STEVIA COMPOSITION
1. Field of the Invention The invention relates to a process for producing a highly purified food ingredient from the extract of the 2. Description of the Related Art Sugar alternatives are receiving increasing attention due to the awareness of many diseases associated with the consumption of high-sugar foods and beverages. However, many artificial sweeteners such as dulcin, sodium cyclamate and saccharin have been banned or restricted in some countries due to concerns about their safety. As a result, non-caloric sweeteners of natural origin are becoming increasingly popular. The sweet herb The above-mentioned sweet glycosides, have a common aglycon, steviol, and differ by the number and type of carbohydrate residues at the C13 and C19 positions. The leaves of Two major glycosides—stevioside and rebaudioside A (reb A), were extensively studied and characterized in terms of their suitability as commercial high intensity sweeteners. Stability studies in carbonated beverages confirmed their heat and pH stability (Chang S. S., Cook, J. M. (1983) Stability studies of stevioside and rebaudioside A in carbonated beverages. Steviol glycosides differ from each other not only in their molecular structures, but also by their taste properties. Usually stevioside is found to be 110-270 times sweeter than sucrose, rebaudioside A between 150 and 320 times sweeter than sucrose, and rebaudioside C between 40-60 times sweeter than sucrose. Dulcoside A is 30 times sweeter than sucrose. Rebaudioside A has the least astringent, the least bitter, and the least persistent aftertaste, thus possessing the most favorable sensory attributes in major steviol glycosides (Tanaka O. (1987) Improvement of taste of natural sweetners. Methods for the extraction and purification of sweet glycosides from the However, even in a highly purified state, steviol glycosides still possess undesirable taste attributes such as bitterness, sweet aftertaste, licorice flavor, etc. One of the main obstacles for the successful commercialization of Rebaudioside B (CAS No: 58543-17-2), or reb B, also known as stevioside A4(Kennelly E. J. (2002) Constituents of It was believed that reb B forms from the partial hydrolysis of rebaudioside A during the extraction process (Kobayashi, M., Horikawa, S., Degrandi, I. H., Ueno, J. and Mitsuhashi, H. (1977) Dulcosides A and B, new diterpene glycosides from Only a few methods are described in literature for preparing reb B. Kohda et al., (1976) prepared reb B by hydrolysis of reb A with hesperidinase. Reb B was also prepared by alkaline saponification of reb A. The said saponification was conducted in 10% potassium hydroxide-ethanol. The solution was acidified with acetic acid, and extracted with n-butanol. The butanol layer was washed with water and concentrated at low temperature in vacuo. The residue was crystallized from methanol to give reb B. (Kohda, H., Kasai, R., Yamasaki, K., Murakami, K. and Tanaka, O. (1976) New sweet diterpene glucosides from Ahmed et al., used mild alkaline hydrolysis of reb A to prepare reb B. According to the described procedure, reb A was hydrolyzed to reb B by refluxing with 10% aqueous KOH at 100° C. for 1 hr. After neutralization with glacial acetic acid, the precipitated substance was recrystallized twice from methanol (Ahmed M. S., Dobberstein R. H., and Farnsworth N. R. (1980) The use of methanol as recrystallization media as described in the literature will require its subsequent removal from the product. It is noted that handling of toxic substances such as methanol requires specialized manufacturing installations and, when applied in food processing, sophisticated food safety measures. It is also noted that no significant work has been conducted to determine the potential of reb B as a sweetener or food ingredient. Moreover, reb B is often viewed as process artifact and unnecessary impurity in commercial steviol glycosides preparations. No significant evaluation of the influence of reb B on the overall taste profile of steviol glycoside preparations has been conducted. The water solubility of reb B is reported to be about 0.1% (Kinghorn A. D. (2002) Constituents of Considering the facts mentioned above, there is a need to evaluate reb B as a sweetener