Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 19122. Отображено 200.
27-12-2002 дата публикации

ДИСПЕРСНО-УПРОЧНЕННЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ЭЛЕКТРОКОНТАКТНЫХ ДЕТАЛЕЙ

Номер: RU2195511C2

Изобретение относится к порошковой металлургии и может быть использовано при изготовлении деталей, работающих в условиях скольжения при электрическом контакте, преимущественно для сильноточных скользящих контактов, токоподводящих наконечников дуговой сварки и т.п. Задачей изобретения является расширение ассортимента материалов, обладающих высокими показателями тепло- и электропроводности при одновременно высоких показателях ресурса работы и температуры рекристаллизации. Дисперсно-упрочненный композиционный материал, содержащий медь, алюминий и углерод, дополнительно содержит оксид меди при следующем соотношении компонентов, мас.%: алюминий 0,15-0,35, углерод 0,08-0,18, оксид меди 0,20-1, 80, медь остальное. Техническим результатом заявляемого изобретения является увеличение тепло- и электропроводности материала и ресурса работы электроконтактных деталей, изготовленных из этого материала, по сравнению с прототипом, а также расширение ассортимента дисперсно-упрочненных композиционных материалов ...

Подробнее
27-12-2002 дата публикации

ДИСПЕРСНО-УПРОЧНЕННЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ЭЛЕКТРОДОВ КОНТАКТНОЙ СВАРКИ

Номер: RU2195394C2

Изобретение относится к сварочному производству и может быть использовано при изготовлении электродов контактной сварки, преимущественно для сварки цветных металлов и предварительно покрытых сталей. Задачей изобретения является расширение ассортимента материалов, обладающих высокими физико-механическими характеристиками при одновременно высоких показателях противоадгезионных свойств и увеличение ресурса работы изготовленных из них электродов контактной сварки. Дисперсно-упрочненный композиционный материал на основе меди, содержащий алюминий и оксид меди, дополнительно содержит углерод при следующем соотношении компонентов, мас. %: алюминий 0,4-0,7, оксид меди 2,0-2,8, углерод 0,2-0,3, медь - остальное. Техническим результатом заявляемого изобретения является повышение противоадгезионных свойств материала и ресурса работы электродов контактной сварки, изготовленных из этого материала, по сравнению с прототипом, а также расширение ассортимента дисперсно-упрочненных композиционных материалов ...

Подробнее
20-09-2006 дата публикации

ИЗГОТОВЛЕНИЕ ПРОДУКТА ИЗ КОНСТРУКЦИОННЫХ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ, АРМИРОВАННЫХ КАРБИДАМИ

Номер: RU2283888C2
Принадлежит: ФУНДАСЬОН ИНАСМЕТ (ES)

Изобретение относится к продуктам из конструкционных металлических материалов, армированных карбидами. Предложен способ изготовления с помощью традиционной жидкостной металлургии готовых деталей или их заготовок в виде отливок, слитков, квадратных заготовок и плит из сплавов на основе Fe, на основе Ni и на основе Со, микроструктурно армированных частицами комплексного молибденово-титанового карбида путем их предварительного изготовления и последующего добавления к расплавленному сплаву в плавильной печи. После затвердевания сплава эти частицы включаются и распределяются внутри зерен базовой металлической матрицы, улучшая ее механические свойства и поведение, как при комнатной, так и при высокой температуре, 5 н. и 8 з.п. ф-лы.

Подробнее
10-02-2016 дата публикации

КОМПОЗИЦИОННЫЙ МАТЕРИАЛ С МЕТАЛЛИЧЕСКОЙ МАТРИЦЕЙ И НАНОРАЗМЕРНЫМИ УПРОЧНЯЮЩИМИ ЧАСТИЦАМИ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Номер: RU2574534C2

Изобретение относится к области нанотехнологии, а именно к композиционным материалам с металлической матрицей и наноразмерными упрочняющими частицами. Задачей изобретения является повышение прочностных характеристик композиционного материала при минимизации объемной доли упрочняющих частиц. Для выполнения поставленной задачи, согласно представленному техническому решению, в композиционном материале с металлической матрицей и наноразмерными упрочняющими частицами в агломерированном состоянии, изготовленном с расплавлением матрицы, содержание наноразмерных упрочняющих частиц в агломерированном состоянии не превышает 5% объемных от всего объема наночастиц, а остальные наноразмерные упрочняющие частицы находятся в неагломерированном состоянии. Поставленная задача может достигаться также тем, что в композиционном материале с металлической матрицей и наноразмерными упрочняющими частицами количество наночастиц в агломератах в конечном продукте не превышает 10. Для выполнения поставленной задачи ...

Подробнее
10-07-2015 дата публикации

СПОСОБ ПОЛУЧЕНИЯ ЛИТОГО АЛЮМОМАТРИЧНОГО КОМПОЗИЦИОННОГО СПЛАВА

Номер: RU2555321C2

Изобретение относится к области металлургии, в частности к получению литых алюмоматричных композиционных сплавов. Способ включает плавление алюминия, введение в расплав порциями экзотермической шихты, состоящей из порошков титана и углерода, и перемешивание расплава, при этом перед введением в расплав экзотермическую шихту гранулируют с использованием связующего, являющегося флюсом и представляющим собой фторкаучук, с получением гранул размером 0,2-6,0 мм и содержанием сухого фторкаучука 1-2%, полученные гранулы вводят в расплав порциями в алюминиевой фольге толщиной 0,2-0,5 мм, а по окончании ввода шихты осуществляют выдержку расплава не менее 5 мин. Применение флюса и искусственного гранулирования позволяет облегчить процесс ввода шихты в расплав, увеличить степень усвоения шихтовых компонентов в расплаве и повысить равномерность распределения синтезируемых частиц упрочняющей фазы в матричном сплаве. 1 пр., 1 табл., 2 ил.

Подробнее
02-08-2022 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ ЛИТИЙ-БОРНОГО СПЛАВА

Номер: RU2777323C1

Изобретение относится к металлургии, в частности к получению литий-борного сплава и может использоваться в электротехнике для активных анодных материалов в химических источниках тока. Способ изготовления литий-кадмий-борного сплава включает загрузку в тигель герметичного реактора компонентов сплава, их расплавление путем многоступенчатого нагрева с выдержкой при каждой температуре до достижения температуры вязкости и охлаждение полученного сплава. Сначала в тигель загружают литий в количестве 52-58 мас.% и кадмий в количестве 1-3 мас.% и проводят многоступенчатый нагрев, при котором сначала осуществляют нагрев загруженных в тигель лития и кадмия до температуры 340°С с получением расплава, в который затем вводят аморфный порошковый бор в количестве 41-45 мас.% с одновременным механическим перемешиванием полученной смеси, далее осуществляют последующий нагрев до температуры 450°С, а затем - нагрев до температуры 500°С, перемешивание прекращают и ведут дальнейший нагрев до температуры 540- ...

Подробнее
20-06-2004 дата публикации

СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНИЕВО-МАГНИЕВОГО СПЛАВА

Номер: RU2230810C1

Изобретение относится к области металлургии сплавов цветных металлов, в частности к получению алюминиево-магниевых сплавов, дисперсионно упрочненных тугоплавкими соединениями. Предложен способ получения алюминиево-магниевого сплава, упрочненного карбидом титана, включающий подачу смеси тетрахлорида титана TiCl4 и тетрахлорэтилена С2Cl4 на поверхность расплава алюминиево-магниевого сплава для ее восстановления при непрерывном перемешивании, при этом подачу смеси осуществляют на поверхность расплава алюминиево-магниевого сплава, дополнительно содержащего скандий, при соотношении тетрахлорида титана TiCl4и тетрахлорэтилена С2Cl4 от 1:0,215 до 1:0,385. Технический результат - получение алюминиево-магниевых сплавов с высокими технологическими свойствами, а также снижение стоимости сплавов за счет исключения использования дорогостоящих порошков тугоплавких соединений и исключения нетехнологичных переделов по их подготовке. 1 табл.

Подробнее
30-06-1994 дата публикации

СПОСОБ ВВЕДЕНИЯ ДИСПЕРСНЫХ ЧАСТИЦ В РАСПЛАВЫ

Номер: RU2015188C1

Использование: при производстве высококачественных отливок из алюминиевых сплавов с повышенными эксплуатационными характеристиками. Сущность: осуществляют инжекцию дисперсных частиц инертным ионизированным газом с помощью погружного плазмотрона. Частицы подают в активную зону плазмотрона в виде порошкового шнура. 1 табл.

Подробнее
12-02-2019 дата публикации

СПЛАВ ЛАТУНИ, ВКЛЮЧАЮЩИЙ КЕРАМИЧЕСКИЕ НАНОЧАСТИЦЫ ОКСИДА АЛЮМИНИЯ, КОТОРЫЙ ОБЛАДАЕТ УЛУЧШЕННЫМИ СВОЙСТВАМИ В ОТНОШЕНИИ МЕХАНИЧЕСКОЙ ОБРАБОТКИ

Номер: RU2679671C1

Изобретение относится к сплавам латуни и может быть использовано для изготовления изделий в электротехнической, машиностроительной и автомобильной промышленности. Сплав латуни содержит Cu, Zn, 0-0,25% мас. Pb и 0,04-0,1% мас. AlO, при этом AlOприсутствует в сплаве в форме керамических наночастиц. Сплав латуни может дополнительно содержать As, добавки Sn, Fe, Al, Ni, Mn и/или Si. Способ получения сплава латуни включает добавление наночастиц AlOв начале процесса плавления в плавильную ванну, содержащую латунный лом, при этом указанный латунный лом в плавильной ванне содержит количество компонентов, соответствующее заданному составу сплава латуни. Изобретение направлено на улучшение способности к обработке резанием бессвинцовистой латуни. 5 н. и 16 з.п. ф-лы, 7 ил., 1 табл., 2 пр.

Подробнее
27-06-2012 дата публикации

УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ АЛЮМОМАТРИЧНЫХ КОМПОЗИЦИОННЫХ РАСПЛАВОВ И ОТЛИВОК ИЗ НИХ

Номер: RU117439U1

... 1. Установка для получения алюмоматричных композиционных расплавов и отливок из них, включающая тигель с нагревательной печью, приводной вертикальный вал с импеллером в виде лопастного винта на конце, выполненный из титана с азотированной поверхностью, дозатор дисперсного материала-наполнителя и транспортный трубопровод для подачи дисперсного материала-наполнителя транспортируемым газом, отличающаяся тем, что приводной вертикальный вал коаксиально размещен в транспортируемом трубопроводе, причем на внешней поверхности приводного вертикального вала по всей его длине выполнен винтовой шнек, для совместной с транспортирующим газом подачи дисперсного материала-наполнителя в тигель с алюмоматричным расплавом, при этом тигель снабжен ограничительной крышкой для вращаемого алюмоматричного расплава. ! 2. Установка по п.1, отличающаяся тем, что она снабжена герметичной камерой для заливаемых литейных форм, размещенной под нагревательной печью, а в донной части тигля выполнен шиберный затвор и трубопровод ...

Подробнее
10-05-2000 дата публикации

СПОСОБ ПРОИЗВОДСТВА АЛЮМИНИЕВО-КРЕМНИЕВОГО СПЛАВА

Номер: RU2148670C1

Изобретение относится к цветной металлургии, а именно к производству алюминиево-кремниевого сплава из руд, содержащих оксиды Аl и Si. Алюминиево-кремниевый (Al-Si) сплав по способу производится из порций концентрата руды, содержащей оксиды Аl и Si, в частности из концентрата кианита, который расплавляют и нагревают до температуры выше 2100°С за счет химической энергии, получаемой при окислении расчетным количеством кислорода того продукта, который производится из концентрата. Последующее восстановление сплава из порций расплава кианита осуществляют углеродоводородным восстановителем, причем восстанавливают Аl и Si как из расплавленной порции кианита, так и из того расплава, который образовался в результате сжигания расчетного количества сплава. Восстановленный из порции кианита жидкий сплав удаляют из плавильного агрегата, а оставшийся жидкий сплав возвращают для следующей операции сжигания. Реализация способа позволяет снизить энергозатраты на производство продукции, уменьшить эксплуатационные ...

Подробнее
17-01-2023 дата публикации

СПОСОБ ПОЛУЧЕНИЯ УГЛЕГРАФИТОВОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА ПРОПИТКОЙ СПЛАВОМ НА ОСНОВЕ АЛЮМИНИЯ

Номер: RU2788292C1

Изобретение относится к области металлургии и получения композиционных материалов и отливок. Способ получения углеграфитового композиционного материала пропиткой сплавом на основе алюминия включает вакуумную дегазацию пористой углеграфитовой заготовки в расплаве сплава алюминия с добавлением цинка в отдельной емкости, установленной на вибростоле с обеспечением вибровакуумирования заготовки, размещение заготовки на закристаллизовавшейся поверхности сплава алюминия с добавлением магния и меди, предварительно залитого в устройство для пропитки, заполнение устройства для пропитки ранее полученным расплавом сплава алюминия с добавлением цинка и пропитку заготовки при температуре 850°С, при этом получаемый матричный сплав для пропитки углеграфитового каркаса имеет следующий состав, мас.%: цинк 10,0-22,0, магний 8,3-22,0, медь 0,5-6,0, алюминий – остальное. Изобретение направлено на повышение прочности композиционного материала за счет улучшения пропитки углеграфитового каркаса. 7 пр., 2 табл.

Подробнее
20-07-2023 дата публикации

Смешанная режущая керамика и способ изготовления режущей пластины из смешанной режущей керамики

Номер: RU2800345C1

Изобретение относится к порошковой металлургии, в частности к изготовлению режущих пластин из смешанной керамики. Может использоваться для оснащения режущего инструмента для обработки труднообрабатываемых сталей и сплавов, а также высокопрочных и серых чугунов на металлообрабатывающих станках. Смешанная режущая керамика содержит, мас. %: оксид алюминия 27-30, оксид кремния SiО2 27-31, карбид тантала TaC 9-10, карбид титана TiC 23-24, карбид вольфрама WC 9-10. Смесь оксида кремния и оксида алюминия прокаливают при температуре 1750-1760°С, подвергают тонкому виброизмельчению на виброустановке в течение 3,5-4,5 ч и сушат. После сушки вводят карбид титана, карбид тантала, карбид вольфрама и осуществляют смешивание до их равномерного распределения по объему и образования водной суспензии, в которую вводят раскисляющие добавки катализаторов в виде оксида магния МgO, оксида кальция СаО, оксида натрия Nа2O, и подвергают распылительной сушке с получением смеси. Полученную смесь прессуют с формированием ...

Подробнее
20-10-1998 дата публикации

СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА

Номер: RU2120490C1

Изобретение относится к способу получения композиционного материала на основе алюминиевого сплава, упрочненного карбидом титана, включающему введение в расплав алюминийсодержащей матрицы упрочняющих частиц. Процесс ведут путем подачи тетрахлорида титана и тетрахлорида углерода в молярном соотношении 1:1 на поверхность расплава матрицы из алюминиевого сплава, содержащего 40-60% магния, при непрерывном перемешивании, и по окончании процесса восстановления полученный продукт выдерживают в вакууме при температуре 650-750oC до получения материала, содержащего 5-8% магния. Способ позволяет получить композит с однородной структурой, увеличить механическую прочность изделия из композита и удешевить производство. 1 с.п. ф-лы, 1 табл.

Подробнее
10-07-2016 дата публикации

СПОСОБ ПОЛУЧЕНИЯ БОРСОДЕРЖАЩЕГО МЕТАЛЛОМАТРИЧНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ АЛЮМИНИЯ В ВИДЕ ЛИСТОВ

Номер: RU2590429C1

Изобретение относится к области металлургии, в частности к деформированным борсодержащим алюмоматричным композиционным материалам в виде листов, к которым предъявляются специальные требования по поглощению нейтронного излучения в сочетании с низким удельным весом. Способ включает приготовление алюминиевого расплава, содержащего, мас.%: марганец от 0,5 до 2, магний от 0,5 до 4, кремний от 0,1 до 0,3, скандий от 0,15 до 0,3, формирование борсодержащих частиц в алюминиевом расплаве путем введения в расплав лигатуры, содержащей смесь порошка TiBи солей NaCl, MgClи KCl, причем температуру расплава в процессе замешивания лигатуры поддерживают в пределах от 720 до 800°С в течение 30-45 минут, получение слитка путем кристаллизации расплава, получение листа путем деформирования слитка и отжиг деформированного полуфабриката при температуре 250-350°С, при этом получают листы со структурой композиционного материала, содержащего частицы TiBв количестве от 4 до 8%. Техническим результатом изобретения ...

Подробнее
20-02-1997 дата публикации

СПОСОБ ПОЛУЧЕНИЯ СПЛАВОВ МЕТАЛЛОВ С ФОСФОРОМ

Номер: RU2073735C1

Использование: получение сплавов, применяемых в черной, цветной и порошковой металлургии в качестве раскислителей, легирующих добавок, припоев. Сущность изобретения: сплавы получают раздельной загрузкой фосфора и металла в тигель, фосфор предварительно теплоизолируют материалами на основе асбеста, бумаги, стекловолокна, углерода или их сочетания, металл загружают в виде смеси стружки с кусками или в виде кусков. Нагрев ведут до температур выше температуры плавления целевого продукта, но ниже температуры плавления загружаемого металла. Целевой продукт удаляют из тигля в виде расплава. 4 з. п. ф-лы, 6 табл.

Подробнее
10-12-2014 дата публикации

ВЫСОКОТЕМПЕРАТУРНЫЙ АНТИФРИКЦИОННЫЙ МАТЕРИАЛ

Номер: RU2535419C1

Изобретение относится к порошковой металлургии, в частности к высокотемпературным антифрикционным материалам. Может использоваться в высокотемпературных зонах промышленного оборудования, в частности на АЭС. Антифрикционный материал содержит, мас.%: дисульфид молибдена не более 10, керамические соединения монокристаллического молибдена - остальное. Пористость его составляет 5-35%. Обеспечивается возможность использования в условиях воздействия радиационного излучения и высоких температур в труднодоступных для ремонта местах без замены и обслуживания за счет повышения износостойкости, жаростойкости, твердости и низкой пластичности. 1 ил., 1 табл., 2 пр.

Подробнее
20-06-2002 дата публикации

МЕТАЛЛОМАТРИЧНЫЙ КОМПОЗИТ

Номер: RU2183687C1
Автор: Попов В.А.

Изобретение относится к металлургии, а именно к металломатричным композитам, которые могут быть использованы в машиностроении, в частности в автомобилестроении, электронике и электротехнике. Предложен металломатричный композит, состоящий из матрицы и усиливающих элементов. При этом матрица содержит квазикристаллический материал в пределах от 0,01 до 100 об.% от объема всей матрицы. Квазикристаллический материал матрицы может располагаться в поверхностном слое композита на глубину, как минимум равную среднему размеру усиливающих элементов. Квазикристаллический материал может быть распределен по объему матрицы. Матрица может быть выполнена из квазикристаллического материала системы Al-Cu-Fe или Ti-Zr-Ni. Усиливающие элементы могут быть выполнены из нитрида титана. Техническим результатом изобретения является повышение прочностых характеристик и износостойкости материала. 5 з.п. ф-лы.

Подробнее
27-08-2002 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ МЕТАЛЛОМАТРИЧНОГО КОМПОЗИТА

Номер: RU2188248C1

Изобретение относится к композиционным материалам, а именно к металломатричным композитам. В способе изготовления металломатричного композита, включающем подготовку усиливающих элементов в виде порошка, подготовку материала матрицы в виде порошка, смешивание и перемешивание порошков и последующую термообработку полученной смеси, согласно изобретению в качестве материала матрицы используют нанопорошок размером 1-150 нм в количестве 1-100 мас. % от массы материала матрицы; смешивание порошков осуществляют в процессе получения нанопорошка материала матрицы; причем смешивание порошков осуществляют в консерванте, а после перемешивания удаляют консервант вакуумированием; после получения смеси порошков осуществляют обработку давлением полученной смеси магнитно-импульсным прессованием; после получения смеси порошков осуществляют обработку давлением полученной смеси взрывным методом; после магнитно-импульсного прессования осуществляют обработку взрывом, при этом давление при обработке взрывом превышает ...

Подробнее
27-11-2013 дата публикации

СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ СПЛАВА АЛЮМИНИЙ-МАГНИЙ С СОДЕРЖАНИЕМ НАНОДИСПЕРСНОГО ОКСИДА ЦИРКОНИЯ

Номер: RU2499849C1

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов, упрочненных нанодисперсными частицами. Упрочняющие нанодисперсные частицы оксида циркония вводят в расплав на основе сплава алюминий-магний. Расплав кристаллизуют в поле центрифуги с коэффициентом гравитации 150-200 g и времени жизни расплава 8-10 сек/кг. Обеспечивается получение градиентного материала с пространственно неоднородной структурой и высокими свойствами. 2 з.п. ф-лы, 1 табл., 1 пр.

Подробнее
10-12-2013 дата публикации

СПОСОБ МОДИФИЦИРОВАНИЯ ЧУГУНА С ШАРОВИДНЫМ ГРАФИТОМ

Номер: RU2500824C1

Изобретение относится к металлургии и литейному производству, в частности к модифицированию легированного чугуна с шаровидным графитом, который используют в качестве быстроизнашивающихся деталей, например, мелющих элементов рудо- и углеразмольных мельниц. Способ включает засыпку на зеркало расплава чугуна покровного материала в виде порошка флюсперлита «Барьер-200» и введение в расплав чугуна твердого модификатора в виде твердой церий-магний-никелевой присадки, причем перед введением твердого модификатора на зеркало расплава засыпают первый слой покровного материала и выдерживают его до образования плотного вязкого слоя, затем на первый слой засыпают второй слой покровного материала и вводят в расплав твердый модификатор с последующей засыпкой места ввода горячим покровным материалом, при этом твердый модификатор перед введением в расплав чугуна выдерживают в воде. Изобретение позволяет повысить эффективность действия защитного покрова, что позволит увеличить массу расплава модифицируемого ...

Подробнее
10-07-2013 дата публикации

СПОСОБ УПРОЧНЕНИЯ ЛЕГКИХ СПЛАВОВ

Номер: RU2487186C1

Изобретение относится к металлургии, в частности к получению легких сплавов на основе алюминия. В расплав на основе алюминия вводят лигатуру, содержащую частицы тугоплавкого соединения. В качестве лигатуры используют порошок микронных размеров тугоплавкого соединения, частицы которого покрывают слоем равномерно перемешанной смеси нанопорошка алюминия и углеродных нанотрубок, при следующем соотношении компонентов, мас.%: тугоплавкое соединение 80-90, нанопорошок алюминия 5-10, углеродные нанотрубки 5-10. Обеспечивается повышение прочности и износоустойчивости дисперсно-упрочненных легких сплавов на основе алюминия. 1 з.п. ф-лы, 1 пр.

