей высокими значениями пьезоэлектрических параметров, и может быть использовано при изготовлении керамики на основе ...

Подробнее
07-05-2018 дата публикации

Ceramic nanostructured material based on silicon nitride and method of its production

Номер: RU2653182C2

FIELD: chemistry. SUBSTANCE: invention relates to process for production of a nanostructured ceramic material based on silicon nitride Si 3 N 4 , modified by carbon. Material can be used for the manufacture of plates for bulletproof vests, as well as various components of products requiring increased hardness and crack resistance. High hardness and crack resistance is achieved by modifying the grain boundaries of silicon nitride with carbon. In this case, all of the carbon is distributed along the grain boundaries. Production method involves grinding silicon nitride with fullerene in a planetary mill to obtain an average particle size of 20 nm. This results in coating of nanograins Si 3 N 4 with fullerene monolayer. Resulting silicon nitride nanopowder with fullerene is sintered at a pressure of 1-5 GPa at a temperature of 1100-1850°C. EFFECT: technical result of invention is to increase hardness and crack resistance of a ceramic material based on silicon nitride. 2 cl, 3 dwg, 1 tbl, 5 ex РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (51) МПК C04B 35/593 C04B 35/626 B82Y 30/00 B82Y 40/00 (11) (13) 2 653 182 C2 (2006.01) (2006.01) (2011.01) (2011.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК C04B 35/593 (2006.01); C04B 35/62615 (2006.01); C04B 35/62839 (2006.01); C04B 35/645 (2006.01); C04B 2235/3873 (2006.01); C04B 2235/5454 (2006.01); B82Y 30/00 (2006.01); B82Y 40/00 (2006.01) (21)(22) Заявка: 2016142907, 01.11.2016 01.11.2016 Дата регистрации: 07.05.2018 (43) Дата публикации заявки: 03.05.2018 Бюл. № 13 (56) Список документов, цитированных в отчете о поиске: US 2004/0029706 A1, 12.02.2004. WO (45) Опубликовано: 07.05.2018 Бюл. № 13 2 6 5 3 1 8 2 R U 2014/149007 A1, 25.09.2014. SU 1073229 A, 15.02.1984. BY 14222 C1, 30.04.2011. US 4205033 A, 27.05.1980. US 7723248 B2, 25.05.2010. (54) КЕРАМИЧЕСКИЙ НАНОСТРУКТУРИРОВАННЫЙ МАТЕРИАЛ НА ОСНОВЕ НИТРИДА КРЕМНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ (57) Реферат: Изобретение относится к способу ...

Подробнее
05-08-2020 дата публикации

Method of producing ultrahigh-temperature ceramic material based on hafnium carbonitride

Номер: RU2729277C1

FIELD: space technologies; material science.SUBSTANCE: method of producing ultrahigh-temperature ceramic material based on hafnium carbonitride involves preliminary mechanical activation of a mixture of initial components consisting of 96.7 wt% Hf and 3.3 wt% C in high-energy ball planetary mill, subsequent self-propagating high-temperature synthesis (SHS) of the prepared mixture Hf and C and consolidation of synthesized powders. Preliminary mechanical treatment is carried out for 5–10 minutes at ratio of weight of balls to mass of mixture 20:1–40:1 and rotation speed of planetary disc 694–900 rpm, then SHS is carried out in reactor in nitrogen atmosphere 0.1–0.8 MPa. Initiation of self-sustaining exothermic reaction is carried out by incandescent tungsten spiral. Consolidation of synthesized hafnium carbonitride powder is performed by spark plasma sintering method, at that, argon atmosphere is created and sintered sample is passed pulse current from 1,000–5,000 A at load 30–70 MPa, consolidation temperature and holding time are 1,900–2,200 °C and 2–10 minutes, respectively.EFFECT: considerable reduction of power inputs and synthesis time of the material.1 cl, 6 dwg, 1 ex РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 729 277 C1 (51) МПК B22F 3/23 (2006.01) C04B 35/56 (2006.01) C22C 29/02 (2006.01) C04B 35/645 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК B22F 3/23 (2020.02); B22F 2302/15 (2020.02); B22F 2302/10 (2020.02); C04B 35/5622 (2020.02); C04B 35/573 (2020.02) (21)(22) Заявка: 2019143363, 24.12.2019 24.12.2019 Дата регистрации: 05.08.2020 (45) Опубликовано: 05.08.2020 Бюл. № 22 2 7 2 9 2 7 7 R U (56) Список документов, цитированных в отчете о поиске: SU 417245 A1, 28.02.1974. RU 2614006 C1, 22.03.2017. RU 2225837 C2, 20.03.2004. CN 107601508 A, 19.01.2018. US 6793875 B1, 21.09.2004. CN 103979974 A, 13.08.2014. (54) Способ получения сверхвысокотемпературного керамического материала на основе карбонитрида ...