and food ingredient and to develop a simple and efficient process for food grade reb B preparations suitable for food and other applications. Within the description of this invention we will show that, when applied in specific manner, reb B may impact the taste profile and offer significant advantages for the use of The present invention is aimed to overcome the disadvantages of existing The invention, in part, pertains to an ingredient comprising steviol glycosides of The invention, in part, pertains to a process for producing an ingredient containing rebaudioside B, and stevioside, rebaudioside A, rebaudioside C, rebaudioside D, rebaudioside E, rebaudioside F, dulcoside A, steviolbioside, rubusoside, as well as other steviol glycosides found in In the invention, rebaudioside A commercialized by PureCircle Sdn. Bhd. (Malaysia), containing, rebaudioside A (about 95-100%), stevioside (about 0-1%), rebaudioside C (about 0-1%), rebaudioside F (about 0-1%), rebaudioside B (about 0.1-0.8%), rebaudioside D (about 0-1%), and other glycosides amounting to total steviol glycosides' content of at least 95%, may be used as a starting material. Alternatively The starting material is subjected to complete or partial conversion into reb B using a biocatalyst capable of hydrolyzing β-glucosyl ester bonds. The obtained glycoside mixtures can be used “as-is” as well as by recovering reb B from the mixture and using it as a pure ingredient. The low solubility reb B may be subjected to additional thermal treatment to increase solubility. The obtained products were applied in various foods and beverages as sweeteners, sweetener enhancers and flavor modifiers, including soft drinks, ice cream, cookies, bread, fruit juices, milk products, baked goods and confectionery products. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed. The accompanying drawings are included to provide a further understanding of the invention. The drawings illustrate embodiments of the invention and together with the description serve to explain the principles of the embodiments of the invention. Advantages of the present invention will become more apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description. Rebaudioside A commercialized by PureCircle Sdn. Bhd. (Malaysia), containing, rebaudioside A (about 95-100%), stevioside (about 0-1%), rebaudioside C (about 0-1%), rebaudioside D (about 0-1%), rebaudioside F (about 0-1%), rebaudioside B (about 0.1-0.8%) and other glycosides amounting to total steviol glycosides' content of at least about 95%, may be used as a starting material. Alternatively The HPLC analysis of the raw materials and products can be performed on an Agilent Technologies 1200 Series (USA) liquid chromatograph, equipped with Phenomenex Prodigy ODS3, 5 μm (4.6×250 mm) column at 40° C. The mobile phase was 32:68 mixture of acetonitrile and 10 mmol/L sodium phosphate buffer (about pH 2.6) at 1 mL/min. A diode array detector set at 210 nm can be used as the detector. One example of an HPLC chromatogram thus obtained is shown in As used herein, unless specified further, “reb 13” and “reb B composition” shall be used interchangeably to refer to purified rebaudioside B or rebaudioside B in combination with any other chemical entity. In one embodiment of the invention, reb A is dispersed in water to form solution. The concentration of reb A is about 0-50% (w/v) preferably about 10-25%. An enzyme preparation selected from group of esterases, lipases, cellulases, hemicellulases, hesperidinases, lactases and β-glucosidases, or any enzyme capable of hydrolyzing β-glucosyl ester bonds, or free or immobilized cells, or any other biocatalysts capable of hydrolyzing β-glucosyl ester bonds (the enzyme preparations, enzymes, free or immobilized cells, and other biocatalysts hereinafter collectively referred to as “biocatalysts”) are added to reb A solution to form the reaction mixture. The mixture is incubated at about 10-150° C., preferably about 30-100° C., for a period of about 0.5-72 hrs, preferably about 1-48 hrs. As a result reb A is hydrolyzed to reb B. The molar yield of conversion of reb B is about 5-100%, preferably about 90-100%. After the reaction, the biocatalyst is inactivated by heating or removal from the reaction mixture. The