Подробнее
27-10-2013 дата публикации

СПОСОБ ПОЛУЧЕНИЯ БОРСОДЕРЖАЩЕГО КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ АЛЮМИНИЯ

Номер: RU2496899C1

Изобретение относится к области металлургии, в частности к борсодержащим алюмоматричным композиционным материалам, и может быть использовано при получении изделий, к которым предъявляются требования низкого удельного веса в сочетании с высоким уровнем поглощения при нейтронном излучении. Способ получения материала в виде литой заготовки включает приготовление алюминиевого расплава, содержащего 1-2 мас.% железа и 0,2-0,6 мас.% кремния, введение в расплав при температуре 900-1100°С бора в виде борной кислоты и титана в виде стружки в соотношении, позволяющем получить в литой структуре частицы диборида титана в количестве от 4 до 8 мас.%, и кристаллизацию путем литья в форму. Техническим результатом изобретения является создание экономичного способа получения содержащего бор композиционного материала на основе алюминия, обладающего высоким уровнем поглощения нейтронного излучения в сочетании с наилучшими механическими свойствами и технологичностью. 5 пр., 2 табл., 1 ил.

Подробнее
30-06-2021 дата публикации

СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНИЕВОГО СПЛАВА, АРМИРОВАННОГО КАРБИДОМ БОРА

Номер: RU2750658C1

Изобретение относится к области металлургии и предназначено для изготовления композиционных материалов на основе алюминиевого сплава. Способ получения алюминиевого сплава, армированного карбидом бора, включает плавление алюминия и меди в графито-шамотном тигле в электрической печи сопротивления, введение в расплав при температуре от 850 до 950°С частиц карбида бора и механическое замешивание с помощью четырехлопастной титановой лопасти, при этом частицы карбида бора предварительно нагревают при температуре от 200 до 250°С в течение не менее 20 минут, введение частиц в расплав осуществляют через питатель на дно тигля посредством их вдувания с использованием газа-носителя, механическое замешивание осуществляют при скорости вращения лопасти мешалки от 250 до 350 об/мин, после чего расплав разливают в изложницы и проводят его принудительное охлаждение со скоростью от 10 до 25 град/мин. Изобретение направлено на повышение степени усвоения частиц карбида бора при снижении неоднородности микроструктуры ...

Подробнее
27-06-1998 дата публикации

ПОРОШКОВЫЙ АНТИФРИКЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ ЖЕЛЕЗА И СОСТАВ САМОСМАЗЫВАЮЩЕГОСЯ МАТЕРИАЛА ДЛЯ НЕГО

Номер: RU2114207C1

Изобретение относится к порошковой металлургии, в частности, к порошковым материалам конструкционного назначения и смазочным составам, содержащим добавки порошков дихалькогенидов тугоплавких металлов. Порошковый антифрикционный материал на основе железа содержит 10-30 мас.% диселенида вольфрама и 20-40 мас.% эпоксидной смолы, а смазочный состав на основе эпоксидной смолы содержит в качестве добавки твердой смазки порошок диселенида вольфрама в количестве 15-30 мас. %. Состав обеспечивает высокие триботехнические характеристики порошкового материала, его коррозионную стойкость и технологичность при изготовлении. 2 с.п.ф-лы, 2 табл.

Подробнее
10-10-2005 дата публикации

СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА И ИЗДЕЛИЯ ИЗ НЕГО

Номер: RU2261780C1

Изобретение относится к порошковой металлургии, в частности к получению композиционного материала с металлической матрицей, армированной частицами карбида кремния, со степенью наполнения выше 45%. Может применяться для изготовления силовых полупроводниковых приборов и преобразователей электроэнергии. Способ получения изделия из композиционного материала с металлической матрицей включает смешивание порошка карбида кремния различных фракций с 1-50 об. % порошка карбида бора. Осуществляют виброуплотнение с получением заготовки, которую подвергают дополнительному прессованию на воздухе с изотермической выдержкой. Полученную заготовку пропитывают матричным расплавом под давлением и проводят направленную кристаллизацию путем создания градиента температур на фронте кристаллизации. Техническим результатом является повышение плотности, теплопроводности, снижение КЛТР, возможность получения изделий сложной формы. 5 з.п. ф-лы, 1 табл.

Подробнее
09-07-2020 дата публикации

РЕЖУЩИЙ ИНСТРУМЕНТ

Номер: RU2726135C1

Изобретение относится к области металлургии, а именно к способу изготовления режущего инструмента, содержащего твердосплавную подложку, которая содержит регулируемое количество мелкодисперсной эта-фазы. Способ изготовления режущего инструмента, содержащего твердосплавную подложку, включает следующие этапы: обеспечение первого спеченного твердосплавного тела, содержащего WC, металлическую связующую фазу, при этом металл связующей фазы выбирают из одного или более из Co, Fe и Ni, и эта-фазу, содержащую карбиды MeC и/или MeC, где Me выбирают из W, Mo и одного или более из металлов связующей фазы, при этом субстехиометрическое содержание углерода в твердом сплаве составляет от -0,30 до -0,16 мас.%, термическую обработку упомянутого первого спеченного твердосплавного тела при температуре от 500 до 830°С в течение времени от 1 до 24 ч. Режущий инструмент, изготовленный заявленным способом, имеет повышенную стойкость к трещинам гребня. 2 н. и 13 з.п. ф-лы, 3 ил., 4 табл., 4 пр.

Подробнее
10-09-2015 дата публикации

СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ АЛЮМИНИЕВОГО СПЛАВА

Номер: RU2562739C1

Изобретение относится к получению литого композиционного материала на основе алюминиевого сплава для изготовления деталей сложной формы. Расплавляют основу, вводят в нее композицию, включающую армирующие частицы АlО, на поверхности которых механической активацией предварительно сформирован слой Аl, и разливают в форму. Слой Аl в процессе механической активации подвергают нагартовке, а частицы АlOформируют размером 50-40 мкм и вводят в расплав предварительно разогретыми до температуры, где t- температура плавления алюминия, в количестве 15-20% массы расплава. В качестве основы может быть использован силумин. Обеспечивается повышение предела прочности литого композиционного материала. 4 з.п. ф-лы, 3 табл.

Подробнее
20-12-2015 дата публикации

КОМПОЗИЦИОННЫЙ МАТЕРИАЛ, СОДЕРЖАЩИЙ УГЛЕГРАФИТОВЫЙ КАРКАС, ПРОПИТАННЫЙ МАТРИЧНЫМ СПЛАВОМ НА ОСНОВЕ МЕДИ

Номер: RU2571296C1

Изобретение относится к области металлургии, в частности к получению армированных композиционных материалов, и может быть использовано для получения композиционных материалов, работающих в условиях трения в качестве электротехнических изделий, таких как токосъемники, вставки пантографов, электротехнические щетки и т.п. Композиционный материал содержит углеграфитовый каркас, пропитанный матричным сплавом на основе меди, содержащим, мас.%: смесь порошков тетрабората лития и лигатуры медь-бор с содержанием в смеси 6% лития и 29% бора 0,5-3,0, фосфор 4,0-8,0, медь - остальное. Техническим результатом изобретения является повышение электропроводности композиционного материала при сохранении прочностных характеристик. 7 пр., 1 табл.

Подробнее
10-09-1996 дата публикации

СПОСОБ ПРОИЗВОДСТВА ЦЕЛЫХ ЧУГУННЫХ ИЗДЕЛИЙ, СПОСОБ ПРОИЗВОДСТВА МАХОВИКА И МАХОВИК

Номер: RU94045913A
Принадлежит:

Изобретения относится к способу производства целого литого изделия с неоднородным распределением графитовых кристаллов в вермикулярной и шаровидной форме в разных частях готового литого изделия. Это достигается регулированием состава и физических свойств расплавленного металла или местного потенциала образования центров кристаллизации с тем, чтобы расплавленный металл в зависимости от времени затвердения и/или местного потенциала образования центров кристаллизации затвердевал с большей долей кристаллов вермикулярного графита в тех частях отливки, в которых желательна вермикулярная структура. В тех частях, где желательна более высокая доля кристаллов шаровидного графита при соответствующей меньшей доле кристаллов вормикулярного графита, т.е. в тех частях, где желательна структура с шаровидным графитом, путем регулирования местного потенциала образования центров кристаллизации обеспечивается более быстрый отвод тепла от отливки при затвердевании либо обеспечением отливки тонкими частями, ...

Подробнее
10-10-1999 дата публикации

СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА

Номер: RU97121120A
Принадлежит:

Способ получения композиционного материала на основе алюминиевого сплава, упрочненного карбидом титана, включающий подачу смеси тетрахлорида титана и тетрахлорида углерода в молярном соотношении 1:1 на поверхность расплава при непрерывном перемешивании, отличающийся тем, что смесь хлоридов подают на поверхность алюминиево-магниевого сплава и по окончании процесса восстановления полученный продукт выдерживают в вакууме при температуре 650-750oС до получения материала, содержащего 5-8 % магния.

Подробнее
10-03-1999 дата публикации

КОМПОЗИЦИОННЫЙ МАТЕРИАЛ

Номер: RU97102019A
Автор: Попов В.А.
Принадлежит:

... 1. Композиционный материал, содержащий алюминий или алюминиевый сплав и частицы более тугоплавкого материала, отличающийся тем, что, с целью увеличения электропроводности и повышения механических характеристик, композиционный материал дополнительно содержит медный элемент или медные элементы. 2. Композиционный материал по п. 1, отличающийся тем, что медным элементом является порошок меди или медного сплава, причем средний размер частиц меди равен 0,1 - 1,0 среднего размера частиц более тугоплавкого материала, а количество медного порошка в весовом исчислении равняется 0,5 - 1,5 количества более тугоплавкого материала. 3. Композиционный материал по пп. 1 и 2, отличающийся тем, что медными элементами являются конструкционные элементы различного сечения (проволока, лента), расположенные в требуемом направлении, причем расстояние между медными конструкционными элементами равно 20 - 2500 средних размеров L частиц более тугоплавкого материала, а площадь поперечного сечения медного элемента равно ...

Подробнее
10-08-2010 дата публикации

СПОСОБ ВВЕДЕНИЯ УПРОЧНЯЮЩИХ ЧАСТИЦ В АЛЮМИНИЕВЫЕ СПЛАВЫ

Номер: RU2009103499A
Принадлежит:

Способ введения упрочняющих частиц в алюминиевые сплавы, заключающийся во введении тугоплавких частиц в расплав, отличающийся тем, что их добавление осуществляют посредством введения в расплав частиц с композиционной структурой в виде тугоплавкого соединения в центральной части частицы, окруженной оболочкой из алюминия, причем толщина оболочки из алюминия составляет 10-25% от диаметра центральной части частицы.

Подробнее
20-01-1997 дата публикации

СПОСОБ ПОЛУЧЕНИЯ МЕДНО-ФОСФОРИСТОГО СПЛАВА

Номер: RU93043179A
Принадлежит:

Изобретение относится к получению медно-фосфористых сплавов из меди и красного фосфора, применяемых особенно при пайке меди и сплавов на ее основе. Цель: интенсификация процесса получения медно-фосфористого сплава, его упрощение и возможность получения однородного продукта заданного состава. Сущность изобретения: в известном способе получения медно-фосфористого сплава из меди и красного фосфора, включающем смешивание твердых компонентов, нагревание смеси в закрытом объеме, последующий проплав полученного продукта, нагревание ведут до температуры плавления сплава заданного состава, выдерживают реакционную массу при этой температуре в течение 40 - 60 мин, после чего нагревают массу до температуры, на 80 - 100oС превышающую температуру плавления сплава. Технический эффект: интенсификация процесса за счет резкого сокращения продолжительности процесса (1 - 1,5 ч вместо 15 ч), его упрощение вследствие исключения необходимости применения толстостенных кварцевых ампул и их откачки и возможность ...

Подробнее
10-11-1998 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ ЖАРОПРОЧНЫХ И ЖАРОСТОЙКИХ ДИСПЕРСНО-УПРОЧНЕННЫХ ИЗДЕЛИЙ НА ОСНОВЕ МЕДИ

Номер: RU97106864A
Принадлежит:

Способ изготовления жаропрочных и жаростойких дисперсно-упрочненных изделий на основе меди, включающий приготовление смеси, состоящей из порошков меди и оксидов металлов, при котором используют аттритор с шарами для размола, последующее холодное компактирование в брикеты, нагревание и термодеформационную обработку, отличающийся тем, что приготавливают смесь, дополнительно содержащую карбиды металлов и углерод, путем одновременного размола в аттриторе порошков меди, оксидо- и карбидообразующих элементов и углерода, взятого в количестве, превышающем не более чем на 0,5 мас. % стехиометрически необходимое его количество для полной карбидизации оксидо- и карбидообразующих элементов, в течение 60-80 мин со скоростью вращения ротора аттритора 600-700 об/мин и отношением массы мелющих шаров к массе порошковой смеси (15-25): 1, холодное компактирование полученной смеси в брикеты проводят до относительной плотности 70-80%, после чего брикеты нагревают до температуры 750-850oС с выдержкой при этой ...

Подробнее
10-01-1996 дата публикации

МАТЕРИАЛ СПЕЧЕННЫЙ ФРИКЦИОННЫЙ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Номер: RU94010967A1
Принадлежит:

Изобретение относится к производству спеченных фрикционных материалов, применяемых в фрикционных и тормозных устройствах автомобилей, тракторов, самолетов и т.д. В спеченном фрикционном материале частицы фрикционных добавок расположены внутри оболочки из твердой смазки. Смешивание исходных компонентов осуществляют в определенной последовательности: введение в смесительный агрегат и смешивание компонентов несущей металлической основы, введение в смесительный агрегат предварительно смешанных фрикционных добавок с твердыми смазками и окончательное смешивание. Фрикционные добавки перед смешиванием увлажняют хорошо испаряемым или выгорающим при спекании увлажнителем, например минеральным маслом.

Подробнее
23-02-1993 дата публикации

CПOCOБ ПOЛУЧEHИЯ ИЗДEЛИЙ, COДEPЖAЩИX KOMПOЗИЦИЮ C METAЛЛИЧECKOЙ MATPИЦEЙ

Номер: RU1797603C
Автор:
Принадлежит:

Подробнее
23-07-1993 дата публикации

ЭЛEKTPOЛИЗEP ФИЛЬTP-ПPECCHOГO TИПA

Номер: RU1830087C
Автор:
Принадлежит:

Подробнее
15-07-1993 дата публикации

CПOCOБ ПOЛУЧEHИЯ KOMПOЗИЦИOHHOГO MATEPИAЛA

Номер: RU1828461C
Автор:
Принадлежит:

Подробнее
30-03-1989 дата публикации

Модифицирующая смесь

Номер: SU1468954A1
Принадлежит:

Изобретение относится к области металлургии, в частности к составам смесей для графитизирующего модифицирования высокопрочного чугуна. Цель изобретения - повьшгение механических свойств за счет улучшения графитизирующей способности смеси. Модифицирующая смесь содержит мас.%: ферросиликобарий 32-45; ферробор висмут 1-11 и нитриды алюминия I-36. Дополнительный ввод в состав смеси ферробора и нитридов алюминия повышает графитизирующую способность смеси, способствует измельчению зерна и ферритизации матрицы чугуна, что приводит к существенному (на 15-35%) повышению механических , особенно пластических, свойств чугуна 1 табл. с ...

Подробнее
23-08-1993 дата публикации

Бронированный композиционный материал

Номер: SU1836478A3

Изобретение относится к композиционным материалам, которые используются в качестве брони. Сущность изобретения: предложенный бронированный материал содержит основу из металлического связующего , в качестве которого используют по крайней мере одно вещество, выбранное из группы, содержащей алюминиевый сплав, медный сплав, чугун, титан, железо, никель, сталь и керамический наполнитель, в качестве которого используют по крайней мере одно вещество, выбранное из группы, содержащей глинозем магнезию, оксид циркония , карбид кремния, диборид титана, нитрид кремния, диборид титана, нитрид алюминия, додекаборид алюминия, карбид титана, при содержании керамического наполнителя 36-72 об.%. 2 з.п. ф-лы, 2 табл.

Подробнее
13-03-1986 дата публикации

METHOD FOR ADDING INSULUBLE MATERIAL TO A LIQUID OR PARTIALLY LIQUID METAL

Номер: DE0003362026D1
Принадлежит: DOW CHEMICAL CO, THE DOW CHEMICAL COMPANY

Подробнее
12-10-1978 дата публикации

SINTERKONTAKTWERKSTOFF AUS SILBER UND EINGELAGERTEN METALLOXIDEN

Номер: DE0002659012A1
Принадлежит:

Подробнее
25-09-1975 дата публикации

VERFAHREN ZUR HERSTELLUNG VON VOROXIDIERTEM SILBER-CADMIUMOXID-DRAHT ODER -BAND

Номер: DE0002512631A1
Принадлежит:

Подробнее
31-10-2007 дата публикации

GIESSVERFAHREN

Номер: DE0060311824T2
Принадлежит: EX ONE CORP, EX ONE CORP.

Подробнее
31-05-2007 дата публикации

VERBUNDWERKSTOFF AUF MAGNESIUMBASIS UND HERSTELLUNGSVERFAHREN DAFÜR

Номер: DE0060313294D1
Принадлежит: TOUDAI TLO LTD, TOUDAI TLO LTD.

Подробнее
06-03-2008 дата публикации

VERBUNDWERKSTOFF AUF MAGNESIUMBASIS UND HERSTELLUNGSVERFAHREN DAFÜR

Номер: DE0060313294T2
Принадлежит: TOUDAI TLO LTD, TOUDAI TLO LTD.

Подробнее
28-04-1988 дата публикации

Method for the production of dispersion materials

Номер: DE0003721258A1
Принадлежит:

The invention relates to a method for the production of dispersion materials in powder form composed of a matrix and additives, in which the additives and a metal powder are added to the base material during atomisation. Very fine distribution of the substrate in the very rapidly solidifying metal droplets, i.e. a high degree of homogeneity, is thus achieved.

Подробнее
16-01-2020 дата публикации

Additive Fertigung von Metallmatrix-Verbundwerkstoffen

Номер: DE112018002378A5
Принадлежит:

Подробнее
18-01-2016 дата публикации

Misch- und Knetmaschine für kontinuierliche Aufbereitungsprozesse zur Aufbereitung von Metallen

Номер: DE202012013291U1
Автор:
Принадлежит: BUSS AG

Misch- und Knetmaschine (1) für kontinuierliche Aufbereitungsprozesse, mit einem einen Prozessraum (4) umschliessenden Gehäuse (2) und einem im Gehäuse (2) rotierenden Arbeitsorgan (3), mit einem Einlauftrichter (5) zum Einfüllen von im Prozessraum (4) aufzubereitendem Material und einer Austrittsdüse (8) für das aufbereitete Material, da durch gekennzeichnet, dass sowohl das Gehäuse (2) als auch das Arbeitsorgan (3) mit zumindest je einem Kanal (12A, 30) zum zwangsweisen Durchleiten von gasförmigen Medien zum Temperieren des Prozessraums (4) versehen ist/sind, und dass die Misch- und Knetmaschine (1) einen beheizbaren Einlauftrichter (5) und/oder eine beheizbare Austrittsdüse (8) aufweist.

Подробнее
24-09-1970 дата публикации

Verfahren zum Herstellen fliessfaehiger Metallpulver

Номер: DE0001583742A1
Принадлежит:

Подробнее
11-12-1969 дата публикации

Verfahren zum Verdichten von pulverfoermigen Substanzen

Номер: DE0001533241A1
Принадлежит:

Подробнее
20-08-1970 дата публикации

Verfahren und Vorrichtung zur Beschichtung der inneren Oberflaeche eines Kapillarsystems

Номер: DE0001521517A1
Принадлежит:

Подробнее
30-05-1974 дата публикации

VERFAHREN ZUM HERSTELLEN VON HARMETALLTEILEN

Номер: DE0002357444A1
Принадлежит:

Подробнее
28-11-1985 дата публикации

VERFAHREN ZUM HERSTELLEN VON VERSCHLEISSKOERPERN

Номер: DE0003419406A1
Принадлежит:

Подробнее
29-01-2009 дата публикации

Aluminum-matrix material for building contains concentration gradient of magnesium silicide

Номер: DE102007035115A1
Принадлежит:

The aluminum-matrix material contains reinforcing components embedded in it, which include a magnesium silicide content of 8-30 wt.%. A concentration gradient of magnesium silicide is present in the material. The magnesium silicide is in the form of embedded particles of increasing concentration from bottom to top over the cross section of the material.

Подробнее
02-03-2006 дата публикации

Production of dispersoid-strengthened material used as construction material in, e.g., high-temperature applications, by mixing metal particles and alloys, with precursor compound of dispersoid and solvent, and compacting metal particles

Номер: DE102004041404A1
Принадлежит:

Production of dispersoid-strengthened material comprises: mixing metal particles, where the metal is platinum group metals, gold, silver, nickel or copper, as well as alloys, with a precursor compound of the dispersoid and solvent; removing the solvent; and compacting metal particles provided with precursor compound to obtain dispersoid-strengthened material, where precursor compound is converted into dispersoid during compacting operation. Production of dispersoid-strengthened material comprises: (1) providing metal particles, where the metal is platinum group metals, gold, silver, nickel or copper, as well as alloys; (2) mixing the metal particles with a precursor compound of the dispersoid and solvent; (3) removing the solvent, to obtain metal particles provided with precursor compound; and (4) compacting the metal particles provided with precursor compound in order to obtain the dispersoid-strengthened material, where the precursor compound is converted into the dispersoid during the ...

Подробнее
17-01-2002 дата публикации

Device used for manufacturing a metal-ceramic composite material comprises a casting flask, a casting chamber having an opening for the casting metal and the initial ceramic product, and a casting tool with a casting run and a die cavity

Номер: DE0010025489A1
Принадлежит:

Device used for manufacturing a metal-ceramic composite material comprises a casting plunger (1), a casting chamber (2), and a casting tool (3) with a casting run (4) and a die cavity (5). The casting chamber has an opening (6) through which the casting metal and the initial ceramic product are poured. An Independent claim is also included for a process for manufacturing a metal-ceramic composite material comprising producing a preform from an initial ceramic product and infiltrating this under pressure with a casting metal in a casting tool. Preferred Features: A shooting head (7) for shooting in the initial ceramic product is placed on the opening so that it moves. A pouring channel (8) for pouring the casting metal is placed on the opening.