Подробнее
29-11-2017 дата публикации

The manufacturing method of ceramic molded object using gel casting

Номер: KR20170130778A
Автор: 김인웅
Принадлежит: 주식회사 맥테크

본 발명은 겔 케스팅법을 이용한 세라믹 성형체 및 이의 제조방법에 관한 것으로, 보다 구체적으로는 소정 용매에 세라믹 분말 및 분산제가 분산된 슬러리를 준비하는 단계; 준비된 상기 슬러리에 단량체, 이량체, 개시제 및 촉매제를 첨가하는 단계; 준비된 상기 슬러리에 포함된 기포를 제거하는 단계; 상기 슬러리를 미리 준비된 몰드에 주입 후, 겔 케스팅법을 이용하여 겔화시켜 소정 형상의 성형체를 준비하는 단계; 준비된 상기 성형체를 상기 몰드에서 탈형 후, 건조 시키는 단계; 및 건조된 상기 성형체를 소결시키는 단계를 포함하는 것을 특징으로 한다.

Подробнее
04-12-2020 дата публикации

Composite garnet scintillation ceramic with two uniformly distributed phases and preparation method thereof

Номер: CN107935581B

一种两相均匀分布的复合石榴石闪烁陶瓷及其制备方法,利用两种石榴石结构的相,制成两相均匀分布的复合石榴石闪烁陶瓷。本发明采用固相反应法,分别制备了两种相的粉体,分别在真空下预烧成相。两种相按照不同的比例均匀混合、球磨制成素坯,再在真空环境下烧结,制备密度及发射波长可调的两相复合闪烁陶瓷。该陶瓷中两种相分布均匀,具有高光学质量,宽波段发射以及高光输出等性能。可调的发射波长可与多个光电二极管匹配,能够满足现代高能射线探测技术对于材料截止能及波长的要求,且制备工艺简单,成本低,可实现批量化工业生产。

Подробнее
22-02-2017 дата публикации

High-temperature-resistant ceramic and preparation method thereof

Номер: CN106431442A
Автор: 王乐

本发明公开了一种耐高温陶瓷及其制备方法,包括以下重量份数的组分组成:锆英石20‑25份、二硼化锆18‑20份、沥青15‑20份、焦宝石12‑15份、紫砂泥10‑15份、氧化铝10‑15份、水玻璃5‑10份、氧化铈2‑5份、纳米级氧化钼2‑5份、石墨烯2‑5份,去离子水适量。该耐高温陶瓷及其制备方法设计合理,采用先粉碎原料再球磨获得超细粉的工艺,保证了粉体的尺寸;加入沥青和纳米级氧化钼可以大大提高耐热温度,使得耐热温度超过4000℃;而具有高温耐热时间长,抗弯强度好的优点,大大增加了陶瓷的品质;而且制备工艺简单,降低了生产成本,能够满足使用需要,经济效益好。