pH of obtained mixture is adjusted by an acid, preferably by sulfuric acid or ortho-phosphoric acid, until a pH of about 3.0-5.0 is reached, preferably until a pH of about 3.0-4.0 is reached. Upon acidification, a precipitate is formed. The precipitate is separated by any method known in the art such as filtration or centrifugation and washed with water until the water reaches a pH of about 4.0-5.0. The obtained crystalline material is dried under vacuum at about 60-105° C. to yield a mixture of reb A and reb B having a ratio of about 1%:99% to about 99%:1% (w/w), preferably about 5%:95% to about 1%:99% (w/w). To obtain purified reb B, in one embodiment the separated precipitate described above is suspended in water and the mixture is subjected to continuous agitation over about 0.5-24 hrs, preferably about 1-3 hours, at about 50-100° C., preferably about 60-80° C. The ratio of precipitate to water (w/v) is about 1:5 to about 1:20, preferably about 1:10 to about 1:15. The washed crystals are separated and dried under vacuum at about 60-105° C. to yield reb B with about 99% purity. The following procedure can be used to increase the water solubility of reb B or any reb B composition. The obtained compositions generally have a water solubility of less than about 0.2% (w/v). In order to increase the solubility of these compositions, the compositions were combined with the water at ratio of about 1:1 (w/w) and the obtained mixture was further subjected to a gradient heat treatment which resulted in a high stability and high concentration solution. The gradient of about 1° C. per minute was used in heating the mixture. The mixture was heated to the temperature of about 110-140° C., preferably about 118-125° C. and was held at maximum temperature for about 0-120 min, preferably about 50-70 min. After the heat treatment, the solution was cooled down to room temperature at gradient of about 1° C. per minute. The solution was spray dried by a laboratory spray drier operating at about 175° C. inlet and about 100° C. outlet temperatures. An amorphous form of the composition was obtained with greater than about 20% solubility in water at room temperature. The reb B compositions described above can be used as a sweetness enhancer, a flavor enhancer and/or a sweetener in various food and beverage products. Non-limiting examples of food and beverage products include carbonated soft drinks, ready to drink beverages, energy drinks, isotonic drinks, low-calorie drinks, zero-calorie drinks, sports drinks, teas, fruit and vegetable juices, juice drinks, dairy drinks, yoghurt drinks, alcohol beverages, powdered beverages, bakery products, cookies, biscuits, baking mixes, cereals, confectioneries, candies, toffees, chewing gum, dairy products, flavored milk, yoghurts, flavored yoghurts, cultured milk, soy sauce and other soy base products, salad dressings, mayonnaise, vinegar, frozen-desserts, meat products, fish-meat products, bottled and canned foods, tabletop sweeteners, fruits and vegetables. Additionally the compositions can be used in drug or pharmaceutical preparations and cosmetics, including but not limited to toothpaste, mouthwash, cough syrup, chewable tablets, lozenges, vitamin preparations, and the like. The compositions can be used “as-is” or in combination with other sweeteners, flavors and food ingredients. Non-limiting examples of sweeteners include steviol glycosides, stevioside, rebaudioside A, rebaudioside B, rebaudioside C, rebaudioside D, rebaudioside E, rebaudioside F, dulcoside A, steviolbioside, rubusoside, as well as other steviol glycosides found in Non-limiting examples of flavors include lemon, orange, fruit, banana, grape, pear, pineapple, bitter almond, cola, cinnamon, sugar, cotton candy, vanilla flavors. Non-limiting examples of other food ingredients include flavors, acidulants, mineral, organic and amino acids, coloring agents, bulking agents, modified starches, gums, texturizers, preservatives, antioxidants, emulsifiers, stabilisers, thickeners, gelling agents. The following examples illustrate various embodiments of the invention. It will be understood that the invention is not limited to the materials, proportions, conditions and procedures set forth in the examples, which are only illustrative. 