Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 32933. Отображено 200.
10-07-2006 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ КОНСТРУКТИВНОГО ЭЛЕМЕНТА ИНДИКАТОРА

Номер: RU2279731C2

Изобретение относится к области газоразрядной техники и может быть использовано при формировании конструктивных элементов индикаторов, например, электродов, разделительных элементов и др. Технический результат - изготовление конструктивных элементов с контрастным покрытием, совмещенных с высокой точностью. Достигается тем, что конструктивный элемент индикатора изготавливают на сплошном слое композиции, нанесенной на стеклоподложку, включающей органический материал и порошок тугоплавкого материала темного цвета при следующем соотношении компонентов, вес. %: органический материал - 85÷95, тугоплавкий материал темного цвета - 5÷15, при этом конструктивный элемент формируют из смеси, содержащей порошки токопроводящего или диэлектрического материала и легкоплавкого стекла, после нанесения конструктивного элемента проводят выжигание органического материала, удаляют порошок тугоплавкого материала темного цвета со стеклоподложки вне конструктивного элемента, и проводят вжигание конструктивного ...

Подробнее
10-03-2004 дата публикации

Способ получени нанотрубок

Номер: RU2225655C2

Изобретение относится к области наноэлектроники, а более конкретно к способам получения нанотрубок. В основу изобретения положена техническая задача, заключающаяся в том, чтобы обеспечить управляемое детерминированное образование нанотрубок одинаковых диаметров от нескольких десятков нанометров и менее. Поставленная техническая задача решается тем, что на плазму дугового разряда воздействуют перпендикулярным магнитным полем индукцией 0,01÷0,9 Тл, при давлении гелия (3÷4)·104 Па, напряжении 20÷35 В токе 20÷30 А и межэлектродном расстоянии 3÷5 мм, затем меняют полярность дугового разряда с периодом 0,1÷2 с. Применение предложенного способа получения нанотрубок обеспечивает управляемое детерминированное образование нанотрубок одинаковых диаметров от 2 до 30 нм. 1 ил.

Подробнее
27-07-2014 дата публикации

ТРЕХМЕРНО-СТРУКТУРИРОВАННАЯ ПОЛУПРОВОДНИКОВАЯ ПОДЛОЖКА ДЛЯ АВТОЭМИССИОННОГО КАТОДА, СПОСОБ ЕЕ ПОЛУЧЕНИЯ И АВТОЭМИССИОННЫЙ КАТОД

Номер: RU2524353C2

Заявленное изобретение относится к области электротехники, а именно, к способу получения трехмерно-структурированной полупроводниковой подложки для автоэмиссионного катода, и может быть использовано в различных электронных приборах: СВЧ, рентгеновских трубках, источниках света, компенсаторах заряда ионных пучков и т.п. Создание трехмерно-структурированной полупроводниковой подложки, на которую наносят эмитирующую пленку автоэмиссионных катодов в виде микроострийной квазирегулярной ячеисто-пичковой структуры с аспектным отношением не менее 2 (отношение высоты острий к их высоте), позволяет повысить эмиссионную характеристику катодов, что является техническим результатом заявленного изобретения. Полупроводниковую подложку для формирования на ней требуемой микроострийной структуры подвергают фотоэлектрохимическому травлению в водном или безводном электролите, меняя режимы травления и интенсивность подсветки. Предложена также структурированная полупроводниковая подложка для автоэмиссионного ...

Подробнее
27-10-2007 дата публикации

МАТЕРИАЛ И СПОСОБ ИЗГОТОВЛЕНИЯ МНОГООСТРИЙНОГО АВТОЭМИССИОННОГО КАТОДА

Номер: RU2309480C2

Изобретение относится к области электронной техники и может быть использовано при изготовлении изделий светоиндикаторной техники и эмиссионной электроники на основе автоэлектронной эмиссии многоострийных углеродных структур. Синтез материала многоострийного автоэмиссионного катода осуществляют в плазме микроволнового газового разряда из паров углеродосодержащих веществ, например этанола, в диапазоне параметров процесса, в котором реализуется переход от осаждения графитовых к осаждению алмазных пленок. Образующийся композиционный материал представляет собой графитовую матрицу с включениями наноалмазных кристаллитов с размерами d Подробнее

20-11-2000 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ КАТОДА С АВТОЭЛЕКТРОННОЙ ЭМИССИЕЙ, КАТОД С АВТОЭЛЕКТРОННОЙ ЭМИССИЕЙ И УСТРОЙСТВО АВТОЭЛЕКТРОННОЙ ЭМИССИИ

Номер: RU2159478C2
Принадлежит: ЛАЙТЛАБ АБ (SE)

Изобретение относится к электронной технике может быть использовано в источниках света, плазменных дисплеях и электронно-лучевых трубках. Способ изготовления заключается в том, что катод с автоэлектронной эмиссией изготавливают из по меньшей мере одного тела, содержащего первое вещество. Операции способа включают в себя подготовку неравномерностей испускающей поверхности тела, добавление ионов второго вещества с низкой работой выхода в испускающую поверхность тела и модификацию испускающей поверхности посредством возбуждения автоэлектронной эмиссии при подаче переменного электрического поля. Технический результат заключается в том, что полученные таким образом катод и устройство обладают низкой работой выхода, большим сроком службы, не загрязняющим окружающую среду составом и низкой стоимостью. 3 с. и 17 з.п. ф-лы, 6 ил.

Подробнее
16-10-2019 дата публикации

КАТОДНО-СЕТОЧНЫЙ УЗЕЛ С МНОГОСЛОЙНОЙ СВЯЗАННОЙ С КАТОДОМ СЕТКОЙ

Номер: RU193175U1

Полезная модель относится к электронной технике, в частности к импульсным вакуумным электронным устройствам, в том числе к импульсным СВЧ приборам О-типа, в которых используются сеточные структуры для управления током с поверхности термоэмиссионного катода.Техническим результатом данной полезной модели является повышение надежности и долговечности катодно-сеточного узла с многослойной связанной с поверхностью катода управляющей сеткой.Это достигается тем, что конструкция катодно-сеточного узла с многослойной связанной с катодом сеткой, содержит эмитирующий электроны катод, теневую и управляющую сетки из проводящего материала, разделенные пленкой диэлектрика и размещенные на поверхности катода. Перемычки многослойной связанной сетки полностью покрыты защитной пленкой диэлектрика.

Подробнее
24-11-2022 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ МАТРИЦЫ АВТОЭМИССИОННЫХ ТРУБЧАТЫХ КАТОДОВ НА ОСНОВЕ ЛЕГИРОВАННЫХ НАНОКРИСТАЛЛИЧЕСКИХ АЛМАЗНЫХ ПЛЕНОК

Номер: RU2784410C1

Изобретение относится к технологии изготовления острийных автоэмиссионных катодов на основе нанокристаллических (НКА) алмазных пленок с высокими эмиссионными характеристиками, которые находят широкое применение в приборах вакуумной микроэлектроники. Техническим результатом является высокая степень точности воспроизведения геометрических характеристик при изготовлении острийных трубчатых автоэмиссионных катодов, обладающих высокими эмиссионными характеристиками, стабильностью тока при продолжительном ресурсе службы. В способе изготовления матрицы автоэмиссионных острийных катодов на основе НКА пленок каждый катод выполняют в форме тонкостенной трубки со стенками из легированной НКА пленки путем формирования на поверхности проводящей кремниевой подложки с помощью фотолитографии и плазмохимического травления вертикальных цилиндрических столбиков, затем засева полученной структуры частицами наноалмаза с размером менее 5 нм в ультразвуковой ванне и осаждения легированной проводящей НКА пленки ...

Подробнее
27-11-2000 дата публикации

МАТЕРИАЛ С НИЗКИМ ПОРОГОМ ПОЛЕВОЙ ЭМИССИИ ЭЛЕКТРОНОВ

Номер: RU2159972C1

Изобретение относится к области материалов электронной техники, а более конкретно к электродным материалам для полевой эмиссии. Материалы с низким порогом полевой эмиссии могут быть эффективно использованы в качестве катодов, например, плоских экранов дисплеев, люминесцентных ламп. Технический результат - разработка углеродного материала, обеспечивающего низкий порог электронной эмиссии в сочетании с высокой электропроводностью и однородностью эмиссионных свойств по поверхности, стабильностью во времени и возможностью изготовления из него деталей большого размера. Структура полученных углеродных материалов в зависимости от состава и структуры полуфабриката имеет аморфную и/или графитоподобную структуру. Углеродный материал имеет высокую открытую поверхность (35-70 об.%), причем 20-50 об.% составляют нанопоры размером 0,6-2,5 нм. Эти нанопоры сформированы в ходе химической реакции карбидов с хлором. 2 з.п.ф-лы.

Подробнее
27-09-1997 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ АНАЛИЗАТОРА КВАДРУПОЛЬНОГО ФИЛЬТРА МАСС

Номер: RU2091902C1

Использование. Способ изготовления анализатора квадрупольного фильтра масс предназначен для использования в области динамической масс-спектрометрии при создании квадрупольных фильтров масс. Целью изобретения является увеличение разрешающей способности и чувствительности анализатора квадрупольного фильтра масс, увеличение механической прочности и вибропрочности, упрощение и удешевление производства. Сущность изобретения: изготавливается с высокой точностью металлическая форма, внешние поверхности которой соответствуют внутренним поверхностям анализатора, закрепляют на форме изоляторы, наносят на форму, например, путем электрического осаждения, промежуточный слой металла толщиной 5-10 мкм с температурой плавания не более 400oC, например, индия, а затем наносят основной слой металла, например, путем электрического осаждения, толщиной не менее 0,1 мм для обеспечения требуемой прочности анализатора, удаляют металл в местах соединения различных электродов, после чего форму удаляют. 1 ил.

Подробнее
20-02-2000 дата публикации

ИМПУЛЬСНАЯ ТРУБКА

Номер: RU2145748C1

Изобретение относится к источникам электронного и рентгеновского излучений, которые могут применяться при исследованиях в области радиационных физики и химии, радиобиологии, а также в радиационных технологиях, например в химической промышленности, медицине и др. Техническим результатом при создании данного изобретения является получение однородного пятна излучения большой площади, повышение ресурса трубки и упрощение конструкции. Указанный технический результат достигается тем, что по сравнению с известной импульсной трубкой, содержащей вакуумированный корпус, анод и закрепленный на изоляторе взрывоэмиссионный катод с электронными эмиттерами на токопроводящей основе, новым является то, что электронные эмиттеры выполнены в виде идентичных пластинчатых выступов путем их неполной вырубки и отгиба из материала основы. Электронные эмиттеры выполнены в виде пластинчатых выступов треугольной, полукруглой или трапециевидной формы. 1 з.п ф-лы, 4 ил.

Подробнее
18-04-2023 дата публикации

Способ изготовления катодного узла микротриода с трубчатым катодом из нанокристаллической алмазной пленки (варианты)

Номер: RU2794423C1

Изобретение относится к технологии изготовления элементов вакуумной микроэлектроники с автоэмиссионными катодами. Технический результат - повышение точности воспроизведения геометрических размеров катодного узла, стабильности тока и ресурса работы катодного узла при техническом вакууме. Способ заключается в формировании на подложке из проводящего кремния структуры в виде двухступенчатого колодца, последовательном осаждении на эту структуру двухслойной нанокристаллической алмазной (НКА) и алюминиевой пленок, удаление алюминия с внутренней поверхности колодца, анизотропное травление НКА пленки и кремния внутри колодцев и формирование трубчатого катода из осажденной НКА пленки и сеточного электрода из алюминиевой пленки. 2 н. и 10 з.п. ф-лы, 2 ил.

Подробнее
05-12-2023 дата публикации

СПОСОБ ПОВЫШЕНИЯ ПЛОТНОСТИ ПОЛЕВЫХ ТОКОВ И КРУТИЗНЫ АВТОЭМИССИОННЫХ ВАХ

Номер: RU2808770C1

Изобретение относится к области вакуумно-плазменной электроники, в частности к разработке и созданию радиационно-стойких приборов и устройств, работа которых основана на использовании полевых источников электронов. Технический результат - снижение порога автоэмиссии, повышение плотности токов и крутизны вольт-амперных характеристик полевых источников электронов. В способе повышения плотности тока и крутизны ВАХ полевых источников электронов на основе углеродных покрытий в качестве эмиттера электронов используют трехслойную углеродную гетероструктуру, в которой в одном вакуумном технологическом цикле на нижний обогащенный электронами слой последовательно осаждают обедненный электронами слой толщиной 4-6 нм и верхний обогащенный слой, аналогичный нижнему, толщиной 40-60 нм. 1 з.п. ф-лы, 1 ил.

Подробнее
20-03-1995 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ МНОГОПУЧКОВОЙ ЭЛЕКТРОННО-ОПТИЧЕСКОЙ СИСТЕМЫ

Номер: RU2031470C1

Сущность изобретения: при изготовлении отверстий в модуляторе и управляющих электродах выполняют прорези электроэрозионным способом. Оси прорезей совпадают с центрами отверстий. 6 ил.

Подробнее
10-10-2016 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОДОВ ЭЛЕКТРОННЫХ ПРИБОРОВ

Номер: RU2599389C1

Изобретение относится к технологии получения материалов, поверхность которых обладает стабильными электрофизическими свойствами, в частности электродов газоразрядных и электровакуумных приборов (холодных катодов газоразрядных лазеров, контакт-деталей герконов, электродов масс-спектрометров и др.). Способ изготовления электродов электронных приборов включает в себя облучение их поверхности потоком ионов инертного газа, получаемым из плазмы газового разряда, при этом объем прибора наполняется неоном до давления (1,5-5,0)·10Па, к требуемому электроду подводится отрицательный потенциал и возбуждается аномальный тлеющий разряд между данным электродом и каким-либо другим конструкционным элементом прибора, при этом обработку поверхности электрода прекращают после стабилизации напряжения поддержания разряда. Технический результат - упрощение технологии обработки электродов. 2 ил.

Подробнее
29-03-2023 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОРАЗРЯДНОЙ КАМЕРЫ ДЛЯ ГАЗОРАЗРЯДНОГО ГЕНЕРАТОРА ВЫСОКОЧАСТОТНЫХ ИМПУЛЬСОВ С ЗАДАННОЙ НЕСУЩЕЙ ЧАСТОТОЙ ГЕНЕРАЦИИ

Номер: RU2793096C1

Изобретение относится к радиочастотной технике и может быть использовано при разработке и создании мощных импульсных генераторов высокочастотного (ВЧ) диапазона. Технический результат - повышение точности обеспечения заданного значения несущей частоты генерации газоразрядного ВЧ-генератора на базе газоразрядной камеры без проведения большого количества экспериментов. Способ изготовления газоразрядной камеры для газоразрядного генератора высокочастотных импульсов с заданной несущей частотой генерации, при котором изготавливают газоразрядную камеру, предназначенную для инициации сильноточных газовых разрядов с полым катодом при низком давлении, причем в катоде камеры предусмотрена полость, открытая в сторону анода, геометрические параметры полости выбраны произвольным образом и приняты за эталон; монтируют генератор высокочастотных импульсов на базе газоразрядной камеры, содержащей катод с эталонной полостью, и экспериментально измеряют несущую частоту генерации импульсов данного генератора ...

Подробнее
10-02-2013 дата публикации

СПОСОБ ПОВЫШЕНИЯ ДЕГРАДАЦИОННОЙ СТОЙКОСТИ СИЛЬНОТОЧНЫХ МНОГООСТРИЙНЫХ АВТОЭМИССИОННЫХ КАТОДОВ

Номер: RU2474909C1

Изобретение относится к области электронной техники и может быть использовано при изготовлении изделий светоиндикаторной техники и эмиссионной электроники на основе автоэлектронной эмиссии многоострийных углеродных структур. Синтез материала многоострийного автоэмиссионного катода осуществляют в плазме микроволнового газового разряда из паров углеродосодержащих веществ, например, этанола в диапазоне параметров процесса, в котором реализуется переход от осаждения графитовых к осаждению алмазных пленок. Образующийся композиционный материал представляет собой графитовую матрицу с включениями наноалмазных кристаллитов. Матрица многоострийного автоэмиссионного катода изготавливается по технологии, совместимой с технологией производства интегральных схем. Технический результат - повышение механической и электрической прочности, плотности автоэмиссионных токов и деградационной стойкости при работе с повышенными напряжениями. 2 ил.

Подробнее
20-08-2014 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ АВТОЭМИССИОННОГО КАТОДА

Номер: RU2526240C1

Изобретение относится к лазерной технике, а именно к способам лазерной обработки материалов при изготовлении автоэмиссионных катодов из стеклоуглерода, которые могут быть использованы в области приборостроения электронной техники, а именно в электровакуумных приборах с большой плотностью электронных потоков и микросекундным временем готовности. Для создания автоэмиссионного катода в качестве углеродного материала используют стеклоуглерод. Формирование эмиттеров на поверхности катода производят фрезеровкой сфокусированным лазерным излучением и последующей лазерной очисткой поверхности катодной структуры. Нанесение эмитирующей структуры на поверхности эмиттеров катода производят лазерной микрогравировкой с образованием поля микроострий пирамидальной формы с последующей вырезкой основания катода сфокусированным лазерным излучением и лазерной очисткой эмитирующих структур. Технический результат - повышение технических характеристик автоэмиссионного катода. 2 ил.

Подробнее
27-06-2002 дата публикации

ХОЛОДНОЭМИССИОННЫЙ КАТОД И ПЛОСКИЙ ДИСПЛЕЙ

Номер: RU2000118182A
Принадлежит:

... 1. Холодноэмиссионный пленочный катод, выполненный в виде диэлектрической подложки с расположенным на ней нанокристаллическим углеродосодержащим пленочным эмиттером, отличающийся тем, что эмиттер выполнен в виде монослоя зерен порошка тугоплавкого материала с размером зерен от 10-9 до 10-4 м, покрытых нанокристаллической углеродосодержащей пленкой. 2. Холодноэмиссионный катод по п. 1, отличающийся тем, что зерна порошка выполнены из материала из ряда кремний, алмаз, карбид кремния, молибден, вольфрам, тантал, титан и их сплавы. 3. Холодноэмиссионный катод по п. 1, отличающийся тем, что диэлектрическая подложка выполнена стеклянной. 4. Холодноэмиссионный катод по п. 1, отличающийся тем, что между подложкой и эмиттером расположен металлический слой. 5. Плоский дисплей, содержащий параллельно расположенные диэлектрические платы, в зазоре между которыми на одной размещена система параллельных холодноэмиссионных катодов, выполненных в виде параллельных шин с расположенным на них нанокристаллическими ...

Подробнее
10-10-2005 дата публикации

ПОЛЫЙ КАТОД СО ВСТРОЕННЫМ ГАЗОПОГЛОТИТЕЛЕМ ДЛЯ ГАЗОРАЗРЯДНЫМ ЛАМП, И СПОСОБЫ ЕГО РЕАЛИЗАЦИИ

Номер: RU2004117872A
Принадлежит:

... 1. Полый катод (20; 30; 40), сформированный с помощью цилиндрической полой части (12), закрытой на первом конце (13) и открытой на противоположном конце (14) и в которой и на внешней, и на внутренней частях цилиндрической поверхности присутствует слой газопоглощающего материала (21; 31; 41; 41'), отличающийся тем, что указанные части цилиндрической поверхности обращены к ламповой зоне, в которой происходит разряд, и тем, что указанный слой газопоглощающего материала сформирован осаждением методом катодного распыления. 2. Полый катод по п.1, отличающийся тем, что указанная цилиндрическая полая часть выполнена из металла. 3. Полый катод по п.2, отличающийся тем, что указанный металл выбран из группы металлов, состоящей из никеля, молибдена, тантала или ниобия. 4. Полый катод по п.1, отличающийся тем, что указанный слой газопоглощающего материала сформирован из металла, выбранного из группы, состоящей из титана, ванадия, иттрия, циркония, ниобия, гафния и тантала; или из сплава на основе циркония ...

Подробнее
20-08-2004 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОДНОЙ СИСТЕМЫ ГАЗОРАЗРЯДНОЙ ИНДИКАТОРНОЙ ПАНЕЛИ

Номер: RU2003103703A
Принадлежит:

Способ изготовления электродной системы газоразрядной индикаторной панели, заключающийся в нанесении на стеклоподложку электродов из материала, включающего серебро и легкоплавкое стекло, с последующим их отжигом, отличающийся тем, что электроды отжигают при температуре, составляющей 0,95-1,05 температуры деформации легкоплавкого стекла.

Подробнее
26-05-2023 дата публикации

Способ изготовления катодного узла микротриода с трубчатым катодом из нанокристаллической алмазной пленки (варианты)

Номер: RU2794423C9

Изобретение относится к технологии изготовления элементов вакуумной микроэлектроники с автоэмиссионными катодами. Технический результат - повышение точности воспроизведения геометрических размеров катодного узла, стабильности тока и ресурса работы катодного узла при техническом вакууме. Способ заключается в формировании на подложке из проводящего кремния структуры в виде двухступенчатого колодца, последовательном осаждении на эту структуру двухслойной нанокристаллической алмазной (НКА) и алюминиевой пленок, удаление алюминия с внутренней поверхности колодца, анизотропное травление НКА пленки и кремния внутри колодцев и формирование трубчатого катода из осажденной НКА пленки и сеточного электрода из алюминиевой пленки. 2 н. и 10 з.п. ф-лы, 2 ил.

Подробнее
07-06-2018 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ КАТОДНО-СЕТОЧНОГО УЗЛА С АВТОЭМИССИОННЫМ КАТОДОМ

Номер: RU2656879C1

Изобретение относится к электронной технике, в частности к способу изготовления катодно-сеточных узлов (КСУ) с автоэмиссионными катодами для вакуумных электронных приборов СВЧ-диапазона с микросекундным временем готовности. Технический результат - выравнивание токов во всех ячейках и повышение надежности работы КСУ. Способ изготовления катодно-сеточного узла вакуумного электронного прибора включает в себя изготовление многоострийного автоэмиссионного катода и вытягивающей сетки с отверстиями для каждого острия, совмещение остриев с отверстиями в сетке диаметрами D и ее закрепление. При этом на катодных дисках формируют заготовки для острийных катодов в форме цилиндрических выступов диаметрами d Подробнее

29-08-2018 дата публикации

Способ обработки электродов изолирующих промежутков высоковольтных электровакуумных приборов

Номер: RU2665315C1

Изобретение относится к технике высоких напряжений, в частности к технике электрической изоляции в вакууме, и может использоваться в высоковольтных энергоустановках и электровакуумных приборах для повышения эксплуатационных характеристик. Способ обработки электродов заключается в том, что рабочие поверхности электродов изолирующих промежутков оплавляют концентрированными потоками плазмы с последующим осаждением на поверхность электродов кремний-углеродной пленки с низкой шероховатостью поверхности и низкой эмиссионной активностью толщиной 2,5-3 мкм в плазме несамостоятельного дугового разряда с накаленным катодом с использованием кремнийорганического прекурсора - ПФМС. Технический результат - повышение электрической прочности вакуумной изоляции электродных промежутков, достигаемое осаждением диэлектрической кремний-углеродной пленки. 3 з.п. ф-лы, 2 ил., 1 табл.