Подробнее
09-11-1978 дата публикации

Номер: DE0001927058B2
Принадлежит: NIPPON CARBON CO., LTD., TOKIO

Подробнее
20-11-2003 дата публикации

Component made from a titanium aluminide material used in internal combustion engines has oxygen as oxide of a further element formed by thermal treatment and/or during sintering embedded in the titanium aluminide material

Номер: DE0010228924C1

Component made from a titanium aluminide material produced by reaction sintering in a powder metallurgical method has oxygen as oxide of a further element formed by thermal treatment and/or during sintering embedded in the titanium aluminide material. The whole titanium aluminide material contains more than 0.1 wt.% oxygen. An Independent claim is also included for a process for the powder metallurgy production of the above component.

Подробнее
23-12-1970 дата публикации

IMPROVEMENTS IN AND RELATING TO DISPERSION STRENGTHENED ALUMINIUM PRODUCTS

Номер: GB0001216513A
Автор:
Принадлежит:

... 1,216,513. Sintered dispension strengthened A1 products. ATOMENERGIKOMMISSIONEN. Jan.12, 1968 [Jan.16, 1967], No.1798/68, Heading C7D. A sintered dispersion strengthened Al product is made by compacting and sintering a powder mixture of Al or Al alloy and a metal oxide of particle size up to 0À5 microns, a free energy of formation lower than Al 2 O 3 but high enough for partial reduction of the oxide during sintering to form a bonding layer having a melting point near to or above that of the Al or Al alloy. Alternatively the metal oxide has a free energy of formation lower than that of the oxide of a constituent of the Al alloy. Oxides may be ZrO 2 , HfO 2 , CeO 2 , PrO 2 , TiO 2 , UO 2 , SiO 2 in proportion of 15-20% volume. The powders are mixed hot pressed at 550‹ C and extruded at 500‹C.

Подробнее
16-06-1954 дата публикации

Improvements in or relating to the production of ceramic compositions

Номер: GB0000710562A
Автор: MOORE NORMAN CLEMENT
Принадлежит:

A process for the production of a ceramic material comprises forming a mixture of alumina and chromic oxide, adding thereto a quantity of carbon sufficient to react with part or all of the chromic oxide to reduce it to chromium metal, and subjecting the mixture to heat treatment, which may be effected at sub-atmospheric pressure, at a temperature at which the carbon and chromic oxide react to reduce all or part of the chromic oxide to chromium metal. The mixture of alumina and chromic oxide and carbon may be prepared by mixing and grinding the ingredients or by co-precipitating the hydroxides of aluminium and chromium, heating the hydroxides to convert them to the corresponding oxides and mixing the oxides with carbon or by forming a solid solution of the oxides and pulverizing and mixing it with carbon. The proportions in the mixture are adjusted to yield a fired material which consists of a solid solution of alumina with up to 5 per cent. of its weight of chromic oxide and a proportion ...

Подробнее
17-03-1976 дата публикации

CERAMIC METAL MATERIALS

Номер: GB0001428432A
Автор:
Принадлежит:

... 1428432 Comminuting ceramic particles and pigments INTERNATIONAL NICKEL LTD 4 June 1973 [12 June 1972] 26460/73 Heading B2A Cements and pigments are produced by comminution of dry materials in a stirrer mill or a vibratory ball mill at e.g. 20 Hz with a ratio of grinding media to powder of greater than 1:1 by weight and preferably 3:1, 5:1, or most preferably at least 10:1. Balls may be steel, tungsten carbide, nickel or alumina milling is continued until beyond the "threshold" point when particle growth and reduced surface area begin to predominate over comminution. Powders e.g. a range 0.01...150 Á may be reduced. Examples of milling of nickel, ZnO Fe 2 O 3 , of alumina and carboxyl nickel powder, and for a paint pigment of nickel, antimony and cutile to produce nickel-antimony-titanate pigment are described.

Подробнее
04-05-1977 дата публикации

Номер: GB0001472479A
Автор:
Принадлежит:

Подробнее
27-06-1973 дата публикации

HEAT TREATMENT OF NICKEL BASE ALLOYS

Номер: GB0001321458A
Автор:
Принадлежит:

... 1321458 Heat treating nickel alloys CABOT CORP 22 June 1970 [20 June 1969] 30109/70 Heading C7A An alloy containing in percentage by weight Mo 3-12 (replaceable by 3-15 W) is solution treated at 2250‹-2300‹F, quenched, cold worked to shape, heated at 2250‹ -2300‹ F for not more than 1 hour, quenched and aged at 1100‹ -1350‹ F for 24 to 100 hours. The solution treatment quenching and cold working steps may be repeated as necessary. The treated alloys have dispersed primary monocarbides of less than 5Á and finely dispersed mono carbide particles of less than 250Š.

Подробнее
03-12-1975 дата публикации

ELECTRICAL CONTACT MATERIALS

Номер: GB0001416537A
Автор:
Принадлежит:

... 1416537 Metal oxides SQUARE D CO 30 July 1973 [18 Aug 1972 25 Aug 1972] 38568/72 and 39667/72 Heading C1A [Also in Division C7] Cadmium oxide and tellurium oxide powders are dissolved together in concentrated nitric acid, insoluble compounds are precipitated using sodium carbonate solution, the precipitates washed and dried before being decomposed by heating to produce a fine powder mixture of cadmium oxide and a mixed oxide of cadmium and tellurium.

Подробнее
19-02-1986 дата публикации

NITRIDE DISPERSION STRENGTHENED ALLOYS

Номер: GB0008600895D0
Автор:
Принадлежит:

Подробнее
19-06-1968 дата публикации

Method of preparing high melting point metal alloys

Номер: GB0001117669A
Автор: WOOLCOCK ALAN
Принадлежит:

A process for the production of oxide dispersion hardened refractory metal alloys comprises melting an alloy based on Ta, Nb, V, Ti, Cr, W, Mo or Ni with Y, Ce, La or Th in the presence of sufficient oxygen to form a dispersed oxide of the Y, Ce, La or Th. The oxygen is supplied as an oxide coating on the particles of the base alloy, which has been thickened by heating them in air. A suitable amount of oxygen is stated to be 200-400 ppm by weight of the alloy. The alloy components may be melted in an arc furnace in an inert gas atmosphere or in vacuo or in an electron beam furnace.

Подробнее
11-01-1938 дата публикации

Improved method of making shaped bodies of hard material

Номер: GB0000478026A
Автор:
Принадлежит:

Hard substances, e.g. carbides, silicides, nitrides or borides of tungsten, molybdenum titanium, vanadium, zirconium, cerium, silicon, boron, aluminium, beryllium or chromium, which have been fused in the presence of atomic hydrogen as described in Specification 478,016, [Group III], are powdered and mixed with powdered metals, e.g. of the iron group or alloys thereof with vanadium, chromium, tungsten, manganese or molybdenum and heated in a refractory mould to above the melting point of the bonding metal. Pressure may be applied. The products are suitable for inserts for core drills and deep well boring tools.

Подробнее
20-07-1988 дата публикации

THE MANUFACTURE OF ALUMINIUM/ZIRCONIA COMPOSITES

Номер: GB0002163179B
Принадлежит: AE PLC, * AE PLC

Подробнее
01-10-1986 дата публикации

METAL MATRIX COMPOSITE MANUFACTURE

Номер: GB0002172825A
Принадлежит:

A metal, e.g. in the form of a shaped article, is made by atomizing a stream of molten metal and directing the atomized stream at a collecting surface to form a deposit of the metal. Fine, solid particulate material of different composition from the metal, e.g., nonmetallic particles, and of mean particle size less than 20 micrometers, preferably less than 10 micrometers, is applied to the stream or spray so that it becomes incorporated into the deposit. The particulate material is applied by generating a fluidized bed thereof and feeding it from the bed into the stream or spray. Uniform dispersion of material such as SiC at a high volume percentage (e.g. greater than 15%) may be achieved.

Подробнее
06-10-1993 дата публикации

TANTALUM-CONTAINING SUPERALLOYS

Номер: GB0002230274B
Принадлежит: GEN ELECTRIC, * GENERAL ELECTRIC COMPANY

Подробнее
17-08-1994 дата публикации

Particulate metal matrix composites

Номер: GB0002275008A
Принадлежит:

A method of manufacturing a particulate reinforced metal matrix composite comprises the operations of producing a primary melt containing an initial volume percentage of a particulate reinforcing material in a metal matrix material, maintaining the temperature of the melt constant for a period of time sufficient to allow an optimum volume percentage of the particulate material within the settled volume to be achieved, and removing the particulate reinforcing material depleted portion of the melt. The optimum period is determined by a previous calibration experiment. The metal matrix material is preferably an aluminium/silicon alloy and the reinforcing material is preferably silicon carbide with a particle size in the range 15 - 25 mu m. The volume percentage of reinforcing material is suitably less than 20%.

Подробнее
10-05-2012 дата публикации

Method of producing particulate-reinforced composites and composites produced thereby

Номер: US20120115708A1
Автор: Qingyou Han, Zhiwei Liu
Принадлежит: PURDUE RESEARCH FOUNDATION

A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intensity acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaction products comprise a solid particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particle-reinforced composite materials produced by such a process.

Подробнее
20-06-2013 дата публикации

Methods of producing nanoparticle reinforced metal matrix nanocomposites from master nanocomposites

Номер: US20130152739A1
Принадлежит: WISCONSIN ALUMNI RESEARCH FOUNDATION

Methods of forming metal matrix nanocomposites are provided. The methods include the steps of introducing a master metal matrix nanocomposite into a molten metal at a temperature above the melting temperature of the master metal matrix nanocomposite, allowing at least a portion of the master metal matrix nanocomposite to mix with the molten metal and, then, solidifying the molten metal to provide a second metal matrix nanocomposite.

Подробнее
22-08-2013 дата публикации

Aluminum alloy material and method of manufacturing aluminum alloy backboard

Номер: US20130216425A1
Принадлежит: Enraytek Optoelectronics Co Ltd

The present invention discloses an aluminum alloy material, which is made of raw material of aluminum alloy. The raw material of aluminum alloy consists of the following constituents by percentage of weight: graphene: 0.1%˜1%, carbon nano tube: 1%˜5%, the rest being Al. The aluminum alloy material of the present invention has a good performance of heat dissipation, the thermal conductivity is higher than 200 W/m. Meanwhile, the present invention further provides a method of manufacturing aluminum alloy backboard, in which method, the raw material of aluminum alloy is heated and melted in a heating furnace, afterwards, the raw material of aluminum alloy after melting is formed into an aluminum alloy backboard by die-casting, in this way, the utilization rate of material is increased and the manufacturing cost of the backboard is reduced.

Подробнее
07-01-2021 дата публикации

REFRACTORY COMPOSITIONS AND IN SITU ANTI-OXIDATION BARRIER LAYERS

Номер: US20210002176A1
Принадлежит: VESUVIUS USA CORPORATION

A refractory composition for forming a working lining in a metallurgical vessel contains a coarse-grain refractory particle fraction and a fine-grain refractory particle fraction, or at least 0.25% additive calcium oxide, or at least 0.25% titanium dioxide. The coarse-grain refractory particles can include alumina particles, magnesia particles, magnesium aluminate spinel particles, zirconia particles, or doloma particles, or a combination of any of these particles. The fine-grain refractory particles can be comprised of any low-magnesia refractory oxide. The refractory composition can be applied to a metallurgical vessel by spraying, gunning, shotcreting, vibrating, casting, troweling, or positioning preformed refractory shapes, or a combination of any of these techniques. When contacted by molten metal, the molten metal penetrates into the refractory material, wetting the coarse-grain refractory particles, and forming a refractory-metal composite barrier layer that decreases or blocks oxygen transport through the refractory lining. 123-. (canceled)25. The refractory composition of claim 24 , comprising claim 24 , in percent by total mass of the refractory composition:at least 50.0% coarse-grain refractory particles; andat least 25.0% low-magnesia oxide, fine-grain refractory particles.26. The refractory composition of claim 24 , wherein the coarse-grain refractory particles are essentially free of silica.27. The refractory composition of claim 24 , wherein the composition is essentially free of iron oxide.28. The refractory composition of claim 24 , wherein the coarse-grain refractory particles are essentially free of calcium oxide claim 24 , olivine claim 24 , and silica.29. The refractory composition of claim 24 , wherein the coarse-grain refractory particles comprise alumina particles having a particle size of at least 300 micrometers (+48 mesh).30. The refractory composition of claim 24 , comprising claim 24 , in percent by total mass of the refractory ...

Подробнее
03-02-2022 дата публикации

Method for preparation of aluminum matrix composite

Номер: US20220033934A1
Принадлежит: CITIC Dicastal Co Ltd

Disclosed is a method for preparation of an aluminum matrix composite including preparation of in-situ reaction mixed salt, preparation of a TiB2 enhanced 6061 aluminum matrix composite and ultrasonic treatment of a composite melt. The obtained composite contains TiB2 enhancing particles which are fine in size and uniform in distribution and may remarkably improve the mechanical performance indicators of a matrix alloy. In the TiB2 enhanced 6061 aluminum matrix composite according to the present disclosure, the size of the TiB2 enhancing particles is 200-500 nm and the particles are uniform in distribution in the matrix alloy.

Подробнее
21-01-2016 дата публикации

PACKAGE BASE, PACKAGE, ELECTRONIC DEVICE, ELECTRONIC APPARATUS, AND MOVING OBJECT

Номер: US20160021752A1
Принадлежит:

A package base includes a package base body and a bonding metal layer provided in a frame shape or a ring shape in plan view on the package base body, wherein the bonding metal layer contains a Ti—Ag—Cu-containing alloy and a metal belonging to Group 6 in the periodic table. 1. A package base , comprising:a substrate containing a ceramic; anda bonding metal layer provided in a frame shape or a ring shape in plan view on the substrate, whereinthe bonding metal layer contains a Ti—Ag—Cu-containing alloy and a metal belonging to Group 6 in the periodic table.2. The package base according to claim 1 , wherein the bonding metal layer contains Mo or W as the metal belonging to Group 6.3. The package base according to claim 1 , further comprising a metal coating film covering at least a part of the surface of the bonding metal layer.4. The package base according to claim 3 , wherein the metal coating film includes a Ni film and a Au film which are stacked in this order from the bonding metal layer side.5. A package claim 3 , comprising:a substrate containing a ceramic;a lid covering one side of the substrate; anda bonding metal layer provided in a frame shape or a ring shape in plan view and bonding the substrate and the lid to each other to form an internal space, whereinthe bonding metal layer contains Ti, Ag, Cu, and a metal belonging to Group 6 in the periodic table.6. The package according to claim 5 , wherein the bonding metal layer contains Mo or W as the metal belonging to Group 6.7. The package according to claim 6 , wherein in the bonding metal layer claim 6 , when the amount of Ti claim 6 , Ag claim 6 , and Cu is represented by A wt % and the amount of Mo is represented by B wt % claim 6 , the ratio of A to B satisfies the following relational formula: 65≦A<100:35≧B>0 (provided that A+B=100).8. The package according to claim 6 , wherein in the bonding metal layer claim 6 , when the amount of Ti claim 6 , Ag claim 6 , and Cu is represented by A wt % and the ...

Подробнее
10-02-2022 дата публикации

METHOD FOR FABRICATING PERFECTLY WETTING SURFACES

Номер: US20220041514A1
Автор: Carty William, LEE Hyojin
Принадлежит:

A method of preparing a substrate having a wetting surface, including confirming the presence of an open, interconnected pore network in a ceramic substrate to be wetted with a first metal, filling the open, interconnected pore network with a second metal, 1. A method of preparing a substrate having a wetting surface , comprising:a) confirming the presence of an open, interconnected pore network in a ceramic substrate to be wetted with a first metal;b) filling the open, interconnected pore network with a second metal;c) exuding the second metal to coat the surface of the substrate; andd) wetting the substrate with the first metal;wherein the ceramic substrate is not decomposed by the first metal; andwherein the ceramic substrate is not decomposed by the second metal.2. The method of wherein the first and second metals are identical.3. The method of wherein the second metal is an alloy including the first metal as a constituent.4. The method of wherein the ceramic substrate is selected from the group consisting of metal oxides claim 1 , metal carbides claim 1 , metal nitrides and metal borides.5. The method of wherein the first metal is elemental and wherein the second metal is an alloy including the first metal as a constituent.6. The method of wherein the first metal has a first melting point; wherein the second metal has a second melting point; and wherein the ceramic substrate has a sintering temperature greater than the respective melting points of the first and second metals.7. The method of wherein the open claim 1 , interconnected pore network has a mean pore diameter of less than twenty microns.8. The method of wherein the mean pore diameter is between five and ten microns.9. The method if wherein b) occurs under increased pressure.10. The method of wherein before b) claim 1 , the substrate is exposed to a partial vacuum to evacuate air from the open claim 1 , interconnected pore network.11. A method of preparing a wettable substrate claim 1 , comprising:q) ...

Подробнее
24-01-2019 дата публикации

Electroslag Fusion Process for Manufacturing a Blade Slab having a Large Curved Surface

Номер: US20190022746A1
Принадлежит:

The invention provides an electroslag fusion process for manufacturing a blade slab having a large curved surface, and it is more particularly effectively in making a blade slab which has a big width-to-thickness ratio, a large difference between the thin and the thick edges and a large curved surface. Firstly, dividing the blade slab into two or three regions according to the external shape and the sectional size of the blade slab, wherein the region which has difficulty in unilateral or bilateral mold-filling is pre-fabricated by the electroslag casting technology to produce a pre-fabricated curved slab, and then it is placed in advance in a side of an internal cavity of a mold, and then fusing the molten metal melted from a consumable electrode and one or two electroslag pre-fabricated slabs which are placed in advance in the mold by utilizing the electroslag fusion process, so as to produce the blade slab having a large curved surface. The large curved blade slab prepared by the process of the present invention has good internal and surface qualities, which can improve material utilization rate, shorten the processing period and improve quality, and in particular, has high anti-fatigue performance, high crack resistance and extensibility performances. The process of the present invention is more suitable for producing large or very large curved blade slab castings having a width-to-thickness ratio >10 and a single weight over 10 tons. 1. An electroslag fusion process for manufacturing a blade slab having a large curved surface , comprising the following steps:dividing the blade slab into two or three regions according to the external shape and the sectional size of the blade slab, wherein the region which has great sectional thickness changes and difficulty in unilateral or bilateral mold-filling is pre-fabricated in advance by an electroslag casting technology to produce a pre-fabricated curved slab;placing the pre-fabricated curved slab in advance at a side of ...

Подробнее
23-01-2020 дата публикации

MM'X-Y METAL COMPOSITE FUNCTIONAL MATERIAL AND PREPARATION METHOD THEREOF

Номер: US20200024693A1
Автор: LONG Kewen, Tao Kun, Zhang Hu
Принадлежит:

An MM′X—Y metal composite functional material and a preparation method thereof; an MM′X—Y metal composite functional material, comprising the following components in percentage by volume: A% of MM′Xand B% of Y, wherein each of M and M′ is any one element of a transition group or an alloy of more than one element, X is any one element of IIIA group or IVA group or an alloy of more than one element, and Y is any one element of IB group, IIB group, IIA group or IVA group, or an alloy of more than one element, wherein the value range of a, b and c is 0.8-1.2, and the sum of A% and B% is 100%; the material is prepared through smelting, annealing, crushing, mixing, pressing and curing, etc.; the mechanical performance of the MM′X—Y metal composite functional material prepared according to the present invention is far higher than the traditional MM′X material; the prepared MM′X—Y metal composite functional material has an ideal magnetothermal effect, thus can be used as a magnetic refrigeration material; the method can prepare MM′X—Y metal composite functional materials with any size and shape according to actual requirements; the method is simple, and can be easily operated and realized. 1. An MM′X—Y metal composite functional material , comprising the following components in percentage by volume:{'sub': a', 'b', 'c, 'A% of MM′Xand B% of Y, wherein'}each of M and M′ is any one element of a transition group or an alloy of more than one element, X is any one element of IIIA group or IVA group or an alloy of more than one element, and Y is any one element of IB group, IIB group, IIA group or IVA group, or an alloy of more than one element, wherein the value range of a, b and c is 0.8-1.2, and the sum of A% and B% is 100%.2. The MM′X—Y metal composite functional material of claim 1 , wherein A% is 50%-95% claim 1 , and B% is 5%-50%.3. The MM′X—Y metal composite functional material of claim 1 , wherein A% is 60%-90% claim 1 , and B% is 10%-40%.4. A preparation method of the MM ...

Подробнее
31-01-2019 дата публикации

Degradable Metal Matrix Composite

Номер: US20190032173A1
Принадлежит: Terves LLC

The present invention relates to the composition and production of an engineered degradable metal matrix composite that is useful in constructing temporary systems requiring wear resistance, high hardness, and/or high resistance to deformation in water-bearing applications such as, but not limited to, oil and gas completion operations.

Подробнее
30-01-2020 дата публикации

ALUMINUM-ALLOY COMPOSITE SUITABLE FOR ANODIZATION

Номер: US20200032373A1
Принадлежит: Microsoft Technology Licensing, LLC

An article comprises a bulk layer of an aluminum-alloy composite and a surface layer. The bulk layer comprises an aggregate dispersed in an aluminum-alloy matrix, the aggregate being solid and unreactive in a melt of the aluminum-alloy matrix, and having an average particle size of 100 microns or less. The surface layer comprises an anodized form of the bulk layer. 1. An article comprising:a bulk layer of an aluminum-alloy composite, the aluminum-alloy composite including an aggregate dispersed in an aluminum-alloy matrix, the aggregate being solid and unreactive in a melt of the aluminum-alloy matrix, and having an average particle size of 100 microns or less; anda surface layer comprising an anodized form of the bulk layer.2. The article of wherein the aluminum-alloy matrix includes a 5xxx-series aluminum alloy.3. The article of wherein the aluminum-alloy matrix includes a 6xxx-series aluminum alloy.4. The article of wherein the aggregate includes one or more of a carbide claim 1 , nitride claim 1 , or oxide.5. The article of wherein the aggregate includes alumina powder.6. The article of wherein the aggregate has an average particle size of 20 microns or less.7. The article of wherein the aggregate has an average particle size of 5 microns or less.8. The article of wherein the aggregate comprises 1 to 10 percent by mass of the aluminum-alloy composite.9. The article of wherein the surface layer is 1 micron or greater in thickness.10. The article of wherein the article is a body of a portable computing device.11. An article formed from an aluminum-alloy composite claim 1 , comprising:a bulk layer of the aluminum-alloy composite, the aluminum-alloy composite including an alumina-powder aggregate dispersed in an aluminum-alloy matrix, the alumina-powder aggregate having an average particle size of 20 microns or less; anda surface layer comprising an anodized form of the bulk layer.12. The article of wherein the aluminum-alloy matrix includes a 5xxx-series aluminum ...