Подробнее
20-11-2018 дата публикации

Composition of charge and method of manufacturing carbon-containing refractories

Номер: RU2672893C1

FIELD: technological processes.SUBSTANCE: invention relates to the technology of refractory materials and can be used in the manufacture of refractories for particularly important sections of the lining of steelmaking, steel-casting and other metallurgical units. Composition of the mass for carbon-containing refractories includes the following components, wt%: granular fused periclase 70–75; fine fused periclase 13.3; coarse crystalline graphite 6–10; carbon fiber with the diameter of 6–9 microns and with the length of 0.9–4 mm, in excess of 100 % 0.05–0.2; phenolic powder binder 2.5–4.0; the organic solvent is ethylene glycol 0.7–2.0. Mixing of the components is carried out in several stages. At the first stage, the solution is prepared containing 0.5 % by weight of ethylene glycol and carbon fiber. Next, granulated fused periclase and ethylene glycol are loaded into the intensive-action mixer, mixed, ethylene glycol solution with fibers is added, then graphite and finely-dispersed fused periclase. Last step is to introduce powdered phenolic resin. From the prepared mass the products are molded and burnt.EFFECT: technical result of the invention is to increase the durability of the linings of thermal units, due to the modification of the dense reinforced structure of oxide-carbon molded products.2 cl, 2 tbl РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 672 893 C1 (51) МПК C04B 35/035 (2006.01) C04B 35/043 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК C04B 35/013 (2006.01); C04B 35/043 (2006.01); C04B 35/62635 (2006.01); C04B 35/62615 (2006.01) (21)(22) Заявка: 2017126522, 24.07.2017 (24) Дата начала отсчета срока действия патента: Дата регистрации: 20.11.2018 (73) Патентообладатель(и): Поморцев Сергей Анатольевич (RU) (45) Опубликовано: 20.11.2018 Бюл. № 32 2 6 7 2 8 9 3 R U (56) Список документов, цитированных в отчете о поиске: RU 2489402 C1, 10.08.2013. SU 1827376 A1, 15.07.1993. RU 10171 U1, 16.06.1999. ...

Подробнее
09-12-2014 дата публикации

Aluminum Nitride ceramics with high strength and the method of low temperature sintering thereof

Номер: KR101470322B1
Автор: 김도경, 석인식, 이현민

본 발명은 알칼리 토금속 및 지르코늄을 포함하는 산화물; 및 희토류 금속 산화물;을 포함하는 소결소재와 질화알루미늄(AlN) 원료 분말을 소결함으로써 얻어지는 질화알루미늄(AIN) 소결체 및 이의 제조방법에 관한 것으로, 본 발명에 의해 얻어지는 질화알루미늄(AIN) 소결체는 저온 소결이 가능하며 우수한 기계적 특성을 가질 수 있다. The present invention relates to an oxide comprising an alkaline earth metal and zirconium; (AIN) sintered body obtained by sintering a sintered material containing a rare earth metal oxide and a rare earth metal oxide and an aluminum nitride (AlN) raw material powder, and a method of manufacturing the same. The sintered aluminum nitride (AIN) And can have excellent mechanical properties.

Подробнее
11-02-2020 дата публикации

Preparation method of high-alumina ceramic and high-alumina ceramic prepared by using same

Номер: CN109336564B

本发明公开了一种高铝陶瓷的制备方法,其包括以下步骤:步骤S1:根据高铝陶瓷的配方成分选择原材料和种类,配方成分包括主成分Al 2 O 3 和添加剂;步骤S2:按配方比例称取添加剂进行球磨加工;步骤S3:将球磨好的添加剂制成玻璃熔块;步骤S4:对玻璃熔块进行球磨加工;及步骤S5:将球磨后的玻璃熔块粉与Al 2 O 3 混合后进行球磨加工,然后烧结成高铝陶瓷。本发明的高铝陶瓷的制备方法得到的高铝陶瓷,玻璃相更多,可以很好地填充排气孔,并且分布均匀连续,包裹晶相颗粒的玻璃液相层厚薄均一,并且完全包裹湿润晶相颗粒外表面,晶界上没有玻璃相团聚堆积现象存在,可以有效提高金属化后的抗拉强度,高铝陶瓷本身致密度高且封接后的气密性高。

Подробнее
10-04-2020 дата публикации

Carbon-ceramic composite material brake disc and preparation method thereof

Номер: CN110981518A
Принадлежит: KBC Corp Ltd

本发明公开了一种碳陶复合材料内陶瓷粉分布均匀、制备成本低的碳陶复合材料刹车盘制备方法,它包括以下步骤:⑴制备陶瓷浆料;⑵制备碳陶复合材料刹车盘湿坯;⑶制备碳陶复合材料刹车盘干坯;⑷粗加工;⑸气相沉积;⑹精加工;本发明实现了在室温下通过物理方式将陶瓷粉体及包括石墨粉或石墨烯的润滑剂引入到碳纤维预制体中,经气相沉积后制备得碳陶复合材料刹车盘,具有工艺简单,生产周期短,制备成本低,耐磨性能好等特点;制备的碳陶复合材料刹车盘的开气孔率为1﹪~3.5﹪,密度为2.0g/㎝ 3 ~2.3g/㎝ 3 ,抗弯强度为390MPa~480MPa,摩擦系数为0.35~0.42,磨损率为0.3×10 ‑7 ㎝ 3 /(N·m)~0.5×10 ‑7 ㎝ 3 /(N·m)。