Подробнее
27-06-1996 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ МИКРОКАНАЛЬНОЙ ПЛАСТИНЫ С ИСКРИВЛЕННЫМИ КАНАЛАМИ

Номер: RU94028395A
Принадлежит:

Способ относится к оптоэлектронной технике, стекольной технологии и используется для изготовления микроканальных пластин, применяемых для создания электронно-оптических преобразователей и электронно-лучевых трубок. Для изготовления микроканальной пластины из термопластичного материала вытягивают канальное волокно, спекают его в блок с параллельными каналами, из которого механической обработкой изготавливают заготовку в виде пластины, имеющей форму призмы или прямого цилиндра с острыми углами между осью каналов и высотой, не превышающей 17°, закрепляют в форме, которая охватывает заготовку по части боковой поверхности, повторно нагревают заготовку и осуществляют искривление каналов, создавая в заготовке силу инерции, действующую на массу заготовки в термопластичном состоянии в направлении, перпендикулярном ее высоте.

Подробнее
27-03-1996 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ ДИЭЛЕКТРИЧЕСКИХ ДЕТАЛЕЙ

Номер: SU647984A1
Принадлежит:

СПОСОБ ИЗГОТОВЛЕНИЯ ДИЭЛЕКТРИЧЕСКИХ ДЕТАЛЕЙ преимущественно для вакуумных интегральных схем, включающий селективное электрохимическое оксидирование алюминиевой заготовки, химическое травление неокисленных участков, нагревание в окислительной атмосфере, отличающийся тем, что, с целью улучшения диэлектрических свойств деталей за счет уменьшения их пористости, после нагревания в окислительной атмосфере диэлектрические детали обрабатывают жидким тетраэтоксисиланом, нагревают до 750 - 800oС и выдерживают 10 - 15 мин, после чего упомянутые операции повторяют многократно.

Подробнее
27-03-1996 дата публикации

СПОСОБ АНОДИРОВАНИЯ АЛЮМИНИЕВЫХ ПЛАСТИН И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Номер: SU1115503A1
Автор: Игнашев Е.П.
Принадлежит:

... 1. Способ анодирования алюминиевых пластин, включающий электрохимическое окисление алюминиевых пластин в электролите при проведении процесса в импульсном режиме, отличающийся тем, что, с целью улучшения качества оксидной пленки, процесс проводят, сообщая пластинам непрерывное движение с выходом из электролита при частоте периодов 20 - 100 в минуту. 2. Устройство для анодирования алюминиевых пластин, содержащее ванну с системой циркуляции электролита, катод, пластинодержатель и источник постоянного тока, отличающееся тем, что, с целью улучшения качества оксидной пленки, оно снабжено приводом вращения пластинодержателя, выполненным в виде ступицы со спицами, по торцам которых выполнены прорези для крепления пластин, ось ступицы параллельна зеркалу ванны.

Подробнее
10-11-1995 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ АВТОЭЛЕКТРОННОГО КАТОДА ЭЛЕКТРОВАКУУМНОГО ПРИБОРА

Номер: SU1708093A1
Принадлежит:

Изобретение относится к электронной технике, а конкретно к способам изготовления автоэлектронного катода, содержащего систему эмиттеров на металлическом основании, покрытом слоем соединений щелочно-земельных металлов. Цель изобретения увеличение эмиссионной способности и долговечности катода. Цель обеспечивается проведением особой импульсной высоковольтной тренировки, а именно импульсами напряжения, амплитуда которых достаточно для пробоя межэлектродного промежутка, но при напряженности электрического поля у поверхности автоэмиттеров не более 1·106 В/см при энергии пробоя в импульсе 0,02 0,03 Дж. Увеличение тока, отбираемого с катода, и его долговечности достигается в результате того, что при пробоях частично распыляется слой соединений ЩЗМ, находящийся на металлическом основании, и пленка этих соединений осаждается на рабочей поверхности эмиттеров. Применение предложенного способа позволило увеличить величину отбираемого тока в 2 3 раза а долговечность более чем на порядок по сравнению ...

Подробнее
23-12-2024 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ ОСТРИЙНО-ЛЕЗВИЙНОГО АВТОЭМИССИОННОГО КАТОДА

Номер: RU2832232C1

Изобретение относится к электронной технике, в частности к способу изготовления острийно-лезвийных автоэмиссионных катодов с вершиной в форме клина для электровакуумных приборов. Технический результат - снижение временных затрат, упрощение технологии изготовления и увеличение тока автоэлектронной эмиссии с единичного острийно-лезвийного автоэмиссионного катода за счет увеличения площади эмитирующей поверхности. Один или множество острийно-лезвийных автоэмиссионных катодов с вершинами в форме клина вырезаны из заготовки тугоплавкого листового металла или фольги методом лазерной фрезеровки на одной лазерной установке без перестройки его режимов, а затем ориентированы вертикально относительно заготовки. Для уменьшения влияния упругих деформаций вдоль линии изгиба в процессе вертикальной ориентации автоэмиттеров посредине основания треугольных граней прорезаны сквозные щели длиной а≤2l/3, где: l - основание треугольной грани. Для электровакуумных приборов со сходящимся электронным потоком острийно-лезвийные ...

Подробнее
01-01-1944 дата публикации

Способ изготовления газовых стабилизаторов напряжения

Номер: SU63236A1
Автор: Киселев Б.А.
Принадлежит:

Подробнее
07-07-1991 дата публикации

Спирализационная головка для изготовления спиралей тел накала электрических ламп

Номер: SU1661874A1
Принадлежит:

Изобретение относится к электротехнике, в частности к устройствам для навивки спиралей электрических ламп. Целью изобретения является повышение эксплуатационной надежности спирализационной головки. Шпиндель 3 вместе с закрепленными на нем вторичной катушкой 19 индуктивности, контактным кольцом 12, шпулей 13 и изолирующими втулками 10 и 18 вращается со скоростью более 11 тысяч оборотов в минуту. При этом баллонирующая проволока 14 навивается на поступательно перемещающийся керн 16, сматываясь со шпули 13. Неподвижный баллоноограничитель 9 ограничивает размеры баллонирующей проволоки 14. При подаче переменного напряжения на выводы 5, 6 подвижной первичной индукционной катушки 7 во вторичной катушке 19 возникает электрический ток, который через контактное кольцо 12 и шпулю 13 поступает в баллонирующую проволоку 14 и через дюзу 15 и шпиндель 3 возвращается во вторичную индукционную катушку 19. Проволока 14 разогревается, что увеличивает ее пластичность и уменьшает возможность обрыва и расслоения ...

Подробнее
28-07-1972 дата публикации

Способ изготовления автоэлектронного катода

Номер: SU346766A1
Принадлежит:

Подробнее
25-09-1978 дата публикации

Способ изготовления автокатода

Номер: SU549039A1
Автор: БУНДЗА Б.П.
Принадлежит:

Подробнее
29-05-1973 дата публикации

Способ изготовления электронного прибора

Номер: SU385344A1
Принадлежит:

Подробнее
25-07-1973 дата публикации

Способ обеспыливания деталей из графита

Номер: SU391638A1
Автор: Бутырин Г.М.
Принадлежит:

Подробнее
15-05-1973 дата публикации

Способ изготовления автоэлектронного катода

Номер: SU381115A1
Принадлежит:

Подробнее
15-04-1985 дата публикации

Способ изготовления многоострийных катодов для вакуумных люминесцентных экранов

Номер: SU1150678A1
Принадлежит:

СПОСОБ ИЗГОТОВЛЕНИЯ МНОГООСТРИЙНЫХ КАТОДОВ ДЛЯ ВАКУУМНЫХЛЮМИНЕСЦЕНТНЫХ ЭКРАНОВ, включающий операции размещения в корпусе экрана острий-подложек катодов и расположенных против них анодов. . пропускания через зазор между электродами паров гексакарбонилов тугоплавких металлов и формирования на верщинах подложек многоострийных катодов в виде нитевидных кристаллов в униполярном разряде между анодом и катодом путем подачи на электроды постоянного напряжения, отличающийся тем, что, с целью снижения времени изготовления катодов многоячеечных экранов и разброса характеристик катодов от ячейки к ячейке, формирование многоострийных катодов осуществляют одновременно в группе ячеек экрана, содержащей несколько подгрупп, при этом подачу напряжения на подложки катодов каждой подгруппы осуществляют через индивидуальный токоограничивающий резистор. Катоды , - ...

Подробнее
23-05-1973 дата публикации

Способ изготовления металловолоконной пластины

Номер: SU383108A1
Автор: Жуков Г.В.
Принадлежит:

Подробнее
07-03-1981 дата публикации

Термокатод

Номер: SU811362A1
Принадлежит:

Подробнее
24-03-1977 дата публикации

VERFAHREN ZUR HERSTELLUNG EINES FLACHBILDSCHIRMS

Номер: DE0002641283A1
Принадлежит:

Подробнее
27-07-1953 дата публикации

Verfahren zur elektrophoretischen Bedeckung von Metallteilen

Номер: DE0000884387C
Принадлежит: LORENZ C AG, C. LORENZ AKTIENGESELLSCHAFT

Подробнее
24-08-1995 дата публикации

Feldemissionskathodeneinrichtung und Verfahren zu ihrer Herstellung

Номер: DE0004405768A1
Принадлежит:

The invention concerns a field-emission cathode made of an electrically conducting material and having the shape of a narrow rod or a knife edge to ensure a high magnification of the electric field strength. The field-emission cathode is characterized in that at least part of the electron-emitting zone of the cathode includes preferably cylindrical host molecules and/or compounds with other host molecules and/or cylindrical atom networks, optionally with end-caps with a diameter in the nanometer range.

Подробнее
05-06-2008 дата публикации

VERFAHREN UND VORRICHTUNG ZUR HERSTELLUNG VON KORPUSKULARSTRAHLSYSTEMEN

Номер: DE502004006903D1
Принадлежит: KOOPS HANS W P, KOOPS, HANS W. P.

Подробнее
18-07-2002 дата публикации

Technik zum Herstellen eines elektrostatischen Elements zum Steuern eines Strahls geladener Teilchen

Номер: DE0010155624A1
Принадлежит:

Es wird ein Verfahren zum Herstellen eines elektrostatischen Elements zum Steuern eines Strahls geladener Teilchen angegeben. Ein zylindrischer, nicht-leitender Körper (1) mit einer hindurchgehenden Bohrung (7) wird mit einem zylindrischen, leitenden Kern (11), der ebenfalls eine hindurchgehende Bohrung (13) aufweist und in die Bohrung (7) des Körpers (1) paßt, zusammengesetzt. Der Kern (11) wird innerhalb der Bohrung (7) des Körpers (1) befestigt, und dann werden sich in Längsrichtung erstreckende Schlitze (17) vollständig durch den Kern (11) geschnitten, um Polschuhe (19) zu erzeugen, die elektrisch voneinander isoliert sind.

Подробнее
20-01-1994 дата публикации

Mfg. field emission cathode for flat screen use - applying series of processes to form successive solid state layers and cathode tip

Номер: DE0004310604A1
Принадлежит:

A field emission cathode is formed in a series of operations that begins with the formation of a pyramid shaped hole in a substrate of silicon. Successive layers of a silicon oxidised isolating layer (13), a gate electrode layer (19), emitter layer (14) and a pyrex substrate (17) are added. The pyramid shaped emitter (18) is formed by removing the actual silicon substrate. The gate electrode layer is formed by coating with a photo resist material followed by etching. ADVANTAGE - Excellent reproducibility of form. Allows precision control of spacing between gates and emitters. Avoids additional thickening of cathode construction while achieving high productivity.

Подробнее
19-02-2015 дата публикации

Niederdruckentladungslampe mit Entladungsgefäß und Elektrode

Номер: DE102013215056A1
Принадлежит:

Die vorliegende Erfindung betrifft eine Niederdruckentladungslampe mit einer Molybdän-Elektrode.

Подробнее
23-03-2000 дата публикации

Aperture, e.g. for a scanning probe microscopy sensor element, particle sieve or liquid or gas dosing and-or injection matrix, is produced by etching through an oxide layer in a depression exposed by semiconductor wafer back face etching

Номер: DE0019926601A1
Принадлежит:

Aperture (10) production in a semiconductor material (12), by etching through an oxide layer (26) in a V-shaped depression (20) exposed by back face etching of a wafer. An aperture (10) is produced in a semiconductor material (12) by (a) etching the surface of a semiconductor wafer, e.g. a (100) silicon wafer, to form a depression (20) having a bottom especially of convex or concave corner or edge curvature; (b) oxidizing the semiconductor material (12) in the region of the depression to form an oxide layer (26) containing an inhomogeneity in the bottom region; (c) selectively back-etching the semiconductor material (12) at the wafer back face until the oxide layer is exposed; and (d) etching through the exposed oxide layer. An Independent claim is also included for an aperture (10) produced in a semiconductor material (12) by the above process.

Подробнее
15-05-1975 дата публикации

Номер: DE0002234679B2

Подробнее
13-11-1991 дата публикации

FIELD EMISSION AND PROCESS FOR MANUFACTURING SAME

Номер: GB0009120766D0
Автор:
Принадлежит:

Подробнее
28-10-1970 дата публикации

CATHODE

Номер: GB0001210007A
Принадлежит:

... 1,210,007. Making cathodes; spark erosion. MULLARD Ltd. 28 Aug., 1969 [5 July, 1968], No. 32165/68. Headings B3A and B3V. [Also in Division H1] The shaped loop 3, Fig. 1, of a cathode, on which is welded a single crystal 1 of lanthanum hexaboride, is formed from a coherent polycrystalline blank 9, Fig. 2, of lanthanum hexaboride by spark erosion. The blank 9 is placed on a first electrode 8 and a second electrode 10 of the same shape as the loop 3 and having sharp edges 11, 12 is placed over the blank, the space between the electrodes being filled with oil. With a voltage in the range 10- 100 V. across the electrodes spark machining occurs to cut the blank to the required shape. As an alternative to spark machining the blank may be cut with an oscillating saw.

Подробнее
18-06-2003 дата публикации

Knife-edge cold cathode field emitter

Номер: GB0002383187A
Принадлежит:

A method of forming a vertical edge field emission electron source with self-aligned gate electrodes. A substrate 1 is dry-etched to form a mesa 2. If the substrate is not an insulator, then an insulating layer 4 is deposited on the surface. The structure is then coated in a layer of conductive cathode material 5. An electrode break 6 is formed at the upper convex corners of the mesa by ion-beam etching, exploiting the enhancement of ion-beam erosion rates obtained in metals at oblique ion incidence. The remaining conductive layer on the mesa forms a horizontal gate electrode and a vertical cathode in a vacuum triode device. Electrical isolation is improved by removing the insulating material in the vicinity of the electrodes. Also described is ane electrode arrangement formed according to the invention, with an electrode gap extending in a meander layout (see figs 9 and 11).

Подробнее
05-01-2011 дата публикации

An electrode pair precursor

Номер: GB0002436246B

Подробнее
10-09-1986 дата публикации

MAGNETICALLY ENHANCED SPUTTER COATING SOURCE

Номер: GB0008618716D0
Автор:
Принадлежит:

Подробнее
05-01-2012 дата публикации

Plasma display panel

Номер: US20120001540A1
Принадлежит: Panasonic Corp

A plasma display panel includes a front plate and a rear plate disposed so as to face the front plate. A discharge space is formed between the front plate and the rear plate. The front plate includes display electrodes and a dielectric layer formed to coat the display electrodes. The dielectric layer includes hollow fine particles which are hollowed out inside.

Подробнее
15-03-2012 дата публикации

Large Scale Patterned Growth of Aligned One-Dimensional Nanostructures

Номер: US20120061348A1
Принадлежит: Georgia Tech Research Corp

A method of making nanostructures using a self-assembled monolayer of organic spheres is disclosed. The nanostructures include bowl-shaped structures and patterned elongated nanostructures. A bowl-shaped nanostructure with a nanorod grown from a conductive substrate through the bowl-shaped nanostructure may be configured as a field emitter or a vertical field effect transistor. A method of separating nanoparticles of a desired size employs an array of bowl-shaped structures.

Подробнее
31-05-2012 дата публикации

Elelctron emitter and electron emission element

Номер: US20120133266A1
Автор: Shou-Shan Fan, Yang Wei

The present disclosure provides an electron emitter. The electron emitter includes a carbon nanotube pipe. One end of the carbon nanotube pipe has a plurality of carbon nanotube peaks. The present disclosure also provides an electron emission element. The electron emission element comprises a conductive base and a carbon nanotube pipe. The carbon nanotube pipe includes a first end electrically connected with the conductive base and a second end opposite to the first end. The second end defines an opening and includes a plurality of tapered carbon nanotube bundles located around the opening.

Подробнее
31-05-2012 дата публикации

Method for making elelctron emitter

Номер: US20120135662A1
Автор: Shou-Shan Fan, Yang Wei

The present disclosure provides a method for making electron emitter includes the following steps. First, a linear support is provided. Second, at least one carbon nanotube film or at least one carbon nanotube wire is provided. Third, the at least one carbon nanotube film or wire is wrapped around the linear support. Fourth, the linear support is removed to obtain a carbon nanotube hollow cylinder. Fifth, the carbon nanotube hollow cylinder is fused.

Подробнее
28-06-2012 дата публикации

Composite carbon nanotube structure and method for fabricating the same

Номер: US20120164375A1

A method for fabricating composite carbon nanotube structure is presented. A carbon nanotube array is provided. A first carbon nanotube structure is drawn from the carbon nanotube array. The first carbon nanotube structure is located on the substrate. A second carbon nanotube structure is grown on a surface of the first carbon nanotube structure to form a composite carbon nanotube structure. A composite carbon nanotube structure is also presented.

Подробнее
30-08-2012 дата публикации

Low voltage electron source with self aligned gate apertures, fabrication method thereof, and x-ray generator using the electron source

Номер: US20120219118A1
Автор: Zhidan Li Tolt
Принадлежит: Individual

An x-ray generating device includes at least a nano-structure based field emission electron source having a self-aligned gate aperture incorporated on a substrate. The device further includes at least an anode target. Associated fabrication method is also described.

Подробнее
29-11-2012 дата публикации

Method for the fabrication of electron field emission devices including carbon nanotube field electron emisson devices

Номер: US20120301981A1
Принадлежит: Corp for National Research Initiatives

The present invention is directed to a method for the fabrication of electron field emitter devices, including carbon nanotube (CNT) field emission devices. The method of the present invention involves depositing one or more electrically conductive thin-film layers onto a electrically conductive substrate and performing lithography and etching on these thin film layers to pattern them into the desired shapes. The top-most layer may be of a material type that acts as a catalyst for the growth of single- or multiple-walled carbon nanotubes (CNTs). Subsequently, the substrate is etched to form a high-aspect ratio post or pillar structure onto which the previously patterned thin film layers are positioned. Carbon nanotubes may be grown on the catalyst material layer. The present invention also described methods by which the individual field emission devices may be singulated into individual die from a substrate.

Подробнее
27-12-2012 дата публикации

Plasma display panel

Номер: US20120326594A1
Принадлежит: Panasonic Corp

PDP includes front plate and rear plate. Front plate has protective layer. Rear plate has phosphor layers. Protective layer includes a first metal oxide and a second metal oxide. In X-ray diffraction analysis, a peak of a base layer lies between a first peak of the first metal oxide and a second peak of the second metal oxide. The first and second metal oxides are two selected from the group consisting of MgO, CaO, SrO, and BaO. An arithmetic average roughness “Ra” of the surface of a dielectric layer is not more than 50 nm.

Подробнее
31-01-2013 дата публикации

Method for making cathode slurry

Номер: US20130029557A1
Принадлежит: Individual

A method for making cathode slurry is provided and includes the following steps. First, a number of electron emitters, an inorganic binder, and an organic carrier are provided. Second, the electron emitters, the inorganic binder, and the organic carrier are mixed to obtain a mixture. Third, the mixture is mechanically pressed and sheared.

Подробнее
28-03-2013 дата публикации

METHOD FOR FORMING FRONT ELECTRODE OF PDP

Номер: US20130076225A1
Принадлежит: E. I. DU PONT DE NEMOURS AND COMPANY

A method is disclosed for forming a PDP front electrode by applying a particular type of photopolymerizable black paste, drying the black paste, and applying a particular type of photopolymerizable white paste on top of the dried black paste. 1. A method for forming a front electrode of PDP , comprising steps of:{'sub': b', 'b', 'b', 'b, 'sup': '2', 'applying, to a substrate, a black paste comprising a photopolymerizable monomer and first inorganic powder comprising glass powder, black pigment and optionally conductive metal powder, wherein S/Mis 18 or less when Srepresents the total surface area (m) of the first inorganic powder per 100 g of the black paste and Mrepresents the content (g) of the photopolymerizable monomer per 100 g of the black paste;'}drying the black paste;{'sub': w', 'w', 'w', 'w, 'sup': '2', 'applying a white paste comprising a photopolymerizable monomer and second inorganic powder comprising glass powder and conductive metal powder on top of the dried black paste, wherein S/Mis 4.5 or less when Srepresents the total surface area (m) of the second inorganic powder per 100 g of the white paste and Mrepresents the content (g) of the photopolymerizable monomer per 100 g of the white paste;'}drying the white paste;exposing and developing the dried black paste and the white paste; andsintering the developed black paste and white paste.2. The method for forming a front electrode of PDP of claim 1 , wherein the total surface area (S) of the first inorganic powder per 100 g of the black paste is 50 to 200 m.3. The method for forming a front electrode of PDP of claim 1 , wherein the total surface area (S) of the second inorganic powder per 100 g of the white paste is 4.5 to 60 m.4. The method for forming a front electrode of PDP of claim 1 , wherein the content (M) of the photopolymerizable monomer per 100 g of the black paste is 6 to 30 g.5. The method for forming a front electrode of PDP of claim 1 , wherein the content (M) of the photopolymerizable ...

Подробнее
09-05-2013 дата публикации

Particle sources and methods for manufacturing the same

Номер: US20130112138A1
Автор: Huarong LIU
Принадлежит: CETC 38 Research Institute

The present disclosure provides a method for manufacturing a particle source, comprising: placing a metal wire in vacuum, introducing active gas and catalyst gas, adjusting a temperature of the metal wire, and applying a positive high voltage V to the metal wire to dissociate the active gas at the surface of the metal wire, in order to generate at a peripheral surface of the head of the metal wire an etching zone in which field induced chemical etching (FICE) is performed; increasing by the FICE a surface electric field at the top of the metal wire head to be greater than the to evaporation field of the material for the metal wire, so that metal atoms at the wire apex are evaporated off; after the field evaporation is activated by the FICE, causing mutual adjustment between the FICE and the field evaporation, until the head of the metal wire has a shape of combination of a base and a tip on the base; and stopping the FICE and the field evaporation when the head of the metal wire takes a predetermine shape.

Подробнее
09-05-2013 дата публикации

Self assembly of field emission tips by capillary bridge formations

Номер: US20130115846A1
Принадлежит: Palo Alto Research Center Inc

A first side has a first surface on which is located a material, at least a portion of which is to be formed into at least one tip. A second side has a second surface which is heated. At least one of the first and second surfaces being moved so material located on the first surface comes into physical contact with the second surface. Then at least one of the first side and the second side are moved, wherein the physical contact between the material and the second surface is maintained, causing the material to stretch between the second surface and the first surface, generating at least one capillary bridge. Movement is continued until the physical contact between the material and the second surface is broken resulting in the formation of at least one sharp conductive tip.