Подробнее
19-02-2015 дата публикации

CONTAINMENT OF MOLTEN MATERIALS HAVING SILICON

Номер: US20150050183A1
Принадлежит:

Silicon eutectic alloy compositions and methods for making the same are disclosed. In one approach, a method may include using a glass carbon container to restrict contamination of the eutectic alloy melt. In an alternative approach, a method may include using a container having aluminum. The aluminum in the container may provide aluminum that is incorporated into the silicon eutectic alloy. Silicon eutectic bodies made by such methods are also disclosed. 1. A method of making a silicon eutectic alloy body , the method comprising:{'sub': 'a', 'heating a mixture in a container thereby forming a eutectic alloy melt, wherein the mixture includes silicon and a metallic element M, where portions of the container in contact with the eutectic alloy melt comprise glassy carbon; and'}{'sub': a', '2, 'removing heat from the eutectic alloy melt to solidify the eutectic alloy melt, thereby forming a silicon eutectic alloy body comprising having a eutectic aggregation including a first phase comprising the silicon and a second phase comprising the metallic element a, wherein the second phase has a formula MSi.'}2. The method of claim 1 , wherein the mixture comprises a third phase comprising the metallic element M claim 1 , and wherein claim 1 , after the removing step claim 1 , the body comprising the eutectic aggregation comprises a third phase comprising the metallic element M claim 1 , wherein the third phase has a formula MSi claim 1 , and wherein the second and third phases are immiscible.3. The method of claim 2 , wherein the metallic element Mcomprises chromium and the metallic element Mcomprises vanadium4. The method of claim 1 , wherein a carbide phase forms between the eutectic alloy melt and the container.5. The method of claim 4 , wherein the carbide phase comprises silicon carbide.6. The method of claim 1 , wherein the glassy carbon substantially does not contaminate the eutectic alloy melt.7. The method of claim 1 , wherein the eutectic alloy melt is substantially ...

Подробнее
26-02-2015 дата публикации

NEGATIVE ACTIVE MATERIAL, NEGATIVE ELECTRODE AND LITHIUM BATTERY INCLUDING NEGATIVE ACTIVE MATERIAL, AND METHOD OF MANUFACTURING NEGATIVE ACTIVE MATERIAL

Номер: US20150056509A1
Принадлежит:

A negative active material, a negative electrode and a lithium battery including the same, and a method of manufacturing the negative active material are disclosed. The negative active material includes a silicon-based alloy including Si, Al, and Cu. Since the silicon-based alloy includes AlCu and AlCu as inactive phases, the lifespan of a lithium battery may be increased. 1. A negative active material comprising a silicon-based alloy having silicon (Si) , aluminum (Al) , and copper (Cu) ,wherein the silicon-based alloy comprises:{'sub': '2', 'an alloy matrix comprising AlCu and AlCu; and'}silicon nanoparticles dispersed in the alloy matrix,{'sub': '2', 'wherein a ratio of a sum of atomic fractions of Al and Cu contained in AlCu to a sum of atomic fractions of Al and Cu contained in AlCu is greater than 0 and less than 0.6 in the silicon-based alloy.'}2. The negative active material of claim 1 , wherein the ratio of the sum of atomic fractions of Al and Cu contained in AlCu to the sum of atomic fractions of Al and Cu contained in AlCu is greater than 0.1 and less than 0.5 in the silicon-based alloy.3. The negative active material of claim 1 , wherein the silicon-based alloy comprises 20 to 70 at. % of Si claim 1 , 15 to 45 at. % of Al claim 1 , and 10 to 40 at. % of Cu claim 1 , wherein the sum of atomic fractions of Si claim 1 , Al claim 1 , and Cu is 100 at. %.4. The negative active material of claim 1 , wherein a ratio of an atomic fraction of Cu to an atomic fraction of Al in the silicon-based alloy is greater than 0.7 and less than 1.5. The negative active material of claim 1 , wherein the silicon-based alloy is pulverized to powder having a D50 in the range of 0.3 μm to 10 μm.6. The negative active material of claim 1 , wherein the silicon-based alloy is free of inactive silicon.7. The negative active material of claim 1 , wherein the silicon nanoparticles comprise active silicon.8. The negative active material of claim 1 , wherein the silicon nanoparticles ...

Подробнее
04-03-2021 дата публикации

HIGH THERMAL CONDUCTIVITY ALUMINIUM ALLOY AND PREPARATION METHOD THEREOF

Номер: US20210062304A1
Принадлежит:

The present invention provides a high thermal conductivity aluminum alloy, which comprises the following components in percentage by weight: Al: 80%-90%; Si: 6.5%-8.5%; Fe: 0.2%-0.5%; Zn: 0.8%-3%; V: 0.03%-0.05%; Sr: 0.01%-1%; graphene: 0.02%-0.08%. In the high thermal conductivity aluminum alloy of the present invention, alloying elements including Si, Fe, and Zn are optimized; Sr, V, graphene, among others are added. The amount of each component is controlled so that they coordinate to ALLOW high thermal conductivity, good casting performance and excellent semi-solid die-casting property. Graphene is introduced to the high thermal conductivity aluminum alloy of the present invention to exploit the good thermal conductivity of graphene, allowing the formation of a high thermal conductivity aluminium alloy. 5. The high thermal conductivity aluminum alloy according to claim 4 , characterized in that said RE comprises one or more components selected from the group consisting of La claim 4 , Ce claim 4 , Pr claim 4 , Nd claim 4 , Pm claim 4 , Sm claim 4 , Eu claim 4 , Gd claim 4 , Tb claim 4 , Dy claim 4 , Ho claim 4 , Er claim 4 , Tm claim 4 , Yb claim 4 , Lu claim 4 , Y claim 4 , and Sc.8. A method for preparing a high thermal conductivity aluminum alloy claim 4 , characterized in that the method comprises the following:(1) weighing Al, Si, Fe, Zn, V, Sr and graphene according to their designated weight percentages; heating these components together at a melting temperature set at 700-750° C. until molten to obtain an aluminum alloy liquid;(2) introducing the aluminum alloy liquid into a spraying device; performing powder injection refining using an inert gas as a carrier for an injection refining time set to 8-18 minutes; after refining, the aluminum alloy liquid is left to stand for 15 to 30 minutes, followed by filtering;(3) transferring the aluminum alloy liquid after the filtering in step (2) to a rotor degassing device; performing secondary degassing by blowing ...

Подробнее
28-02-2019 дата публикации

METHOD FOR PRODUCING CARBON COMPOSITE MATERIAL AND CARBON COMPOSITE MATERIAL

Номер: US20190062872A1
Принадлежит:

A method for producing a carbon composite material to reduce costs; and a carbon composite material includes a dealloying step of immersing a carbon-containing material composed of a compound, alloy or non-equilibrium alloy containing carbon in a metal bath, the metal bath having a solidification point lower than a melting point of the carbon-containing material, the metal bath being controlled to a lower temperature than a minimum value of a liquidus temperature within a compositional fluctuation range extending from the carbon-containing material to carbon by decreasing other non-carbon main components, to thereby selectively elute the other non-carbon main components into the metal bath to form a carbon member having microvoids; and a cooling step performed with the microvoids of the carbon member including a component of the metal bath to solidify the component. The carbon composite material combining carbon with the metal bath component that has solidified is thereby obtained. 1. A method for producing a carbon composite material comprising a dealloying step of bringing a carbon-containing material composed of a compound , alloy or non-equilibrium alloy containing carbon into contact with a molten metal , the molten metal having a solidification point that is lower than a melting point of the carbon-containing material , the molten metal being controlled to a lower temperature than a minimum value of a liquidus temperature within a compositional fluctuation range extending from the carbon-containing material to carbon by decreasing other non-carbon main components , to thereby selectively elute the other non-carbon main components into the molten metal to form microvoids and allow the molten metal to penetrate the microvoids; and a cooling step performed with the microvoids including the molten metal to solidify the molten metal.2. The method according to for producing a carbon composite material claim 1 , wherein the dealloying step is immersing the carbon- ...

Подробнее
28-02-2019 дата публикации

PRODUCTION OF METAL MATRIX NANOCOMPOSITES

Номер: US20190062873A1
Принадлежит:

A method and apparatus for producing metal matrix nanocomposites is disclosed. The method may include obtaining a nanodispersion by dispersing a plurality of nanoparticles into an inert gas within a dispersion chamber. Dispersing the plurality of nanoparticles into the inert gas may include injecting a pressurized stream of the inert gas into the dispersion chamber, and mechanically mixing the inert gas and the plurality of nanoparticles. The method may further include injecting the nanodispersion into a volume of molten metal, obtaining a molten mixture by mechanically mixing the nanodispersion with the volume of molten metal, and applying a casting process on the molten mixture by transferring the molten mixture into a die. 1. A method for producing metal matrix nanocomposites , the method comprising: injecting a pressurized stream of the inert gas into the dispersion chamber; and', 'mechanically mixing the inert gas and the plurality of nanoparticles;, 'obtaining a nanodispersion by dispersing a plurality of nanoparticles into an inert gas within a dispersion chamber, the dispersing the plurality of nanoparticles into the inert gas comprisinginjecting the nanodispersion into a volume of molten metal;obtaining a molten mixture by mechanically mixing the nanodispersion with the volume of molten metal; andapplying a casting process on the molten mixture by transferring the molten mixture into a die.2. The method according to claim 1 , wherein injecting the pressurized stream of the inert gas into the dispersion chamber comprises injecting the pressurized stream of the inert gas into a cylindrical dispersion chamber through an inlet port tangentially connected in fluid communication with the cylindrical dispersion chamber.3. The method according to claim 1 , wherein injecting the pressurized stream of the inert gas into the dispersion chamber comprises injecting the pressurized stream of the inert gas into a cylindrical dispersion chamber through an inlet port ...

Подробнее
05-03-2020 дата публикации

Composite Materials, Apparatuses, and Methods

Номер: US20200071796A1
Принадлежит:

Provided are composite materials that may include a monophasic blend including at least one metal, and graphene. The graphene may be present in the monophasic blend at an amount of about 0.001% to about 90%, by weight, based on the weight of the composite material. Also provided are methods for continuously producing composite materials, and apparatuses 1. A method for continuously producing a composite material , the method comprising:providing a reservoir comprising a first feed and a second feed;disposing a liquid metal and a carbon material in the reservoir via the first feed and the second feed, respectively;mixing the liquid metal and the carbon material in a first portion of the reservoir to form a mixture;transporting the mixture from the first portion of the reservoir to a second portion of the reservoir;applying an electrical charge to the mixture in the second portion of the reservoir to form the composite material; andcollecting the composite material.2. The method of claim 1 , wherein a temperature inside the reservoir exceeds the melting point of the composite material.3. The method of claim 1 , wherein the mixing of the liquid metal and the carbon material comprises contacting the liquid metal and the carbon material with a mixer.4. The method of claim 3 , wherein the mixer is arranged in the first portion of the reservoir and the second portion of the reservoir.5. The method of claim 3 , wherein the mixer comprises a rotating auger.6. The method of claim 1 , wherein the transporting of the mixture from the first portion of the reservoir to the second portion of the reservoir is achieved by gravity claim 1 , a force applied to the mixture by a mixer claim 1 , or a combination thereof.7. The method of claim 1 , wherein the reservoir comprises a fifth feed claim 1 , and the applying of the electrical charge to the mixture comprises passing the mixture through a void defined by a device that is (i) disposed in the second portion of the reservoir claim 1 ...

Подробнее
18-03-2021 дата публикации

COOL SIDE COATING FOR CERAMIC OR CERAMIC MATRIX COMPOSITE ARTICLE

Номер: US20210078914A1
Принадлежит:

An article may include a substrate including a ceramic or a ceramic matrix composite. The substrate defines a hot side surface configured to face a heated gas environment and a cool side surface opposite the hot side surface. The article also includes a cool side coating on the cool side surface. The cool side coating comprises at least one material having a flow temperature equal to or slightly less than a temperature of the heated gas environment. 1. An article comprising:a substrate comprising a ceramic or a ceramic matrix composite, wherein the substrate defines a hot side surface configured to face a heated gas environment and a cool side surface opposite the hot side surface; anda cool side coating on the cool side surface, wherein the cool side coating comprises at least one material having a flow temperature equal to or slightly less than a temperature of the heated gas environment.2. The article of claim 1 , wherein the at least one material comprises silicon metal or a silicon alloy.3. The article of claim 2 , wherein the cool side coating further comprises at least one material having a melting temperature greater than the temperature of the heated gas environment.4. The article of claim 3 , wherein the at least one material having the melting temperature greater than the temperature of the heated gas environment comprises fibers or particulates.5. The article of claim 4 , wherein the fibers or particulates comprise silicon carbide or an oxide-oxide ceramic.6. The article of claim 4 , wherein the at least one material having the melting temperature greater than the temperature of the heated gas environment comprises the fibers claim 4 , and wherein the fibers have an aspect ratio between about 3 and about 50.7. The article of claim 4 , wherein the at least one material having the melting temperature greater than the temperature of the heated gas environment comprises the particulates claim 4 , and wherein the particulates comprise a diameter between about ...

Подробнее
05-05-2022 дата публикации

METHOD FOR MANUFACTURING A COMPOSITE COMPONENT OF A TIMEPIECE OR OF A JEWELRY PART, AND COMPOSITE COMPONENT OBTAINABLE BY SUCH METHOD

Номер: US20220133003A1

The invention relates to a method for manufacturing a composite component of a timepiece or of a jewelry part, the composite component comprising a porous ceramic part and a metallic material filling the pores of said ceramic part, said method comprising the steps of:

Подробнее
01-04-2021 дата публикации

Composite part and method and tooling for making the same

Номер: US20210094094A1
Принадлежит: Grouper Casting LLC

Composite parts ( 10 ), methods of making the same ( 400 ), and tooling systems ( 200 ) for making the same are disclosed. According to one example, a high-pressure die casting process is used to manufacture a composite part ( 10 ) that is made from a composite metal material ( 12 ) with a metal matrix phase ( 20 ) and a particle phase ( 22 ) and includes an interior region ( 14 ) and an exterior region ( 16 ), where an average concentration of the particle phase ( 22 ) in the composite metal material ( 12 ) is higher in the exterior region ( 16 ) than in the interior region ( 14 ). An interior surface ( 206 a, 206 b ) of a die mold ( 206 ) may be coated with a particle phase ( 22 ) (e.g., a ceramic-based material) and a molten metal matrix phase ( 20 ) (e.g., an aluminum-based material) may then be introduced into the die mold ( 206 ) such that a composite part ( 10 ) is formed with an exterior region ( 16 ) or outer layer that is particle-rich compared to an interior region ( 14 ).

Подробнее
23-04-2015 дата публикации

Separator material for polymer electrolyte fuel cell having excellent corrosion resistance, conductivity and formability, and method for manufacturing same

Номер: US20150111132A1

[Problem] To prepare a metallic separator for PEFCs having excellent corrosion resistance, conductivity, and formability at low cost. [Solution] A thin plate is prepared by an ultraquenching transition control injector with a mixture of a metal powder having corrosion resistance to form a matrix and a powder having conductivity, as a raw material. When the matrix of the thin plate is crystal-structure metal, the plate can be formed at room temperature, and when the matrix is metallic glass, the plate can be formed in a supercooled liquid state. Therefore the plate can be finished into a separator with an intended shape.

Подробнее
28-04-2016 дата публикации

Methods and compositions for repair of composite materials

Номер: US20160114351A1
Принадлежит: General Electric Co

A method for repair of composite materials includes applying a formulation to a ceramic matrix composite substrate. The formulation comprises a liquid carrier, a ceramic filler dispersed within the carrier, and a polymeric binder disposed in the carrier. The method further includes removing the carrier from the formulation to form a green composition; pyrolyzing the green composition to form a porous composition; disposing a liquid metal or metalloid within the pores of the porous composition to form an intermediate composite composition; and converting the liquid metal or metalloid to solid state to form a solid composite composition.

Подробнее
28-04-2016 дата публикации

METAL COATING ON CERAMIC SUBSTRATES

Номер: US20160115088A1
Принадлежит:

A method for producing metal coatings on ceramic substrates for establishing electrical contact, and ceramic substrates having metal coatings. More particularly, the invention relates to the production of weldable and solderable metal coatings on ceramic substrates. 115.-. (canceled)16. A method for producing an electrically conducting metal coating on ceramic substrates , wherein the metal coating is in direct contact with the ceramic substrate and is solderable and/or weldable , the method comprising the steps of:a) producing a metal-coating paste comprising at least one member selected from the group consisting of a conducting metal, a solderable metal and weldable metal;b) applying the metal-coating paste to the ceramic substrate;c) baking-on of the metal-coating paste.17. The method according to claim 16 , wherein the metal-coating paste further comprises at least one additive.18. The method according to claim 16 , wherein a melt formed from the electrically conducting material or the melt formed from the electrically conducting material and any additives has a surface energy of less than 1.4 N/m.19. The method according to claim 16 , wherein the metal coating paste comprises an electrically conducting metal which is a transition element VIIIB of the periodic table of the elements.20. The method according to claim 16 , wherein the metal coating paste comprises an electrically conducting metal selected from the group consisting of iron claim 16 , cobalt claim 16 , nickel and copper.21. The method according to claim 17 , wherein the additive comprises an element of the transition groups IVB claim 17 , VB and VIB of the periodic table.22. The method according to claim 17 , wherein the additive comprises at least one member selected from the group consisting of Ti claim 17 , Zr claim 17 , W and Al claim 17 , or compounds thereof.23. The method according to claim 17 , wherein the metal-coating paste further comprises a bonding agent.24. The method according to claim ...

Подробнее
09-06-2022 дата публикации

Graphene-reinforced alloy composite material and preparation method thereof

Номер: US20220178003A1

A graphene-reinforced alloy composite material and a preparation method thereof are disclosed. The method includes preparing a porous graphene colloid, smelting a first-part alloy, pouring it into the porous graphene colloid to be formed, subjecting the formed product to a hot extrusion, and pulverizing into a powder I; smelting a second-part alloy into an alloy melt II, adding a high-purity silicon powder therein, mixing by stirring, and atomizing to obtain a powder II; mixing the powder I and the powder II, to obtain a pretreated alloy powder; placing the pretreated alloy powder in a high-purity ark, transferring the high-purity ark to a high-temperature tubular furnace, subjecting the pretreated alloy powder to a redox treatment, and introducing methane and hydrogen to grow graphene, to obtain a coated alloy powder; subjecting the coated alloy powder to a pre-compressing molding and sintering, to obtain the graphene-reinforced alloy composite material.

Подробнее
09-06-2022 дата публикации

INTERFACE-CONTROLLED IN-SITU SYNTHESIS OF NANOSTRUCTURES IN MOLTEN METALS FOR MASS MANUFACTURING

Номер: US20220178004A1

Provided herein are manufacturing methods of a metal matrix nanocomposite, comprising: providing a molten metal including a first reactant; providing a molten salt, including a second set of reactants and a diluting salt, over a surface of the molten metal; and maintaining the molten salt and the molten metal at a temperature sufficient to react the first reactant and the second set of reactants, such that nanostructures with controlled small sizes are formed adjacent to an interface between the molten salt and the molten metal, and are incorporated into the molten metal for mass manufacturing of metal matrix nanocomposite. 1. A manufacturing method of a metal matrix nanocomposite , comprising:providing a molten metal including a first reactant;providing a molten salt, including a second set of reactants and a diluting salt, over a surface of the molten metal; andmaintaining the molten salt and the molten metal at a temperature sufficient to react the first reactant and the second set of reactants, such that nanostructures are formed adjacent to an interface between the molten salt and the molten metal, and are incorporated into the molten metal.2. The manufacturing method of claim 1 , wherein one or more of a concentration of the first reactant claim 1 , a concentration of the second set of reactants claim 1 , the temperature claim 1 , and a time of reaction is set or adjusted according to a target size of the nanostructures.3. The manufacturing method of claim 1 , wherein the manufacturing method provides for mass production.4. The manufacturing method of claim 1 , wherein providing the molten metal includes heating one or more metals to form the molten metal.5. The manufacturing method of claim 1 , wherein the first reactant is a metal or an alloying element.6. The manufacturing method of claim 1 , wherein providing the molten metal includes heating the first reactant to form the molten metal.7. The manufacturing method of claim 1 , wherein the second set of ...

Подробнее
18-04-2019 дата публикации

NANOSTRUCTURE SELF-DISPERSION AND SELF-STABILIZATION IN MOLTEN METALS

Номер: US20190111478A1
Автор: Li Xiaochun, Xu Jiaquan

A metal matrix nanocomposite includes: 1) a matrix including one or more metals; and 2) nanostructures uniformly dispersed and stabilized in the matrix at a volume fraction, including those greater than about 3% of the nanocomposite. 1. A metal matrix nanocomposite comprising:a matrix including one or more metals; andnanostructures uniformly dispersed in the matrix at a volume fraction of greater than 3% of the nanocomposite.2. The nanocomposite of claim 1 , wherein the matrix includes one or more metals selected from Al claim 1 , Mg claim 1 , Fe claim 1 , Ag claim 1 , Cu claim 1 , Mn claim 1 , Ni claim 1 , Ti claim 1 , Cr claim 1 , Co claim 1 , and Zn.3. The nanocomposite of claim 1 , wherein the nanostructures have an average dimension in a range of 1 nm to 100 nm.4. The nanocomposite of claim 1 , wherein the nanostructures include a ceramic.5. The nanocomposite of claim 4 , wherein the ceramic is a transition metal-containing ceramic.6. The nanocomposite of claim 5 , wherein the transition metal-containing ceramic is selected from transition metal carbides claim 5 , transition metal silicides claim 5 , transition metal borides claim 5 , and transition metal nitrides.7. The nanocomposite of claim 1 , wherein the nanostructures include a transition metal in elemental form.8. The nanocomposite of claim 7 , wherein the transition metal is W.9. The nanocomposite of claim 1 , wherein the volume fraction of the nanostructures in the nanocomposite is 5% or greater.10. The nanocomposite of claim 1 , wherein the volume fraction of the nanostructures in the nanocomposite is 10% or greater.11. The nanocomposite of claim 1 , wherein the matrix includes Al claim 1 , and the nanostructures include a transition metal carbide or a transition metal boride.12. The nanocomposite of claim 1 , wherein the matrix includes Fe claim 1 , and the nanostructures include a transition metal carbide claim 1 , a transition metal boride claim 1 , or a post-transition metal oxide.13. The ...