Подробнее
26-07-1996 дата публикации

Refractory metal or metal-based ceramic coated ceramic or metal fibres for metal matrix composite

Номер: FR2729659A1
Автор: Jonathan G Storer
Принадлежит: Minnesota Mining and Manufacturing Co

Fibre of tungsten, Inconel, alumina, alumina-silica, alumina-boria-silica, boron, titanium diboride, silicon carbide, silicon nitride, or boron nitride is coated with molybdenum, tantalum, tungsten, niobium, zirconium, hafnium, or titanium, the coating being uniform and having a grain size of 5-75 nanometres and one or less visible voids per 0.5 square microns of area, a visible void being at least 5 nanometres in size. Also claimed is a process for coating ceramic, metal, or carbon fibres in continuous tows or bundles (20) by positioning them in the path of a plasma (19) of atoms and ions created by applying sufficient current to a metal cathode (13), the plasma causing the fibres to billow and the plasma condensing on them to form a refractory metal or metal-based ceramic coating. The fibre is alpha-alumina or alumina-boria-silica. It is 5-150 microns in dia., more pref. 5-50 microns. The coating is 20-500 nanometres thick, more pref. 50-300 nanometres, and has a grain size of 15-25 nanometres. It is esp. yttrium oxide. An inert gas is supplied to the plasma, esp. argon, krypton, xenon, or helium. Alternatively, a reactive gas may be supplied, esp. oxygen, nitrogen, ammonia, a hydrocarbon, or a boron-contg. gas.

Подробнее
06-05-2022 дата публикации

Microwave dielectric ceramic with layered structure and preparation method thereof

Номер: CN110698194B
Автор: 何磊, 徐海维, 龚毅辉

本发明涉及一种层状结构的微波介质陶瓷及其制备方法,所述方法包括S1、将BaTi 4 O 9 和Zn 1.01 Nb 2 O 6 置于球磨机中,将BaTi 4 O 9 和Zn 1.01 Nb 2 O 6 球磨成BaTi 4 O 9 粉末和Zn 1.01 Nb 2 O 6 粉末,使BaTi 4 O 9 粉末和Zn 1.01 Nb 2 O 6 粉末的粒径为预设粒径;S2、将BaTi 4 O 9 粉末和Zn 1.01 Nb 2 O 6 粉末按照BaTi 4 O 9 ‑Zn 1.01 Nb 2 O 6 的化学组成进行称量;S3、将S2步骤中50%的BaTi 4 O 9 粉末放置在模具中,通过干压成型制备出第一基片;S4、在第一基片上放置Zn 1.01 Nb 2 O 6 粉末,通过干压成型制备出第二基片;S5、在所述第二基片上放置所述S2步骤中剩余50%的所述BaTi 4 O 9 粉末,通过干压成型制备出具有异质层状结构的生坯;S6、将S3~S5步骤中制备的生坯排胶和烧结制备得到微波介质陶瓷;本发明制备的异质层状结构微波介质陶瓷,避免微量添加剂在母体材料中局部分布不均匀和杂质混入,提高陶瓷生产的稳定性和品质因子。

Подробнее
23-01-2018 дата публикации

Method for preparing titanium nitride-titanium diboride-cubic boron nitride composite

Номер: KR101821220B1
Принадлежит: 허하이 대학교

본 발명은 질화티탄-티타늄 2붕화물-입방정계 질화붕소 복합재료의 제조방법에 관한 것으로서, 티타늄 분말과 입방정계 질화붕소를 원료로 사용하고, 유성 볼 밀링 방법으로 원료를 혼합한 후, 습식 혼합, 열건조, 체질, 고온진공로 사전 소결, 냉간 등방압 가압법, 고온 소결 등 단계를 통해 질화티탄-티타늄 2붕화물-입방정계 질화붕소 복합재료를 제조한다. 본 발명의 방법은 조작이 간단하고 원가가 저렴하며 공정 조건이 제어하기 쉽고, 상반응을 통해 각 생성된 상을 균일하게 분산시킴으로써, 밀도가 높고 역학적 성능이 우수한 질화티탄-티타늄 2붕화물-입방정계 질화붕소 복합재료를 얻을 수 있다. The present invention relates to a method for producing a titanium nitride-titanium diboride-cubic boron nitride composite material, which comprises mixing a raw material by using a titanium powder and cubic boron nitride as a raw material by a planetary ball milling method, Titanium boron nitride-cubic boron nitride composite material is prepared through thermal drying, sieving, pre-sintering at a high-temperature vacuum, cold isostatic pressing, and high-temperature sintering. The method of the present invention is a titanium nitride-titanium diboride-cubic nitride-titanium nitride-titanate-nitride having a high density and excellent mechanical performance by simple operation, low cost, easy control of process conditions and uniformly dispersing each produced phase through phase reaction A boron nitride-boron composite material can be obtained.