Подробнее
16-05-2013 дата публикации

SUBSTRATE WITH CARBON NANOTUBES, AND METHOD TO TRANSFER CARBON NANOTUBES

Номер: US20130118682A1
Автор: Zeininger Heinrich
Принадлежит:

A substrate for field emitters uses carbon nanotubes (CNTs) on a conductive substrate, the CNTs being erected essentially perpendicular to the substrate and aligned. In a method to transfer a CNT forest from a first substrate to a second substrate, the second substrate is coated with adhesive and the peaks (tips) of the CNTs on the first substrate are embedded in the uncurred adhesive on the second substrate. After the adhesive cures, the CNTs are removed from the first substrate with the peaks anchored in the cured adhesive on the second substrate. 1. A method for transferring carbon nanotubes from a first substrate to a second substrate , comprising the steps of:growing carbon nanotubes on the first substrate with said carbon nanotubes aligned with each other and grown substantially perpendicularly to said first substrate, said carbon nanotubes on said first substrate each having a peak;coating a second substrate with an uncured adhesive layer; andtransferring the carbon nanotubes from said first substrate to said second substrate by submerging the peaks of the carbon nanotubes in the uncured adhesive layer on the second substrate and anchoring the carbon nanotubes at said peaks in said adhesive layer by curing the adhesive layer and, after curing of said adhesive layer, removing said carbon nanotubes from said first substrate with said carbon nanotubes remaining anchored in the cured adhesive layer on said second substrate.2. A method as claimed in comprising covering only said peaks of said carbon nanotubes with said uncured adhesive layer on said second substrate.3. A method as claimed in comprising submerging said peaks of said carbon nanotubes in said uncured adhesive layer with 30% to 70% of a length of each nanotube remaining outside of said uncured adhesive layer.4. A method as claimed in comprising employing an adhesive having a viscosity when uncured in a range between 500 and 100 mPas. The present application is a divisional of Ser. No. 13/075,401, ...

Подробнее
16-05-2013 дата публикации

FIELD EMITTING FLAT LIGHT SOURCE AND METHOD FOR MAKING THE SAME

Номер: US20130119856A1

A field emission flat light source and a manufacturing method thereof are provided. The field emission flat light source includes an anode (), a cathode (), a light guide plate () and a separation body (). The anode () and the light guide plate () are separated by the separation body (). The cathode () is provided in the contained space () formed by the anode (), the light guide plate () and the separation body (). The anode () includes an anode substrate (), a metal reflective layer () provided on the anode substrate () and a light emitting layer () provided on the metal reflective layer (). The cathode () includes a cathode substrate () and an electron emitter () provided on the surface of the cathode substrate (). The thermal conductivity of the field emission flat light source is improved. The field emission flat light source is applied to the field of the liquid crystal display or the illumination light. 1. A field emission flat light source , comprising: an anode , a cathode , a light-transmittable panel , and a isolater , the anode and the light-transmittable panel are in a flat plate shape , the anode is parallel to the cathode; wherein the anode and the light-transmittable panel is separated by the isolater; the anode , the light-transmittable panel , and the isolater cooperatively forms a vacuum confined space , the cathode is suspended in the vacuum confined space; the anode comprises an anode substrate , a metal reflective layer positioned on the anode substrate , and an emitting layer positioned on the metal reflective layer; the cathode comprises a plurality of cathode substrates which are separately disposed and electron emitter formed on surfaces thereof.2. The field emission flat light source according to claim 1 , wherein the cathode substrates are parallel metal wires or the cathode substrates form a network composed of metal wires.3. The field emission flat light source according to claim 1 , wherein the electron emitter has a structure type of ...

Подробнее
16-05-2013 дата публикации

Fabrication of super ion - electron source and nanoprobe by local electron bombardment

Номер: US20130122774A1
Автор: Moh'd Rezeq

Method of fabricating super nano ion-electron source including: placing an assembly of precursor tip and metal ring around the precursor tip below the apex in a FIM chamber; applying dc current from grounded source to the metal ring to heat the ring; gradually applying high voltage to the precursor tip; wherein the metal ring is exposed to a high electric field from the tip, generating Schottky field emission of electrons from the metal ring, the applied electrical field sufficient to cause electrons to be extracted from the metal ring and accelerated to the shank with energy sufficient to dislodge atoms from the shank; and monitoring the evolution of the tip apex due to movement of dislodged atoms from the shank to the apex while adjusting the electrical field, the current or temperature of the metal ring until the apex forms a sharp nanotip with an atomic scale apex.

Подробнее
30-05-2013 дата публикации

Conductive nanostructure, method for molding same, and method for manufacturing a field emitter using same

Номер: US20130134860A1
Автор: Wal Jun Kim, Yong Hyup Kim

The present invention relates to a conductive nanostructure, a method for molding the same, and a method for manufacturing a field emitter using the same. More particularly, the present invention relates to a field-emitting nanostructure comprising a conductive substrate, a conductive nanostructure arranged on the conductive substrate, and a conductive interfacial compound disposed in the interface between the conductive substrate and the conductive nanostructure, as well as to a method for molding the same, and a method for manufacturing a field emitter using the same.

Подробнее
06-06-2013 дата публикации

METHOD FOR MAKING FIELD EMISSION CATHODE DEVICE

Номер: US20130143465A1
Принадлежит:

A method for making a field emission cathode device is provided. A filler, a substrate, and a metal plate are provided. The metal plate has a first surface and a second surface opposite to the first surface, and defines at least one through hole extending through from the first surface to the second surface. At least one electron emitter is inserted into the at least one through hole. The first surface of the metal plate is attached to the substrate. At least a part of the at least one electron emitter is located between the first surface and the substrate. The at least one through hole is filled with the filler to firmly fix the at least one electron emitter. 1. A method for making a field emission cathode device , the method comprising:{'b': '10', 'step (S), providing a filler, a substrate, and a metal plate, wherein the metal plate has a first surface and a second surface opposite to the first surface, and defines at least one through hole extending through from the first surface to the second surface;'}{'b': '20', 'step (S), inserting at least one electron emitter into the at least one through hole;'}{'b': '30', 'step (S), attaching the first surface of the metal plate to the substrate, wherein at least a part of the at least one electron emitter is located between the first surface and the substrate; and'}{'b': '40', 'step (S), filling the at least one through hole with the filler to firmly fix the at least one electron emitter.'}220. The method of claim 1 , wherein the step (S) comprises:{'b': '21', 'step (S), providing a field emission wire supply device supplying a continuous field emission wire, the field emission wire supply device having a hollow needle and a tip, wherein the field emission wire extends through the hollow needle and out from the tip;'}{'b': '22', 'step (S), positioning the field emission wire into the at least one through hole, and severing the field emission wire to obtain at least one electron emitter.'}{'b': 23', '21', '22, 'step (S), ...

Подробнее
20-06-2013 дата публикации

CATHODE BODY, FLUORESCENT TUBE, AND METHOD OF MANUFACTURING A CATHODE BODY

Номер: US20130154469A1

Provided is a cathode body that comprises a cylindrical cup as a base member, a barrier layer provided on a surface of the cylindrical cup and containing SiC, and a film formed on a surface of the barrier layer and containing a boride of a rare earth element and that can prevent interdiffusion of a constituent element of the base member and the boride. 1. A cathode body by comprising:a base member;a barrier layer provided on a surface of the base member and containing SiC; anda film formed on a surface of the barrier layer and containing a boride of a rare earth element.2. The cathode body according to claim 1 , wherein:{'sub': 2', '3', '2', '2', '3, 'the base member is tungsten, molybdenum, silicon, or tungsten or molybdenum containing at least one selected from the group consisting of LaO, ThO, and YO.'}3. The cathode body according to claim 1 , wherein:{'sub': 4', '6', '6', '6', '6, 'the boride of the rare earth element contains at least one boride selected from the group consisting of LaB, LaB, YbB, GaB, and CeB.'}4. The cathode body according to claim 3 , wherein:{'sub': '6', 'the at least one boride of the rare earth element selected is LaB.'}5. The cathode body according to claim 4 , wherein:{'sub': 2', '3, 'the base member is tungsten or tungsten containing 4 to 6% LaOby volume ratio.'}6. A fluorescent tube using claim 1 , as a cathode claim 1 , the cathode body according to .7. A method of manufacturing a cathode body claim 1 , comprising:a step (a) of forming a barrier layer containing SiC on a surface of a base member; anda step (b) of forming a film containing a boride of a rare earth element on the barrier layer.8. The method of manufacturing a cathode body according to claim 7 , wherein:the step (a) is a step of forming the barrier layer on the surface of the base member by CVD or sputtering.9. The method of manufacturing a cathode body according to claim 7 , wherein:{'sub': '6', 'the step (b) is a step of forming the film of LaBon the barrier layer by ...

Подробнее
08-08-2013 дата публикации

Field emission cathode

Номер: US20130200776A1
Автор: Qiu-Hong Hu
Принадлежит: LIGHTLAB SWEDEN AB

The present invention relates to afield emission cathode, comprising an at least partly electrically conductive base structure, and a plurality of electrically conductive micrometer sized sections spatially distributed at the base structure, wherein at least a portion of the plurality of micrometer sized sections each are provided with a plurality of electrically conductive nanostructures. Advantages of the invention include lower power consumption as well as an increase in light output of e.g. a field emission lighting arrangement comprising the field emission cathode.

Подробнее
08-08-2013 дата публикации

METHOD FOR MAKING EMITTER HAVING CARBON NANOTUBES

Номер: US20130203314A1
Принадлежит:

A method for making an emitter is disclosed. A number of carbon nanotubes in parallel with each other are provided. The carbon nanotubes have a number of first ends and a number of second ends opposite to the number of first ends. The first ends are attached on a first electrode and the second ends are attached on a second electrode. The first electrode and the second electrode are spaced from each other. A voltage is supplied between the first electrode and the second electrode to break the carbon nanotubes. 1. A method for making an emitter , comprising:selecting one or more carbon nanotubes from a carbon nanotube array;fixing each end of the one or more carbon nanotubes on one of two electrodes, wherein the two electrodes are spaced from each other; andsupplying a voltage between the two electrodes to break the one or more carbon nanotubes.2. The method of claim 1 , wherein the selecting one or more carbon nanotubes from a carbon nanotube array comprises:contacting a metal thread with the carbon nanotube array; andpulling the metal thread away from the carbon nanotube array.3. The method of claim 2 , wherein a diameter of the metal thread is in a range from about 20 nanometers to about 100 nanometers.4. The method of claim 1 , wherein the supplying the voltage between the two electrodes comprises placing the two electrodes with the one or more carbon nanotubes attached into a reaction chamber.5. The method of claim 4 , wherein the reaction chamber is under a vacuum.6. The method of claim 4 , wherein the reaction chamber is filled with a noble gas selected from the group consisting of helium claim 4 , argon claim 4 , and neon.7. The method of claim 1 , wherein the voltage is in a range from about 7V to about 10V.8. A method for making an emitter claim 1 , comprising:providing a plurality of carbon nanotubes in parallel with each other, wherein the plurality of carbon nanotubes has a plurality of first ends and a plurality of second ends opposite to the plurality ...

Подробнее
15-08-2013 дата публикации

Functionalized Carbon Nanotube Sheets for Electrochemical Biosensors and Methods

Номер: US20130209807A1
Автор: Chatterjee Jhunu

Electrodes and methods for making electrodes including modified carbon nanotube sheets are provided. The carbon nanotube sheets can be modified with metal particles or at least one mediator titrant. The electrodes can be disposed on a glassy carbon electrode to modify the glassy carbon electrode. Methods are provided that include forming a suspension of carbon nanotubes and metal particles or at least one mediator titrant, and filtering the suspension to form a modified carbon nanotube sheet. 1. A method for making an electrode comprising:forming a suspension comprising carbon nanotubes at least one mediator titrant;filtering the suspension to obtain a modified carbon nanotube sheet; andarranging the modified carbon nanotube sheet on a glassy carbon electrode.2. The method of claim 1 , wherein the at least one mediator titrant comprises methylene blue claim 1 , thionine claim 1 , or PMS.3. The method of claim 1 , wherein the carbon nanotube sheets comprise SWNTs claim 1 , MWNTs claim 1 , carbon nanofibers claim 1 , or a combination thereof.4. The method of claim 1 , wherein the carbon nanotubes are acid-functionalized claim 1 , amino-functionalized claim 1 , acid-modified claim 1 , or a combination thereof.5. The method of claim 1 , wherein the carbon nanotubes comprise carboxyl groups.6. An electrode comprising a carbon nanotube sheet modified with at least one mediator titrant.7. The electrode of claim 6 , further comprising a glassy carbon electrode claim 6 , wherein the carbon nanotube sheet is disposed on the glassy carbon electrode.8. The electrode of claim 6 , wherein the at least one mediator titrant comprises methylene blue claim 6 , thionine claim 6 , or PMS.9. An electrode comprising a carbon nanotube sheet modified with metal particles.10. The electrode of claim 9 , wherein the metal particles are non-covalently bound to the carbon nanotube sheet.11. The electrode of claim 9 , wherein the metal particles comprise nanoparticles.12. The electrode of claim ...

Подробнее
22-08-2013 дата публикации

Carbon nanotube field emission devices and methods of making same

Номер: US20130214244A1
Принадлежит: Georgia Tech Research Corp

Devices and methods are described for a cathode having a plurality of apertures in an insulating layer, pits in a substrate layer, and emitters in the pit. The device can also have gate layer on top of the insulating layer which has an opening that is substantially aligned with the pit and the aperture. The emitter can be an array of substantially aligned carbon nanotubes. The device and method produces cathodes that are designed to avoid shorting of the cathode due to emitter-gate contact and other fabrication challenges.

Подробнее
29-08-2013 дата публикации

Atomic force microscope probe

Номер: US20130227749A1
Автор: Shou-Shan Fan, Yang Wei

An atomic force microscope probe includes a carbon nanotube micro-tip structure. The carbon nanotube micro-tip structure includes an insulating substrate and a patterned carbon nanotube film structure. The insulating substrate includes a surface. The surface includes an edge. The patterned carbon nanotube film structure is partially arranged on the surface of the insulating substrate. The patterned carbon nanotube film structure includes two strip-shaped arms joined together to form a tip portion protruding and suspending from the edge of the surface of the insulating substrate. The two strip-shaped arms include a number of carbon nanotubes parallel to the surface of the insulating substrate.

Подробнее
26-09-2013 дата публикации

METHOD FOR FABRICATING EMITTER

Номер: US20130248483A1
Принадлежит: HITACHI HIGH-TECH SCIENCE CORPORATION

A method for fabricating a sharpened needle-like emitter, the method including: electrolytically polishing an end portion of an electrically conductive emitter material so as to be tapered toward a tip portion thereof; performing a first etching in which the electrolytically polished part of the emitter material is irradiated with a charged-particle beam to form a pyramid-like sharpened part having a vertex including the tip portion; performing a second etching in which the tip portion is further sharpened through field-assisted gas etching, while observing a crystal structure at the tip portion by a field ion microscope and keeping the number of atoms at a leading edge of the tip portion at a predetermined number or less; and heating the emitter material to arrange the atoms at the leading edge of the tip portion of the sharpened part in a pyramid shape. 1. A method for fabricating a sharpened needle-like emitter , the method comprising:electrolytically polishing an end portion of an electrically conductive emitter material so as to be tapered toward a tip portion thereof;performing a first etching in which the electrolytically polished part of the emitter material is irradiated with a charged-particle beam to form a pyramid-like sharpened part having a vertex including the tip portion;performing a second etching in which the tip portion of the sharpened part is further sharpened through field-assisted gas etching, while observing a crystal structure at the tip portion of the sharpened part by a field ion microscope and keeping the number of atoms at a leading edge of the tip portion of the sharpened part at a predetermined number or less; andheating the emitter material to arrange the atoms at the leading edge of the tip portion of the sharpened part in a pyramid shape.2. The method for fabricating an emitter according to claim 1 ,wherein in the first etching, etching is performed such that a vertex angle of the sharpened part becomes 10° or less through ...

Подробнее
26-09-2013 дата публикации

SEMICONDUCTOR PHOTOCATHODE AND METHOD FOR MANUFACTURING THE SAME

Номер: US20130248815A1
Принадлежит:

A semiconductor photocathode includes an AlGaN layer (0≦X<1) bonded to a glass substrate via an SiOlayer and an alkali-metal-containing layer formed on the AlGaN layer. The AlGaN layer includes a first region, a second region, an intermediate region between the first and second regions. The second region has a semiconductor superlattice structure formed by laminating a barrier layer and a well layer alternately, the intermediate region has a semiconductor superlattice structure formed by laminating a barrier layer and a well layer alternately. When a pair of adjacent barrier and well layers is defined as a unit section, an average value of a composition ratio X of Al in a unit section decreases monotonously with distance from an interface position between the second region and the SiOlayer at least in the intermediate region. 1. A semiconductor photocathode comprising:{'sub': X', '1-X', '2, 'an AlGaN layer (0≦X<1) attached to a glass substrate via an SiOlayer; and'}{'sub': X', '1-X, 'an alkali metal-containing layer formed on the AlGaN layer,'}{'sub': X', '1-X, 'claim-text': a first region adjacent to the alkali metal-containing layer;', {'sub': '2', 'a second region adjacent to the SiOlayer; and'}, 'an intermediate region located between the first region and the second region,, 'wherein the AlGaN layer includes{'sub': X', '1-X', '2', 'MIN(M)', 'MIN(2), 'wherein when a composition ratio is X=g(x), where x represents a location of the AlGaN layer in a direction of thickness from the second region to the alkali metal-containing layer and a location of interface between the second region and the SiOlayer is furnished as an origin point of the position x, and when Xrepresents a minimum value for the composition ratio X in the intermediate region and Xrepresents a minimum value for the composition ratio X in the second region,'}{'sub': 'MIN(M)', 'in the first region, 0≦g(x)≦Xis satisfied,'}{'sub': 'MIN(2)', 'in the intermediate region, g(x) is a monotone decreasing ...

Подробнее
26-09-2013 дата публикации

Field emission display and fabrication method thereof

Номер: US20130249382A1
Автор: Choonrae Lee, Hakwoong Kim
Принадлежит: SN Display Co Ltd

A field emission display (FED) and a fabrication method thereof are disclosed. A lower plate of the FED includes: a cathode electrode formed on the substrate; a diffusion blocking layer formed on the cathode electrode; a seed metal layer formed on the diffusion blocking layer; carbon nano-tubes (CNTs) grown as single crystals from the grains of the seed metal layer; a gate insulating layer formed on the substrate on which the cathode electrode, the diffusion blocking layer, and the seed metal layer are formed, in order to cover the CNTs; and a gate electrode formed on the gate insulating layer.

Подробнее
26-09-2013 дата публикации

ELECTRON EMISSION ELEMENT, ELECTRON EMISSION DEVICE, CHARGE DEVICE, IMAGE FORMING DEVICE, ELECTRON RADIATION CURING DEVICE, LIGHT-EMITTING DEVICE, IMAGE DISPLAY DEVICE, BLOWER DEVICE, COOLING DEVICE, AND MANUFACTURING METHOD FOR ELECTRON EMISSION ELEMENT

Номер: US20130249386A1
Принадлежит: SHARP KABUSHIKI KAISHA

An electron emission element () includes an electrode substrate () and a thin film electrode (), and emits electrons from the thin film electrode () by voltage application across the electrode substrate () and the thin film electrode (). An electron accelerating layer () containing at least insulating fine particles () is provided between the electrode substrate () and the thin film electrode (). The electrode substrate () has a convexoconcave surface. The thin film electrode () has openings () above convex parts of the electrode substrate (). 1. An electron emission element , comprising:an electrode substrate;a thin film electrode; andan electron accelerating layer between the electrode substrate and the thin film electrode, the electron accelerating layer containing at least insulating fine particles,the electron emission element emitting, from the thin film electrode, electrons which are accelerated between the electrode substrate and the thin film electrode by voltage application across the electrode substrate and the thin film electrode,the electrode substrate having a convexoconcave surface on which the electron accelerating layer is provided, andthe thin film electrode having openings above convex parts of the convexoconcave surface of the electrode substrate.2. The electron emission element as set forth in claim 1 , wherein the insulating fine particles are (i) monodisperse insulating fine particles and (ii) aligned in the electron accelerating layer so as to fill the electron accelerating layer.3. The electron emission element as set forth in claim 1 , wherein the insulating fine particles contain at least one of silicon oxide claim 1 , aluminum oxide claim 1 , and titanium oxide.4. The electron emission element as set forth in claim 1 , wherein the insulating fine particles have an average diameter of 5 nm through 1000 nm.5. The electron emission element as set forth in claim 1 , wherein the electron accelerating layer has a thickness of 8 nm through 3000 ...

Подробнее
03-10-2013 дата публикации

ELECTRON EMITTING ELEMENT, ELECTRON EMITTING DEVICE, LIGHT EMITTING DEVICE, IMAGE DISPLAY DEVICE, AIR BLOWING DEVICE, COOLING DEVICE, CHARGING DEVICE, IMAGE FORMING APPARATUS, ELECTRON-BEAM CURING DEVICE, AND METHOD FOR PRODUCING ELECTRON EMITTING ELEMENT

Номер: US20130257263A1
Принадлежит: SHARP KABUSHIKI KAISHI

An electron emitting element of the present invention includes an electron acceleration layer between an electrode substrate and a thin-film electrode. The electron acceleration layer includes a binder component in which insulating fine particles and conductive fine particles are dispersed. Therefore, the electron emitting element of the present invention is capable of preventing degradation of the electron acceleration layer and can efficiently and steadily emit electrons not only in vacuum but also under the atmospheric pressure. Further, the electron emitting element of the present invention can be formed so as to have an improved mechanical strength. 1. (canceled)2. (canceled)3. (canceled)4. (canceled)5. (canceled)6. (canceled)7. (canceled)8. (canceled)9. (canceled)10. (canceled)11. (canceled)12. (canceled)13. (canceled)14. (canceled)15. (canceled)16. (canceled)17. (canceled)18. (canceled)19. (canceled)20. (canceled)21. (canceled)22. A method for producing an electron emitting element that includes:an electrode substrate;a thin-film electrode; andan electron acceleration layer sandwiched between the electrode substrate and the thin-film electrode,the electron emitting element (i) accelerating electrons in the electron acceleration layer at a time when a voltage is applied between the electrode substrate and the thin-film electrode and (ii) emitting the electrons from the thin-film electrode,the method comprising the steps of:preparing a dispersion solution in which an insulating material is dispersed in a binder component;preparing a mixture solution in which conductive fine particles are dispersed in the dispersion solution; andforming the electron acceleration layer by applying the mixture solution on the electrode substrate.23. A method for producing an electron emitting element that includes:an electrode substrate;a thin-film electrode; andan electron acceleration layer sandwiched between the electrode substrate and the thin-film electrode,the electron ...

Подробнее
03-10-2013 дата публикации

ANODE DISK ELEMENT WITH REFRACTORY INTERLAYER AND VPS FOCAL TRACK

Номер: US20130259205A1
Принадлежит: KONINKLIJKE PHILIPS ELECTRONICS N.V.