Подробнее
26-04-2018 дата публикации

Rare Earth-Free Permanent Magnetic Material

Номер: US20180114614A1
Принадлежит:

The invention provides rare earth-free permanent magnetic materials and methods of making them. The materials can be used to produce magnetic structures for use in a wide variety of commercial applications, such as motors, generators, and other electromechanical and electronic devices. Magnets fabricated using the materials can be substituted for magnets requiring rare earth elements that are costly and in limited supply. The invention provides two different types of magnetic materials. The first type is based on an iron-nickel alloy that is doped with one or more doping elements to promote the formation of L1crystal structure. The second type is a nanocomposite particle containing magnetically hard and soft phases that interact to form an exchange spring magnetic material. The hard phase contains Fe or FeCo, and the soft phase contains AlMnC. 1. A magnetic nanocomposite material comprising a first phase comprising MnAlC having L1structure , and a second phase comprising Fe.2. The material of claim 1 , wherein the second phase comprises an alloy of Fe and Co.3. The material of claim 1 , wherein the first phase has a ratio of Mn:Al of about 1:1.4. The material of claim 1 , wherein the first phase has a ratio of Mn:Al:C of about 54:44:2.5. The material of which is in the form of a plurality of nanoparticles having an average diameter of about 100 nm.6. A permanent magnet comprising the material of .7. A method of making the magnetic nanocomposite of claim 1 , the method comprising the steps of:preparing a melt comprising Mn, Al, and C;cooling the melt by a melt spinning process, whereby the melt is converted into a solid form;{'sub': '0', 'heat treating the solid form to produce L1phase therein;'}mechanically milling the heat treated solid form in the presence of a surfactant and Fe or an alloy of Fe and Co to form the magnetic nanocomposite, wherein the nanocomposite is in the form of a plurality of nanoparticles. This application is a divisional application of U.S. ...

Подробнее
16-04-2020 дата публикации

ALUMINIUM OR COPPER-CARBON NANOTUBE COMPOSITE MATERIAL AND METHOD FOR PREPARING SAME

Номер: US20200115776A1
Принадлежит:

The present invention relates to a composite material based on aluminium or copper and tin oxide-functionalized carbon nanotubes, to the method for producing same and to a cable comprising said composite material as the electrically conductive element. 1. Composite material comprising;a metal matrix of aluminium, copper, aluminium alloy or copper alloy, and tin oxide-functionalized carbon nanotubes dispersed in said metal matrix.2. Composite material according to claim 1 , it wherein said composite material comprises from 0.1 to 10% by mass of tin oxide-functionalized carbon nanotubes claim 1 , relative to the total mass of the composite material.3. Composite material according to claim 1 , wherein said composite material has an electrical conductivity of at least 50% IACS.4. Composite material according to claim 1 , wherein said composite material has a tensile strength of between 100 and 1000 MPa.5. Method for preparing a composite material having a metal matrix of aluminium claim 1 , copper claim 1 , aluminium alloy or copper alloy claim 1 , and tin oxide-functionalized carbon nanotubes dispersed in said metal matrix claim 1 , wherein said method comprises at least the following steps:i) bringing the tin oxide-functionalized carbon nanotubes into contact with a metal chosen from among aluminium, copper, an aluminium alloy and a copper alloy,ii) mixing the tin oxide-functionalized carbon nanotubes with the metal in order to disperse them homogeneously in the molten metal, andiii) forming a solid mass.6. Method according to claim 5 , wherein said metal is in the molten state.7. Method according to claim 6 , wherein step i) is carried out by bringing at least one metal container made of aluminium claim 6 , copper claim 6 , aluminium alloy or copper alloy comprising tin oxide-functionalized carbon nanotubes into contact with said molten metal claim 6 , said metal container comprising at least one opening intended to receive the tin oxide-functionalized carbon ...

Подробнее
02-05-2019 дата публикации

METHODS FOR MANUFACTURING CERAMIC AND CERAMIC COMPOSITE COMPONENTS AND COMPONENTS MADE THEREBY

Номер: US20190127281A1
Принадлежит:

Thermally-conductive ceramic and ceramic composite components suitable for high temperature applications, systems having such components, and methods of manufacturing such components. The thermally-conductive components are formed by a displacive compensation of porosity (DCP) process and are suitable for use at operating temperatures above 600° C. without a significant reduction in thermal and mechanical properties. 1. A thermally-conductive ceramic or ceramic composite component for a high temperature system , the component prepared by a method comprising:reacting a fluid comprising at least one displacing metal with a preform having a pore volume and a ceramic volume that comprises at least one displaceable species, the at least one displacing metal capable of displacing the at least one displaceable species to produce at least one ceramic reaction product volume; andallowing the fluid to infiltrate the preform and react with the preform such that the at least one displacing metal at least partially replaces the at least one displaceable species to produce the at least one ceramic reaction product volume, the pore volume is at least partially filled by the at least one ceramic reaction product volume, and the ceramic or ceramic composite component is produced to comprise a ceramic reaction volume portion having a volume greater than the ceramic volume lost by reaction of the preform from which the at least one displaceable species is displaced; andwherein the thermally conductive ceramic or ceramic composite component is more thermally conductive than the preform with the pore volume.2. The thermally-conductive component of claim 1 , wherein the ceramic or ceramic composite component is a plate having patterned channels thereon claim 1 , and the method further comprises joining the component to a second ceramic or ceramic composite plate-shaped component.3. The thermally-conductive component of claim 1 , wherein the ceramic or ceramic composite component is ...

Подробнее
23-04-2020 дата публикации

Vacuum pressure transformation vessel and method of use

Номер: US20200123072A1
Принадлежит: Honda Motor Co Ltd

A method of forming a ceramic-metal composite part is described herein. The method includes maintaining molten metal in an interior of a housing in a liquefied state, the interior including a first chamber, a second chamber, and a port defined therebetween. The method further includes sealing the port such that the molten metal in the first chamber is maintained at a first liquid level, suspending a part at a height within the first chamber above the first liquid level, forming a pressure differential between the first chamber and the second chamber, unsealing the port such that molten metal from the second chamber flows into the first chamber, and resealing the port when the molten metal in the first chamber reaches a second liquid level such that the ceramic part is submerged in the molten metal.

Подробнее
02-05-2019 дата публикации

CASTING ALUMINUM ALLOYS FOR HIGH-PERFORMANCE APPLICATIONS

Номер: US20190127824A1
Принадлежит: Tesla, Inc.

In various embodiments, aluminum alloys having yield strengths greater than 120 MPa, and typically in the range from 140 MPa to 175 MPa, are described. Further, such alloys can have electrical conductivity of greater than 45% IACS, typically in the range from 45-55% IACS. In one embodiment, the aluminum alloy comprises Si from 1 to 4.5 wt %, Mg from 0.3 to 0.5 wt %, TiBfrom 0.02 to 0.07 wt %, Fe less than 0.1 wt %, Zn less than 0.01 wt %, Cu less than 0.01 wt %, Mn less than 0.01 wt %, the remaining wt % being Al and incidental impurities. Such alloys can be used to cast a variety of automotive parts, including rotors, stators, busbars, inverters, and other parts. 1. An alloy comprising Si from 1 to 4.5 wt % , Mg from 0.3 to 0.5 wt % , TiBfrom 0.02 to 0.07 wt % , Fe less than 0.1 wt % , Zn less than 0.01 wt % , Cu less than 0.01 wt % , Mn less than 0.01 wt % , the remaining wt % being Al and incidental impurities.2. The alloy of claim 1 , comprising Si from 1 to 1.3 wt %.3. The alloy of claim 2 , cast into a rotor.4. The alloy of claim 1 , comprising Si from 3.8 to 4.3 wt %.5. The alloy of claim 4 , cast into a rotor.6. The alloy of claim 1 , wherein the yield strength of the alloy is greater than 120 MPa.7. The alloy of claim 1 , wherein the electrical conductivity of the alloy is greater than 49% IACS.8. A method for producing an aluminum alloy claim 1 , the method comprising:{'sub': '2', 'forming a melt that comprises an aluminum alloy, wherein the aluminum alloy comprises Si from 1 to 4.5 wt %, Mg from 0.3 to 0.5 wt %, TiBfrom 0.02 to 0.07 wt %, Fe less than 0.1 wt %, Zn less than 0.01 wt %, Cu less than 0.01 wt %, Mn less than 0.01 wt %, the remaining wt % being Al and incidental impurities; and'}casting the melt according to a T5, T6, or T7 process.9. An article comprising an aluminum alloy claim 1 , wherein the aluminum alloy comprises Si from 1 to 4.5 wt % claim 1 , Mg from 0.3 to 0.5 wt % claim 1 , TiBfrom 0.02 to 0.07 wt % claim 1 , Fe less than 0.1 wt % ...

Подробнее
19-05-2016 дата публикации

ALUMINUM ALLOY COMPOSITION WITH IMPROVED ELEVATED TEMPERATURE MECHANICAL PROPERTIES

Номер: US20160138138A1
Принадлежит: RIO TINTO ALCAN INTERNATIONAL LIMITED

An aluminum alloy includes, in weight percent, 0.50-1.30% Si, 0.2-0.60% Fe, 0.15% max Cu, 0.5-0.90% Mn, 0.6-1.0% Mg, and 0.20% max Cr, the balance being aluminum and unavoidable impurities. The alloy may include excess Mg over the amount that can be occupied by Mg—Si precipitates. The alloy may be utilized as a matrix material for a composite that includes a filler material dispersed in the matrix material. One such composite may include boron carbide as a filler material, and the resultant composite may be used for neutron shielding applications. 18.-. (canceled)10. The composite material of claim 9 , wherein the filler material comprises a ceramic material.11. The composite material of claim 9 , wherein the filler material comprises boron carbide.12. The composite material of claim 11 , wherein the boron carbide filler material includes a titanium-containing intermetallic compound coating at least a portion of a surface thereof.13. The composite material of claim 9 , wherein the filler material has greater neutron absorption and radiation shielding capabilities than the matrix.14. The composite material of claim 9 , wherein the filler material has a volume fraction of up to 20% in the composite material.15. The composite material of claim 9 , wherein the filler material has a higher hardness and a higher melting point than the aluminum alloy of the matrix.16. The composite material of claim 9 , wherein the Cu content of the alloy is up to 0.1 max wt. %.17. The composite material of claim 9 , wherein the Si content of the alloy is 0.70-1.30 weight percent.18. The composite material of claim 9 , wherein the Mg content of the alloy is 0.60-0.80 weight percent.19. The composite material of claim 9 , wherein the alloy has excess magnesium over an amount that can be occupied by Mg—Si precipitates.20. The composite material of claim 19 , wherein the alloy has at least 0.25 wt. % excess magnesium.22. The method of claim 21 , further comprising extruding the composite ...

Подробнее
19-05-2016 дата публикации

METHOD OF MANUFACTURING A METAL MATRIX COMPOSITE COMPONENT BY USE OF A REINFORCEMENT PREFORM

Номер: US20160138147A1
Принадлежит:

The present invention relates to a method of manufacturing a metal matrix composite component (). It comprises the use of a container () having a first compartment () and a second compartment () interconnected by a passage (). A porous reinforcement preform () is placed in the first compartment (), and matrix metal () is placed in the second compartment (). The container () is then evacuated and sealed. The container () and its content is heated to above a melting temperature of the matrix metal () at least until the matrix metal () has melted. Then a high pressure P is applied to the outside of the container () so that at least the second compartment () is deformed to such an extent that melted matrix metal () is forced to flow via the passage () into the first compartment () and to infiltrate the porous reinforcement preform (). The method may preferably be carried out in a hot isostatic pressure vessel (). The preform () may be made from a ceramic or metal material and is typically made from one or more of the following: nanoparticles, microparticles, fibres, wires and D woven structure. 1. Method of manufacturing a metal matrix composite component , the method comprising the steps of:providing a container having a first compartment and a second compartment interconnected by a passage,placing a porous reinforcement preform in the first compartment,placing matrix metal in the second compartment,evacuating and sealing the container,heating the container and its content to above a melting temperature of the matrix metal at least until the matrix metal has melted,applying a high pressure to the outside of the container so that at least the second compartment is deformed to such an extent that melted matrix metal is forced to flow via the passage into the first compartment and to infiltrate the porous reinforcement preform, andcooling the container and releasing the pressure.2. Method according to claim 1 , wherein the step of heating the container is performed under ...

Подробнее
08-09-2022 дата публикации

Cored wire for out-of-furnace treatment of metallurgical melts

Номер: US20220282346A1
Принадлежит: Research And Development Center Npp LLC

A wire for out-of-furnace treatment of metallurgical melts comprises a metallic sheath which encloses a core comprising at least one element selected from the group consisting of Ca, Ba, Sr, Mg, Si and Al, wherein at least one layer of a composite coating is applied to an inner and/or outer surface of said sheath, which coating consists of a lacquer paint material and contains high-melting ultrafine particles selected from compounds of metal carbides and/or nitrides and/or carbonitrides and/or silicides and/or borides. The composite coating comprises a protector material, for which ferroalloys and/or flux agents are used. The metals contained in the high-melting compounds are titanium and/or tungsten and/or silicon and/or magnesium and/or niobium and/or vanadium. Said coating is applied evenly onto the surface of the sheath.

Подробнее
01-06-2017 дата публикации

Ceramic Grains and Method for Their Production

Номер: US20170152193A1
Принадлежит:

The disclosure relates to sintered ceramic grains comprising 3-55 wt. % alumina, 40-95 wt. % zirconia and 1-30 wt. % of one or more other inorganic components. 1. Sintered ceramic grains comprising 3-55 wt. % alumina , 40-95 wt. % zirconia and one or more other inorganic components in a total relative amount of 1-30 wt. % , wherein the grains have a rare earth metal content of 0.3-10 wt. % , expressed as rare earth metal oxide , and the grains have a yttrium content of at least 0.1 wt. % , expressed as YO.2. Sintered ceramic grains according to claim 1 , wherein the grains are elongated and/or rounded grains when observed at the macroscopic level.3. (canceled)4. Sintered ceramic grains according to having a striated or grooved surface.5. Sintered ceramic grains according to having on average a sphericity—defined as shortest projected size to longest projected size—in the range of 0.65-0.9 claim 1 , as determined by a Camsizer®.6. (canceled)7. (canceled)8. (canceled)9. Sintered ceramic grains according to claim 1 , wherein the rare earth metal content claim 1 , expressed as its oxide claim 1 , is 0.3-5 wt. %.10. Sintered ceramic grains according to claim 1 , wherein the yttrium content claim 1 , expressed as YO claim 1 , is 6 wt. % or less.11. Sintered ceramic grains according to claim 1 , wherein the yttrium content claim 1 , expressed as YO claim 1 , is at least 1.5 wt. % claim 1 , and wherein the grains comprise 0-2 wt. % cerium claim 1 , expressed as its oxide.12. (canceled)13. (canceled)14. (canceled)15. Sintered ceramic grains according to claim 1 , wherein the grains are obtained by a method for preparing ceramic grains comprising:making a slurry comprising alumina, zirconia and a gelling agent;making droplets of the slurry;introducing the droplets in a liquid gelling-reaction medium wherein the droplets are gellified, wherein the liquid gelling-reaction medium comprises at least one component selected from the group of a rare earth metal ion and an alkaline ...

Подробнее
23-05-2019 дата публикации

METHODS OF MAKING FLUX-COATED BINDER AND METAL-MATRIX DRILL BODIES OF THE SAME

Номер: US20190151941A1
Автор: Cai Mingdong
Принадлежит:

A method of making a flux-coated binder includes treating metal binder slugs to have an adherent surface, adding a flux powder to the treated metal binder slugs, and distributing the flux powder on the adherent surface of the metal binder slugs. A method of making a metal-matrix composite-based drill bit body includes loading a matrix powder into a bit body mold, loading a flux-coated binder into the mold on top of the matrix powder to form a load assembly, and heating the load assembly to allow the binder to infiltrate into the matrix powder. 1. A method of making a flux-coated binder , the method comprising:treating metal binder slugs to have an adherent surface;adding a flux powder to the treated metal binder slugs; anddistributing the flux powder on the adherent surface of the metal binder slugs.2. The method according to claim 1 , wherein the treating the metal binder slugs comprises distributing a binding material on the surface of the metal binder slugs.3. The method according to claim 2 , wherein the method further comprises vibration shaking or tumbling the treated metal binder slugs and the binding material.4. The method according to claim 1 , wherein the treating the metal binder slugs to have the adherent surface comprises heating the metal binder slugs to a temperature at which the flux powder adheres to the surface of the metal binder slugs.5. The method according to claim 4 , wherein the metal binder slugs are heated to a temperature below the melting temperature of the binder slugs.6. The method according to claim 1 , wherein the distributing the flux powder comprises vibration shaking or tumbling the metal binder slugs with the flux powder.7. A method of making a metal-matrix composite-based drill bit body claim 1 , the method comprising:loading a matrix powder into a bit body mold;loading a flux-coated binder into the mold on top of the matrix powder to form a load assembly; andheating the load assembly to allow the binder to infiltrate into the ...

Подробнее
08-06-2017 дата публикации

Methods Of Removing Shoulder Powder From Fixed Cutter Bits

Номер: US20170159367A1
Принадлежит: Halliburton Energy Services Inc

Tools, for example, fixed cutter drill bits, may be manufactured to include hard composite portions having reinforcing particles dispersed in a continuous binder phase and auxiliary portions that are more machinable than the hard composite portions. For example, a tool may include a hard composite portion having a machinability rating 0.2 or less; and an auxiliary portion having a machinability rating of 0.6 or greater in contact with the hard composite portion. The boundary or interface between the hard composite portion and the auxiliary portion may be designed so that upon removal of the most or all of the auxiliary portion the resultant tool has a desired geometry without having to machine the hard composite portion.

Подробнее
16-06-2016 дата публикации

High-strength structural elements using metal foam for portable information handling systems

Номер: US20160167123A1
Принадлежит: Dell Products LP

Methods for manufacturing a metal foam and a metal foam reinforced back plate may be used to provide high-strength and low weight structural elements in portable information handling systems. A method for manufacturing a metal foam may include selectively adding iridium oxide and ceramic particulate to a light-metal allow to create desired mechanical properties of the metal foam.

Подробнее
21-06-2018 дата публикации

METAL ALLOY COMPOSITES

Номер: US20180171435A1
Принадлежит: YADA RESEARCH AND DEVELOPMENT CO. LTD.

This invention relates to metal composites and to metal-alloy composites. Metal-alloy composites of this invention comprise a metal alloy and layered inorganic nanostructures or nanoparticles such as nanotubes, nanoscrolls, spherical or quasi-spherical nanoparticles, nano-platelets or combinations thereof. Methods of producing the metal composites and the metal-alloy composites are demonstrated. The layered inorganic nanostructure serves as a strengthening phase. The layered inorganic nanostructure provides reinforcement to the metal alloy. 1. A metal or a metal-alloy composite comprising:a. metal or a metal alloy; andb. inorganic layered nanostructured material, wherein the inorganic layered nanostructured material does not comprise carbon.2. (canceled)3. The metal-alloy composite of claim 1 , wherein said metal alloy composite comprises Mg claim 1 , Fe claim 1 , Cu claim 1 , Al claim 1 , Ti claim 1 , Zn claim 1 , Ni claim 1 , Hg claim 1 , Mn claim 1 , Ag claim 1 , Au or a combination thereof.4. The metal-alloy composite of claim 3 , wherein the base metal in said metal alloy is Mg.5. The metal-alloy composite of claim 3 , wherein the base metal in said metal alloy is Fe claim 3 , Cu claim 3 , Al claim 3 , Ti claim 3 , Zn claim 3 , Ni claim 3 , Hg.6. The metal-alloy composite of claim 1 , wherein said metal alloy comprises one or more secondary metals.7. The metal-alloy composite of claim 6 , wherein said secondary metal(s) in said metal alloy comprises Al claim 6 , Zn claim 6 , Mn or a combination thereof.8. The metal-alloy composite of claim 6 , wherein said secondary metal(s) in said metal alloy comprises Zn claim 6 , Al claim 6 , Cu claim 6 , Mg claim 6 , Mn claim 6 , Sn claim 6 , Sb claim 6 , Ag claim 6 , Au claim 6 , Pt claim 6 , Pd claim 6 , In claim 6 , Zr claim 6 , Ni claim 6 , Fe claim 6 , C claim 6 , Si claim 6 , Ti claim 6 , Pb claim 6 , Be claim 6 , Y claim 6 , Cc claim 6 , Nd claim 6 , Ca claim 6 , Os claim 6 , As claim 6 , Ba claim 6 , B claim 6 , Cr ...

Подробнее
28-06-2018 дата публикации

REINFORCEMENT MATERIAL BLENDS WITH A SMALL PARTICLE METALLIC COMPONENT FOR METAL-MATRIX COMPOSITES

Номер: US20180179616A1
Принадлежит:

A metal-matrix composite includes a reinforced composite material including reinforcement material dispersed in a binder material. The reinforcement material includes a metallic component dispersed with reinforcing particles and at least 25 percent of the metallic component has a particle size of 50 microns or less. 1. A metal-matrix composite (MMC) comprising a reinforced composite material including reinforcement material dispersed in a binder material , wherein the reinforcement material includes a metallic component dispersed with reinforcing particles and at least 25 percent of the metallic component has a particle size of 50 microns or less.2. The MMC of claim 1 , wherein the reinforcing particles are tungsten carbide particles and the metallic component comprises nickel or a nickel alloy.3. The MMC of claim 2 , wherein the binder material is a copper alloy.4. The MMC of claim 1 , wherein the metallic component is dispersed with the reinforcement material at a concentration ranging between 2 wt % and 15 wt %.5. The MMC of claim 1 , wherein the metallic component is dispersed with the reinforcement material at a concentration ranging between 4 wt % and 10 wt %.6. The MMC of claim 1 , wherein the metallic component is selected from the group consisting of titanium claim 1 , chromium claim 1 , iron claim 1 , cobalt claim 1 , nickel claim 1 , manganese claim 1 , copper claim 1 , steels claim 1 , stainless steels claim 1 , austenitic steels claim 1 , ferritic steels claim 1 , martensitic steels claim 1 , precipitation-hardening steels claim 1 , duplex stainless steels claim 1 , iron alloys claim 1 , nickel alloys claim 1 , cobalt alloys claim 1 , chromium alloys claim 1 , copper alloys claim 1 , manganese alloys claim 1 , and any combination thereof.7. The MMC of claim 1 , wherein the MMC tool is a tool selected from the group consisting of an oilfield drill bit or cutting tool claim 1 , a non-retrievable drilling component claim 1 , an aluminum drill bit body ...