Подробнее
01-11-2019 дата публикации

METHOD FOR MANUFACTURING A METAL-CERAMIC POWDER SUITABLE FOR THE PRODUCTION OF A HARD CERAMIC PIECE AND METHOD FOR MANUFACTURING THE SAME

Номер: FR3051186B1
Принадлежит: Ariamis Eng

------ PROCEDE DE FABRICATION D’UNE POUDRE METAL-CERAMIQUE APPROPRIEE POUR LA FABRICATION D’UNE PIECE DE CERAMIQUE DURE ET PROCEDE DE FABRICATION CORRESPONDANT Le procédé de fabrication d’une poudre métal-céramique comporte les étapes suivantes : préparation d’un mélange activé mécaniquement de poudres de SiC, BN et B, d’une première fraction de poudre d’aluminium, et d’au moins un dopant pulvérulent ; mélange du mélange ainsi préparé et d’un liant ; formation de billettes primaires par compactage du mélange précédent ; traitement thermique sous vide de ces billettes primaires ; broyage des billettes primaires ainsi traitées ; préparation d’un mélange de la poudre ainsi obtenue et d’une deuxième fraction de la poudre d’aluminium ; mélange de ce mélange et d’un liant ; formation de billettes secondaires par compactage du mélange obtenu ; traitement thermique sous vide de ces billettes secondaires ; et broyage des billettes secondaires ainsi traitées. ------ PROCESS FOR MANUFACTURING A METAL-CERAMIC POWDER SUITABLE FOR THE MANUFACTURE OF A HARD CERAMIC PIECE AND CORRESPONDING MANUFACTURING METHOD The method for manufacturing a metal-ceramic powder comprises the following stages: preparation of 'A mechanically activated mixture of SiC, BN and B powders, a first fraction of aluminum powder, and at least one pulverulent dopant; mixing the mixture thus prepared and a binder; formation of primary billets by compacting the previous mixture; vacuum heat treatment of these primary billets; grinding of the primary billets thus treated; preparation of a mixture of the powder thus obtained and a second fraction of the aluminum powder; mixture of this mixture and a binder; secondary billet formation by compacting the mixture obtained; vacuum heat treatment of these secondary billets; and grinding of the secondary billets thus treated.

Подробнее
28-09-2022 дата публикации

Method for Manufacturing Silicon Carbide Blank and Method for Manufacturing Silicon Carbide and Silicon Carbide Composite Using Silicon Carbide Blank Manufactured by Thereof

Номер: KR102448377B1
Автор: 선주형, 장근용
Принадлежит: 주식회사 플러스매니저

제조단계가 단순하고 고밀도 고강도를 갖는 탄화규소 블랭크 제조방법이 개시되어 있다. 이 개시된 제조방법은 탄화규소, 소결 조제 및 바인더를 혼합하여 혼합물을 제조하는 단계; 및 상기 혼합물을 성형체로 만드는 성형하는 단계를 포함할 수 있다. Disclosed is a method for manufacturing a silicon carbide blank having a simple manufacturing step and high density and high strength. The disclosed manufacturing method comprises the steps of preparing a mixture by mixing silicon carbide, a sintering aid, and a binder; and molding the mixture into a molded body.

Подробнее
26-04-2017 дата публикации

High-dielectric performance grain boundary layer ceramic capacitor medium

Номер: CN106587989A
Автор: 李军, 高春华, 黄新友
Принадлежит: Jiangsu University

本发明涉及无机非金属材料技术领域,特指一种高介电性能晶界层陶瓷电容器介质。介质配方组成,按照重量百分比计算:Ba(Ti 0.9 Sn 0.1 )O 3 88‑96%,Ba(Fe 1/2 Nb 1/2 )O 3 0.1‑3%,Dy 2 O 3 0.1‑4%,SiO 2 0.1‑2.0%,Al 2 O 3 0.1‑2.5%,MnNb 2 O 6 0.03‑4.0%,SiO 2 ‑Li 2 O‑B 2 O 3 玻璃粉(SLB)0.1‑2.0%,CuO0.01‑3%。本介质的介电常数高,为100000以上;耐电压高,直流耐电压可达8kV/mm以上;介质损耗小,小于1%;本介质的介电常数高,能实现陶瓷电容器的小型化和大容量,同样能降低成本。