An anode () is formed by building a carbon, such as a carbon reinforced carbon composite, or other ceramic substrate (). A ductile, refractory metal is electroplated on the ceramic substrate to form a refractory metal carbide layer () and a ductile refractory metal layer (), at least on a focal track portion (). A high-Z refractory metal is vacuum plasma sprayed on the ductile refractory metal layer to forma vacuum plasma sprayed high-Z refractory metal layer (), at least on the focal track portion. 130. An anode () including:{'b': '50', 'a carbon or ceramic substrate ();'}{'b': 52', '36, 'an electrolytically plated refractory metal carbide layer () coating at least a focal track portion () of the substrate;'}{'b': 54', '52, 'an electrolytically plated ductile refractory metal layer () coating the carbide layer () at least on the focal track portion; and'}{'b': 56', '54, 'a vacuum plasma sprayed high-Z refractory metal layer () coating the ductile refractory metal layer () at least on the focal track portion.'}2. (canceled)3. The anode according to claim 1 , wherein the vacuum plasma sprayed high-Z refractory layer is a tungsten-rhenium alloy.45452. The anode according to claim 1 , wherein the ductile refractory metal layer () includes niobium and the carbide layer () includes a niobium carbide.514. An x-ray tube () comprising:{'b': '40', 'a vacuum envelope ();'}{'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, 'the anode according to ;'}{'b': '32', 'a motor () for rotating the anode; and'}{'b': '34', 'a cathode ().'}6. An imaging apparatus comprising:{'b': '12', 'a gantry ();'}{'b': '14', 'claim-ref': {'@idref': 'CLM-00005', 'claim 5'}, 'the x-ray tube () according to mounted to the gantry; and'}{'b': 16', '20', '14, 'a radiation detector () mounted to the gantry and disposed across an examination region () from the x-ray tube ().'}710. The diagnostic imaging device () according to claim 6 , further including:{'b': '16', 'a processor connected with the detector () ...

Подробнее
03-10-2013 дата публикации

Method for making incandescent light source and incandescent light source display

Номер: US20130260633A1
Автор: Shou-Shan Fan, Yang Wei
Принадлежит: Individual

A method for making an incandescent light source display is disclosed. Electrode pairs connected to the driving circuit are formed on a substrate. The electrode pairs are spaced from each other and located on pixel locations. Each electrode pair includes a first electrode and a second electrode. The electrode pairs are covered with a drawn carbon nanotube film. The drawn carbon nanotube film suspends between the first electrode and the second electrode and has the plurality of carbon nanotubes substantially aligned an X direction from the first electrode to the second electrode in each electrode pair. The drawn carbon nanotube film is then cut along the X direction to form at least one carbon nanotube strip in each pixel location. The drawn carbon nanotube film between any adjacent two pixel locations are broken off. The carbon nanotube strip is shrunk into a carbon nanotube wire.

Подробнее
03-10-2013 дата публикации

METHOD FOR MAKING CARBON NANOTUBE FIELD EMITTER

Номер: US20130260634A1
Автор: FAN SHOU-SHAN, Liu Peng
Принадлежит:

The present application relates to a method for making a carbon nanotube field emitter. A carbon nanotube film is drawn from the carbon nanotube array by a drawing tool. The carbon nanotube film includes a triangle region. A portion of the carbon nanotube film closed to the drawing tool is treated into a carbon nanotube wire including a vertex of the triangle region. The triangle region is cut from the carbon nanotube film by a laser beam along a cutting line. A distance between the vertex of the triangle region and the cutting line can be in a range from about 10 microns to about 5 millimeters. 1. A method for making a carbon nanotube field emitter , comprising steps of:{'b': '1', '(S) providing a carbon nanotube array located on a substrate;'}{'b': '2', '(S) drawing a carbon nanotube film from the carbon nanotube array by a drawing tool, wherein the carbon nanotube film comprises a triangle region;'}{'b': '3', '(S) forming a carbon nanotube wire of a portion of the carbon nanotube film, wherein the carbon nanotube wire comprises a vertex of the triangle region;'}{'b': '4', '(S) cutting along the triangle region from the carbon nanotube film with a laser beam along a cutting line, and a distance between the vertex of the triangle region and the cutting line is in a range from about 10 microns to about 5 millimeters.'}2. The method of claim 1 , wherein the drawing tool is a clamp or an adhesive tape.33. The method of claim 1 , wherein in the step (S) claim 1 , forming the carbon nanotube wire comprises treating the portion of the carbon nanotube film with an organic solvent.4. The method of claim 3 , wherein the organic solvent comprise a material that is selected from the group consisting of ethanol claim 3 , methanol claim 3 , acetone claim 3 , dichloroethane claim 3 , chloroform claim 3 , or a mixture thereof.53. The method of claim 1 , wherein in the step (S) claim 1 , forming the carbon nanotube wire comprises twisting the portion of the carbon nanotube film.63 ...

Подробнее
10-10-2013 дата публикации

COLD FIELD EMISSION CATHODE USING CARBON NANOTUBES

Номер: US20130264936A1
Принадлежит: INDIAN INSTITUTE OF SCIENCE BANGALORE

Devices for use in cold-field emission and methods of forming the device are generally presented. In one example, a method may include providing a conductive base, dispersing carbon-filled acrylic onto the conductive base to form a conductive film, coupling a copper plate to a first side of the conductive film, and irradiating the conductive film. The method may further include dispersing carbon nanotubes (CNTs) on a second side of the conductive film to form a substantially uniform layer of CNTs, removing excess CNTs from the second side, and curing the conductive film. In one example, a device may include a polycarbonate base, a layer of carbon-filled acrylic on one side of the polycarbonate base and a layer of irradiated carbon-filled acrylic on the other, a copper plate coupled to the carbon-filled acrylic, and a substantially uniform layer of randomly aligned CNTs dispersed on the irradiated carbon-filled acrylic. 1. A method of forming a cold field emission cathode , comprising:providing a conductive base;dispersing carbon-filled acrylic onto a portion of a first side and a portion of a second side of the conductive base to form a first side and a second side of a conductive film;coupling a copper plate to the first side of the conductive film;irradiating at least a portion of the second side of the conductive film;dispersing a plurality of carbon nanotubes (CNTs) onto a portion of the second side of the conductive film to form a substantially uniform layer of CNTs;removing excess CNTs from the portion of the second side of the conductive film; andcuring the conductive film.2. The method of claim 1 , wherein the conductive base comprises a polymeric carbon film.3. The method of claim 1 , wherein the copper plate comprises an ultrapure copper plate.4. The method of claim 1 , wherein irradiating the second side of the conductive film comprises irradiating the second side of the conductive film with infrared light.5. The method of claim 1 , wherein irradiating ...

Подробнее
24-10-2013 дата публикации

Carbon nanotube field emission device with overhanging gate

Номер: US20130280830A1

A carbon nanotube field emission device with overhanging gate fabricated by a double silicon-on-insulator process. Other embodiments are described and claimed.

Подробнее
07-11-2013 дата публикации

Electron emission source, electric device using the same, and method of manufacturing the electron emission source

Номер: US20130295815A1

Provided are an electron emission source, a display apparatus using the same, an electronic device, and a method of manufacturing the display apparatus. The electron emission source includes a substrate, a cathode separately manufactured from the substrate, and a needle-shaped electron emission material layer, e.g., carbon nanotube (CNT) layer, fixed to the cathode by an adhesive layer. The CNT layer is formed by a suspension filtering method, and electron emission density is increased by a subsequent taping process on the electron emission material layer.

Подробнее
21-11-2013 дата публикации

ELECTRODE OF ELECTROSTATIC LENS AND METHOD OF MANUFACTURING THE SAME

Номер: US20130306878A1
Автор: Yamada Shuji
Принадлежит: CANON KABUSHIKI KAISHA

An electrode to be used for an electrostatic lens, wherein the electrode at least includes: a first substrate having a first through-hole and a second substrate having a second through-hole; the first substrate having a thickness smaller than the second substrate; the first through-hole having a diameter smaller than the second through-hole; the second substrate having a specific resistance smaller than the first substrate, wherein the first substrate and the second substrate are superimposed so that the first through-hole and the second through-hole are aligned relative to each other. Notching taking place near any of the through-holes in a dry etching process can be reduced, and thus, the through-holes can be formed accurately. 1. An electrode to be used for an electrostatic lens , the electrode at least comprising:a first substrate having a first through-hole and a second substrate having a second through-hole;the first substrate having a thickness smaller than the second substrate;the first through-hole having a diameter smaller than the second through-hole;the second substrate having a specific resistance smaller than the first substrate,wherein the first substrate and the second substrate are superimposed so that the first through-hole and the second through-hole are aligned relative to each other.2. The electrode according to claim 1 , whereinthe second through-hole is formed by way of:a step of forming a hole in an original substrate to be processed into the second substrate from the side of the first surface of the original substrate, the hole being not a through-hole getting to the second surface opposite to the first surface;a step of filling the hole with an infill by means of electroplating;a step of thinning the original substrate filled with the infill from the side of the second surface thereof; anda step of removing the infill from the thinned original substrate.3. The electrode according to claim 2 , wherein the first substrate is laid on the side ...

Подробнее
28-11-2013 дата публикации

CARBON NANOTUBE FIELD EMISSION DEVICE WITH HEIGHT VARIATION CONTROL

Номер: US20130313963A1
Автор: Mao Dongsheng, YANIV ZVI
Принадлежит: SAMSUNG ELECTRONICS CO., LTD.

A carbon nanotube layer for a field emission cathode where individual carbon nanotubes or small groups of carbon nanotubes that stick out from the surface more than the rest of the layer are avoided. Electron fields will concentrate on these sharp points, creating an enhanced image on the phosphor, resulting in a more luminous spot than the surroundings. Activation processes further free such carbon nanotubes or groups of carbon nanotubes sticking out from the surface, exasperating the problem. 1. A carbon nanotube (CNT) cathode comprising CNTs with a variation of lengths less than 20% for 90% of a total quantity of the CNTs.2. The cathode of claim 1 , wherein a flatness variation of a CNT coating using the CNTs is less than 20% before or after an activation step.3. The cathode of claim 1 , wherein the carbon nanotubes are selected from the group of single-wall carbon nanotubes claim 1 , double-wall carbon nanotubes claim 1 , multi-wall carbon nanotubes claim 1 , buckytubes claim 1 , carbon fibrils claim 1 , chemically-modified carbon nanotubes claim 1 , derivatized carbon nanotubes claim 1 , metallic carbon nanotubes claim 1 , semiconducting carbon nanotubes claim 1 , metallized carbon nanotubes claim 1 , and combinations thereof.4. The cathode of claim 1 , wherein the carbon nanotubes are mixed with particles selected from the group consisting of spherical particles claim 1 , dish-shaped particles claim 1 , lamellar particles claim 1 , rod-like particles claim 1 , metal particles claim 1 , semiconductor particles claim 1 , polymeric particles claim 1 , ceramic particles claim 1 , dielectric particles claim 1 , clay particles claim 1 , fibers claim 1 , nanoparticles claim 1 , and combinations thereof.5. The cathode of claim 1 , wherein the average length of CNTs is less than 5 microns.6. The cathode of claim 5 , wherein a layer of cathode material comprising the CNTs has a thickness which ranges from about 10 nm to about 20 micron.7. A field emission display device ...

Подробнее
26-12-2013 дата публикации

Corrugated Dielectric for Reliable High-current Charge-emission Devices

Номер: US20130342098A1
Принадлежит: SRI INTERNATIONAL

Micro-fabricated charge-emission devices comprise an electrically conductive gate electrode with an aperture, an electrically conductive base electrode, a charge-emitting microstructure extending from a surface in electrical contact with the base electrode and terminating near the aperture of the gate electrode, and a dielectric layer stack disposed between the base electrode and the gate electrode. The dielectric layer stack comprises a first dielectric layer and a second dielectric layer. The first dielectric layer is disposed between the second dielectric layer and the base electrode. The first dielectric layer is of a different selectively etchable dielectric material than the second dielectric layer. The dielectric layer stack h formed therein a cavity within which the charge-emitting emitting microstructure is disposed. The cavity has a corrugated wall shaped by the first dielectric layer undercutting the second dielectric layer. The corrugated wall surrounds the charge-emitting microstructure disposed within the cavity. 1. A micro-fabricated charge-emission device comprising:an electrically conductive gate electrode with an aperture;an electrically conductive base electrode;a charge-emitting microstructure extending from a surface in electrically conductive contact with the base electrode and terminating near the aperture of the gate electrode; anda dielectric layer stack disposed between the base electrode and the gate electrode, the dielectric layer stack comprising a first dielectric layer and a second dielectric layer, the first dielectric layer being disposed between the second dielectric layer and the base electrode, the first dielectric layer being of a different selectively etchable dielectric material than the second dielectric layer, the dielectric layer stack having formed therein a cavity within which the charge-emitting microstructure is disposed, the cavity having a corrugated wall shaped by the first dielectric layer undercutting the second ...

Подробнее
30-01-2014 дата публикации

CARBON NANOTUBE FIELD EMITTER

Номер: US20140028178A1
Принадлежит:

A carbon nanotube field emitter is disclosed. The carbon nanotube field emitter includes an emission portion and a supporting portion. The emission portion and the supporting portion are configured as one piece to form a roll structure. The emission portion includes a first rolled carbon nanotube layer, which includes a number of carbon nanotubes. The supporting portion includes a rolled composite layer, which includes at least one second rolled carbon nanotube layer and a rolled metal layer stacked with each other. Another carbon nanotube field emitter with a number of separated emission tips on the emission portion is also disclosed. 1. A carbon nanotube field emitter comprising an emission portion and a supporting portion , wherein the emission portion and the supporting portion form a single rolled structure , the emission portion comprises a first rolled carbon nanotube layer comprising a plurality of carbon nanotubes , and the supporting portion comprises a rolled composite layer comprising at least one second rolled carbon nanotube layer and a rolled metal layer stacked with each other.2. The carbon nanotube field emitter as claimed in claim 1 , wherein the plurality of carbon nanotubes is aligned along a first direction in the first rolled carbon nanotube layer.3. The carbon nanotube field emitter as claimed in claim 1 , wherein the at least one second rolled carbon nanotube layer comprises a plurality of carbon nanotubes and the plurality of carbon nanotubes is aligned along the first direction.4. The carbon nanotube field emitter as claimed in claim 1 , wherein both the first rolled carbon nanotube layer and the at least one second rolled carbon nanotube layer comprise at least one carbon nanotube drawn film.5. The carbon nanotube field emitter as claimed in claim 4 , wherein the at least one carbon nanotube drawn film comprises a plurality of carbon nanotubes claim 4 , and a majority of the plurality of carbon nanotubes are substantially parallel to each ...

Подробнее
30-01-2014 дата публикации

METHOD FOR MAKING CARBON NANOTUBE FIELD EMITTER

Номер: US20140030950A1
Принадлежит:

A method for making a carbon nanotube field emitter is disclosed. The method includes steps of providing a carbon nanotube layer having a first surface and a second surface opposite to each other, wherein the first surface is divided into a first area and a second area along a first direction by a line, coating a metal layer on the first area of the first surface, and rolling the coated carbon nanotube layer around the first direction to form the carbon nanotube field emitter. 1. A method for making a carbon nanotube field emitter comprising:(a) providing a carbon nanotube layer having a first surface and a second surface opposite to each other, wherein the first surface is divided into a first area and a second area along a first direction by a line;(b) coating a metal layer on the first area; and(c) rolling the coated carbon nanotube layer around the first direction to form the carbon nanotube field emitter.2. The method as claimed in claim 1 , wherein the step (c) comprises forming an emission portion by rolling the second area of the carbon nanotube layer claim 1 , and forming a supporting portion by rolling the coated first area of the carbon nanotube layer claim 1 , the emission portion and the supporting portion being formed as one piece.3. The method as claimed in claim 2 , further comprising (d) cutting the emission portion into a plurality of emission tips.4. The method as claimed in claim 3 , wherein in the step (d) claim 3 , the emission portion is cut by a laser.5. The method as claimed in claim 4 , wherein an angle α formed between a cutting direction and the first direction is equal to or larger than 0 degrees and smaller than or equal to 5 degrees.6. The method as claimed in claim 1 , wherein in the step (c) claim 1 , the first surface is an inner surface of the rolled coated carbon nanotube layer.7. The method as claimed in claim 1 , wherein in the step (c) claim 1 , the second surface is an inner surface of the rolled coated carbon nanotube layer.8 ...

Подробнее
20-02-2014 дата публикации

FIELD EMISSION DISPLAY

Номер: US20140049184A1
Автор: FAN SHOU-SHAN, Liu Peng
Принадлежит:

A field emission display is also provided. The field emission display includes a plurality of pixel units. Each of the plurality of pixel units includes a first electrode located on the insulating substrate; a plurality of first electron emitters located on and electrically connected to the first electrode; a first phosphor layer located on the first electrode; a second electrode located on the insulating substrate and spaced from the first electrode, wherein the second electrode extends at least partly around the first electrode; a plurality of second electron emitters located on and electrically connected to the second electrode; and a second phosphor layer located on the second electrode. 1. A field emission display , comprising:an insulating substrate;a plurality of first electrode down-leads substantially parallel to each other and located on the insulating substrate;a plurality of second electrode down-leads substantially parallel to each other and located on the insulating substrate, wherein the plurality of first electrode down-leads is set an angle relative to the plurality of second electrode down-leads to define a grid having a plurality of cells; and a first electrode located on the insulating substrate;', 'a plurality of first electron emitters located on and electrically connected to the first electrode;', 'a first phosphor layer located on the first electrode;', 'a second electrode located on the insulating substrate, spaced from the first electrode, and extending at least partly around the first electrode;', 'a plurality of second electron emitters located on and electrically connected to the second electrode; and', 'a second phosphor layer located on the second electrode., 'a plurality of pixel units, wherein each of the plurality of pixel units is located in each of the plurality of cells, and each of the plurality of pixel units comprises2. The field emission display of claim 1 , wherein the second electrode comprises a first portion and a second ...

Подробнее
27-02-2014 дата публикации

METHOD FOR FABRICATING FIELD EMISSION CATHODE, FIELD EMISSION CATHODE THEREOF, AND FIELD EMISSION LIGHTING SOURCE USING THE SAME

Номер: US20140055027A1
Принадлежит: National Defense University

A method for fabricating field emission cathode, a field emission cathode, and a field emission lighting source are provided. The method includes: forming a catalyst crystallite nucleus layer on the surface of cathode substrate by self-assembly of a noble metal catalyst, growing a composited nano carbon material on the cathode substrate by using a TCVD process, in which the composited nano carbon material includes coil carbon nano tubes and coil carbon nano fibers. The measured quantity of total coil carbon nano tubes and coil carbon nano fibers is higher than 40%. The field emission cathode is fabricated by the aforementioned method, and the field emission lighting source includes the aforementioned field emission cathode. 1. A method for fabricating a field emission cathode , comprising:providing a cathode substrate, wherein the surface of the cathode substrate comprises at least one metal conductive layer located thereon;immersing the cathode substrate in a noble metal catalyst solution containing a noble metal catalyst, and forming a noble metal catalyst crystallite nucleus layer on the metal conductive layer of the cathode substrate by self-assembly of the noble metal catalyst;drying the cathode substrate formed with the noble metal catalyst crystallite nucleus layer;disposing the cathode substrate formed with the noble metal catalyst crystallite nucleus layer in a vacuum chamber, introducing an inert gas and a carbon source gas into the vacuum chamber with an initial vacuum, and heating the vacuum chamber to a predetermined growth temperature by using thermal chemical vapor deposition (TCVD) process; andgrowing a composited nano carbon material layer on the cathode substrate with a predetermined growing time for fabricating a field emission cathode, and after cooling, drawing the field emission cathode from the vacuum chamber;wherein, the composited nano carbon material layer consists of a composited nano carbon material, and the composited nano carbon ...

Подробнее
20-03-2014 дата публикации

PARTICLE SOURCES AND METHODS FOR MANUFACTURING THE SAME

Номер: US20140077684A1
Автор: Chen Ping, Liu Huarong

The present disclosure provides a method for manufacturing a particle source comprising: placing a metal wire in vacuum, introducing active gas, adjusting a temperature of the metal wire and applying a positive high voltage V to the metal wire to generate at a side of the head of the metal wire an etching zone in which field induced chemical etching (FICE) is performed; increasing by the FICE a surface electric field at the top of the metal wire head to be greater than a field evaporation electric field of material for the metal wire, so that metal atoms at the top of the metal wire are evaporated off; after the field evaporation is activated by the FICE, causing mutual adjustment between the FICE and the field evaporation, until the head of the metal wire has a shape of combination of a base and a tip on the base; and stopping the FICE and the field evaporation when the head of the metal wire takes a predetermine shape. 1. A method for manufacturing a particle source , comprising:placing a metal wire in vacuum, introducing active gas, adjusting a temperature of the metal wire and applying a positive high voltage V to the metal wire to generate at a side of the head of the metal wire an etching zone in which field induced chemical etching (FICE) is performed;increasing by the FICE a surface electric field at the top of the metal wire head to be greater than a field evaporation electric field of material for the metal wire, so that metal atoms at the top of the metal wire are evaporated off;after the field evaporation is activated by the FICE, causing mutual adjustment between the FICE and the field evaporation, until the head of the metal wire has a shape of combination of a base and a tip on the base; andstopping the FICE and the field evaporation when the head of the metal wire takes a predetermine shape.2. The method of claim 1 , wherein the positive high voltage V enables a surface electric field at the top of the head to be greater than an ionization electric ...

Подробнее
03-04-2014 дата публикации

Fluorescent Display Tube With Touch Switch And Method Of Forming Electrode And Wiring Of Same

Номер: US20140091708A1
Принадлежит:

An object of the present invention is to provide a fluorescent display tube with a touch switch allowing electrodes such as touch electrode, anode electrode, and wirings thereof to be formed on the same substrate at the same time, and having an easy structure, and to provide a method of forming the electrodes and wirings of the fluorescent display tube. The anode electrodes, the touch electrodes, the shield electrode, and the anode wirings are formed on the front substrate. The shield electrode is formed in between the touch electrodes and the anode electrodes, and in between the touch electrodes and the anode wirings. The shield electrode is made of a continuous single conductive film. The touch electrodes are so formed as to surround the corresponding one of the anode electrodes. 1. A fluorescent display tube with a touch switch , said display tube comprising:an outer housing defined by front and rear substrates opposite to each other and a sidewall member, wherein an anode electrode, an anode wiring, a touch electrode which defines a pair with the anode electrode, and a shield electrode for electrically shielding the touch electrode from the anode electrode and the anode wiring are formed on the same inner surface of the front substrate and made of the same conductive material.2. The fluorescent display tube with a touch switch as claimed in claim 1 , wherein the shield electrode is interposed between the anode electrode and the touch electrode and between the anode wiring and touch electrode claim 1 , and connected to a ground terminal.3. The fluorescent display tube with a touch switch as claimed in claim 1 , wherein the shield electrode is made of a continuous single conductive film.4. The fluorescent display tube with a touch switch as claimed in claim 1 , wherein the touch electrode is so formed as to surround the anode electrode.5. The fluorescent display tube with a touch switch as claimed in claim 1 , wherein the anode electrode claim 1 , the anode wiring ...