Подробнее
28-06-2018 дата публикации

Composites

Номер: US20180179617A1
Автор: Swe-Kai Chen
Принадлежит: National Tsing Hua University NTHU

Composites having the composition of at least one principal strengthening phase compound and one cemented phase of principal refractory metal are disclosed. The components of the strengthening phase compound can be a boride or a mixture of a boride and one or more than one carbide. In addition, the composites are obtained by smelting the principal strengthening phase compound and the cemented phase principal refractory metal in a non-equal molar ratio.

Подробнее
22-07-2021 дата публикации

MAGNESIUM ALLOY, PREPARATION METHOD OF MAGNESIUM ALLOY SECTION BAR AND PREPARATION METHOD OF MAGNESIUM ALLOY RIM

Номер: US20210222272A1
Автор: MA Chunjiang, YANG Jun
Принадлежит:

The present invention discloses a magnesium alloy, a preparation method of a magnesium alloy section bar and a preparation method of a magnesium alloy rim, wherein the magnesium alloy contains the following components in percentage by weight: 5.5-6.0% of Zn, 0.3-0.6% of Zr, 0.5-2.0% of lanthanum-rich mixed rare earth and the balance of Mg. 1. A magnesium alloy , comprising the following components in percentage by weight: 5.5-6.0% of Zn , 0.3-0.6% of Zr , 0.5-2.0% of yttrium-rich mixed rare earth and the balance of Mg.2. The magnesium alloy according to claim 1 , wherein the yttrium-rich mixed rare earth consists of Y and other rare earth elements claim 1 , and the content of Y is 25-30 wt %.3. The magnesium alloy according to claim 2 , wherein the yttrium-rich mixed rare earth comprises the following earths in percentage by weight: 25-30% of Y claim 2 , 15-20% of Nd claim 2 , 12-16% of Gd claim 2 , 10-15% of Dy and the balance of other rare earths.4. The magnesium alloy according to claim 3 , wherein the yttrium-rich mixed rare earth consists of the following raw materials in percentage by weight: 25-30% of Y claim 3 , 15-20% of Nd claim 3 , 12-16% of Gd claim 3 , 10-15% of Dy claim 3 , 8-12% of La claim 3 , 6-10% of Ce claim 3 , 3-6% of Pr claim 3 , 2-5% of Ho and 1-3% of Er.5. A preparation method of a magnesium alloy section bar used as a bicycle rim claim 3 , comprising the following steps:{'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, '1) preparing magnesium alloy bar stock according to a component formula of the magnesium alloy according to ;'}2) putting the magnesium alloy bar stock and a bicycle rim section bar mold into a heating furnace for heating to 300-400° C., and then taking the magnesium alloy bar stock out and putting into an extruder preheated to 300-380° C. in advance for rim section bar extrusion production to obtain a magnesium alloy section bar which meets the requirements for rim mechanical properties.6. The preparation method of a ...

Подробнее
20-07-2017 дата публикации

EVAPORATION-BASED METHOD FOR MANUFACTURING AND RECYCLING OF METAL MATRIX NANOCOMPOSITES

Номер: US20170204500A1
Автор: Chen Lianyi, Li Xiaochun

A manufacturing method includes: 1) forming a melt including one or more metals; 2) introducing nanostructures into the melt at an initial volume fraction of the nanostructures; and 3) at least partially evaporating one or more metals from the melt so as to form a metal matrix nanocomposite including the nanostructures dispersed therein at a higher volume fraction than the initial volume fraction. 1. A manufacturing method comprising:forming a melt including one or more metals;introducing nanostructures into the melt at an initial volume fraction of the nanostructures; andat least partially evaporating one or more metals from the melt so as to form a metal matrix nanocomposite including the nanostructures dispersed therein at a higher volume fraction than the initial volume fraction.2. The manufacturing method of claim 1 , wherein the nanostructures are introduced into the melt at the initial volume fraction of no greater than 3%.3. The manufacturing method of claim 1 , wherein the nanocomposite includes the nanostructures dispersed therein at the higher volume fraction of at least 5%.4. The manufacturing method of claim 1 , wherein the melt includes two or more different metals.5. The manufacturing method of claim 1 , wherein the melt includes magnesium and zinc.6. The manufacturing method of claim 1 , wherein the melt includes one or more of zinc claim 1 , magnesium claim 1 , aluminum claim 1 , iron claim 1 , nickel claim 1 , silver claim 1 , copper claim 1 , manganese claim 1 , titanium claim 1 , chromium claim 1 , cobalt claim 1 , gold claim 1 , and platinum.7. The manufacturing method of claim 1 , wherein introducing the nanostructures into the melt includes dispersing the nanostructures in the melt by agitation.8. The manufacturing method of claim 1 , wherein the nanostructures include ceramic nanoparticles or metallic nanoparticles.9. The manufacturing method of claim 8 , wherein the ceramic nanoparticles include a metal carbide or a non-metal carbide.10. The ...

Подробнее
19-07-2018 дата публикации

SLIDING BEARING, SLIDING BEARING MATERIAL, METHOD FOR PRODUCING A SLIDING BEARING MATERIAL AND USE OF A SLIDING BEARING MATERIAL FOR A SLIDING BEARING

Номер: US20180202492A1
Принадлежит:

The present application relates to a sliding bearing material comprising a steel substrate back and an aluminum alloy applied thereto, characterized in that the aluminum alloy contains an aluminum alloy matrix and hard particles, preferably 0.01 to 10 wt %, and/or fibers, preferably 0.01 to 50 vol %. The invention further relates to a method for producing a sliding bearing material, to the use of a sliding bearing material for a sliding bearing and to a sliding bearing. 1. Sliding bearing material comprising a steel substrate back and an aluminum alloy applied thereon , whereinthe aluminum alloy contains an aluminum alloy matrix, hard particles in an amount, 0.01 to 10 wt %, fibers in an amount of, 0.01 to 50 vol % and 0.01 to 54 wt %, and the steel substrate back consists of one of the steels C06, C10, C22 or CXX (wherein XX>22), wherein, up to 3 wt % respectively of Cu, Mn, Mg, Si, Fe, V, Ti, Sc, Cr, Zn and/or Ni;', 'up to 15 wt % Sn;', {'sub': '2', 'up to 0.2 wt %, preferably 0.02 to 0.05 wt % Sr, boron, TiBand/or Na;'}, 'and the balance aluminum with up to 0.5 wt % inevitable impurities; wherein, 'the aluminum alloy matrix is lead-free and/or comprises one or more of the following alloy elementsthe hard particles are selected from a group of carbides, nitrides, borides and/or oxides and the hard particles exhibit a size <20 μm andthe fibers are selected from a group of organic and/or inorganic fibers, and the fibers exhibit a length <50 μm and a diameter <3 m, in the form of nanotubes.2. The sliding bearing material according to claim 1 , whereinthe aluminum alloy contains lubricant.3. The sliding bearing material according to claim 1 , whereinthe fibers have a higher tensile strength and/or a higher modulus of elasticity and/or a lower fracture elongation in the longitudinal direction than the aluminum alloy matrix.4. The sliding bearing material according to claim 1 , whereinan intermediate layer is provided between the steel substrate back and the aluminum ...

Подробнее
28-07-2016 дата публикации

METHOD TO FORM DISPERSION STRENGTHENED ALLOYS

Номер: US20160214209A1
Принадлежит:

A method for forming a dispersion strengthened alloy. An alloy material () is melted with a heat source () to form a melt pool () in the presence of a flux material (), and strengthening particles () are directed into the melt pool such that the particles are dispersed within the melt pool. Upon solidification, a dispersion strengthened alloy () is formed as a layer or weld joint bonded to an underlying substrate or as an object contained in a removal support. 1. A method comprising:melting an alloy material with a heat source to form a melt pool in the presence of a flux material;directing strengthening particles into the melt pool, such that the strengthening particles are dispersed within the melt pool; andallowing the melt pool to cool and solidify to form a dispersion strengthened alloy at least partially covered by a slag layer.2. The method of claim 1 , further comprising depositing a powdered filler material comprising the alloy material onto adjacent surfaces of at least two juxtaposed metal substrates claim 1 , such that the dispersion strengthened alloy forms a dispersion strengthened weld joint fusing the at least two juxtaposed metal substrates.3. The method of claim 2 , wherein the at least two juxtaposed metal substrates are dispersion strengthened alloy substrates.4. The method of claim 1 , further comprising depositing a powdered filler material comprising the alloy material onto a surface of a metallic substrate claim 1 , such that upon cooling of the melt pool the dispersion strengthened alloy is bonded to the surface of the metallic substrate.5. The method of claim 4 , wherein:the powdered filler material further comprises the flux material; orthe powdered filler material is covered by a layer of the flux material.6. The method of claim 1 , further comprising:depositing a powdered filler material comprising the alloy material onto a fugitive support material, such that upon cooling of the melt pool the dispersion strengthened alloy solidifies ...

Подробнее
28-07-2016 дата публикации

METHOD TO FORM OXIDE DISPERSION STRENGTHENDED (ODS) ALLOYS

Номер: US20160215364A1
Принадлежит:

Method for forming an oxide dispersion strengthened alloy. An alloy material () is melted with an energy beam () to form a melt pool () in the presence of a flux material (), and particles () of a metal oxide are directed into the melt pool such that the particles are dispersed within the melt pool. Upon solidification, an oxide dispersion strengthened alloy () is formed as a layer bonded to an underlying substrate () or as an object contained on a removable support. 1. A method comprising:melting an alloy material with an energy beam to form a melt pool in the presence of a flux material;directing particles comprising a metal oxide into the melt pool, such that the particles are dispersed within the melt pool; andallowing the melt pool to cool and solidify to form an oxide dispersion strengthened alloy at least partially covered by a slag layer.2. The method of claim 1 , further comprising depositing a powdered filler material comprising the alloy material onto a surface of a metallic substrate claim 1 , such that upon cooling of the melt pool the oxide dispersion strengthened alloy is bonded to the surface of the metallic substrate.3. The method of claim 2 , wherein:the powdered filler material further comprises the flux material; orthe powdered filler material is covered by a layer of the flux material.4. The method of claim 1 , further comprising:depositing a powdered filler material comprising the alloy material onto a fugitive support material, such that upon cooling of the melt pool the oxide dispersion strengthened alloy solidifies upon the fugitive support material; andremoving the fugitive support material to obtain an object comprising the oxide dispersion strengthened alloy.5. The method of claim 4 , wherein:the fugitive support material is a bed comprising an oxide-containing material or a flux material; orthe fugitive support material is a container comprising a refractory material.6. The method of claim 4 , wherein:the powdered filler material further ...

Подробнее
26-07-2018 дата публикации

PROCESS FOR MANUFACTURING A PART MADE OF AN AI/AI3B48C2 COMPOSITE MATERIAL

Номер: US20180209016A1
Принадлежит:

A method for manufacturing a part made from an Al/AlBCcomposite material comprising an aluminium matrix in which particles of a mixed carbide of chemical formula AlBCare dispersed. The method comprises the following steps: a) placing a powder of chemical formula AlBin the cavity of a graphite crucible; b) closing the cavity by use of a graphite element; c) heating the crucible to a temperature of at least 960° C. and less than or equal to 1400° C. in order to obtain the formation of precipitates of the mixed carbide of chemical formula AlBCin liquid aluminium; d) cooling the crucible in order to solidify the liquid aluminium; e) removing the crucible; thereby the part made from Al/AlBCcomposite material is obtained. 1. Method for manufacturing a part made from an Al/AlBCcomposite material comprising an aluminium matrix in which particles of a mixed carbide of chemical formula AlBCare dispersed , said method comprising the following steps:{'sub': '2', 'a) placing a powder of chemical formula AlBin a cavity of a graphite crucible;'}b) closing the cavity by means of a graphite element;{'sub': 3', '48', '2, 'c) heating the crucible to a temperature of at least 960° C. and less than or equal to 1400° C. in order to obtain formation of precipitates of mixed carbide of chemical formula AlBCin liquid aluminium;'}d) cooling the crucible in order to solidify the liquid aluminium;e) removing the crucible;{'sub': 3', '48', '2, 'thereby the part made from Al/AlBCcomposite material is obtained.'}2. Method according to claim 1 , wherein the graphite element used to close the cavity is a graphite piston.3. Method according to claim 1 , wherein the powder is placed in the crucible in a compressed form.4. Method according to claim 1 , wherein the powder is placed in the crucible in a powdery form and step b) further comprises a compression of the powder.5. Method according to claim 4 , wherein the compression of the powder and the closure of the cavity of the crucible are obtained by ...

Подробнее
25-06-2020 дата публикации

PROCESSES FOR PRODUCING SUPERALLOYS AND SUPERALLOYS OBTAINED BY THE PROCESSES

Номер: US20200199711A1
Автор: FORONI Andrea, FORONI Luca
Принадлежит:

The present invention relates to a method () of producing a metal superalloy () comprising the steps of providing a charge of metal materials (); melting said charge of metal materials () in an electric-arc furnace () to obtain a first melt (A) of said charge of metal materials (); solidifying () said first melt (A) to obtain first ingots (A); melting said first ingots (A) in a V.I.D.P. furnace () to obtain a second melt (A); solidifying () said second melt (A) to obtain second ingots (A); melting said second ingots (A) in a V.A.R. furnace () to obtain a third melt (A); solidifying () said third melt (A) to obtain a metal superalloy (). The method () is characterized in that the charge of metal materials () has a weight amount ranging from forty to sixty tons, and it includes a step of carrying out an A.O.D. treatment () on said first melt (A) to obtain a decarburized and refined first melt (A); said melting in the V.I.D.P. furnace () and said melting in the V.A.R. furnace () are carried out sequentially on said first melt (A) resulting from said A.O.D. treatment (). 2433. A method as claimed in claim 1 , wherein said decarburized and refined first melt (A) is obtained by carrying out the A.O.D. treatment on said first melt (A) while the latter is in the molten state as a result of the melting step in said electric-arc furnace ().346. Method as claimed in claim 1 , wherein said decarburized and refined first melt (A) undergoing said second melting step in the V.I.D.P. furnace () has a weight amount ranging from ten to twenty tons.476. A method as claimed in claim 1 , wherein said step of solidification () of said second melt (A) comprises a step of casting the melt into molds.546. A method as claimed in claim 1 , wherein said steps of solidifying said decarburized and refined first melt (A) and said second melt (A) include a step of cooling the melt after casting it into ingot molds.6. A method as claimed in claim 5 , wherein said ingot molds have such a shape that ...

Подробнее
25-06-2020 дата публикации

METAL-CERAMIC COMPOSITE MATERIAL AND METHOD FOR FORMING THE SAME

Номер: US20200199714A1

A metal-ceramic composite material and a method for forming the same are provided. The metal-ceramic composite material includes a metal body, a plurality of metal oxide nanoparticles and a plurality of ceramic particles. The metal body includes a metal material having a first surface energy. The metal oxide nanoparticles and the ceramic particles are dispersed in the metal body. The ceramic particles have a second surface energy that is higher than the first surface energy. 1. A metal-ceramic composite material , comprising:a metal body comprising a metal material having a first surface energy;a plurality of metal oxide nanoparticles dispersed in the metal body; anda plurality of ceramic particles dispersed in the metal body, wherein the ceramic particles have a second surface energy higher than the first surface energy.2. The metal-ceramic composite material as claimed in claim 1 , wherein the first surface energy is less than 1.5 J/m claim 1 , and the second surface energy is higher than 2 J/m.3. The metal-ceramic composite material as claimed in claim 1 , wherein the metal oxide nanoparticles have a third surface energy claim 1 , and a difference between the second surface energy and the third surface energy is less than 1 J/m.4. The metal-ceramic composite material as claimed in claim 1 , wherein the ceramic particles have a particle size of 0.5 μm to 20 μm.5. The metal-ceramic composite material as claimed in claim 1 , wherein the metal oxide nanoparticles have a particle size of 3 nm to 50 nm.6. The metal-ceramic composite material as claimed in claim 1 , wherein the metal oxide nanoparticles are present in an amount of less than 1 vol. % of the metal-ceramic composite material.7. The metal-ceramic composite material as claimed in claim 1 , wherein the metal oxide nanoparticles are formed of a native oxide of the metal material having the first surface energy.8. The metal-ceramic composite material as claimed in claim 7 , wherein the metal-ceramic composite ...

Подробнее
02-08-2018 дата публикации

Aluminum-silicon-carbide composite and method of manufacturing same

Номер: US20180215668A1
Принадлежит: Denka Co Ltd

[Problem to be Solved] Provided are an aluminum-silicon-carbide composite having high thermal conductivity, low thermal expansion, and low specific gravity and a method for producing the composite. [Solution] Provided is an aluminum-silicon-carbide composite formed by impregnating a porous silicon carbide molded body with an aluminum alloy. The ratio of silicon carbide in the composite is 60 vol % or more, and the composite contains 60-75 mass % of silicon carbide having a particle diameter of 80 μm or more and 800 μm or less, 20-30 mass % of silicon carbide having a particle diameter of 8 μm or more and less than 80 μm, and 5-10 mass % of silicon carbide having a particle diameter of less than 8

Подробнее
02-07-2020 дата публикации

Method of semi-solid indirect squeeze casting for magnesium-based composite material

Номер: US20200206808A1
Принадлежит: NORTH UNIVERSITY OF CHINA

The present invention relates to a method of semi-solid indirect squeeze casting for Mg-based composite material, which aims at improving the mechanical property of the cast by adding magnesium zinc yttrium quasicrystal of high hardness, high elastic modulus and excellent matrix binding property acting as the reinforcement into the magnesium alloy matrix and manufacturing the cast through smelting using a vacuum atmosphere smelting furnace, agitating with ultrasonic wave assisted vibration in the rotating impeller jet agitation furnace and indirect squeeze casting against the problem of poor wettability, easy agglomeration, inhomogeneous distribution between the reinforcement particles and the matrix materials and poor properties of the manufactured cast. The manufacturing method of the present invention has advanced technologies and detailed and accurate data. The cast has excellent microstructure compactness, no shrinkage cavities and shrinkage defects and the primary phase in the metallographic structure consists of spherical and near-spherical crystalline grains, wherein dendritic crystalline grains almost disappear and the size of the crystalline grain is obviously refined. The tensile strength of the Mg-based composite material cast reaches to 225 Mpa, the elongation rate thereof reaches to 6.5% and the hardness thereof reaches to 86 HV. So the manufacturing method of the present invention is an advanced semi-solid indirect squeeze casting method for the Mg-based composite material.

Подробнее
11-08-2016 дата публикации

Quasicrystal and alumina mixed particulate reinforced magnesium-based composite material and method for manufacturing the same

Номер: US20160230251A1
Принадлежит: NORTH UNIVERSITY OF CHINA

A reinforced magnesium matrix composite includes a quasicrystal and alumina mixture particles reinforcement phase and a magnesium alloy matrix, where the weight ratio of the quasicrystal and alumina mixture particles reinforcement phase to the magnesium alloy matrix is (4-8) to 100; the magnesium alloy matrix including by weight 1000 parts of magnesium, 90 parts of aluminum, 10 parts of zinc, 1.5-5 parts of manganese, 0.5-1 part of silicon and 0.1-0.5 part of calcium; the quasicrystal and alumina mixture particles reinforcement phase including by weight 40 parts of magnesium, 50-60 parts of zinc, 5-10 parts of yttrium and 8-20 parts of nanometer alumina particles of which the diameter is 20-30 nm; and the quasicrystal and alumina mixture particles reinforcement phase having a size of 100-200 mesh.

Подробнее
19-08-2021 дата публикации

CERAMIC-METALLIC COMPOSITES WITH IMPROVED PROPERTIES AND THEIR METHODS OF MANUFACTURE

Номер: US20210253481A1
Принадлежит:

Ceramic-metallic composites are disclosed along with the processes for their manufacture. The present invention improves high temperature strength of AlO—Al composites by displacing aluminum in the finished product with other substances that enhance the high temperature strength. Each process commences with a preform initially composed of at least 5% by weight silicon dioxide, and the finished product includes AlO, aluminum and another substance. 1. In a process for making a ceramic-metallic composite employing a displacement reaction in a molten metal bath , wherein the ceramic-metallic composite has the general formula AlO—SiC—Al , the improvement comprising conducting a process in which a ceramic-metallic composite including AlO—SiC—Al is formed with reduced concentration of free aluminum to enhance high temperature strength , including the steps of:{'sub': '2', 'a) providing a preform initially composed of from 5% to 60% by weight silicon dioxide (SiO) and 40% to 95% by weight Silicon Carbide (SiC);'}b) providing a molten metal bath composed of molten aluminum and 32% to 60% by weight of at least one additional molten substance, said at least one additional molten substance being within said bath either initially or via a subsequent displacement reaction of an oxide incorporated into said preform;c) immersing said preform in said bath for a sufficient time period to complete said displacement reaction between said preform and said bath;d) removing said preform from said bath;{'sub': 2', '3', '2', '3, 'e) said preform when removed from said bath comprising a ceramic-metallic composite finished product consisting of AlOas well as Silicon Carbide (SiC), free aluminum and a fourth substance, concentration of free aluminum in said finished product being reduced as compared to concentration of aluminum had said bath not included said additional molten substance, whereby said finished product exhibits enhanced high temperature strength as compared to high temperature ...