1 g of rebaudioside A produced by PureCircle Sdn. Bhd. (Malaysia), containing, 98.1% rebaudioside A, 0.3% stevioside, 0.2 rebaudioside C, 0.2% rebaudioside F, 0.4% rebaudioside B and 0.6% rebaudioside D was dissolved in 10 mL 0.1M phosphate buffer (pH 7.0) and about 0.1 mL of commercial lactase preparation—Maxilact® obtained from DSM Food Specialties B.V. (Netherlands), was added. The mixture was incubated at 37° C. for 36 hours. Then the mixture was boiled at 100° C. for 15 min and filtered through the layer of activated carbon. The filtrate temperature was adjusted to 20° C. and the pH was adjusted to pH 4.0 with ortho-phosphoric acid. The solution was held under moderate agitation conditions for 4 hours and a precipitate was formed. The precipitate was filtered and washed on the filter with 2000 mL of water. The washed crystals were dried under vacuum to yield 0.9 g material containing about 80% reb A and 20% reb B. The water solubility (at 25° C.) of obtained material was about 0.16% (w/v). A strain of 1 g of rebaudioside A produced by PureCircle Sdn. Bhd. (Malaysia), containing, 98.1% rebaudioside A, 0.3% stevioside, 0.2 rebaudioside C, 0.2% rebaudioside F, 0.4% rebaudioside B and 0.6% rebaudioside D was dissolved in 10 mL 0.1M phosphate buffer (pH 7.0) and about 0.5 mL of biocatalyst prepared according to EXAMPLE 2 was added. The mixture was incubated at 37° C. for 36 hours. Then the mixture was boiled at 100° C. for 15 min and filtered through the layer of activated carbon. The filtrate temperature was adjusted to 20° C. and the pH was adjusted to pH 4.0 with ortho-phosphoric acid. The solution was held under moderate agitation conditions for 4 hours and a precipitate was formed. The precipitate was filtered and washed on the filter with 2000 mL of water. The washed crystals were dried under vacuum to yield about 0.79 g material containing about 2% reb A and about 98% reb B. The water solubility (at 25° C.) of obtained material was about 0.1% (w/v). 50 g material prepared according to EXAMPLE 1 was mixed with 50 g of water and incubated in thermostatted oil bath. The temperature was increased at 1° C. per minute to 121° C. The mixture was maintained at 121° C. for 1 hour and then the temperature was decreased to room temperature (25° C.) at 1° C. per minute. The solution was dried using YC-015 laboratory spray drier (Shanghai Pilotech Instrument & Equipment Co. Ltd., China) operating at 175° C. inlet and 100° C. outlet temperature. About 45 g of an amorphous powder was obtained with about 25% (w/v) solubility in water (at 25° C.). 42 g of reb A produced by PureCircle Sdn. Bhd. (Malaysia) with purity of 99.2% (dry basis) and 8 g of reb B prepared according to EXAMPLE 3 were mixed with 50 g of water and incubated in thermostatted oil bath. The temperature was increased at 1° C. per minute to 121° C. The mixture was maintained at 121° C. for 1 hour and then the temperature was decreased to room temperature (25° C.) at 1° C. per minute. The solution was dried using YC-015 laboratory spray drier (Shanghai Pilotech Instrument & Equipment Co. Ltd., China) operating at 175° C. inlet and 100° C. outlet temperature. About 47 g of an amorphous powder was obtained with about 1.5% (w/v) solubility in water (at 25° C.). Orange concentrate (35%), citric acid (0.35%), ascorbic acid (0.05%), orange red color (0.01%), orange flavor (0.20%), and 0.05% The sensory evaluations of the samples are summarized in Table 1. The data shows that the best results can be obtained by using the composition obtained according to EXAMPLE 5. Particularly the drinks prepared with said composition exhibited a rounded and complete flavor profile and mouthfeel. The same method can be used to prepare juices and juice drinks from other fruits, such as apples, lemons, apricots, cherries, pineapples, mangoes, etc. Carbonated beverages according to the formulas presented in Table 2 were prepared. The sensory properties were evaluated by 20 panelists. The results are summarized in Table 3. The above results show that the beverages prepared using the composition obtained according to EXAMPLE 5 possessed the best organoleptic characteristics. Flour (50.0%), margarine (30.0%) fructose (10.0%), maltitol (8.0%), whole milk (1.0%), salt (0.2%), baking powder (0.15%), vanillin (0.1%) and different The sensory properties were evaluated by 20 panelists. The best results were obtained in samples containing the composition obtained according to EXAMPLE 5. The panelists noted a rounded and complete flavor profile and mouthfeel. Different The sensory properties were evaluated by 20 panelists. The best results were obtained in samples containing the composition obtained according to EXAMPLE 5. The panelists noted a rounded and complete flavor profile and mouthfeel. It is to be understood that the foregoing descriptions and specific embodiments shown herein are merely illustrative of the best mode of the invention and the principles thereof, and that modifications and additions may be easily made by those skilled in the art without departing for the spirit and scope of the invention, which is therefore understood to be limited only by the scope of the appended claims. Stevia compositions are prepared from steviol glycosides of Stevia rebaudiana Bertoni. The compositions are able to provide a superior taste profile and can be used as sweetness enhancers, flavor enhancers and sweeteners in foods, beverages, cosmetics and pharmaceuticals. 1. A process for producing a providing a providing a biocatalyst capable of hydrolyzing β-glucosyl ester bonds in the dissolving the incubating the reaction mixture for about 12 to 48 hours to at least partially hydrolyze β-glucosyl ester bonds in the cooling the mixture to about 10-30° C. and adjusting the pH with acid to about pH 3.0-4.0; incubating the mixture at low temperature to obtain a precipitate; separating the precipitate and washing the precipitate with water; and drying the washed precipitate to obtain the 2. The process of suspending the separating the 3. The process of suspending the increasing the temperature of the suspension by a gradient heating method; holding the suspension at an elevated temperature; decreasing the temperature of the suspension by a gradient cooling method to obtain a high stability and high concentration spray drying the high stability and high concentration 4. The process of dispersing the adding a base into the mixture; incubating the mixture to facilitate at least partial conversion of a carboxyl group of the rebaudioside B into a carboxylate salt to make a rebaudioside B carboxylate salt; and separating and drying the 5. The process of 6. The process of 7. The process of 8. A 9. A 10. A 11. The composition of 12. The composition of 13. The composition of 14. A food, beverage, pharmaceutical or cosmetic composition comprising the BACKGROUND OF THE INVENTION
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION OF THE INVENTION
Preparation of Reb B
1. Biocatalytic Conversion
2. Optional Post-Conversion Purification
3. Optional Post-Conversion Solubility Enhancement
Use of Reb B Compositions
Example 1
Preparation of
Example 2
Preparation of Biocatalyst
Example 3
Preparation of
Example 4
Preparation of Soluble
Example 5
Preparation of Soluble
Example 6
Low-Calorie Orange Juice Drink
Evaluation of orange juice drink samples Comments Sample Flavor Aftertaste Mouthfeel Stevia Extract Sweet, licorice notes Bitterness and Not aftertaste acceptable Reb A Sweet, slight licorice Slight bitterness and Not notes aftertaste acceptable EXAMPLE 5 High quality Clean, no bitterness Full sweetness, pleasant and no aftertaste taste similar to sucrose, rounded and balanced flavor Example 7
Zero-Calorie Carbonated Beverage
Carbonated Beverage Formulas Quantity, % Ingredients Stevia Extract Reb A EXAMPLE 5 Cola flavor 0.340 0.340 0.340 ortho-Phosphoric acid 0.100 0.100 0.100 Sodium citrate 0.310 0.310 0.310 Sodium benzoate 0.018 0.018 0.018 Citric acid 0.018 0.018 0.018 Stevia composition 0.050 0.050 0.050 Carbonated water to 100 to 100 to 100 Evaluation of zero-calorie carbonated beverage samples Number of panelists detected the attribute Taste attribute Stevia Extract Reb A EXAMPLE 5 Bitter taste 15 10 0 Astringent taste 16 9 0 Aftertaste 14 12 0 Comments Quality of sweet taste Bitter aftertaste Bitter aftertaste Clean (15 of 20) (10 of 20) (20 of 20) Overall evaluation Satisfactory Satisfactory Satisfactory (1 of 20) (5 of 20) (20 of 20) Example 8
Diet Cookies
Example 9
Yoghurt