Подробнее
01-01-2015 дата публикации

METAL HEXABORIDE COLD FIELD EMITTER, METHOD OF FABRICATING SAME, AND ELECTRON GUN

Номер: US20150002009A1
Принадлежит:

A metal hexaboride nanowire such as LaBwith the formed metal-terminated (100) plane at the tip has a small work function, and can emit a very narrow electron beam from the (100) plane. In such emitters, contamination occurs in a very short time period, and the output current greatly decreases when used under low temperature. The cold field emitter of the present invention overcomes this problem with a stabilization process that exposes the metal-terminated (100) plane of the tip to hydrogen at low temperature, and can stably operate over extended time periods. 1. A metal hexaboride cold field emitter comprising a metal hexaboride nanorod ending at a tip having a hydrogen-stabilized metal-terminated (100) plane.2. The metal hexaboride cold field emitter according to claim 1 , wherein the nanorod is a monocrystal that extends in a <100> direction.3. The metal hexaboride cold field emitter according to claim 1 , wherein the tip is shaped into a hemispherical form.4. The metal hexaboride cold field emitter according to claim 1 , wherein the nanorod has a diameter in a range of 10 to 300 nm.5. The metal hexaboride cold field emitter according to claim 1 , wherein the metal hexaboride is LaB.613-. (canceled)14. An electron gun that comprises the metal hexaboride cold field emitter of .15. The electron gun according to claim 14 , wherein the electron gun comprises:a cooling device connected to the metal hexaboride cold field emitter via an electrically insulating heat conductor; anda hydrogen nozzle through which hydrogen is introduced. The present invention relates to cold field emitters (CFE) used in applications such as the electron source of an electron microscope, particularly to a metal hexaboride CFE of improved stability, a method for fabricating same, and an electron gun using same.Electron microscopes including transmission electron microscopes (TEM) and scanning electron microscopes (SEM) have acquired ever increasing resolutions in terms of space, time, and ...

Подробнее
01-01-2015 дата публикации

ELECTRIC FIELD GAP DEVICE AND MANUFACTURING METHOD

Номер: US20150002966A1
Принадлежит:

The invention provides a method of forming an electric field gap device, such as a lateral field emission ESD protection structure, in which a cathode layer is formed between dielectric layers. Anode channels are formed and they are lined with a sacrificial dielectric layer. Conductive anode pillars are formed in the anode channels, and then the sacrificial dielectric layer is etched away in the vicinity of the anode pillars. The etching leaves a suspended portion of the cathode layer which defines a lateral gap to an adjacent anode pillar. This portion has a sharp end face defined by the corners of the cathode layer and the lateral gap can be defined accurately as it corresponds to the thickness of the sacrificial dielectric layer. 1. A method of forming an electric field gap structure , comprising:{'b': 12', '10, 'forming a first dielectric () layer over a substrate ();'}{'b': 20', '12, 'forming a cathode layer () over the first dielectric layer ();'}{'b': 22', '20, 'forming a second dielectric layer () over the cathode layer ();'}{'b': 22', '20', '12, 'etching anode channels through the second dielectric layer () and the cathode layer () and into the first dielectric layer ();'}{'b': '24', 'lining the resulting surface with a third dielectric layer ();'}{'b': '27', 'forming conductive anode pillars () in the anode channels;'}{'b': 24', '22', '17', '12', '17', '34', '20', '17, 'etching away the third dielectric layer () and the second dielectric layer () in the vicinity of the anode pillars (), and at least partially etching away the first dielectric layer () in the vicinity of the anode pillars (), thereby to leave a suspended portion () of the cathode layer () which defines a lateral gap to an adjacent anode pillar ().'}2181210201218. A method as claimed in claim 1 , further comprising forming connection pillars () through the first dielectric layer () to the substrate () claim 1 , and wherein the cathode layer () is formed over the first dielectric layer () and ...

Подробнее
04-01-2018 дата публикации

HIGH BRIGHTNESS BORON-CONTAINING ELECTRON BEAM EMITTERS FOR USE IN A VACUUM ENVIRONMENT

Номер: US20180005791A1
Принадлежит:

An emitter containing a metal boride material has an at least partly rounded tip with a radius of 1 μm or less. An electric field can be applied to the emitter and an electron beam is generated from the emitter. To form the emitter, material is removed from a single crystal rod to form an emitter containing a metal boride material having a rounded tip with a radius of 1 μm or less. 1. An apparatus comprising:an emitter containing a metal boride material, wherein the emitter includes a frustoconical section with an at least partly rounded tip that is in the shape of a truncated sphere, and wherein the at least partly rounded tip has a radius to a curved outer surface of 1 μm or less.2. The apparatus of claim 1 , wherein the metal boride material includes a species selected from the list consisting of an alkali metal claim 1 , an alkaline earth metal claim 1 , a transition metal claim 1 , a lanthanide claim 1 , and an actinide.3. The apparatus of claim 1 , wherein the metal boride material is a metal hexaboride material.4. The apparatus of claim 1 , wherein the metal boride material includes LaB.5. The apparatus of claim 1 , wherein the emitter has an emitting area of less than 1 mm.6. The apparatus of claim 1 , wherein the metal boride material has a <100> crystal orientation.7. The apparatus of claim 1 , wherein the radius is 700 nm or less.8. The apparatus of claim 1 , wherein the radius is 450 nm or less.9. The apparatus of claim 1 , wherein the radius is 100 nm or less.10. The apparatus of claim 1 , wherein the at least partly rounded tip includes a flat emitting facet.11. The apparatus of claim 1 , wherein the emitter has an emitting area less than 1 μm.12. A method comprising:providing an emitter containing a metal boride material, wherein the emitter includes a frustoconical section with an at least partly rounded tip that is in the shape of a truncated sphere, and wherein the at least partly rounded tip has a radius to a curved outer surface of 1 μm or less; ...

Подробнее
04-01-2018 дата публикации

METHOD FOR MANUFACTURING A TRENCH CHANNEL FOR A VACUUM TRANSISTOR DEVICE AND VACUUM TRANSISTOR DEVICE

Номер: US20180005792A1
Принадлежит:

A method for manufacturing a microelectronic semiconductor device comprising the steps of: forming a trench in a body, the trench having side walls, a opening, and a bottom; forming a sacrificial layer in the trench; forming a recess in the sacrificial layer; forming a restriction structure between the sacrificial layer and the opening of the trench, defining a through hole for access to the sacrificial layer; completely removing the sacrificial layer through said through hole; and depositing a metal layer over the body, thus closing the opening of the trench and forming an electron-emission cathode tip. 1. A method for manufacturing a microelectronic semiconductor device comprising:forming a trench in a body, the trench having side walls, an opening, and a bottom; andforming a sacrificial layer completely filling of the trench;forming a recess in the sacrificial layer, releasing the opening of the trench;forming a restriction structure between the sacrificial layer and the opening of the trench, said restriction structure defining a through hole that forms a path for accessing the sacrificial layer from the opening;removing the sacrificial layer through said through hole; anddepositing a metal layer over the body, the metal layer closing the opening of the trench.2. The method according to claim 1 , wherein:the body has a front side and a back side, said opening of the trench being defined at the front side,forming the sacrificial layer including carrying out a process of deposition or growth on the front side and in the trench,forming the recess in the sacrificial layer including carrying out an etch to completely remove portions of the sacrificial layer on the front side and continuing the etch to remove partially the sacrificial layer in the trench starting from the opening thereof, thus forming said recess.3. The method according to claim 1 , wherein forming the sacrificial layer includes depositing a photoresist.4. The method according to claim 1 , wherein ...

Подробнее
27-01-2022 дата публикации

FIELD EMISSION-TYPE TOMOSYNTHESIS SYSTEM, EMITTER FOR FIELD EMISSION-TYPE TOMOSYNTHESIS SYSTEM, AND METHOD OF MANUFACTURING EMITTER

Номер: US20220028644A1

Disclosed is a field emission-type tomosynthesis system including a vacuum body having a space therein; a plurality of sources provided inside the body, wherein each of the sources emits a plurality of electrons; and a plurality of anodes disposed inside the body to face the sources and responsible for emitting a plurality of X-rays, wherein each of the anodes faces a corresponding source among the sources, and the electrons collide with each of the anodes to generate X-rays, wherein the X-ray emission angle of each of the anodes is capable of being independently adjusted so as to focus the X-rays emitted toward an object located outside the body. With this configuration, a plurality of X-rays is focused on an object and is emitted to the object to obtain information, and the information is synthesized, thereby improving the reliability of information about the object. 1. A field emission-type tomosynthesis system , comprising:a vacuum body having a space therein;a plurality of sources provided inside the body, wherein each of the sources generates and emits a plurality of electrons; andanodes arranged to face the sources inside the body, wherein the electrons collide with each of the anodes to generate a plurality of X-rays,wherein an X-ray emission angle of each of the anodes is capable of being independently adjusted so as to focus the X-rays emitted toward an object located outside the body.2. The X-ray source system according to claim 1 , wherein each of the sources comprises carbon nanotubes (CNTs) and generates the electrons claim 1 , andinformation of the object photographed by the X-rays is capable of being synthesized.3. The field emission-type tomosynthesis system according to claim 1 , wherein the sources are provided in plural and are arranged in a row so as to be placed side by side with each other claim 1 , andthe anodes are disposed to correspond to the sources and are arranged in a row so as to be placed side by side with each other.4. The field ...

Подробнее
14-01-2016 дата публикации

FIELD EMISSION CATHODE AND FIELD EMISSION DEVICE

Номер: US20160013005A1
Принадлежит:

The disclosure relates to a field emission cathode. The field emission cathode includes a microchannel plate, a cathode electrode and a number of cathode emitters. The microchannel plate is an insulative plate and includes a first surface and a second surface opposite to the first surface. The microchannel plate defines a number of holes extending through the microchannel plate from the first surface to the second surface. The cathode electrode is located on the first surface. The number of cathode emitters are filled in the number of holes and electrically connected with the cathode electrode. 1. A field emission cathode , comprising:a microchannel plate, wherein the microchannel plate is an insulative plate and comprises a first surface and a second surface, opposite to the first surface; and the microchannel plate defines a plurality of holes extending through the microchannel plate the from the first surface to the second surface;a cathode electrode located on the first surface; anda plurality of cathode emitters, wherein the plurality of cathode emitters are filled in the plurality of holes and electrically connected with the cathode electrode.2. The field emission cathode of claim 1 , wherein the microchannel plate comprise material selected from the group consisting of silicon oxide claim 1 , silicon nitride claim 1 , silicon carbide claim 1 , metal oxide claim 1 , metal nitride claim 1 , metal carbide claim 1 , glass claim 1 , ceramics and quartz.3. The field emission cathode of claim 1 , wherein the plurality of holes have substantially the same extending direction claim 1 , and the first surface is substantially parallel with the second surface.4. The field emission cathode of claim 3 , wherein the extending direction and the first surface form an angle α claim 3 , where 30°<α 90°.5. The field emission cathode of claim 1 , wherein a diameter of each of the plurality of holes is in a range from about 10 micrometers to about 40 micrometers claim 1 , and a ...

Подробнее
14-01-2016 дата публикации

FIELD EMISSION CATHODE AND FIELD EMISSION DEVICE

Номер: US20160013006A1
Принадлежит:

The disclosure relates to a field emission cathode. The field emission cathode includes a microchannel plate, a cathode electrode and a number of cathode emitters. The microchannel plate is an insulative plate and includes a first surface and a second surface opposite to the first surface. The microchannel plate defines a number of holes extending through the microchannel plate from the first surface to the second surface. The cathode electrode is located on the first surface. The number of cathode emitters are filled in the number of holes and electrically connected with the cathode electrode. 1. A field emission cathode , comprising:a microchannel plate, wherein the microchannel plate is an insulative plate and comprises a first surface and a second surface, opposite to the first surface; and the microchannel plate defines a plurality of holes extending through the microchannel plate the from the first surface to the second surface;a cathode electrode located on the first surface; anda plurality of cathode emitters, wherein the plurality of cathode emitters are filled in the plurality of holes and electrically connected with the cathode electrode.2. The field emission cathode of claim 1 , wherein the microchannel plate comprise material selected from the group consisting of silicon oxide claim 1 , silicon nitride claim 1 , silicon carbide claim 1 , metal oxide claim 1 , metal nitride claim 1 , metal carbide claim 1 , glass claim 1 , ceramics and quartz.3. The field emission cathode of claim 1 , wherein the plurality of holes have substantially the same extending direction claim 1 , and the first surface is substantially parallel with the second surface.4. The field emission cathode of claim 3 , wherein the extending direction and the first surface form an angle α claim 3 , where 30°<α 90°.5. The field emission cathode of claim 1 , wherein a diameter of each of the plurality of holes is in a range from about 10 micrometers to about 40 micrometers claim 1 , and a ...

Подробнее
14-01-2016 дата публикации

METHOD FOR MAKING FIELD EMISSION CATHODE

Номер: US20160013007A1
Принадлежит:

The disclosure relates to a method for making field emission cathode. A microchannel plate is provided. The microchannel plate includes a first surface and a second surface opposite to the first surface. The microchannel plate defines a number of holes extending through the microchannel plate from the first surface to the second surface. The plurality of holes are filled with a carbon nanotube slurry. The carbon nanotube slurry is adhered on inner walls of the plurality of holes. The carbon nanotube slurry in the plurality of holes is solidified. 1. A method for making field emission cathode , the method comprising:providing a first microchannel plate, wherein the first microchannel plate comprises a first surface and a second surface, opposite to the first surface; and the first microchannel plate defines a plurality of first holes extending through the first microchannel plate from the first surface to the second surface; andfilling the plurality of first holes with a carbon nanotube slurry, wherein the carbon nanotube slurry is adhered on inner walls of the plurality of first holes; andsolidifying the carbon nanotube slurry.2. The method of claim 1 , wherein the carbon nanotube slurry comprises a plurality of carbon nanotubes and an organic carrier.3. The method of claim 2 , wherein a weight ratio of the plurality of carbon nanotubes is in a range from about 2.5% to about 3% claim 2 , and a weight ratio of the organic carrier is in a range from about 97% to about 98%.4. The method of claim 1 , wherein a viscosity of the carbon nanotube slurry is in a range from about 10 P·s to about 11 P·s at a shear rate of about 10 second-1.5. The method of claim 1 , wherein the carbon nanotube slurry comprises a plurality of carbon nanotubes claim 1 , a plurality of conductive particles and an organic carrier.6. The method of claim 1 , wherein the carbon nanotube slurry comprises a plurality of carbon nanotubes claim 1 , a glass powders and an organic carrier.7. The method of ...

Подробнее
11-01-2018 дата публикации

ELECTRON EMITTING DEVICE USING GRAPHITE ADHESIVE MATERIAL AND MANUFACTURING METHOD FOR THE SAME

Номер: US20180012721A1

The present disclosure relates to a manufacturing method for an electron emitting device using a graphite adhesive material. A method of preparing paste for forming a cathode of an electron emitting device includes: mixing and dispersing a nanomaterial for electron emission and a graphite filler in a solvent; drying a mixed solution in which the nanomaterial and the graphite filler are mixed; and preparing paste by mixing a graphite binder with the dried mixture. 1. A method of preparing paste for forming a cathode of an electron emitting device , comprising:mixing and dispersing a nanomaterial for electron emission and a graphite filler in a solvent;drying a mixed solution in which the nanomaterial and the graphite filler are mixed; andpreparing paste by mixing a graphite binder with the dried mixture.2. The method of preparing paste of claim 1 ,{'sub': '2', 'wherein the nanomaterial for electron emission is any one of carbon nanotube (CNT), graphene, boron-nitride (BN), molybdenum disulphide (MoS) and nanowire.'}3. The method of preparing paste of claim 1 ,wherein the solvent is any one organic solvent of ethanol, isopropyl alcohol (IPA), dichlorobenzene (1,2-dichlorobenzene) (DCB), dicholoroethane (1,2-dicholoroethane) (DCE), and N-methylpyrrolidone (1-methyl-2-pyrrolidone) (NMP).4. The method of preparing paste of claim 1 ,wherein the solvent is an aqueous solution in which any one of sodium dodecyl sulfate (SDS) and sodium dodecyl benzene sulfonate (SDBS) is mixed.5. The method of preparing paste of claim 1 ,wherein the dispersing includes performing sonication.6. The method of preparing paste of claim 1 ,wherein the preparing of paste includes mixing the dried mixture and the binder through a ball milling process.7. A method of manufacturing a cathode of an electron emitting device claim 1 , comprising:mixing and dispersing a nanomaterial for electron emission and a graphite filler in a solvent;drying a mixed solution in which the nanomaterial and the graphite ...

Подробнее
15-01-2015 дата публикации

FIELD EMISSION CATHODE AND FIELD EMISSION LIGHT USING THE SAME

Номер: US20150015166A1
Принадлежит:

A field emission cathode comprises at least one electron emitting parcel, and at least one ion absorbing parcel each being electrically connected with each of the at least one electron emitting parcel. The electron emitting parcel includes a first substrate and a nano emission component disposed on the first substrate for emitting electrons in an electric field. The ion absorbing parcel is constituted by a second substrate, in which the electric conductivity of the first substrate is less than that of the second substrate. A field emission light comprises the said field emission cathode, a field emission anode and a power supply. Thus the positive ions in an electric field can be absorbed by ion absorbing parcels to suppress an ion bombardment in the electric field. The efficiency of the electric field of the field emission is then maintained, and the lifetime of the field emission light is enhanced. 1. A field emission cathode applied for a field emission light , the field emission cathode comprising: at least one electron emitting parcel , and at least one ion absorbing parcel each being electrically connected with each of the at least one electron emitting parcel;wherein each of the electron emitting parcel includes a first substrate and a nano emission component being a nanomaterial and on the first substrate for emitting electrons in an electric field of the field emission light;wherein each of the ion absorbing parcel constituted by a second substrate;wherein the electric conductivity of the first substrate is less than the electric conductivity of the second substrate.2. The field emission cathode according to claim 1 , wherein the at least one ion absorbing parcel is spaced and adjacent to the at least one electron emitting parcel each other claim 1 , is deposed in spiral around each other or a combination thereof.3. The field emission cathode according to claim 1 , wherein the first substrate includes material being chromium oxide claim 1 , conductive ...

Подробнее
21-01-2021 дата публикации

CARBON NANOTUBE FIELD EMITTER AND PREPARATION METHOD THEREOF

Номер: US20210017027A1
Принадлежит:

A method for making a carbon nanotube field emitter is provided. A carbon nanotube film is dealed with a carbon nanotube film in a circumstance with a temperature ranged from 1400 to 1800° C. and a pressure ranged from 40 to 60 MPa to form at least one first carbon nanotube structure. The at least one first carbon nanotube structure is heated to graphitize the at least one first carbon nanotube structure to form at least one second carbon nanotube structure. At least two electrodes is welded to fix one end of the at least one second carbon nanotube structure between adjacent two electrodes to form a field emission preparation body. The field emission preparation body has a emission end. The emission end is bonded to form a carbon nanotube field emitter. 1. A method for making a carbon nanotube field emitter , comprising:{'b': '1', 'S: handling a carbon nanotube film in an environment of a temperature ranged from 1400 to 1800° C. and a pressure ranged from 40 to 60 MPa to form at least one first carbon nanotube structure;'}{'b': '2', 'S: heating the at least one first carbon nanotube structure to graphitize the first carbon nanotube structure thereby forming at least one second carbon nanotube structure;'}{'b': '3', 'S: welding at least two electrodes to fix one end of the at least one second carbon nanotube structure between the at least two electrodes to form a field emission preparation body, wherein the field emission preparation body comprises an emission end; and'}{'b': '4', 'S: bonding the emission end of the field emission preparation to form a carbon nanotube field emitter.'}2. The method of claim 1 , wherein the at least one second carbon nanotube structure comprises a first end and a second end claim 1 , the first end is opposite to the second end claim 1 , and the first end of the at least one second carbon nanotube structure is fixed between the at least two electrodes by a spot welding method or a laser welding method.3. The method of claim 2 , wherein ...

Подробнее
21-01-2016 дата публикации

SHAPED CATHODE FOR A FIELD EMISSION ARRANGEMENT

Номер: US20160020084A1
Автор: TIRÉN Jonas
Принадлежит:

The present invention relates to a field emission lighting arrangement, comprising an anode and a cathode, where the shape of the cathode is selected based on the shape of a evacuated envelope in which the anode and cathode is provided. The inventive shape of cathode allows for an improved uniformity of an electric field provided between the anode and cathode during operation of the field emission lighting arrangement. The invention also relates to a corresponding method for selecting a shape of such a cathode.

Подробнее
03-02-2022 дата публикации

PASSIVE AND ACTIVE DIAMOND-BASED ELECTRON EMITTERS AND IONIZERS

Номер: US20220037104A1
Принадлежит:

A triple-point cathode coating and method wherein electrically conductive NEA diamond particles cast or mixed with the adhesive medium and electrically insulative NEA diamond particles are cast or mixed with the adhesive medium to form a plurality of exposed junctions between electrically conductive diamond particles and electrically insulative diamond particles to reduce any electrical charges on a structure coated with the coating. 1. A triple-point cathode coating comprising:an electrically conductive adhesive medium;electrically conductive NEA diamond particles cast or mixed with the adhesive medium;electrically insulative NEA diamond particles cast or mixed with the adhesive medium; anda plurality of exposed junctions between electrically conductive diamond particles and electrically insulative diamond particles to reduce any electrical charges on a structure coated with the coating.2. The coating of in which the electrically conductive NEA diamond particles contact electrically insulative NEA diamond particles at locations not submerged in the adhesive medium.3. The coating of in which the electrically conductive NEA diamond particles and the electrically insulative particles have a grit size of between 0.5 microns to 150 microns.4. The coating of in which the electrically conductive NEA diamond particles and the electrically insulative diamond particles are mixed together before casting or mixing them with the adhesive medium.5. The coating of in which the adhesive medium includes silver.6. An ionizer comprising:a substrate; an electrically conductive adhesive medium,', 'electrically conductive NEA diamond particles cast or mixed with the adhesive medium,', 'electrically insulative NEA diamond particles cast or mixed with the adhesive medium, and', 'a plurality of exposed junctions between electrically conductive diamond particles and electrically insulating diamond particles to reduce any electrical charges on the substrate., 'a triple-point cathode coating ...

Подробнее
18-01-2018 дата публикации

APPARATUS FOR GENERATING X-RAY RADIATION IN AN EXTERNAL MAGNETIC FIELD

Номер: US20180019088A1
Принадлежит:

An apparatus is provided for generating X-ray radiation in an outer magnetic field, which may be generated by a magnetic field device. The apparatus includes a cathode configured to generate an electron beam and an anode configured to retard the electrons of the electron beam and generate an X-ray beam. The apparatus further includes a device configured to generate an electric field orientated from the anode in the direction of the cathode and substantially collinear to the outer magnetic field, wherein the cathode, as an electron emitter, includes a cold cathode that passively provides free electrons by field emission. 1. An apparatus for generating x-ray radiation in an external magnetic field generable by a magnetic field device , the apparatus comprising:{'b': '30', 'a cathode configured to generate an electron beam ();'}an anode configured to decelerate the electrons of the electron beam and generate an x-ray beam; and{'b': '50', 'a device configured to generate an electric field directed from the anode in a direction of the cathode, wherein the electric field is substantially collinear with the external magnetic field ();'}wherein the cathode as an electron emitter comprises a cold cathode that passively provides free electrons by field emission.2. The apparatus of claim 1 , wherein the electron emitter has a linear embodiment.3. The apparatus of claim 1 , wherein the electron emitter has a convex surface in a cross section in relation to an axial direction of extent claim 1 , wherein the convex surface extends exclusively in a direction of the anode.4. The apparatus of claim 1 , wherein the electron emitter has a form of a semi-cylinder in the cross section in relation to an axial direction of extent.5. The apparatus of claim 1 , wherein the cathode comprises a substrate on which the electron emitter is arranged.6. The apparatus of claim 3 , wherein the axial direction of extent extends parallel or at an angle to a first direction extending perpendicular to a ...