Подробнее
19-08-2021 дата публикации

PREPARATION METHOD FOR MAGNESIUM MATRIX COMPOSITE

Номер: US20210254194A1
Принадлежит:

The invention relates to a preparation method for a magnesium matrix composite. The preparation method comprises the following steps: (1) preparing magnesium ingots as raw materials and salt flux and reinforcements; (2) placing the salt flux in a crucible, performing heating to prepare salt flux melts, adding the reinforcements; (3) performing pouring into a normal-temperature crucible, and performing cooling to obtain precursors; (4) adding the raw materials in an iron crucible, and performing melting at 953K-1043K; (5) placing the precursors in raw material melt, after stirring, under a condition of 953K-993K, performing standing so that scum and melt are obtained; and (6) removing the scum, lowering temperature to 973K-982K, and performing casting. The method provided by the present invention is simple in process and low in cost. The method can be used for preparing bulk structural members of the magnesium matrix composite, and can be used for automatic production. 1. A preparation method for a magnesium matrix composite , comprising:{'sub': 2', '3', '2', '2', '3', '2', '2, '(1) preparing magnesium ingots as raw materials; preparing salt flux and reinforcements, wherein the salt flux is a mixture of barium chloride, magnesium chloride, sodium chloride and calcium chloride, the barium chloride accounts for 35-50% of a total mass of the salt flux, the magnesium chloride accounts for 10-20% of a total mass of the salt flux, the sodium chloride accounts for 10-20% of a total mass of the salt flux, a balance is the calcium chloride and impurities, the impurities account for no more than 1% of the total mass of the salt flux, the reinforcements are elementary metal, rare earth oxides, carbides, borides or metal oxides, the elementary metal is W, Mo or Ni, the rare earth oxides are LaO, CeOor YO, the carbides are TiC or SiC, the borides are ZrB, the metal oxides are MgO or SiO, the reinforcements are 0.1%-30% of a total volume of the raw materials, and the ...

Подробнее
24-08-2017 дата публикации

ENGINEERED ALUMINUM ALLOY AND METHOD OF FABRICATING THE SAME

Номер: US20170240998A1
Принадлежит:

Provided are an aluminum alloy having an adjusted microstructure in an aluminum matrix or an aluminum alloy matrix for high elongation percentage or high strength and a method of fabricating the same. The aluminum alloy includes an aluminum-based matrix; and a nonmetal element solidified in the aluminum-based matrix, wherein stacking fault energy of the aluminum alloy is decreased compared to that of pure aluminum. 1. An aluminum alloy comprising:an aluminum-based matrix; anda nonmetal element solidified in the aluminum-based matrix,wherein stacking fault energy of the aluminum alloy is decreased compared to that of pure aluminum.2. The aluminum alloy of claim 1 , wherein the nonmetal element comprises at least one of oxygen and nitrogen.3. The aluminum alloy of claim 1 , wherein the nonmetal element is solidified to less than or equal to 1 wt % of aluminum of the aluminum-based matrix.4. The aluminum alloy of claim 1 , wherein the stacking fault energy of the aluminum alloy is less than 100 mJ/m.5. The aluminum alloy of claim 1 , wherein at least a portion of the aluminum-based matrix comprises a twin boundary or a partial dislocation.6. The aluminum alloy of claim 1 , wherein the nonmetal element is solidified in the aluminum alloy by adding nanoparticles of a metal compound between the nonmetal element and a heterogeneous metal element to molten aluminum and decomposing the nanoparticles into the nonmetal element and the heterogeneous metal element.7. A method of fabricating an aluminum alloy comprising:providing the melt of aluminum or an aluminum alloy providing an aluminum-based matrix;adding nanoparticles of a metal compound between a nonmetal element and a heterogeneous metal element to the melt;uniformly dispersing the nonmetal element and the heterogeneous metal element in the melt through decomposition of the nanoparticles into the nonmetal element and the heterogeneous metal element; andcooling the melt so as to solidify the nonmetal element in at least ...

Подробнее
15-09-2016 дата публикации

Brass Alloy Comprising Ceramic Alumina Nanoparticles And Having Improved Machinability

Номер: US20160265088A1
Принадлежит: NORDIC BRASS GUSUM AB

The present invention refers to a brass alloy, wherein Al 2 O 3 is present in the alloy in the form of ceramic nanoparticles. Furthermore the invention refers to a method for production of the brass alloy.

Подробнее
22-08-2019 дата публикации

MULTI-PHASE COVETIC AND METHODS OF SYNTHESIS THEREOF

Номер: US20190256951A1
Принадлежит: GDC Industries, LLC

There are provided methods and systems for creating multi-phase covetics. For example, there is provided a process for making a composite material. The process includes forming a multi-phase covetic. The forming includes heating a melt including a metal in a molten state and a carbon source to a first temperature threshold to form metal-carbon bonds. The forming further includes subsequently heating the melt to a second temperature threshold, the second temperature threshold being greater than the first temperature threshold. The second temperature threshold is a temperature at or above which ordered multi-phase covetics form in the melt. 1. A composite material , comprising:{'sup': '2', 'a multi-phase covetic including a nanocarbon network in which carbon atoms form spcovalent bonds with a metal matrix and the nanocarbon network is an ordered network of carbon atoms.'}2. The composite material of claim 1 , wherein the metal matrix includes a transition metal.3. The composite material of claim 1 , wherein at least one property of the multi-phase covetic is enhanced with respect to the same at least one property in a metal forming the metal matrix and a carbon source forming the nanocarbon network. This application is a Divisional of U.S. patent application Ser. No. 15/484,595, filed on Apr. 11, 2017, which will issue as U.S. Pat. No. 10,072,319 on Sep. 11, 2018, which claims the benefit of U.S. Provisional Patent Application No. 62/321,192, filed on Apr. 11, 2016 and U.S. Provisional Patent Application No. 62/410,705, filed on Oct. 20, 2016, all of which are incorporated herein in its entirety by reference.This invention was made with Government support under Grant Number: DE-SC0015256 awarded by the U.S. Department of Energy. The Government has certain rights in this invention.The present disclosure relates to covetics. More particularly, the present disclosure relates to multi-phase covetics and their methods of synthesis.The advent of nanocarbons (e.g., graphene, ...

Подробнее
22-08-2019 дата публикации

MULTI-PHASE COVETIC AND METHODS OF SYNTHESIS THEREOF

Номер: US20190256952A1
Принадлежит: GDC Industries, LLC

There are provided methods and systems for creating multi-phase covetics. For example, there is provided a process for making a composite material. The process includes forming a multi-phase covetic. The forming includes heating a melt including a metal in a molten state and a carbon source to a first temperature threshold to form metal-carbon bonds. The forming further includes subsequently heating the melt to a second temperature threshold, the second temperature threshold being greater than the first temperature threshold. The second temperature threshold is a temperature at or above which ordered multi-phase covetics form in the melt. 1. A process for making a composite material , the process including:{'sup': '3', 'forming spcovalent bonds between carbon and a metal to form a multi-phase covetic by energizing a melt including a carbon source and a molten metal; and'}{'sup': '3', 'subsequent to forming the spcovalent bonds, forming an ordered network of carbon atoms in the multi-phase covetic by further energizing the melt above a threshold at which forming the covalent bonds occurred.'}2. The composite material of claim 1 , wherein the ordered network of carbon atoms includes spcovalent bonds to the metal. This application is a Divisional of U.S. patent application Ser. No. 15,484,595, filed Apr. 11, 2017, which will issue as U.S. Pat. No. 10,072,319 on Sep. 11, 2018, which claims the benefit of U.S. Provisional Patent Application No. 62/321,192, filed on Apr. 11, 2016 and U.S. Provisional Patent Application No. 62/410,705, filed on Oct. 20, 2016, all of which are incorporated herein in its entirety by reference.This invention was made with Government support under Grant Number: DE-SC0015256 awarded by the U.S. Department of Energy. The Government has certain rights in this invention.The present disclosure relates to covetics. More particularly, the present disclosure relates to multi-phase covetics and their methods of synthesis.The advent of nanocarbons (e.g ...

Подробнее
21-09-2017 дата публикации

High Conductivity Magnesium Alloy

Номер: US20170268088A1
Принадлежит:

A castable, moldable, or extrudable magnesium-based alloy that includes one or more insoluble additives. The insoluble additives can be used to enhance the mechanical properties of the structure, such as ductility and/or tensile strength. The final structure can be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final structure as compared to the non-enhanced structure. The magnesium-based composite has improved thermal and mechanical properties by the modification of grain boundary properties through the addition of insoluble nanoparticles to the magnesium alloys. The magnesium-based composite can have a thermal conductivity that is greater than 180 W/m−K, and/or ductility exceeding 15-20% elongation to failure.

Подробнее
18-11-2021 дата публикации

BIODEGRADABLE ZINC-BASED MATERIALS INCLUDING DISPERSED NANOSTRUCTURES FOR BIOMEDICAL APPLICATIONS

Номер: US20210353835A1

A biomedical device includes a zinc-based material including a matrix including zinc, and nanostructures dispersed in the matrix. Embodiments of this disclosure are directed to zinc (Zn)-based materials including dispersed nanostructures for biomedical applications and devices, such as bioresorbable vascular stents, bioresorbable ureteral stents, endoluminal springs for distraction enterogenesis, biodegradable bone implants with tunable modulus, guided bone generation membranes, bioresorbable dental membranes, and other biomedical implants, as well as other functional applications, such as biodegradable electronics and sensors. 1. A biomedical device comprising:a Zn-based material including a matrix including Zn, and nanostructures dispersed in the matrix.2. The biomedical device of claim 1 , wherein the biomedical device is a biomedical implant.3. The biomedical device of claim 2 , wherein the biomedical implant is a biodegradable claim 2 , temporary implant.4. The biomedical device of claim 2 , wherein the biomedical implant is a stent claim 2 , a bone implant claim 2 , or a mechanical extension implant.5. The biomedical device of claim 1 , wherein the biomedical device includes a hollow structure including the Zn-based material.6. The biomedical device of claim 5 , wherein a wall of the hollow structure has a thickness in a range of 500 nm to 5 mm.7. The biomedical device of claim 1 , wherein the nanostructures have an average dimension in a range of 100 nm to 1000 nm.8. The biomedical device of claim 1 , wherein the nanostructures have an average dimension below 100 nm.9. The biomedical device of claim 1 , wherein the nanostructures include a ceramic.10. The biomedical device of claim 9 , wherein the ceramic is a transition metal-containing ceramic.11. The biomedical device of claim 10 , wherein the transition metal-containing ceramic is selected from transition metal carbides and transition metal borides.12. The biomedical device of claim 10 , wherein the ...

Подробнее
29-09-2016 дата публикации

Negative electrode for electric device and electric device using the same

Номер: US20160285077A1
Принадлежит: Nissan Motor Co Ltd

The negative electrode for an electric device includes a current collector and an electrode layer containing a negative electrode active material, a conductive auxiliary agent and a binder and formed on a surface of the current collector, wherein the negative electrode active material contains an alloy represented by the following formula (1): Si x Sn y M z A a (in the formula (1), M is at least one metal selected from the group consisting of Al, V, C and a combination thereof, A is inevitable impurities, and x, y, z and a represent mass percent values and satisfy the conditions of 0<x<100, 0<y<100, 0<z<100, 0≦a<0.5, and x+y+z+a=100), and elastic elongation of the current collector is 1.30% or greater.

Подробнее
04-10-2018 дата публикации

METHOD AND APPARATUS FOR PRODUCING A MIXTURE OF A METALLIC MATRIX MATERIAL AND AN ADDITIVE

Номер: US20180282846A1
Автор: CONRAD Ulrich, WELB Sören
Принадлежит:

In a method for producing a mixture of a metallic matrix material and an additive, a metallic bulk material is molten in a multi-shaft screw machine in a heating zone thereof by means of an inductive heating device to form a metal matrix material. As the at least one housing portion of the housing of the multi-shaft screw machine is made of a non-magnetic and electrically non-conductive material at least partly in the heating zone, a high and efficient energy input for melting the metallic bulk material is achievable in a simple manner. The additive for producing the mixture is admixed to the metallic matrix material by means of treatment element shafts of the multi-shaft screw machine. 1. A method for producing a mixture of a metallic matrix material and an additive , the method comprising the following steps:providing a multi-shaft screw machine comprising a housing, a plurality of housing bores formed in the housing, at least one feed opening leading into the housing bores, a plurality of treatment element shafts arranged in the housing bores in such a way as to be drivable for rotation and an inductive heating device configured to form a heating zone, the housing comprising a plurality of interconnected housing portions arranged in succession in a conveying direction, at least one housing portion in the heating zone being made at least partially of a non-magnetic and electrically non-conductive material, the inductive heating device comprising at least one coil that surrounds the treatment element shafts and defines an inner space, the at least one housing portion being made exclusively of the non-magnetic and electrically non-conductive material in the inner space, the treatment element shafts comprising an electrically conductive material at least in the heating zone, the multi-shaft screw machine further comprising a cooling device configured to dissipate thermal losses generated in the at least one coil;feeding a metallic bulk material and an additive into ...

Подробнее
25-10-2018 дата публикации

ADDITIVE FABRICATION WITH INFILTRATABLE STRUCTURES

Номер: US20180305266A1
Принадлежит:

An infiltratable material forms a net shape containing a porous network that can be infiltrated with a supplemental material, commonly referred to as an infiltrant, e.g., by heating the infiltrant so that it melts and wicks into the porous network of the net shape. By using additive fabrication technologies to spatially dispose an infiltrant about an infiltratable structure, a composite structure can be created that advantageously controls the amount of infiltrant applied to the infiltratable structure and the spatial distribution of the infiltrant about and/or within the infiltratable structure prior to infiltration. 1. A method for fabricating a self-infiltrating structure comprising:providing a build material including a sinterable powder containing particles of a first material in a binder system selected to retain a shape of the build material during processing;providing an infiltrant having a melt temperature substantially lower than a melting point of the build material and a low wetting angle to the sinterable powder;determining an amount of the infiltrant sufficient to replace a volume of a porous network formed in a net shape of an object fabricated from the build material when the net shape is thermally processed to create an infiltratable structure;fabricating the object with the net shape from the build material; andfabricating one or more infiltration structures for the object, the one or more infiltration structures containing the amount of the infiltrant and positioned for the infiltrant to flow into the object during an infiltration process.2. The method of wherein the volume of the porous network is substantially equal to a second volume of the binder system in the net shape before the object is thermally processed to create the infiltratable structure.3. The method of further comprising thermally processing the object to couple particles of the first material into a skeleton of the first material substantially retaining the net shape to the ...

Подробнее
17-11-2016 дата публикации

Method for manufacturing a composite component of a timepiece or of a jewelry part, and composite component obtainable by such method

Номер: US20160331090A1

A method for manufacturing a composite component of a timepiece or of a jewelry part, the composite component including a porous ceramic part and a metallic material filling the pores of the ceramic part, including providing a porous ceramic preform of the component, providing a metallic material, heating the metallic material to a temperature higher than the melting point of the metallic material, filling the pores of the ceramic preform with the molten metallic material, cooling the metallic material and the ceramic preform to obtain a solidified metallic material in the pores of the ceramic preform, and applying finishing treatments to obtain the composite component, wherein the porous ceramic preform consists essentially of a material selected from the group consisting of Si 3 N 4 , SiO 2 and mixtures thereof, and the metallic material is gold, platinum, palladium metals or alloys of these metals.

Подробнее
08-11-2018 дата публикации

NANOPARTICLE-STABILIZED IMMISCIBLE ALLOYS

Номер: US20180320252A1
Принадлежит:

Solid immiscible alloys and methods for making the solid immiscible alloys are provided. The microstructure of the immiscible alloys is characterized by a minority phase comprising a plurality of particles of an inorganic material dispersed in a majority phase comprising a continuous matrix of another inorganic material. The methods utilize nanoparticles to control both the collisional growth and the diffusional growth of the minority phase particles in the matrix during the formation of the alloy microstructure. 1. A method of making a solid immiscible alloy material comprising: an immiscible alloy having a majority phase comprising a continuous matrix of a first inorganic material and a minority phase comprising a plurality of particles of a second inorganic material dispersed in the majority phase; and nanoparticles comprising a thermally stable material coating the surfaces of the dispersed minority phase particles; the method comprising:(a) forming a single-phase liquid solution comprising the first inorganic material and the second inorganic material at a temperature above the liquid miscibility gap for the immiscible alloy;(b) introducing solid nanoparticles comprising a thermally stable material into the single-phase liquid solution while it is at a temperature above the liquid miscibility gap;(c) cooling the liquid solution through the liquid miscibility gap, whereby the nanoparticles form a coating on liquid droplets of the minority phase that forms in a liquid matrix of the majority phase; and(d) cooling the resulting material to a temperature below the solidus temperature, whereby the solid immiscible alloy material forms.2. The method of claim 1 , wherein the step of cooling the liquid solution through the liquid miscibility gap is carried out at a cooling rate of no greater than about 500 K/s.3. The method of claim 1 , wherein the minority phase particles have an average diameter of no greater than about 20 μm and the average smallest diameter for the ...

Подробнее
16-11-2017 дата публикации

Nanocomposite magnetic materials for magnetic devices and systems

Номер: US20170330657A1

Nanocomposite magnetic materials, methods of manufacturing nanocomposite magnetic materials, and magnetic devices and systems using these nanocomposite magnetic materials are described. A nanocomposite magnetic material can be formed using an electro-infiltration process where nanomaterials (synthesized with tailored size, shape, magnetic properties, and surface chemistries) are infiltrated by electroplated magnetic metals after consolidating the nanomaterials into porous microstructures on planar substrates. The nanomaterials may be considered the inclusion phase, and the magnetic metals may be considered the matrix phase of the multi-phase nanocomposite.

Подробнее
31-10-2019 дата публикации

Methods of Removing Shoulder Powder From Fixed Cutter Bits

Номер: US20190330927A1
Принадлежит: Halliburton Energy Services, Inc.

Tools, for example, fixed cutter drill bits, may be manufactured to include hard composite portions having reinforcing particles dispersed in a continuous binder phase and auxiliary portions that are more machinable than the hard composite portions. For example, a tool may include a hard composite portion having a machinability rating 0.2 or less; and an auxiliary portion having a machinability rating of 0.6 or greater in contact with the hard composite portion. The boundary or interface between the hard composite portion and the auxiliary portion may be designed so that upon removal of the most or all of the auxiliary portion the resultant tool has a desired geometry without having to machine the hard composite portion.

Подробнее
15-12-2016 дата публикации

Method of Making Aluminum or Magnesium Based Composite Engine Blocks or Other Parts With In-Situ Formed Reinforced Phases Through Squeeze Casting or Semi-Solid Metal Forming and Post Heat Treatment

Номер: US20160361764A1
Принадлежит:

A method of making a reinforced metal alloy component, the method including introducing a reinforcing phase precursor into a bulk alloy that is selected from the group consisting of high-entropy alloys, aluminum-based alloys, magnesium-based alloys and combinations thereof. The precursor is converted to a reinforcing phase by exposing the bulk alloy and precursor to an elevated temperature during one or more of a subsequent heat treating step, squeeze casting shaping or semi-solid metal shaping. 1. A method of making a reinforced metal alloy component , said method comprising:introducing at least one reinforcing phase precursor into a bulk alloy that is selected from the group consisting of aluminum-based alloys, magnesium-based alloys, high-entropy alloys and combinations thereof; andforming said component as a composite of said bulk alloy and at least one reinforcing phase that is produced upon activation of said at least one reinforcing phase precursor by using either squeeze casting or semi-solid metal forming such that a linear dimension of said at least one reinforcing phase is in the nanometer to micrometer range.2. The method of claim 1 , wherein said activation comprises catalyzing said at least one reinforcing phase precursor by increasing the temperature of said bulk alloy above its solidus temperature.3. The method of claim 2 , wherein said activation further takes place in at least one subsequent heat treating step.4. The method of claim 2 , wherein said introducing by said squeeze casting comprises having said bulk alloy be in melted form at the time said at least one reinforcing phase precursor is added thereto.5. The method of claim 4 , wherein said forming comprises:maintaining said composite in a substantially melted form;placing said substantially melted composite into a shot sleeve;forcing said substantially melted composite into a substantially final shape die cavity; andmaintaining an elevated pressure on said substantially melted composite ...

Подробнее
31-12-2015 дата публикации

Metal matrix composite and method of forming

Номер: US20150376745A1
Автор: Dominique Bouchard
Принадлежит: NATIONAL RESEARCH COUNCIL OF CANADA

Use of Ca in metal matrix composites (MMC) allows for incorporation of small and large amounts of ceramic (e.g. rutile Ti0 2 ) into the metal (Al, or its alloys). Calcium remains principally out of the matrix and is part of a boundary layer system that has advantages for integrity of the MMC. Between 0.005 and 10 wt. % calcium (Ca) may be included, and more than 50 wt. % of rutile has been shown to be integrated. Rutile may therefore be used to reduce melt loss due to calcium from an aluminum or aluminum alloy melt.

Подробнее
28-12-2017 дата публикации

EQUIPMENT AND METHOD FOR MANUFACTURING COPPER ALLOY MATERIAL

Номер: US20170368599A1
Принадлежит:

A copper alloy material manufacturing equipment for manufacturing a copper alloy material by continuously casting molten copper. The equipment includes an element adding means for adding a metal element to the molten copper, a tundish for holding the molten copper containing the metal element, a pouring nozzle connected to the tundish to feed the molten copper from the tundish, and a trapping member arranged inside the tundish and including a same type of material as at least one of an oxide of the metal element, a nitride of the metal element, a carbide of the metal element and a sulfide of the metal element. 1. A copper alloy material manufacturing equipment for manufacturing a copper alloy material by continuously casting molten copper , the equipment comprising:an element adding means for adding a metal element to the molten copper;a tundish for holding the molten copper containing the metal element;a pouring nozzle connected to the tundish to feed the molten copper from the tundish; anda trapping member arranged inside the tundish and comprising a same type of material as at least one of an oxide of the metal element, a nitride of the metal element, a carbide of the metal element and a sulfide of the metal element.2. The equipment according to claim 1 , wherein the metal element comprises a tin claim 1 , and the trapping member comprises at least one of a tin oxide claim 1 , a tin nitride claim 1 , a tin carbide and a tin sulfide.3. The equipment according to claim 1 , wherein the metal element comprises a titanium claim 1 , and the trapping member comprises at least one of a titanium oxide claim 1 , a titanium nitride claim 1 , a titanium carbide and a titanium sulfide.4. The equipment according to claim 1 , wherein the metal element comprises a magnesium claim 1 , and the trapping member comprises at least one of a magnesium oxide claim 1 , a magnesium nitride claim 1 , a magnesium carbide and a magnesium sulfide.5. The equipment according to claim 1 , ...