Подробнее
13-12-2022 дата публикации

CMAS corrosion resistant high-entropy ceramic material, preparation method and application thereof

Номер: CN112341197B

本发明提供了一种抗CMAS腐蚀的高熵陶瓷材料、制备方法及其应用,该高熵陶瓷材料的原料包括氧化钐、氧化铕、氧化铒和氧化镥中的至少三种,以及氧化钇和氧化镱,各原料的物质的量相同。制备方法包括:在氧化钐、氧化铕、氧化铒、氧化镥中任选至少三种,与氧化钇和氧化镱混合,得到混合均匀的料浆;将料浆干燥处理得到混合物粉末,将干燥后的粉末进行无压煅烧,得到高熵陶瓷粉体材料。经分析表明该高熵陶瓷粉体材料具有纯度高、抗CMAS腐蚀能力强的特点,制备方法简单,适于工业生产,在热障涂层材料领域有优异的应用前景。

Подробнее
21-05-2019 дата публикации

A kind of aluminium oxide ceramics and preparation method thereof

Номер: CN106977185B
Автор: 江毅
Принадлежит: Jingdezhen Ceramic Institute

本发明公开了一种氧化铝陶瓷及其制备方法。该氧化铝陶瓷一则利用硅烷偶联剂将粘结剂包裹在无机粉体表面,增强无机粉体间的流动性和均匀性,在脱胶过程中,粘结剂能均匀地从内部分解、扩散而不形成或少形成孔洞和裂纹;二则氢氧化铝、硅烷偶联剂和粘结剂会分解,同时产生氧化铝和二氧化硅,填充了可能产生的孔洞和裂纹,增加了产品致密性;三则在镁铝尖晶石的诱导下,氧化铝与氧化镁间的结合力会增强,在上述三则功能的共同作用下,提高了氧化铝陶瓷的硬度和强度。在提高其硬度和强度的同时,通过镁铝尖晶石和氧化镁相互配合,共同抑制氧化铝晶粒成长,消除晶粒间孔隙,减少缺陷,降低应力集中点,提高其韧性。

Подробнее
01-03-2019 дата публикации

A kind of preparation method nitrogenizing silicon substrate high temperature antiwear and antifriction composite material

Номер: CN109400174A

本发明涉及一种氮化硅基高温抗磨减摩复合材料的制备方法,该方法包括以下步骤:⑴将α‑Si 3 N 4 和Ti 3 SiC 2 加入球磨机中,经湿式球混即得混合粉末;⑵所述混合粉末干燥过筛后装入石墨模具中进行预压,得到预压样;⑶所述预压样经高温高压烧结后,随炉冷却,得到毛坯;⑷所述毛坯经表面抛光处理后,即得氮化硅基复合材料。本发明制备工艺简单可控、生产效率高、粉末无需特殊处理,适用于批量生产。所得成品高温抗磨减摩效果优异,大大延长了陶瓷部件在高温环境中的使用寿命。

Подробнее
13-07-2016 дата публикации

Method for preparing titanium nitride-titanium diboride-cubic boron nitride composite

Номер: GB201609493D0
Автор: [UNK]
Принадлежит: Hohai University HHU

Подробнее
15-03-2019 дата публикации

High-strength shaped aluminium oxide and method for producing such high-strength shaped aluminium oxide

Номер: CN109476550A
Принадлежит: Sasol USA Corp

一种通过以下方式生产高强度成形氧化铝的方法:将氧化铝粉末进料到凝集器中,所述凝集器包括具有混料器的轴,所述混料器能够使氧化铝粉末沿着轴移动,当氧化铝粉末沿着轴移动时,将液体粘合剂喷到氧化铝粉末上以形成成形氧化铝,以及煅烧该成形氧化铝。所生产的成形氧化铝具有大于或等于1.20g/ml的松散堆积密度、小于10m 2 /g的表面积、小于5ppm的单个金属杂质和小于9ppm的总杂质,和/或大于12000psi的压碎强度。

Подробнее