Подробнее
18-01-2018 дата публикации

Emitter, Electron Gun Using Emitter, Electronic Apparatus Using Electron Gun, and Method of Producing Emitter

Номер: US20180019091A1
Принадлежит:

The emitter of the present invention includes a nanowire. The nanowire is formed from a hafnium carbide (HfC) single crystal, and at least an end portion of the hafnium carbide single crystal, from which electrons are to be emitted, is covered with hafnium oxide (HfO). In the emitter, the thickness of the hafnium oxide may be 1 nm to 20 nm. 1. An emitter , comprising:a nanowire,wherein the nanowire is formed from a hafnium carbide (HfC) single crystal, and{'sub': '2', 'at least an end portion of the hafnium carbide single crystal, from which electrons are to be emitted, is covered with hafnium oxide (HfO).'}2. The emitter according to claim 1 , wherein the thickness of the hafnium oxide is 1 nm to 20 nm.3. The emitter according to claim 2 , wherein the thickness of the hafnium oxide is 1 nm to 10 nm.4. The emitter according to claim 3 , wherein the thickness of the hafnium oxide is 1 nm to 5 nm.5. The emitter according to claim 1 , wherein a shape of the end portion claim 1 , from which electrons are to be emitted claim 1 , is formed in a hemispherical shape through field evaporation processing.6. The emitter according to claim 1 , wherein a longitudinal direction of the nanowire matches a <100> crystal direction claim 1 , a <110> crystal direction claim 1 , or a <111> crystal direction of the hafnium carbide single crystal.7. The emitter according to claim 6 ,wherein a longitudinal direction of the nanowire matches a <100> crystal direction of the hafnium carbide single crystal, andthe end portion includes at least a {111} plane and a {110} plane.8. The emitter according to claim 1 , wherein a length of the nanowire in a transverse direction is 1 nm to 100 nm claim 1 , and a length of the nanowire in a longitudinal direction is 500 nm to 30 μm.9. An electron gun claim 1 , comprising:at least an emitter,{'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, 'wherein the emitter is the emitter according to .'}10. The electron gun according to claim 9 ,wherein the emitter ...

Подробнее
17-04-2014 дата публикации

METHOD FOR FABRICATING A PLANAR MICRO-TUBE DISCHARGER STRUCTURE

Номер: US20140106064A1
Принадлежит: AMAZING MICROELECTRONIC CORP.

A method for fabricating a semiconductor-based planar micro-tube discharger structure is provided, including the steps of forming on a substrate two patterned electrodes separated by a gap and at least one separating block arranged in the gap, forming an insulating layer over the patterned electrodes and the separating block., and filling the insulating layer into the gap. At least two discharge paths are formed. The method can fabricate a plurality of discharge paths in a semiconductor structure, the structure having very high reliability and reusability. 1. A method for fabricating a planar micro-tube discharger structure , comprising steps:forming on a substrate two patterned electrodes separated by a gap and at least one separating block arranged in said gap; andforming a first insulating layer over said patterned electrodes and said separating block and filling said first insulating layer into said gap to create at least two discharge paths interconnecting said patterned electrodes.2. The method for fabricating a planar micro-tube discharger structure according to claim 1 , wherein said step of forming said first insulating layer over said patterned electrodes and said separating block and filling said first insulating layer into said gap to create said discharge paths further comprises steps:forming an inner insulating layer over said patterned electrodes and said separating block and completely filling said gap with said inner insulating layer;removing a portion of said inner insulating layer located inside said gap to form on said patterned electrodes and said separating block a first sub-insulating layer having a groove interconnecting said patterned electrodes; andforming a second sub-insulating layer over said first sub-insulating layer and filling said second sub-insulating layer into said groove to create said discharge paths, whereby said first insulating layer is formed over said patterned electrodes and said separating block.3. The method for ...

Подробнее
16-01-2020 дата публикации

Chip Scale Encapsulated Vacuum Field Emission Device Integrated Circuit and Method of Fabrication Therefor

Номер: US20200020501A1
Принадлежит:

A chip scale encapsulated vacuum field emission device integrated circuit and method of fabrication therefor are disclosed. The vacuum field emission device is a monolithically fabricated triode vacuum field emission device, also known as a VACFET device. The VACFET device includes a substrate, a VACFET formed laterally on the substrate, and a containment shell that seals around a periphery of the VACFET and against the substrate. Preferably, the VACFET of the VACFET device includes an anode and a cathode formed on the substrate, a bottom gate and a top gate. The bottom gate is located between the anode and the cathode and the substrate, and the top gate is located above the anode and the cathode with respect to the substrate. 1. A monolithically fabricated vacuum field effect transistor (VACFET) device , comprising:a substrate;a VACFET formed laterally on the substrate; anda containment shell that seals around a periphery of the VACFET and against the substrate.2. The device of claim 1 , wherein the VACFET includes:an anode and a cathode formed on the substrate; anda bottom gate located between the anode and the cathode and the substrate.3. The device of claim 2 , wherein the cathode overlaps the bottom gate.4. The device of claim 2 , wherein the VACFET includes:a top gate located above the anode and the cathode with respect to the substrate.5. The device of claim 3 , wherein the top gate is housed within the containment shell.6. The device of claim 3 , wherein the cathode overlaps the top gate.7. The device of claim 2 , wherein the anode and the cathode are cantilevered above the substrate and over the bottom gate.8. The device of claim 1 , wherein the device includes a metal plug for closing an opening in the shell and creating a vacuum seal.9. The device of claim 8 , wherein the metal plug functions as a metal contact that provides an electrical connection to the VACFET.10. A method for monolithic fabrication of a VACFET device claim 8 , the method comprising: ...

Подробнее
24-04-2014 дата публикации

Field emitter electrode and method of manufacturing the same

Номер: US20140111081A1

Disclosed is a field emitter electrode including a bonding unit formed on a substrate, and a plurality of carbon nanotubes fixed to the substrate by the bonding unit, in which the bonding unit includes a carbide-based first inorganic filler and a second inorganic filler formed of a metal.

Подробнее
29-01-2015 дата публикации

CATHODE COMPONENT FOR DISCHARGE LAMP

Номер: US20150028738A1
Принадлежит:

A highly durable cathode component for a discharge lamp is provided. A cathode component for a discharge lamp includes a barrel having a wire diameter of 2 to 35 mm and a tapered front end, wherein the cathode component comprises a tungsten alloy containing 0.5 to 3% by weight, in terms of oxide (ThO), of a thorium component, not less than 90% of tungsten crystals are accounted for by tungsten crystals having a grain size in the range of 1 to 80 μm, as observed in terms of an area ratio of 300 μm×300 μm in unit area in a circumferential cross section of the barrel, and are accounted for by tungsten crystals having a grain size in the range of 10 to 120 μm, as observed in terms of an area ratio of 300 μm×300 μm in unit area in a side cross section of the barrel. 1. A cathode component for a discharge lamp , the cathode component comprising: a barrel having a wire diameter of 2 to 35 mm; and a tapered front end , wherein{'sub': '2', 'the cathode component comprises a tungsten alloy containing 0.5 to 3% by weight, in terms of oxide (ThO), of a thorium component,'}not less than 90% of tungsten crystals are accounted for by tungsten crystals having a grain size in the range of 1 to 80 μm, as observed in terms of an area ratio of 300 μm×300 μm in unit area in a circumferential cross section of the barrel, andnot less than 90% of tungsten crystals are accounted for by tungsten crystals having a grain size in the range of 10 to 120 μm, as observed in terms of an area ratio of 300 μm×300 μm in unit area in a side cross section of the barrel.2. The cathode component for a discharge lamp according to claim 1 , wherein not less than 90% of thorium component grains are accounted for by thorium component grains having a size in the range of 1 to 15 μm claim 1 , as observed in terms of an area ratio of 300 μm×300 μm in unit area in a circumferential cross section of the barrel claim 1 , andnot less than 90% of thorium component grains are accounted for by thorium component grains ...

Подробнее
23-01-2020 дата публикации

Diamond Semiconductor Device

Номер: US20200027683A1
Автор: Taylor Gareth Andrew
Принадлежит:

An electrical device comprising a substrate of diamond material and elongate metal protrusions extending into respective recesses in the substrate. Doped semiconductor layers, arranged between respective protrusions and the substrate, behave as n type semiconducting material on application of an electric field, between the protrusions and the substrate, suitable to cause a regions of positive space charge within the semiconductor layers. 1. An electrical device comprising:a substrate of diamond material;at least one elongate first electrically conductive portion extending into a respective recess in said substrate; andat least one doped semiconducting region, arranged between at least one respective said first electrically conductive portion and said substrate, and adapted to behave as an n type semiconducting material on application of an electric field, between said first electrically conductive portion and said substrate, suitable to cause a region of positive space charge within the semiconducting region,wherein at least one recess further comprises at least one inclined distal surface defining a point, wherein at least one doped semiconducting region is arranged on a respective inclined distal surface.2. The device of claim 1 , wherein at least one said semiconducting region includes diamond.3. The device of claim 1 , wherein at least one said semiconducting region includes at least one donor dopant to impart an n-type semiconducting characteristic to said region.4. The device of claim 3 , wherein at least one said semiconducting region includes a plurality of dopant materials to impart an n-type semiconducting characteristic to said region.5. The device of according to claim 3 , wherein at least one said dopant is a group I element.6. The device of claim 3 , wherein at least one said dopant is a group V element.7. The device of claim 3 , wherein at least one said dopant is a group VI element.8. The device of claim 1 , wherein at least one said first ...

Подробнее
28-01-2021 дата публикации

Large scale stable field emitter for high current applications

Номер: US20210027972A1
Принадлежит: Micro X Ltd

The present invention relates to large area field emission devices based on the incorporation of macroscopic, microscopic, and nanoscopic field enhancement features and a designed forced current sharing matrix layer to enable a stable high-current density long-life field emission device. The present invention pertains to a wide range of field emission sources and is not limited to a specific field emission technology. The invention is described as an X-ray electron source but can be applied to any application requiring a high current density electron source.

Подробнее
02-02-2017 дата публикации

INTEGRATED VACUUM MICROELECTRONIC STRUCTURE AND MANUFACTURING METHOD THEREOF

Номер: US20170032921A1
Принадлежит:

An integrated vacuum microelectronic structure is described as having a highly doped semiconductor substrate, a first insulating layer placed above said doped semiconductor substrate, a first conductive layer placed above said first insulating layer, a second insulating layer placed above said first conductive layer, a vacuum trench formed within said first and second insulating layers and extending to the highly doped semiconductor substrate, a second conductive layer placed above said vacuum trench and acting as a cathode, a third metal layer placed under said highly doped semiconductor substrate and acting as an anode, said second conductive layer is placed adjacent to the upper edge of said vacuum trench, the first conductive layer is separated from said vacuum trench by portions of said second insulating layer and is in electrical contact with said second conductive layer. 1. A method , comprising:depositing a first insulating layer on a first surface of a substrate;depositing a first conductive layer on the first insulating layer;selectively removing portions of the first conductive layer;depositing a second insulating layer on the first conductive layer and the first insulating layer;forming a trench in the first and second insulating layers, the trench extending to the substrate, the trench being spaced from the first conductive layer by portions of the second insulating layer;forming a cathode by depositing a second conductive layer over the trench and on the second insulating layer; andforming an anode by forming a third conductive layer on a second surface of the substrate.2. The method according to claim 1 , further comprising:forming openings in the second insulating layer by selectively removing portions of the second insulating layer; anddepositing a third conductive layer on the second conductive layer and in the openings, the third conductive layer contacting the first conductive layer and the second conductive layer.3. The method according to ...

Подробнее
05-02-2015 дата публикации

NANOSTRUCTURE FIELD EMISSION CATHODE STRUCTURE AND METHOD FOR MAKING

Номер: US20150035428A1
Принадлежит:

Various embodiments are described herein for nanostructure field emission cathode structures and methods of making these structures. These structures generally comprise an electrode field emitter comprising a resistive layer having a first surface, a connection pad having a first surface disposed adjacent to the first surface of the resistive layer, and a nanostructure element for emitting electrons in use, the nanostructure element being disposed adjacent to a second surface of the connection pad that is opposite the first surface of the connection pad. Some embodiments also include a coaxial gate electrode that is disposed about the nanostructure element. 1. An electrode field emitter comprising:a resistive layer having a first surface;a connection pad having a first surface disposed adjacent to the first surface of the resistive layer; anda nanostructure element for emitting electrons during use, the nanostructure element being disposed adjacent to a second surface of the connection pad that is opposite the first surface of the connection pad.2. The emitter of claim 1 , wherein the nanostructure element comprises one of a nanotube emitter claim 1 , a nanofiber emitter claim 1 , and a nanowire emitter.3. The emitter of claim 1 , wherein the nanostructure element is made from one of carbon claim 1 , ZnO claim 1 , TiO claim 1 , tungsten and gold.4. The emitter of claim 1 , wherein the nanostructure element has a diameter in the range of about 3 nanometers to about 100 nanometers and a length of about 1 micrometer to about 10 micrometers.5. The emitter of claim 1 , wherein the resistive layer comprises one of a pure semiconductor material claim 1 , a doped semiconductor material claim 1 , a metal oxide and combinations thereof.6. The emitter of claim 1 , wherein the resistive layer has a resistivity in the range of about 10to about 10ohm·m.7. The emitter of claim 1 , wherein the connection pad has a diameter in the range of about 0.5 micrometers to about 5 ...

Подробнее
08-02-2018 дата публикации

MICROSTRUCTURED SURFACE WITH LOW WORK FUNCTION

Номер: US20180040449A1
Принадлежит: ELWHA LLC

A horizontal multilayer junction-edge field emitter includes a plurality of vertically-stacked multilayer structures separated by isolation layers. Each multilayer structure is configured to produce a 2-dimensional electron gas at a junction between two layers within the structure. The emitter also includes an exposed surface intersecting the 2-dimensional electron gas of each of the plurality of vertically-stacked multilayer structures to form a plurality of effectively one-dimensional horizontal line sources of electron emission. 1. A multilayer junction-edge emitter structure , comprising:a substrate;a first layer on the substrate, wherein the first layer includes a first semiconductor;a second layer on the first layer, wherein the second layer includes one of a second semiconductor different from the first semiconductor, an oxide, or a metal, wherein the first layer and the second layer are configured to form a 2-dimensional electron gas (2DEG) at a junction of the first layer and the second layer; andan exposed surface intersecting the 2DEG to form an effectively one-dimensional horizontal line source of electron emission.2. The multilayer junction-edge emitter structure of claim 1 , wherein the 2DEG emits electrons having a low work function compared to electrons emitted from a conventional material surface.3. The multilayer junction-edge emitter structure of claim 1 , further comprising an anode spaced from the exposed surface claim 1 , the anode configured to captured electrons emitted by the horizontal line source of electron emission.4. The multilayer junction-edge emitter structure of claim 3 , wherein the anode is a constant distance from at least a portion an intersection of the exposed surface and the 2DEG.5. The multilayer junction-edge emitter structure of claim 3 , wherein the anode is biased relative to the 2DEGH to increase or decrease emission of electrons.6. The multilayer junction-edge emitter structure of claim 3 , further comprising at least ...

Подробнее
08-02-2018 дата публикации

ARRAY SUBSTRATE, DISPLAY PANEL AND DISPLAY APPARATUS HAVING THE SAME, AND FABRICATING METHOD THEREOF

Номер: US20180040451A1
Принадлежит:

The present application discloses an array substrate comprising a first substrate, a first electrode on the first substrate, a passivation layer on a side of the first electrode distal to the first substrate, the passivation layer comprising a plurality of first vias, each of which corresponds to a different part of the first electrode, an electron emission source layer on a side of the first electrode distal to the first substrate comprising at least one electron emission source in each of the plurality of first vias, and a dielectric layer on a side of the first electrode distal to the first substrate comprising a plurality of dielectric blocks corresponding to the plurality of first vias, at least a portion of each of the plurality of dielectric blocks in each of the plurality of first vias. The at least one electron emission source comprises a first portion having a first end and a second portion having a second end. The first end is in contact with the first electrode, the first portion is within a corresponding one of the plurality of dielectric blocks. The second portion and the second end are outside the corresponding one of the plurality of dielectric blocks. 1. An array substrate , comprising:a first substrate;a first electrode on the first substrate;a passivation layer on a side of the first electrode distal to the first substrate, the array substrate comprising a plurality of first vias in the passivation layer, each of which corresponds to a different part of the first electrode;an electron emission source layer on a side of the first electrode distal to the first substrate comprising at least one electron emission source in each of the plurality of first vias; anda dielectric layer on a side of the first electrode distal to the first substrate comprising a plurality of dielectric blocks corresponding to the plurality of first vias, at least a portion of each of the plurality of dielectric blocks in each of the plurality of first vias;wherein the at ...

Подробнее
18-02-2021 дата публикации

ELECTRON SOURCE REGENERATION METHOD

Номер: US20210050173A1
Принадлежит:

The present disclosure provides a method of regenerating an electron source, the electron source including at least one emission site fixed on a needle tip, and the emission site including a reaction product formed by metal atoms and gas molecules. The method includes regenerating the electron source in situ if an emission capability of the electron source satisfies a regeneration condition. 1. A method of regenerating an electron source , the electron source comprising at least one emission site fixed on a needle tip , the emission site including a reaction product formed by metal atoms and gas molecules , the method comprising:regenerating the electron source in situ responsive to an emission capability of the electron source satisfying a regeneration condition.2. The method of claim 1 , self-forming a protrusion in situ at the needle tip responsive to the emission capability of the electron source satisfying the regeneration condition, wherein an outer surface of the protrusion includes the metal atoms; and', 'forming an emission site on the outer surface of the protrusion, wherein the emission site includes a reaction product formed by the metal atoms and the gas molecules;, 'wherein the regenerating the electron source in situ comprises forming a highly-reactive active region in situ on a base of the needle tip responsive to the emission capability of the electron source satisfying the regeneration condition, wherein an outer surface of the active region includes the metal atoms; and', 'forming an emission site on the outer surface of the active region, wherein the emission site includes a reaction product formed by the metal atoms and the gas molecules., 'or wherein the regenerating the electron source in situ comprises3. The method of claim 2 , wherein the self-forming a protrusion in situ at the needle tip comprises self-forming the protrusion in situ at the needle tip by heating claim 2 , applying a bias voltage claim 2 , or a combination thereof.4. The ...

Подробнее
07-02-2019 дата публикации

Target Structure For Enhanced Electron Screening

Номер: US20190045617A1
Принадлежит:

Enhanced Coulomb repulsion (electron) screening around light element nuclei is achieved by way of utilizing target structures (e.g., nanoparticles) that undergo plasmon oscillation when subjected to electromagnetic (EM) radiation, whereby transient high density electron clouds are produced in localized regions of the target structures during each plasmon oscillation cycle. Each target structure includes an integral body composed of an electrically conductive material that contains light element atoms (e.g., metal hydrides, metal deuterides or metal tritides). The integral body is also configured (i.e., shaped/sized) to undergo plasmon oscillations in response to the applied EM radiation such that the transient high density electron clouds are formed during each plasmon oscillation cycle, whereby brief but significantly elevated charge density variations are generated around light element (e.g., deuterium) atoms located in the localized regions, thereby enhancing Coulomb repulsion screening to enhance nuclear fusion reaction rates. Various target structure compositions and configurations are disclosed. 1. A structure configured to enhance electron screening effects around light element atoms when subjected to applied electromagnetic (EM) radiation having an excitation frequency , said structure comprising an integral body comprising an electrically conductive material including said light element atoms and containing free electrons ,{'sup': 12', '16, 'wherein said integral body is configured such that free electrons in said conductive material undergo resonant plasmon oscillation when said excitation frequency of said applied EM radiation is in a range of 10Hz to 10Hz, whereby said free electrons move within said integral body in response to said applied EM radiation between at least two localized regions of said integral body such that said resonant plasmon oscillations generate periodic charge density variations around light element atoms disposed in said at least ...

Подробнее
26-02-2015 дата публикации

Electrode material with low work function and high chemical stability

Номер: US20150054398A1
Автор: Yan Jian Xin
Принадлежит:

The present invention discloses an electrode material that eases electron injection and does not react with contact substances. The structure of the material includes a conductive substrate plane on the top of which an emissive material is coated. The emissive coating bonds strongly with the substrate plane. The emissive material is of low work function and high chemical stability. 1. An electrode material with both low work function and high chemical stability , which is composed of a conductive compound substrate as an emissive block and an oxide film formed on the surface of the emissive block as an emissive layer.2. An electrode material according to wherein said the conductive compound is boride claim 1 , carbide or nitride of elements selected individually from or are a combination of Ca claim 1 , Sr claim 1 , Ba claim 1 , Sc claim 1 , Y claim 1 , Lanthanides claim 1 , Th claim 1 , Ti claim 1 , Zr claim 1 , and Hf.3. An electrode material according to wherein said the metal boride is a single crystalline hexaboride of Ca claim 2 , Sr claim 2 , Ba claim 2 , Sc claim 2 , Y claim 2 , and Lanthanides claim 2 , oriented in the lattice direction of <100> claim 2 , <110> claim 2 , or <111>.4. An electrode material according to wherein said the oxide film is metal oxide composed of claim 1 , aside from oxygen claim 1 , elements selected individually from or are a combination of Ca claim 1 , Sr claim 1 , Ba claim 1 , Sc claim 1 , Y claim 1 , Lanthanides claim 1 , Th claim 1 , Ti claim 1 , Zr claim 1 , and Hf.5. An electrode material according to wherein said the emissive block is in the form of a needle and the apex of the needle is coated with the oxide film.6. An electrode material according to wherein said the apex of the emissive block needle is a top flat platform perpendicular to the needle axis and the oxide film covers at least the top flat platform.7. An electrode material according to wherein said the emissive block needle apex is in the form of a top ...

Подробнее
03-03-2022 дата публикации

Field Emission Devices

Номер: US20220068584A1

A method for making field emission devices so that they have emitter tips in the form of a needle-like point with a width and length configured such that ratio of the width to the length ranges from about 0.001 to about 0.05, and associated methods for making the tips by 3-D printing. 1. A method for making a field emission device , comprising the steps of:providing an array of emitter tips; andcoating portions of the emitter tips with a conductive material by depositing the conductive material onto the emitter tips from one side only of the emitter tips at an angle of from about 30 degrees to about 60 degrees relative to the length axis of the emitter tips such that the conductive material is deposited onto the emitter tips in a sharp tip configuration in the form of a needle-like point with a width and length configured such that the ratio of the width to the length ranges from about 0.001 to about 0.05.2. The method of claim 1 , wherein the array of emitter tips is formed by 3-D printing.3. The method of claim 2 , wherein the 3-D printing is performed by one or more of fused deposition modeling claim 2 , inkjet printing claim 2 , stereolithography claim 2 , and selective sintering.4. The method of claim 2 , wherein the array of emitter tips formed by 3-D printing is made from one or more of carbon claim 2 , metal claim 2 , powder of nylon claim 2 , graphite-infused nylon claim 2 , aluminum-infused nylon and conductive resin.5. The method of claim 1 , wherein in the array the emitters are identical to one another.6. The method of claim 1 , wherein in the array the emitters are uniformly spaced apart.7. The method of claim 1 , wherein in the array the emitters are not identical to one another.8. The method of claim 1 , wherein in the array the emitters are not uniformly spaced apart.9. The method of claim 1 , wherein the step of providing the array of emitter tips comprises providing the array of emitter tips from a soluble material claim 1 , and the method further ...