Подробнее
10-12-2020 дата публикации

Degradable Metal Matrix Composite

Номер: US20200385842A1
Принадлежит:

The present invention relates to the composition and production of an engineered degradable metal matrix composite that is useful in constructing temporary systems requiring wear resistance, high hardness, and/or high resistance to deformation in water-bearing applications such as, but not limited to, oil and gas completion operations. 1. A degradable composite including:a. plurality of ceramic or intermetallic particles having a hardness greater than 50 HRC;b. galvanically-active elements that include one or more elements selected from the group consisting of iron, nickel, copper, cobalt, titanium silver, gold, gallium, bismuth, palladium, carbon, or indium; andc. degradable metal matrix that includes magnesium, aluminum, magnesium alloy or aluminum alloy, said degradable alloy matrix constituting greater than 50 wt. % magnesium or greater than 50 wt. % aluminum;wherein said degradable composite material includes a plurality of degradation catalyst particles, zones, or regions that are galvanically-active; andwherein said ceramic or intermetallic particles were precoated with said galvanically-active elements prior to being combined with said degradable metal matrix; andwherein a content of said plurality of ceramic or intermetallic particles in said degradable composite is 20 vol. % to 90 vol. % of said degradable composite; andwherein said degradable composite has a hardness of greater than 22 Rockwell C; andwherein said degradable composite has a degradation rate of 0.02-5 mm/hr. at 35-200° C. in 100-100,000 ppm freshwater or brine.26. The degradable composite as defined in claim 1 , wherein the ceramic or intermetallic particles include one or more materials selected from the group consisting of metal carbides claim 1 , borides claim 1 , oxides claim 1 , silicides claim 1 , or nitrides such as BC claim 1 , TiB claim 1 , TiC claim 1 , AlO claim 1 , MgO claim 1 , SiC claim 1 , SiN claim 1 , ZrO claim 1 , SiB claim 1 , SiAlON claim 1 , and WC.3. The degradable ...

Подробнее
24-12-2020 дата публикации

FUNCTIONALLY GRADED METAL MATRIX NANOCOMPOSITES, AND METHODS FOR PRODUCING THE SAME

Номер: US20200399739A1
Принадлежит:

Some variations provide a metal matrix nanocomposite composition comprising metal-containing microparticles and nanoparticles, wherein the nanoparticles are chemically and/or physically disposed on surfaces of the microparticles, and wherein the nanoparticles are consolidated in a three-dimensional architecture throughout the composition. The composition may serve as an ingot for producing a metal matrix nanocomposite. Other variations provide a functionally graded metal matrix nanocomposite comprising a metal-matrix phase and a reinforcement phase containing nanoparticles, wherein the nanocomposite contains a gradient in concentration of the nanoparticles. This nanocomposite may be or be converted into a master alloy. Other variations provide methods of making a metal matrix nanocomposite, methods of making a functionally graded metal matrix nanocomposite, and methods of making a master alloy metal matrix nanocomposite. The metal matrix nanocomposite may have a cast microstructure. The methods disclosed enable various loadings of nanoparticles in metal matrix nanocomposites with a wide variety of compositions. 1. A method of making a functionally graded metal matrix nanocomposite , said method comprising:(a) providing a precursor composition comprising metal-containing microparticles and nanoparticles, wherein said nanoparticles are chemically and/or physically disposed on surfaces of said microparticles;(b) consolidating said precursor composition into an intermediate composition comprising said metal-containing microparticles and said nanoparticles, wherein said nanoparticles are consolidated in a three-dimensional architecture throughout said intermediate composition;(c) melting said intermediate composition to form a melt, wherein said melt segregates into a first phase comprising said metal-containing microparticles and a second phase comprising said nanoparticles; and(d) solidifying said melt to obtain a metal matrix nanocomposite with a gradient in ...

Подробнее
31-12-2020 дата публикации

Degradable Metal Matrix Composite

Номер: US20200407822A1
Принадлежит:

The present invention relates to the composition and production of an engineered degradable metal matrix composite that is useful in constructing temporary systems requiring wear resistance, high hardness, and/or high resistance to deformation in water-bearing applications such as, but not limited to, oil and gas completion operations. 133.-. (canceled)34. A method for forming a degradable composite , said method comprises:a. providing ceramic particles, a plurality of said ceramic particles having a hardness of greater than 50 HRC;b. providing one or more galvanically-active elements selected from the group consisting of iron, carbon, nickel, copper, cobalt, gallium, indium, and titanium;c. combining ceramic particles and said one or more galvanically-active elements with a degradable metal material, said degradable metal material selected from magnesium, magnesium alloy including greater than 50 wt. % magnesium, and an aluminum alloy;d. dispersing said plurality of ceramic particles and said one or more galvanically-active elements in said degradable metal material while said degradable metal material is in a molten state to form a mixture; and,{'sup': '2', 'e. cooling said mixture to form said degradable composite, said degradable composite having a degradation rate of at least 5 mg/cm/hr. in freshwater or brine at a temperature of at least 90° C.'}35. The method as defined in claim 34 , wherein said degradable composite has a hardness of greater than 22 Rockwell C.36. The method as defined in claim 34 , wherein said degradable composite includes at least 10 vol. % degradable metal material claim 34 , at least 0.03 vol. % galvanically-active elements claim 34 , and at least 10 vol. % ceramic particles.37. The method as defined in claim 34 , wherein said degradable composite includes one or more metals selected from the group constating of calcium claim 34 , barium claim 34 , lithium claim 34 , sodium claim 34 , potassium claim 34 , silver claim 34 , gold claim 34 ...

Подробнее
10-08-2005 дата публикации

Carbon black composite material and method of producing the same, and composite elastomer

Номер: EP1561771A1
Принадлежит: Nissin Kogyo Co Ltd

A method of producing a carbon black composite material includes: a step (a) of mixing an elastomer and carbon black to obtain a composite elastomer; and a step (b) of mixing the composite elastomer and a matrix material to obtain a carbon black composite material in which the carbon black is uniformly dispersed in the matrix material.

Подробнее
11-05-2018 дата публикации

一种环保型抗变色的紫铜排及其制备方法

Номер: CN106811618B
Автор: 王海燕

本发明提供一种环保型抗变色的紫铜排及其制备方法,该环保型抗变色的紫铜排是紫杂铜原料经多元中间合金精炼和抗变色改性处理得到,制备方法为:将电解铜熔化形成铜熔液,加入铜磷合金、铜镧合金和铜硼合金搅拌至熔化,静置,排渣,浇入模具成形,得到多元中间合金,再将多元中间合金加入紫杂铜原料中,熔炼精炼,浇入模具成形,得到紫铜排;将紫铜排表面抛光,清洗擦拭干净后,再采用超声波振荡脱脂清洗,浸泡于植酸/苯并三氮唑预处理液,清水冲洗,再喷涂或者刷涂抗变色处理液,冷风干燥,得到环保型抗变色的紫铜排。

Подробнее
12-02-2009 дата публикации

Method for producing carbon black composite material

Номер: JP4224445B2
Автор: 徹 野口, 章 曲尾
Принадлежит: Nissin Kogyo Co Ltd

Подробнее
01-09-2005 дата публикации

Carbon black composite material and method of producing the same, and composite elastomer

Номер: US20050192396A1
Принадлежит: Nissin Kogyo Co Ltd

A method of producing a carbon black composite material includes: a step (a) of mixing an elastomer and carbon black to obtain a composite elastomer; and a step (b) of mixing the composite elastomer and a matrix material to obtain a carbon black composite material in which the carbon black is uniformly dispersed in the matrix material.

Подробнее
16-01-2008 дата публикации

炭黑复合材料及其制造方法

Номер: CN100362046C
Автор: 曲尾章, 野口彻
Принадлежит: Nissin Kogyo Co Ltd

本发明的目的在于提供一种改善了炭黑在基体材料中的分散性的炭黑复合材料、其制造方法及复合弹性体。炭黑复合材料的制造方法的特征在于,包括:把弹性体30和炭黑40混合,得到复合弹性体的工序(a);和把复合弹性体和基体材料混合,得到上述炭黑在该基体材料中均匀分散的炭黑复合材料的工序(b)。

Подробнее
09-09-2008 дата публикации

Carbon black composite material and method of producing the same, and composite elastomer

Номер: US7423085B2
Принадлежит: Nissin Kogyo Co Ltd

A method of producing a carbon black composite material includes: a step (a) of mixing an elastomer and carbon black to obtain a composite elastomer; and a step (b) of mixing the composite elastomer and a matrix material to obtain a carbon black composite material in which the carbon black is uniformly dispersed in the matrix material.

Подробнее
10-11-2006 дата публикации

Carbon black composite material and method of producing the same, and composite elastomer

Номер: KR100643724B1

본 발명의 목적은 매트릭스 재료 중에 있어서의 카본블랙의 분산성을 개선한 카본블랙 복합 재료 및 그 제조 방법 및 복합 엘라스토머를 제공하는 것에 있다. An object of the present invention is to provide a carbon black composite material having improved dispersibility of carbon black in a matrix material, a method for producing the same, and a composite elastomer. 카본블랙 복합 재료의 제조 방법은 엘라스토머(30)와 카본블랙(40)을 혼합하여, 복합 엘라스토머를 얻는 공정 (a)와, 복합 엘라스토머와 매트릭스 재료를 혼합하여, 이 매트릭스 재료 중에 상기 카본블랙이 균일하게 분산된 카본블랙 복합 재료를 얻는 공정 (b)를 포함하는 것을 특징으로 한다. In the method for producing a carbon black composite material, the step (a) of mixing the elastomer 30 and the carbon black 40 to obtain a composite elastomer, the composite elastomer and the matrix material are mixed, and the carbon black is uniform in the matrix material. It characterized in that it comprises a step (b) to obtain a carbon black composite material dispersed.

Подробнее
21-05-2008 дата публикации

Composite of carbon black and process for their preparation, and composite elastomer

Номер: DE602005002153T2
Принадлежит: Nissin Kogyo Co Ltd

Подробнее
12-02-2009 дата публикации

Method for producing composite metal material

Номер: JP4224407B2
Автор: 徹 野口, 章 曲尾
Принадлежит: Nissin Kogyo Co Ltd

Подробнее
30-07-1997 дата публикации

Methods of forming metal matrix composite bodies by a spontaneous infiltration process

Номер: IE74680B1
Принадлежит: Lanxide Technology Co Ltd

The present invention relates to a novel process for forming metal matrix composite bodies. Particularly, an infiltration enhancer and/or an infiltration enhancer precursor and/or an infiltrating atmosphere are in communication with a filler material (2) or a preform, at least at some point during the process, which permits molten matrix metal (3) to spontaneously infiltrate the filler material (2) or preform. Such spontaneous infiltration occurs without the requirement for the application of any pressure or vacuum.

Подробнее
20-08-1991 дата публикации

Methods for forming macrocomposite bodies and macrocomposite bodies produced thereby

Номер: US5040588A
Принадлежит: Lanxide Technology Co LP

The present invention relates to the formation of a macrocomposite body by spontaneously infiltrating a permeable mass of filler material or a preform with molten matrix metal and bonding the spontaneously infiltrated material to at least one second material such as a ceramic or ceramic containing body and/or a metal or metal containing body. Particularly, an infiltration enhancer and/or infiltration enhancer precursor and/or infiltrating atmosphere are in communication with a filler material or a preform, at least at some point during the process, which permits molten matrix metal to spontaneously infiltrate the filler material or preform. Moreover, prior to infiltration, the filler material or preform is placed into contact with at least a portion of a second material such that after infiltration of the filler material or preform, the infiltrated material is bonded to the second material, thereby forming a macrocomposite body.

Подробнее
20-11-2008 дата публикации

Method for producing a composite of soot and glass and composite from this method

Номер: DE602005010250D1
Принадлежит: Nissin Kogyo Co Ltd

Подробнее
14-03-2007 дата публикации

Method of producing a carbon black and glass composite material, and composite material obtained by said method

Номер: EP1762584A1
Принадлежит: Nissin Kogyo Co Ltd

A method of producing a carbon black composite material includes: a step (a) of mixing an elastomer and carbon black to obtain a composite elastomer; and a step (b) of mixing the composite elastomer and a matrix material to obtain a carbon black composite material in which the carbon black is uniformly dispersed in the matrix material.

Подробнее
11-10-2007 дата публикации

Composite of carbon black and process for their preparation, and composite elastomer

Номер: DE602005002153D1
Принадлежит: Nissin Kogyo Co Ltd

Подробнее
10-08-2005 дата публикации

炭黑复合材料、其制造方法及复合弹性体

Номер: CN1651493A
Автор: 曲尾章, 野口彻
Принадлежит: Nissin Kogyo Co Ltd

本发明的目的在于提供一种改善了炭黑在基体材料中的分散性的炭黑复合材料、其制造方法及复合弹性体。炭黑复合材料的制造方法的特征在于,包括:把弹性体30和炭黑40混合,得到复合弹性体的工序(a);和把复合弹性体和基体材料混合,得到上述炭黑在该基体材料中均匀分散的炭黑复合材料的工序(b)。

Подробнее
17-12-2014 дата публикации

Composite metal material and method of producing the same

Номер: EP1559800B1
Принадлежит: Nissin Kogyo Co Ltd

Подробнее
08-11-2016 дата публикации

Apparatus for producing composite gas for fabricating metal matrix composite materials in liquid metal process

Номер: US9486758B2
Автор: Young Sek Yang
Принадлежит: Foosung Precision Industry Co Ltd

Disclosed is an apparatus for producing composite gas used for fabricating nanocomposite materials. The apparatus includes a pressure tank having a housing, which has an internal space and an upper opening, and a closing cap opening or closing the opening, a carrier mounted below the housing, a gas supply supplying inert gas into the pressure tank, a powder supply mounted to the closing cap to supply nano-powders into the pressurized inert gas tank, an exhaust part discharging the inert gas containing nano-powders supplied into the pressure tank, an upper rotor disposed to the inner side of the closing cap, and a lower fan mounted at a lower portion of the housing.

Подробнее
30-09-1994 дата публикации

Method of manufacture of composite material castings on metal base

Номер: RU2020042C1

FIELD: metallurgy. SUBSTANCE: dispersed particles are heated in the process of their introduction into master melt in the flow of ionized inert gas of up to 0.5-0.9 of their melting temperature. Method involves uninterrupted mixing and employment of dispersed synthetic particles thermodynamically resistant to master melt as reinforcing material. EFFECT: improved quality of castings, widened nomenclature. 4 cl, 1 dwg СУ00СсО0сС ПЧ Го РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (19) ВИ” 2 020 042 ' 13) СЛ 517 МК В 220 19/14 12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ (21), (22) Заявка: 4867973/02, 19.09.1990 (46) Дата публикации: 30.09.1994 (56) Ссылки: Ме! Тгапз$, 1978, , М 3, р.383-388. (71) Заявитель: Всесоюзный научно-исспедовательский и проектный институт алюминиевой, магниевой и электродной промышленности (72) Изобретатель: Борисов В.Г., Борисенко Л.П., Иванченко А.В., Калужский Н.А., Богданов А.П., Рапопорт В.М., Белоусов Н.Н., Павлова СН., Беляева Т.И., Волков В.В. , Шустеров В.С. С (73) Патентообладатель: Акционерное общество открытого типа "Всероссийский алюминиево-магниевый институт" (54) СПОСОБ ПОЛУЧЕНИЯ ОТЛИВОК ИЗ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА МЕТАЛЛИЧЕСКОЙ ОСНОВЕ (57) Реферат: Использование: в области металлургии, а именно при производстве отливок из материалов на металлической основе для повышения качества отливок и расширения их номенклатуры. Сущность изобретения: дисперсные частицы нагревают в процессе введения в матричный расплав в потоке ионизированного инертного газа до 0,5 - 0,9 температуры их плавления, перемешивание осуществляют непрерывно, а в качестве армирующего материала используют дисперсные синтетические частицы, термодинамически устойчивые по отношению к матричному расплаву. 3 з.п.ф-лы, 1 ил. 2020042 КО СУ00СсО0сС ПЧ Го КУЗЗАМ АСЕМСУ ГОК РАТЕМТ$ АМО ТКАОЕМАКК$ (19) ВИ” 2 020 042 ' 13) СЛ 59° В 22 0 19/14 12) АВЗТКАСТ ОЕ 1МУЕМТОМ (21), (22) АррИсаНоп: 4867973102, 19.09.1990 (46) Бае ог рчбИсаНоп: 30.09.1994 (71) ...

Подробнее
12-06-2018 дата публикации

一种石墨烯/金属复合材料及其制备方法

Номер: CN108149051A

一种石墨烯/金属复合材料及其制备方法。所述方法包括:(1)按质量百分比称取金属棒与高纯碳棒,高纯碳棒所占质量百分比为1%‑30%;(2)将清洗后的金属棒装夹在悬浮区熔定向凝固炉抽拉系统的上夹头和下夹头上,将高纯碳棒装夹在抽拉系统旁侧的夹具上,且高纯碳棒的底端与金属棒的熔区接触;(3)将悬浮区熔定向凝固炉抽真空,对金属棒进行定向凝固,控制熔区长度在1~50mm,将金属棒以1~5000μm/s的速率从上至下移动,且沿着抽拉系统的轴线旋转;所述高纯碳棒的底端始终处于所述金属棒的熔区内。由此方法本发明得到的石墨烯/金属复合材料中,碳以石墨烯形式存在于金属的晶格之中,两相界面结合良好,有助于提高材料的电导率。

Подробнее
24-08-2016 дата публикации

一种耐高温纳米陶瓷颗粒增强铝合金及其制备方法与应用

Номер: CN105886847A
Принадлежит: Shanghai Jiaotong University

本发明涉及一种耐高温纳米陶瓷颗粒增强铝合金及其制备方法与应用,耐高温纳米陶瓷颗粒增强铝合金由以下质量百分比含量的组分构成:Si 5~9%、Mg 0.1~0.5%、Cu 2~6%、Fe 0.1~0.6%、Mn 0.1~0.6%、Zr 0.05~0.2%、V 0.05~0.2%、TiB 2 颗粒0.1~25%,余量为Al;耐高温纳米陶瓷颗粒增强铝合金用于制作发动机缸盖。与现有发动机用缸盖材料相比,本发明制备得到的铝合金的室温(20℃)抗拉强度和高温(250℃和300℃)抗拉强度都有大幅度的提高,能够满足高性能发动机对于更高工作温度,更高爆发压力的要求,可作为新型高性能发动机缸盖材料使用。

Подробнее
04-02-2013 дата публикации

Method for manufacturing of aluminium composition contain of nano-composite of CNT and Cu

Номер: KR101229291B1

본 발명은 탄소나노튜브 및 구리의 나노-복합소재를 첨가한 알루미늄 합금의 제조방법을 제공하기 위한 것으로, 탄소나노튜브와 H 2 SO 4 :HNO 3 의 혼합용액을 혼합하여 초음파 처리하고, 증류수에 희석시킨 후 에탄올과 혼합한 다음 에탄올을 기화시키고 환원처리를 수행하여 탄소나노튜브 및 구리의 나노-복합소재를 제조하는 제 1 단계와; 상기 제 1 단계 후 전기로에 알루미늄을 넣고 용융시킨 후 세척한 다음 상기 탄소나노튜브 및 구리의 나노-복합소재를 투입하여 알루미늄과 교반하고 응고시켜 CNT/Cu 나노-복합소재 및 알루미늄의 고용체를 제조하는 제 2 단계;를 포함하여 수행함으로서, 탄소나노튜브와 구리를 합침하여 CNT/Cu의 나노-복합소재를 만들고 알루미늄과 고용시켜 뛰어난 열전도성을 갖는 CNT/금속 복합체를 제조할 수 있게 되는 것이다. The present invention is to provide a method for producing an aluminum alloy to which carbon nanotubes and copper nano-composites are added, by mixing a mixture of carbon nanotubes and H 2 SO 4 : HNO 3 and sonication, and distilled water A first step of preparing a nano-composite material of carbon nanotubes and copper by diluting and mixing with ethanol, and then vaporizing the ethanol and performing a reduction treatment; After the first step, the aluminum is put into an electric furnace, melted and washed, and then the nano-composite material of carbon nanotubes and copper is added, stirred with aluminum, and solidified to prepare a solid solution of CNT / Cu nano-composite material and aluminum. By performing a second step; by combining carbon nanotubes and copper to make a nano-composite material of CNT / Cu and solid solution with aluminum to be able to produce a CNT / metal composite having excellent thermal conductivity. 탄소나노튜브, 구리, 나노, 복합소재, 알루미늄 Carbon Nanotubes, Copper, Nano, Composites, Aluminum

Подробнее
14-11-2006 дата публикации

성형성 및 내마모성이 우수한 알루미늄 합금의 제조방법

Номер: KR100645114B1

본 발명은 자동차를 비롯한 각종 운송기기의 구조부품 및 엔진부품에 이용되는 알루미늄 합금에 관한 것이다. 본 발명은 중량%로, 주석: 0.5~5.0%, 규소: 15.0~30.0% 및 나머지 Al을 포함하여 이루어지는 성형성 및 내마모성이 우수한 알루미늄 합금 및 그 제조방법에 관한 것이다. 본 발명은 종래의 알루미늄 합금에 주석(Sn)과 규소(Si)를 적절하게 첨가하여 고연성의 주석입자와 고경도의 규소입자를 미세하고 균일하게 분포시킴으로써 성형성 및 내마모성이 우수한 알루미늄 합금 및 그 제조방법을 제공할 수 있다. 알루미늄 합금, 주석, 규소, 급냉응고법, 분무성형법, 분말야금법

Подробнее
08-10-2021 дата публикации

一种高强度耐磨型泡沫铝复合材料及其制备方法

Номер: CN113481403A
Автор: 张进, 梁林, 甘海潮

本发明涉及泡沫铝材料技术领域,具体涉及一种高强度耐磨型泡沫铝复合材料及其制备方法,所述方法包括向铝熔体中掺入表面镀覆有钛粉的金刚石颗粒,经发泡、冷却处理得到泡沫铝复合材料;金刚石颗粒表面镀覆钛粉的方法包括,采用酸性溶液清洗金刚石颗粒,用去离子水反复冲洗后干燥处理,接着将该金刚石颗粒与钛粉混合,倒入坩埚内,再将金属盐铺在其表面;将盛有混合物的坩埚置于箱式炉中加热,保温处理,接着冷却至室温,除去金属盐,烘干,筛选处理后得到表面镀覆钛粉的金刚石颗粒;本发明通过将表面镀覆有钛粉的金刚石颗粒引入到铝熔体中,藉由金刚石颗粒所具有的高强度和硬度,显著地提升了泡沫铝基复合材料的强度和耐磨性能。

Подробнее