Подробнее
14-02-2019 дата публикации

Electron Source

Номер: US20190049851A1
Принадлежит:

An electron source is formed on a silicon substrate having opposing first and second surfaces. At least one field emitter is prepared on the second surface of the silicon substrate to enhance the emission of electrons. To prevent oxidation of the silicon, a thin, contiguous boron layer is disposed directly on the output surface of the field emitter using a process that minimizes oxidation and defects. The field emitter can take various shapes such as pyramids and rounded whiskers. One or several optional gate layers may be placed at or slightly lower than the height of the field emitter tip in order to achieve fast and accurate control of the emission current and high emission currents. The field emitter can be p-type doped and configured to operate in a reverse bias mode or the field emitter can be n-type doped. 1. An electron source comprising:a silicon substrate having a top surface;at least one field emitter formed directly on the top surface of the silicon substrate, wherein the field emitter comprises one of a pyramid, a cone, or a rounded whisker; anda boron layer hermetically disposed on the field emitter, wherein the boron layer is greater than 75% boron, and wherein the boron layer covers the field emitter from the silicon substrate to a tip of the field emitter.2. The electron source of claim 1 , wherein the boron layer comprises less than 10% oxygen near an interface between the boron layer and the silicon substrate.3. The electron source of claim 1 , wherein the tip of the field emitter has a lateral dimension less than 100 nm.4. The electron source of claim 3 , wherein the tip of the field emitter has a lateral dimension greater than 20 nm.5. The electron source of claim 1 , wherein the tip of the field emitter has a diameter less than 100 nm.6. The electron source of claim 1 , further comprising an electrode held at a positive voltage of less than 500 V relative to the field emitter at a distance of 2 μm or less from an apex of the field emitter.7. ...

Подробнее
05-03-2015 дата публикации

FIELD EMISSION DEVICES AND METHODS OF MANUFACTURING GATE ELECTRODES THEREOF

Номер: US20150060757A1
Принадлежит: KUMOH NATIONAL INSTITUTE OF TECHNOLOGY

A field emission device may comprise: an emitter comprising a cathode electrode and an electron emission source supported by the cathode electrode; an insulating spacer around the emitter, the insulating spacer forming an opening that is a path of electrons emitted from the electron emission source; and/or a gate electrode comprising a graphene sheet covering the opening. A method of manufacturing a gate electrode may comprise: forming a graphene thin film on one surface of a conductive film; forming a mask layer having an etching opening on another surface of the conductive film, wherein the etching opening exposes a portion of the conductive film; partially removing the conductive film through the etching opening to partially expose the graphene thin film; and/or removing the mask layer. 1. A field emission device , comprising:an emitter comprising a cathode electrode and an electron emission source supported by the cathode electrode;an insulating spacer around the emitter, the insulating spacer forming an opening that is a path of electrons emitted from the electron emission source; anda gate electrode comprising a graphene sheet covering the opening.2. The field emission device of claim 1 , wherein the gate electrode further comprises an electrode unit around the opening claim 1 , andwherein the graphene sheet is connected to the electrode unit.3. The field emission device of claim 1 , wherein the graphene sheet is a graphene single-layered film or a graphene multi-layered film.4. A field emission device claim 1 , comprising:an emitter comprising a cathode electrode and an electron emission source supported by the cathode electrode;an insulating spacer around the emitter; anda gate electrode, supported by the insulating spacer, comprising an electrode unit that defines an opening that is a discharge path of electrons emitted from the emitter, and a tunneling member that covers the opening and passes the electrons therethrough according to a tunneling effect.5. ...

Подробнее
05-03-2015 дата публикации

FIELD EMISSION DEVICES AND METHODS OF MANUFACTURING EMITTERS THEREOF

Номер: US20150060758A1

A field emission device may comprise: an emitter comprising a cathode electrode and an electron emission source supported by the cathode electrode; an insulating spacer around the emitter, the insulating spacer forming an opening that is a path of electrons emitted from the electron emission source; and/or a gate electrode around the opening. The electron emission source may comprise a plurality of graphene thin films vertically supported in the cathode electrode toward the opening. 1. A field emission device , comprising:an emitter comprising a cathode electrode and an electron emission source supported by the cathode electrode;an insulating spacer around the emitter, the insulating spacer forming an opening that is a path of electrons emitted from the electron emission source; anda gate electrode around the opening;wherein the electron emission source comprises a plurality of graphene thin films vertically supported in the cathode electrode toward the opening.2. The field emission device of claim 1 , wherein each of the plurality of graphene thin films comprises:a first portion buried in the cathode electrode; anda second portion that extends from the first portion and is exposed from the cathode electrode.3. The field emission device of claim 1 , wherein the cathode electrode has a pointed shape toward the opening claim 1 , andwherein the plurality of graphene thin films are in a pointed structure toward the opening.4. The field emission device of claim 1 , wherein each of the plurality of graphene thin films is a graphene single-layered film.5. The field emission device of claim 1 , wherein each of the plurality of graphene thin films is a graphene multi-layered film.6. A field emission device claim 1 , comprising:a body comprising a cavity and an opening allowing the cavity to communicate with an outside of the body;a cathode electrode in the cavity, wherein a plurality of graphene thin films are vertically toward the opening at a position in the cavity ...

Подробнее
05-03-2015 дата публикации

COLD FIELD ELECTRON EMITTERS BASED ON SILICON CARBIDE STRUCTURES

Номер: US20150061487A1
Принадлежит:

A cold cathode field emission electron source capable of emission at levels comparable to thermal sources is described. Emission in excess of 6 A/cmat 7.5 V/μm is demonstrated in a macroscopic emitter array. The emitter is comprised of a monolithic and rigid porous semiconductor nanostructure with uniformly distributed emission sites, and is fabricated through a room temperature process which allows for control of emission properties. These electron sources can be used in a wide range of applications, including microwave electronics and x-ray imaging for medicine and security. 1. A method of forming a monolithic , homogeneous , and porous silicon carbide field emitter having a plurality of discrete emission projections extending from a face of the field emitter , the method comprising:providing a silicon carbide substrate;providing an anodizing solution including (i) at least one reducing agent, (ii) at least one oxidizer, and (iii) water;electrochemically etching either face of the silicon carbide substrate with the anodizing solution for an effective period of time to thereby form a porous silicon carbide substrate;subjecting the face of the porous silicon carbide substrate to ion etching to thereby form a silicon carbide field emitter having a plurality of discrete emission projections of porous silicon carbide extending from the face of the field emitter.2. The method of wherein the electrochemically etching uses a voltage within a range of from about 10V to about 100V.3. The method of wherein the electrochemically etching uses a voltage of about 20V.4. The method of wherein the period of time is at least 1 minute.5. The method of wherein the period of time is from about 5 minutes to about 4 hours.6. The method of wherein the reducing agent of the anodizing solution is hydrofluoric acid and the oxidizer of the anodizing solution is ethanol.7. The method of wherein the anodizing solution includes from about 1% to about 30% hydrofluoric acid and from about 5% to ...

Подробнее
22-05-2014 дата публикации

MEDICAL ELECTRODES WITH LAYERED COATINGS

Номер: US20140142670A1
Принадлежит: Cardiac Pacemakers, Inc.

Various embodiments concern an electrode of an implantable medical device for delivering electrical stimulation to tissue. Such an electrode can include a main body formed from a substrate metal comprising one of titanium, stainless steel, a cobalt-chromium alloy, or palladium. The main body may not be radiopaque. The electrode may further include a first coating on at least one side of the main body, the first coating comprising a layer of one of tantalum or iridium metal that is at least about 2 micrometers thick. The first coating can be radiopaque and porous. The porosity of the first coating can increase the electrical performance of the electrode in delivering electrical stimulation to tissue. 1. A medical device for one or both of sensing signals from tissue and delivering stimulation to tissue , the medical device comprising:an elongated body comprising insulative material;a conductor extending within the elongated body; and a main body, the main body formed from titanium and comprising a connector that is electrically and mechanically connected to the conductor; and', 'a first coating on the main body comprising a tantalum layer that is at least about 2 micrometers thick,', 'wherein the first coating allows the electrode to deliver the electrical stimulation to tissue such that the charge discharge capacitance (CDC) of the electrode is about 0.0004 farads per square centimeter or higher, the rate of voltage rise (dV/dt) of the electrode is about 0.05 volts per second or lower, and the impedance of the electrode is about 160 ohms or lower., 'an electrode exposed on an exterior of the elongated body, the electrode comprising2. The medical device of claim 1 , wherein the electrode further comprises a second coating on the first coating that improves the performance of the electrode in delivering the electrical stimulation to tissue.3. The medical device of claim 2 , wherein the second coating is about 0.5-1.0 micrometers thick.4. The medical device of claim 2 ...

Подробнее
12-03-2015 дата публикации

FLASH LAMP, A CORRESPONDING METHOD OF MANUFACTURE AND APPARATUS FOR THE SAME

Номер: US20150072584A1
Принадлежит:

A flash lamp is disclosed including an insulative envelope containing a gas and housing a pair of arcing electrodes and characterized by an instance of isolated conductive material being formed at a predetermined location on the inside of the envelope adjacent an electrode. Further disclosed is a corresponding method of manufacturing a flash lamp and apparatus for the same. 1. An apparatus for manufacturing a flash lamp comprising a receptacle for receiving a flash lamp comprising an insulative envelope containing a gas and housing a pair of arcing electrodes; and a heat source configured to heat a localized area of one of the electrodes of the flash lamp in order to cause evaporated electrode material to form on the envelope , adjacent the heated area.2. The apparatus according to claim 1 , wherein either the receptacle or the heat source is able to move relative to the other in order to determine the shape of the conductive material formed.3. The apparatus according to claim 1 , wherein the heat source is a laser. This application is a Divisional of U.S. application Ser. No. 13/503,944 filed Apr. 25, 2012, which was a Section 371 of International Application No. PCT/EP2010/006630, filed Oct. 29, 2010, which was published in the English language on May 26, 2011, under International Publication No. WO 2011/060878 A1, the entire disclosures of all of which are incorporated herein by reference.This invention relates to a flash (or arc) lamp comprising an insulative envelope containing a gas and housing a pair of arcing electrodes; and to a corresponding method of manufacturing such a flash lamp and apparatus for the same.As is known, the ignition/triggering properties of arc and flash lamps are notoriously inconsistent from one batch of lamps to another and from one lamp to another.The triggering process is complex and requires an initial breakdown or ionization in the lamp gas (e.g., xenon and krypton). Most triggering schemes use a trigger transformer to produce the ...

Подробнее
29-05-2014 дата публикации

SYSTEMS AND METHODS FOR IMPLEMENTING ROBUST CARBON NANOTUBE-BASED FIELD EMITTERS

Номер: US20140148074A1
Принадлежит: California Institute of Technology

Systems and methods in accordance with embodiments of the invention implement carbon nanotube-based field emitters. In one embodiment, a method of fabricating a carbon nanotube field emitter includes: patterning a substrate with a catalyst, where the substrate has thereon disposed a diffusion barrier layer; growing a plurality of carbon nanotubes on at least a portion of the patterned catalyst; and heating the substrate to an extent where it begins to soften such that at least a portion of at least one carbon nanotube becomes enveloped by the softened substrate. 1. A method of fabricating a carbon nanotube-based field emitter , comprising: 'wherein the substrate has thereon disposed a diffusion barrier layer;', 'patterning a substrate with a catalyst;'}growing a plurality of carbon nanotubes on at least a portion of the patterned catalyst; andheating the substrate to an extent where it begins to soften such that at least a portion of at least one carbon nanotube becomes enveloped by the softened substrate.2. The method of claim 1 , further comprising allowing the grown carbon nanotubes and the softened substrate to cool to room temperature.3. The method of claim 2 , wherein the substrate comprises titanium.4. The method of claim 3 , wherein the diffusion barrier layer comprises aluminum oxide.5. The method of claim 4 , wherein the diffusion barrier layer has a thickness of less than approximately 30 angstroms.6. The method of claim 3 , wherein the catalyst is patterned on to the substrate in the form of a plurality of dots.7. The method of claim 6 , wherein the catalyst pattern is created using a lift-off process.8. The method of claim 7 , wherein the thickness of the patterned catalyst is less than approximately 35 angstroms.9. The method of claim 6 , wherein the grown plurality of carbon nanotubes are in the form of bundles of carbon nanotubes claim 6 , wherein each bundle of carbon nanotubes corresponds with one dot.10. The method of claim 9 , wherein the ...

Подробнее
05-03-2020 дата публикации

ELECTRON EMISSION ELEMENT AND METHOD FOR SAME

Номер: US20200075285A1
Принадлежит:

An electron emitting device () includes a first electrode (), a second electrode (), and a semi-conductive layer () provided between the first electrode () and the second electrode (). The semi-conductive layer () includes a porous alumina layer () having a plurality of pores () and silver () supported in the plurality of pores () of the porous alumina layer (). 1. An electron emitting device comprising a first electrode , a second electrode , and a semi-conductive layer provided between the first electrode and the second electrode , whereinthe semi-conductive layer includes a porous alumina layer having a plurality of pores and silver supported in the plurality of pores of the porous alumina layer.2. The electron emitting device of claim 1 , wherein the first electrode is formed of an aluminum substrate or an aluminum layer claim 1 , and the porous alumina layer is an anodized layer formed at a surface of the aluminum substrate or at a surface of the aluminum layer.3. The electron emitting device of claim 1 , wherein the first electrode is formed of an aluminum substrate containing aluminum in an amount of not less than 99.00 mass % but less than 99.99 mass % claim 1 , and the porous alumina layer is an anodized layer formed at a surface of the aluminum substrate.4. The electron emitting device of claim 3 , wherein aluminum is contained in an amount of 99.98 mass % or less in the aluminum substrate.5. The electron emitting device of claim 1 , wherein the porous alumina layer has a thickness which is not less than 10 nm and not more than 5 μm.6. The electron emitting device of claim 1 , wherein the plurality of pores have an opening having a two-dimensional size which is not less than 50 nm and not more than 3 μm as viewed from a normal direction of a surface thereof.7. The electron emitting device of claim 1 , wherein the plurality of pores of the porous alumina layer have a depth which is not less than 10 nm and not more than 5 μm.8. The electron emitting device ...

Подробнее
12-06-2014 дата публикации

ELECTROSTATIC DISCHARGING STRUCTURE AND METHOD OF MANUFACTURING THE SAME

Номер: US20140159565A1
Принадлежит: SAMSUNG ELECTRO-MECHANICS CO., LTD.

Disclosed herein are an electrostatic discharging structure including single-wall carbon nano tubes disposed between electrodes at a predetermined interval to precisely control discharge starting voltage generating a discharge phenomenon between electrodes, and a method of manufacturing an electrostatic discharging structure. 1. An electrostatic discharging structure , comprising:a base substrate formed of an insulating material;a first electrode formed on one surface of the base substrate;a second electrode formed on one surface of the base substrate and a second electrode electrically isolated from the first electrode by being separated from the first electrode by a predetermined interval; anda discharging structure provided between the first electrode and the second electrode and formed of a plurality of carbon nano tubes that are separated from each other.2. The electrostatic discharging structure according to claim 1 , wherein the carbon nano tube is a single-wall carbon nanotube (SWCNT).3. The electrostatic discharging structure according to claim 2 , wherein the single-wall carbon nano tube is provided so that one end in a longitudinal direction of the single-wall carbon nano tube contacts the base substrate and the other end in a longitudinal direction thereof faces upwardly.4. The electrostatic discharging structure according to claim 3 , wherein the electrostatic discharging structure generates a discharge phenomenon when a voltage difference of at least 100 V is formed between the first electrode and the second electrode claim 3 , andthe single-wall carbon nano tube has a diameter of 0.5 to 3 nm and a length of 1 to 10 μm and is spaced apart from other adjacent single-wall carbon nano tubes at an interval of 20 to 100 nm.5. The electrostatic discharging structure according to claim 3 , wherein the single-wall carbon nano tube further includes a catalyst layer that contacts a surface of the base substrate.6. The electrostatic discharging structure ...

Подробнее
12-06-2014 дата публикации

FIELD EMISSION CATHODE DEVICE AND FIELD EMISSION EQUIPMENT USING THE SAME

Номер: US20140159566A1
Принадлежит:

A field emission cathode device includes a cathode electrode. An electron emitter is electrically connected to the cathode electrode, wherein the electron emitter includes a number of sub-electron emitters. An electron extracting electrode is spaced from the cathode electrode by a dielectric layer, wherein the electron extracting electrode defines a through-hole. The distances between an end of each of the sub-electron emitters away from the cathode electrode and a sidewall of the through-hole are substantially equal. 1. A field emission cathode device , comprising:a cathode electrode;an electron emitter electrically connected to the cathode electrode, wherein the electron emitter comprises a plurality of sub-electron emitters;an electron extracting electrode spaced from the cathode electrode by a dielectric layer, wherein the electron extracting electrode defines a through-hole, and a part of the plurality of sub-electron emitters extends to the through-hole;wherein the distances between an end of each of the plurality of sub-electron emitters away from the cathode electrode and a sidewall of the through-hole are substantially equal.2. The field emission cathode device of claim 1 , wherein a surface formed by the end of each of the plurality of sub-electron emitters away from the cathode electrode is substantially parallel to the sidewall of the through-hole.3. The field emission cathode device of claim 1 , wherein the distance is in a range from about 5 micrometers to about 300 micrometers.4. The field emission cathode device of claim 1 , wherein the through-hole is shaped as an inverted funnel such that the width thereof is narrowed as it goes apart from the cathode electrode.5. The field emission cathode device of claim 1 , wherein a secondary electron emission layer is formed on the sidewall of the through-hole of the electron extracting electrode.6. The field emission cathode device of claim 1 , wherein a height of each of the plurality of sub-electron ...

Подробнее
14-03-2019 дата публикации

ELECTRON EMISSION DEVICE, METHOD FOR MANUFACTURING SAME, AND METHOD FOR MANUFACTURING ELECTRONIC DEVICE

Номер: US20190080870A1
Принадлежит:

Provided are an electron emission device having a novel structure and being capable of improving characteristics and/or extending a lifetime of a related-art electron emission device, and a method of manufacturing the electron emission device. The method of manufacturing an electron emission device includes: a step A of providing one of an aluminum substrate and an aluminum layer supported by a substrate; a step B of anodizing a surface of the one of the aluminum, substrate and the aluminum layer to form a porous alumina layer having a plurality of pores; a step C of applying silver nanoparticles into the plurality of pores to cause the plurality of pores to support the silver nanoparticles; a step D of applying, after the step C, an insulating layer forming solution to substantially an entire surface of the one of the aluminum substrate and the aluminum layer; a step E of forming, after the step D, an insulating layer by at least reducing a solvent included in the insulating layer forming solution; and a step F of forming an electrode on the insulating layer. 1. A method of manufacturing an electron emission device , comprising:a step A of providing one of an aluminum substrate and an aluminum layer supported by a substrate;a step B of anodizing a surface of the one of the aluminum substrate and the aluminum layer to form, a porous alumina layer having a plurality of pores;a step C of applying silver nanoparticles into the plurality of pores to cause the plurality of pores to support the silver nanoparticles;a step D of applying, after the step C, an insulating layer forming solution to substantially an entire surface of the one of the aluminum substrate and the aluminum layer;a step E of forming, after the step D, an insulating layer by at least reducing a solvent included in the insulating layer forming solution; anda step F of forming, after the step E, am electrode on the insulating layer.2. The method of manufacturing an electron emission device of claim 1 , ...

Подробнее
23-03-2017 дата публикации

ELECTRON EMITTING DEVICE USING GRAPHENE AND METHOD FOR MANUFACTURING SAME

Номер: US20170084417A1
Принадлежит:

Disclosed are an electron emitting device using graphene and a method for manufacturing the same. The electron emitting device includes a metal holder having at least one slot, at least one emitter plate inserted into the slot to protrude from a first surface of the metal holder, and including an emitter supporting member and a graphene emitter attached onto the emitter supporting member, an insulation layer provided on the first surface of the metal holder, and a gate electrode provided on the insulation layer and including a gate supporting member and a graphene gate attached onto the gate supporting member. 1. An electron emitting device comprising:a metal holder having at least one slot;at least one emitter plate inserted into the slot to protrude from a first surface of the metal holder, and comprising an emitter supporting member and a graphene emitter attached onto the emitter supporting member;an insulation layer provided on the first surface of the metal holder; anda gate electrode provided on the insulation layer and comprising a gate supporting member and a graphene gate attached onto the gate supporting member.2. The electron emitting device of claim 1 , wherein the graphene emitter is provided perpendicularly to the first surface of the metal holder.3. The electron emitting device of claim 2 , wherein the graphene emitter is provided at an edge of the emitter supporting member.4. The electron emitting device of claim 3 , wherein the emitter supporting member comprises a metal film having an emitter groove at an edge thereof claim 3 , andwherein the graphene emitter is attached onto the metal film to cover the emitter groove.5. The electron emitting device of claim 3 , wherein the emitter supporting member comprises a metal mesh claim 3 , andwherein the graphene emitter is attached onto the metal mesh.6. The electron emitting device of claim 1 , wherein the gate supporting member comprises a metal film having a gate hole claim 1 , andwherein the graphene ...

Подробнее
19-06-2014 дата публикации

METHOD FOR FABRICATING FIELD EMISSION CATHODE STRUCTURE

Номер: US20140166494A1
Автор: FAN SHOU-SHAN, Liu Peng
Принадлежит:

A method for fabricating the field emission cathode structure includes following steps. A first carbon nanotube structure is provided. The first carbon nanotube structure is suspended. A voltage is applied to heat the first carbon nanotube structure to form a temperature gradient. A number of second carbon nanotubes are grown on a surface of the first carbon nanotube structure to form a second carbon nanotube structure. 1. A method for fabricating the field emission cathode structure , the method comprising:providing a first carbon nanotube structure;suspending the first carbon nanotube structure;applying a voltage to the first carbon nanotube structure to heat the first carbon nanotube structure to form a temperature gradient; andgrowing a plurality of second carbon nanotubes on a surface of the first carbon nanotube structure to form a second carbon nanotube structure.2. The method of claim 1 , wherein the first carbon nanotube structure is a free-standing structure.3. The method of claim 2 , wherein a part of the first carbon nanotube structure is suspended between a first support and a second support spaced from each other claim 2 , and the first carbon nanotubes extend from the first support to the second support.4. The method of claim 3 , wherein the first support and the second support are conductive claim 3 , the voltage is applied to the first carbon nanotube structure via the first support and the second support claim 3 , and a current flows through the first carbon nanotube structure from the first support to the second support.5. The method of claim 3 , wherein the temperature gradient is formed on the surface of the first carbon nanotube structure claim 3 , and a temperature decreases gradually along the direction away from the middle position between the first support and the second support.6. The method of claim 1 , wherein the first carbon nanotube structure comprises a plurality of first carbon nanotubes aligned along the same direction claim 1 , ...

Подробнее
21-03-2019 дата публикации

Carbon nanotube electron emitter, method of manufacturing the same and x-ray source using the same

Номер: US20190088437A1

The present disclosure provides a method of manufacturing a carbon nanotube electron emitter, including: forming a carbon nanotube film; performing densification by dipping the carbon nanotube film in a solvent; cutting an area of the carbon nanotube film into a pointed shape or a line shape; and fixing the cutting area of the carbon nanotube film arranged between at least two metal members to face upwards with lateral pressure.

Подробнее
01-04-2021 дата публикации

CARBON NANOTUBE FIELD EMITTER AND PREPARATION METHOD THEREOF

Номер: US20210094827A1
Принадлежит:

A carbon nanotube field emitter comprises at least two electrodes and at least one graphitized carbon nanotube structure. The at least one graphitized carbon nanotube structure comprises a first end and a field emission end. The first end is opposite to the field emission end. The first end is fixed between the at least two electrodes, and the field emission end is exposed from the at least two electrodes and configured to emit electrons. 1. A carbon nanotube field emitter , comprising:at least two electrodes and at least one graphitized carbon nanotube structure, wherein the at least one graphitized carbon nanotube structure comprises a first end and a field emission end, the first end is opposite to the field emission end, the first end is fixed between the at least two electrodes, and the field emission end is exposed from the at least two electrodes and configured to emit electrons.2. The carbon nanotube field emitter of claim 1 , wherein a density of the graphitized carbon nanotube structure is larger than or equal to 1.6 g/m.3. The carbon nanotube field emitter of claim 1 , wherein the field emission end comprises a plurality of protrusions and a plurality of burrs.4. The carbon nanotube field emitter of claim 1 , wherein the graphitized carbon nanotube structure comprises a plurality of carbon nanotube drawn films stacked with each other.5. The carbon nanotube field emitter of claim 4 , wherein an angle between an aligned directions of carbon nanotubes in two adjacent carbon nanotube drawn films ranges from about 0 degrees to about 30 degrees.6. The carbon nanotube field emitter of claim 4 , wherein the angle between an aligned directions of carbon nanotubes in the two adjacent carbon nanotube drawn films is 0 degrees.7. The carbon nanotube field emitter of claim 4 , wherein each carbon nanotube drawn film comprises a plurality of carbon nanotubes claim 4 , and the plurality of carbon nanotubes are arranged parallel to a surface of a carbon nanotube drawn ...

Подробнее
03-07-2014 дата публикации

Ion source with cathode having an array of nano-sized projections

Номер: US20140183348A1
Принадлежит: Schlumberger Technology Corp

An ion source for use in a particle accelerator includes at least one cathode. The at least one cathode has an array of nano-sized projections and an array of gates adjacent the array of nano-sized projections. The array of nano-sized projections and the array of gates have a first voltage difference such that an electric field in the cathode causes electrons to be emitted from the array of nano-sized projections and accelerated downstream. There is a ion source electrode downstream of the at least one cathode, and the at least one cathode and the ion source electrode have the same voltage applied such that the electrons enter the space encompassed by the ion source electrode, some of the electrons as they travel within the ion source electrode striking an ionizable gas to create ions.

Подробнее
03-07-2014 дата публикации

FIELD EMISSION CATHODE DEVICE AND DRIVING METHOD

Номер: US20140184092A1
Автор: FAN SHOU-SHAN, Liu Peng
Принадлежит:

A driving method includes providing a field emission cathode device. The field emission cathode device includes a cathode electrode, an electron emission layer electrically connected to the cathode electrode, a first gate electrode spaced from the cathode electrode by a first dielectric layer, and a second grid electrode spaced from the first gate electrode by a second dielectric layer. The second dielectric layer has a second opening. A first voltage is supplied to the cathode electrode, a second voltage is supplied to the first gate electrode, and a third voltage is supplied to the second grid electrode, to extract electrons from the electron emission layer to a space formed by the second opening, until the electrons of the space saturate. The third voltage is greater than the second voltage, such that the electrons of the space are emitted through the second grid electrode. 1. A field emission cathode device , comprising:an insulating substrate;a cathode electrode located on a surface of the insulating substrate;a first dielectric layer located on a surface of the cathode electrode or the surface of the insulating substrate, wherein the first dielectric layer defines a first opening such that part of the cathode electrode is exposed;an electron emission layer located on the surface of the cathode electrode and electrically connected to the cathode electrode, wherein the surface of the cathode electrode is exposed through the first opening;a first gate electrode located on a surface of the first dielectric layer;a second dielectric layer located on a surface of the first gate electrode and defined a second opening, a part of the cathode electrode is exposed; anda second grid electrode extending from the second dielectric layer and opposite to the electron emission layer, wherein the second grid electrode covers the second opening.2. The field emission cathode device of claim 1 , further comprising a fixing element located on a surface of the second grid electrode. ...

Подробнее
26-03-2020 дата публикации

VACUUM CHANNEL TRANSISTOR STRUCTURES WITH SUB-10 NANOMETER NANOGAPS AND LAYERED METAL ELECTRODES

Номер: US20200098534A1
Принадлежит:

A technique relates to a semiconductor device. An emitter electrode and a collector electrode are formed in a dielectric layer such that a nanogap separates the emitter electrode and the collector electrode, a portion of the emitter electrode including layers. A channel is formed in the dielectric layer so as to traverse the nanogap. A top layer is formed over the channel so as to cover the channel and the nanogap without filling in the channel and the nanogap, thereby forming a vacuum channel transistor structure. 1. A method of forming a semiconductor device , the method comprising:forming an emitter electrode and a collector electrode in a dielectric layer such that a nanogap separates the emitter electrode and the collector electrode, a portion of the emitter electrode comprising layers;forming a channel in the dielectric layer so as to traverse the nanogap; andforming a top layer over the channel so as to cover the channel and the nanogap without filling in the channel and the nanogap, thereby forming a vacuum channel transistor structure.2. The method of claim 1 , wherein a dielectric material is formed on a global backgate.3. The method of claim 1 , wherein the emitter electrode and the collector electrode are formed on a high-k dielectric material.4. The method of claim 3 , wherein the high-k dielectric material is formed on a local bottom gate.5. The method of claim 1 , wherein the emitter electrode comprises an emitter tip opposing a collector tip of the collector electrode such that the nanogap is formed between the emitter and collector tips.6. The method of claim 5 , wherein the emitter tip comprises the layers.7. The method of claim 6 , wherein the collector tip comprises the layers.8. The method of claim 5 , wherein the layers comprise at least one low workfunction material interposed in a high workfunction material.9. The method of claim 1 , wherein the layers comprise one or more low workfunction layers and one or more high workfunction layers.10. ...

Подробнее
21-04-2016 дата публикации

METHOD FOR PREPARING A MOLYBDENUM DISULFIDE FILM USED IN A FIELD EMISSION DEVICE

Номер: US20160108521A1
Принадлежит:

The present disclosure relates to a method for preparing a molybdenum disulfide film used in a field emission device, including: providing a sulfur vapor; blowing the sulfur vapor into a reaction chamber having a substrate and MoOpowder to generate a gaseous MoO; feeding the sulfur vapor into the reaction chamber sequentially, heating the reaction chamber to a predetermined reaction temperature and maintaining for a predetermined reaction time, and then cooling the reaction chamber to a room temperature and maintaining for a second reaction time to form a molybdenum disulfide film on the surface of the substrate, in which the molybdenum disulfide film grows horizontally and then grows vertically. The method according to the present disclosure is simple and easy, and the field emission property of the MoSfilm obtained is good. 1. A method for preparing a molybdenum disulfide film used in a field emission device , comprising:providing a sulfur vapor;{'sub': 3', '3', 'x, 'blowing the sulfur vapor into a reaction chamber having a substrate and MoOpowder, so as to make the MoOpowder react with the sulfur vapor to generate a gaseous MoOwhich deposits on the substrate, in which x is 2≦x<3;'}{'sub': 'x', 'feeding the sulfur vapor into the reaction chamber sequentially, heating the reaction chamber to a predetermined reaction temperature and maintaining for a predetermined reaction time, and then cooling the reaction chamber to a room temperature, so as to make the sulfur vapor and the MoOform a molybdenum disulfide film on the surface of the substrate, in which the molybdenum disulfide film grows horizontally and then grows vertically.'}2. The method according to claim 1 , wherein the predetermined reaction temperature ranges from 600° C. to 900° C.3. The method according to claim 1 , wherein the predetermined reaction time ranges from 5 minutes to 30 minutes.4. The method according to claim 1 , wherein the sulfur vapor is obtained by sublimating sulfur powder.5. The method ...

Подробнее
19-04-2018 дата публикации

FOLD OVER EMITTER AND COLLECTOR FIELD EMISSION TRANSISTOR

Номер: US20180108508A1
Принадлежит:

A field emission transistor includes a gate, a fold over emitter, and fold over collector. The emitter and the collector are separated from the gate by a void and are separated from a gate contact by gate contact dielectric. The void may be a vacuum, ambient air, or a gas. Respective ends of the emitter and the collector are separated by a gap. Electrons are drawn across gap from the emitter to the collector by an electrostatic field created when a voltage is applied to the gate. The emitter and collector include a first conductive portion substantially parallel with gate and a second conductive portion substantially perpendicular with gate. The second conductive portion may be formed by bending a segment of the first conductive portion. The second conductive portion is folded inward from the first conductive portion towards the gate. Respective second conductive portions are generally aligned. 1. A field emission transistor comprising:a gate within a trench of a dielectric layer, the gate in electrical communication with a gate contact;an emitter comprising a first emitter portion lining a first sidewall of the trench and a second emitter portion angled from the first emitter portion toward the gate; anda collector comprising a first collector portion lining a second sidewall of the trench and a second collector portion angled from the first collector portion toward the gate;wherein the emitter and collector are separated from the gate by a void.2. The field emission transistor of claim 1 , further comprising:gate dielectric material between and contacting the gate contact and the first emitter portion and between and contacting the gate contact and the first collector portion.3. The field emission transistor of claim 1 , wherein the first emitter portion and the first collector portion are substantially parallel to the gate.4. The field emission transistor of claim 1 , wherein the second emitter portion and the second collector portion are substantially ...

Подробнее
10-07-2014 дата публикации

ELECTRIC FIELD EMITTING SOURCE, ELEMENT USING SAME, AND PRODUCTION METHOD THEREFOR

Номер: US20140191650A1

An electric field emitting source is equipped with an electron emitting film which comprises a nano-sized electron emitting substance and has a first surface and a second surface constituting the surface opposite thereto, and a cathode which secures one end of the electron emitting film and comprises a first block and a second block respectively corresponding to the first surface and the second surface of the electron emitting film. 1. A field emission source comprising:an electron emission film containing nano-sized electron emission materials and having a first surface and a second surface opposite to the first surface; anda cathode comprising a first block corresponding to the first surface and a second block corresponding to the second surface to fix one end of the electron emission film.2. The field emission source of claim 1 ,wherein the cathode is provided on both ends of the field emission film.3. The field emission source of claim 1 ,wherein at least one of the first and second blocks is formed of one of an insulating material and a metallic material.4. The field emission source of claim 1 ,wherein the electron emission materials of the electron emission film are combined to one another through a molecular force without requiring a binder.5. The field emission source of claim 1 ,wherein the field emission source further comprises a base that supports the first block, andthe first surface of the field emission film is positioned in parallel with a surface of the base.6. The field emission source of claim 2 ,wherein at least one of the first and second blocks is formed of one of an insulating material and a metallic material.7. The field emission source of claim 2 ,wherein the electron emission materials of the electron emission film are combined to one another through a molecular force without requiring a binder.8. The field emission source of claim 2 ,wherein the field emission source further comprises a base that supports the first block, andthe first ...

Подробнее
28-04-2016 дата публикации

Cold field electron emitters based on silicon carbide structures

Номер: US20160118214A1

A cold cathode field emission electron source capable of emission at levels comparable to thermal sources is described. Emission in excess of 6 A/cm 2 at 7.5 V/μm is demonstrated in a macroscopic emitter array. The emitter has a monolithic and rigid porous semiconductor nanostructure with uniformly distributed emission sites, and is fabricated through a room temperature process which allows for control of emission properties. These electron sources can be used in a wide range of applications, including microwave electronics and x-ray imaging for medicine and security.

Подробнее
26-04-2018 дата публикации

Method for manufacturing nanostructures for a field emission cathode

Номер: US20180114666A1
Принадлежит: LIGHTLAB SWEDEN AB

The present invention relates to the field of field emission lighting, and specifically to a method for forming a field emission cathode. The method comprises arranging a growth substrate in a growth solution comprising a Zn-based growth agent, the growth solution having a pre-defined pH-value at room temperature; increasing the pH value of the growth solution to reach a nucleation phase; upon increasing the pH of the solution nucleation starts. The growth phase is then entered by decreasing the pH. The length of the nanorods is determined by the growth time. The process is terminated by increasing the pH to form sharp tips. The invention also relates to a structure for such a field emission cathode and to a lighting arrangement comprising the field emission cathode. 1. A method for forming a plurality of ZnO nanostructures for a field emission cathode , the method comprising the steps of:providing a growth substrate;providing a growth solution comprising a Zn-based growth agent, said growth solution having a pre-defined initial pH-value at room temperature;arranging said growth substrate in said growth solution;increasing said pH value of said growth solution to reach a nucleation phase forming nucleation sites on said substrate;decreasing said pH value to transition from said nucleation phase to a growth phase;growing said nanostructures for a predetermined growth-time; andincreasing said pH value to transition from said growth phase to a tip-formation phase.2. The method according to claim 1 , wherein said step of increasing said pH value to initiate a nucleation phase comprises heating said growth solution to a first temperature.3. The method according to claim 2 , wherein said step of increasing said pH value to transition from said growth phase to said tip-formation phase comprises decreasing said temperature of said growth solution to a second temperature claim 2 , lower than said first temperature.4. The method according to claim 1 , wherein said predefined ...

Подробнее
27-04-2017 дата публикации

NANOPARTICLE-TEMPLATED LITHOGRAPHIC PATTERNING OF NANOSCALE ELECTRONIC COMPONENTS

Номер: US20170117112A1
Автор: Mankin Max N., Pan Tony S.
Принадлежит:

Some embodiments of vacuum electronics call for nanoscale field-enhancing geometries. Methods and apparatus for using nanoparticles to fabricate nanoscale field-enhancing geometries are described herein. Other embodiments of vacuum electronics call for methods of controlling spacing between a control grid and an electrode on a nano- or micron-scale, and such methods are described herein. 1. A method comprising:fabricating an array of nanoscale field emitters on a substrate;depositing a layer of dielectric material on the nanoscale field emitters;depositing a sacrificial layer on the layer of dielectric material; anddepositing a grid on the sacrificial layer, wherein a distance between the nanoscale field emitters and the grid is on a sub-micron scale.2. The method of wherein the sacrificial layer is a spin/spray-coated resist or organic.3. The method of wherein the sacrificial layer has a thickness that is substantially between 25-200 nm.4. The method of wherein depositing a sacrificial layer on the layer of dielectric material includes:spinning the sacrificial layer; anddry etching or milling it such that a thickness of the sacrificial layer corresponds to a height of the nanoscale field emitters.5. The method of wherein dry etching or milling includes at least one of oxygen plasma etching and argon ion bombardment.6. The method of further comprising:removing the sacrificial layer.7. The method of wherein removing the sacrificial layer includes:removing the sacrificial layer via wet or dry etching.8. The method of wherein the grid is fabricated with pinholes claim 6 , and wherein removing the sacrificial layer includes passing an etchant material through the pinholes.9. A method comprising:depositing a resist on a substrate;patterning the resist by removing portions of the resist in a series of regions;depositing a dielectric material on the substrate in the series of regions in which the resist has been removed;removing the resist; anddepositing a grid on the ...

Подробнее
13-05-2021 дата публикации

ELECTRON EMITTER AND METHOD OF FABRICATING SAME

Номер: US20210142975A1
Принадлежит:

Electron emitters and method of fabricating the electron emitters are disclosed. According to certain embodiments, an electron emitter includes a tip with a planar region having a diameter in a range of approximately (0.05-10) micrometers. The electron emitter tip is configured to release field emission electrons. The electron emitter further includes a work-function-lowering material coated on the tip. 116.-. (canceled)17. An electron emitter comprising:a tip having a planar region with a diameter in a range of 1 micrometer to <10 micrometers; anda work-function-lowering material coated on the tip.18. The electron emitter of claim 17 , wherein the tip comprises single crystal.19. The electron emitter of claim 18 , wherein the single crystal has a crystal orientation of <100>.20. The electron emitter of claim 18 , wherein the single crystal is one of tungsten claim 18 , molybdenum claim 18 , iridium claim 18 , and rhenium.21. The electron emitter of claim 17 , wherein the tip comprises at least one of a transition-metal-carbide compound or a transition-metal-boride compound claim 17 , wherein the transition-metal-carbide compound is a carbide compound of hafnium claim 17 , zirconium claim 17 , tantalum claim 17 , titanium claim 17 , tungsten claim 17 , molybdenum claim 17 , or niobium claim 17 , and claim 17 , wherein the transition-metal-boride compound is a boride compound of hafnium claim 17 , zirconium claim 17 , tantalum claim 17 , titanium claim 17 , tungsten claim 17 , molybdenum claim 17 , niobium claim 17 , or lanthanum.22. The electron emitter of claim 17 , wherein the work-function-lowering material comprises:at least one of an oxide compound of zirconium, hafnium, titanium, scandium, yttrium, vanadium, lanthanum, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, ytterbium, lutetium, or thorium, orat least one of a nitride compound of zirconium, titanium, niobium, scandium, vanadium, or lanthanum, orat least ...

Подробнее
24-07-2014 дата публикации

ELECTRON EMISSION DEVICE

Номер: US20140203707A1

Provided herein are electron emission devices and device components for optical, electronic and optoelectronic devices, including cantilever-based MEMS and NEMS instrumentation. Devices of certain aspects of the invention integrate a dielectric, pyroelectric, piezoelectric or ferroelectric film on the receiving surface of a substrate having an integrated actuator, such as a temperature controller or mechanical actuator, optionally in the form of a cantilever device having an integrated heater-thermometer. Also provided are methods of making and using electron emission devices for a range of applications including sensing and imaging technology. 1. An electron emission device comprising:a substrate having a receiving surface;a dielectric, pyroelectric, piezoelectric or ferroelectric thin film provided on at least a portion of said receiving surface or provided on one or more intermediate structures supported by said receiving surface; wherein said dielectric, pyroelectric, piezoelectric or ferroelectric thin film comprises a crystalline material and has a thickness less than or equal to 10 μm; andan actuator operationally coupled to said dielectric, pyroelectric, piezoelectric or ferroelectric thin film for selectively modulating a state of mechanical strain, a temperature, an applied electric field or a combination of these in said dielectric, pyroelectric, piezoelectric or ferroelectric thin film so as to generate electron emission from an external surface of said dielectric, pyroelectric, piezoelectric or ferroelectric thin film.2. The device of claim 1 , wherein said external surface of said dielectric claim 1 , pyroelectric claim 1 , piezoelectric or ferroelectric thin film is characterized by one or more relief features each independently terminating at a distal end having lateral cross sectional dimensions less than or equal to 250 nm.3. The device of claim 2 , wherein said substrate comprises one or more probe tips on said receiving surface claim 2 , wherein ...

Подробнее
27-05-2021 дата публикации

CATHODE STRUCTURE FOR COLD FIELD ELECTRON EMISSION AND METHOD OF FABRICATING THE SAME

Номер: US20210159038A1
Принадлежит:

A cathode structure for cold field electron emission and method of fabricating a single-tip cathode structure for cold field electron emission. The cathode structure comprises a pointed cathode wire; and a graphene-based coating on at least a tip of the pointed cathode wire. In a preferred embodiment, graphene is coated on nickel tips by chemical vapour deposition wherein nickel functions as a catalyst for growth of graphene. The cathode structure provides stable cold field emission for electron microscopy and lithography applications and exhibits an ultralow work function value of about 1.1 eV. 1. A cathode structure for cold field electron emission comprising:a pointed cathode wire; anda graphene-based coating on at least a tip of the pointed cathode wire.2. The cathode structure of claim 1 , exhibiting a low work function value of about 1.1 eV.3. The cathode structure of claim 1 , wherein the cathode wire comprises a metal.4. The cathode structure of claim 3 , wherein the metal is in polycrystalline form.5. The cathode structure of claim 3 , wherein the metal comprises one or more of a group consisting of Ni claim 3 , Co claim 3 , Pd claim 3 , Al claim 3 , Cu claim 3 , and Ag.6. The cathode structure of claim 1 , wherein the graphene based coating comprises one or more of a group consisting of graphene claim 1 , graphene oxide (GO) claim 1 , rGO and their derivatives.7. The cathode structure of claim 1 , wherein a radius of the tip is in the range from about 100 to 800 nm.8. The cathode structure of claim 1 , exhibiting a low electric field strength requirement of about 0.5 V/nm.9. A method of fabricating a cathode structure for cold field electron emission claim 1 , the method comprising the steps of:providing a pointed cathode wire; andcoating at least a tip of the pointed cathode wire with a graphene-based material.10. The method of claim 9 , wherein the coating is performed by chemical vapor deposition claim 9 , CVD.11. The method of claim 10 , wherein a ...

Подробнее
12-05-2016 дата публикации

LIGHT EMITTING DIODES, FAST PHOTO-ELECTRON SOURCE AND PHOTODETECTORS WITH SCALED NANOSTRUCTURES AND NANOSCALE METALLIC PHOTONIC CAVITY AND ANTENNA, AND METHOD OF MAKING SAME

Номер: US20160133424A1
Автор: CHOU Stephen Y., Ding Wei
Принадлежит:

A new ultra-thin high-efficiency photoelectron source utilizing a metallic photonic resonant cavity having a photonic resonant cavity with a top metallic with a plurality of openings, each having an average dimension less than the wavelength of the excitation photons in vacuum, a bottom metallic layer and a photoelectron emission layer of semiconductor positioned between the top metallic layer and the bottom metallic. 131-. (canceled)32. A photoelectron source assembly comprising:a photonic resonant cavity enhancing the absorption of the excitation photons includinga top metallic layer with a plurality of openings, each having an average dimension less than the wavelength of the excitation photons in vacuum;a bottom metallic layer; anda photoelectron emission layer of semiconductor positioned between the top metallic layer and the bottom metallic layerwherein, upon shinning excitation photons on the top metallic layer, photoelectrons are generated in the photoelectron emission layer and escape to outside of the photonic resonant cavity.3338-. (canceled)3938. The photoelectron source assembly of claim wherein each of the openings a shape selected from the group consisting of round , polygon , and triangle or a superposition of one or more thereof.4038. The photoelectron source assembly of claim wherein the openings are openings between a plurality of metallic disks.41. The photoelectron source assembly of wherein the shape of the disks is selected from the group consisting of round claim 40 , polygon claim 40 , and triangle claim 40 , or a superposition of one or more thereof.42. The photoelectron source assembly of wherein the top metallic layer has a thickness at least a factor of 2 smaller than the wavelength of the excitation photons in vacuum.43. The photoelectron source assembly of wherein the top metallic layer has a thickness of about 15 to about 40 nm.44. The photoelectron source assembly of wherein the top metallic layer or the bottom metallic layer is ...

Подробнее