• Главная
  • DATA SCIENCE SYSTEM FOR DEVELOPING MACHINE LEARNING MODELS

DATA SCIENCE SYSTEM FOR DEVELOPING MACHINE LEARNING MODELS

Реферат: In one embodiment, a method is provided. The method includes receiving sensor data generated by a set of vehicles. The method also includes performing a first set of processing operations on the sensor data. The method further includes providing an exploration interface configured to allow one or more of browsing, searching, and visualization of the sensor data. The method further includes selecting a subset of the sensor data. The method further includes performing a second set of processing operations on the subset of the sensor data. The method further includes provisioning one or more of computational resources and storage resources for developing an autonomous vehicle (AV) model based on the subset of the sensor data.

Заявка: 1. A method , comprising:receiving sensor data generated by a set of vehicles;performing a first set of processing operations on the sensor data;providing an exploration interface configured to allow one or more of browsing, searching, and visualization of the sensor data;selecting a subset of the sensor data;performing a second set of processing operations on the subset of the sensor data; andprovisioning one or more of computational resources and storage resources for developing an autonomous vehicle (AV) model or a driver assistant model based on the subset of the sensor data.2. The method of claim 1 , performing the first set of processing operations comprises:generating a second version of the sensor data, wherein the second version of the sensor data is used for visualization of the sensor data.3. The method of claim 1 , further comprising:providing a user interface to allow a user to provide user input, wherein the subset of the sensor data is selected based on the user input.4. The method of claim 1 , further comprising:augmenting the subset of sensor data with one or more of annotations, tags, and labels.5. The method of claim 4 , wherein augmenting the subset of sensor data comprises:transmitting the subset of sensor data to a server computer for augmentation via a secure communication channel; andreceiving one or more of the annotations, the tags, and the labels from the server computer.6. The method of claim 1 , wherein the computational resources are provisioned to train the AV model or the driver assistant model using the subset of the sensor data.7. The method of claim 1 , wherein the computational resources are provisioned to test the AV model or the driver assistant model using the subset of the sensor data.8. The method of claim 1 , wherein the storage resources are provisioned to store different versions of the AV model or the driver assistant model.9. The method of wherein the storage resources are provisioned to store different versions of the subset of the sensor data.10. The method of claim 1 , further comprising:sending the AV model or the driver assistant model to a set of vehicles, wherein each vehicle of the set of vehicles executes the AV model or the driver assistant model in parallel with an existing AV model or an existing driver assistant model.11. The method of claim 10 , further comprising:receiving additional sensor data from the plurality of vehicles, wherein the additional sensor data is obtained based on a deviation between an output of the AV model or the driver assistant model, and a reference.12. The method of claim 1 , further comprising:receiving a request for a first type of sensor data;forwarding the request for the first type of sensor data to the plurality of vehicles; andreceiving additional sensor data from the plurality of vehicles, wherein the additional sensor data is of the first type.13. A system claim 1 , comprising:a data ingestion system configured to receive sensor data generated by a set of vehicles and perform a first set of processing operations on the sensor data;a data exploration system configured to provide an exploration interface to allow one or more of browsing, searching, and visualization of the sensor data.a data selection system configured to select a subset of the sensor data;a data transform system configured to perform a second set of processing operations on the subset of the sensor data; anda provisioning system configured to provision one or more of computational resources and storage resources for developing an autonomous vehicle (AV) model or a driver assistant model based on the subset of the sensor data.14. The system of claim 13 , wherein the data selection system is further configured to provide a user interface to allow a user to provide user input claim 13 , wherein the subset of the sensor data is selected based on the user input.15. The system of claim 13 , further comprising:a data augmentation system configured to augment the subset of sensor data with one or more of annotations, tags, and labels.16. The system of claim 15 , wherein to augment the subset of sensor data the data augmentation system is further configured to:transmit the subset of sensor data to a server computer for augmentation via a secure communication channel; andreceive one or more of the annotations, the tags, and the labels from the server computer.17. The system of claim 13 , further comprising:a development system configured to transmit the AV model or the driver assistant model to a set of vehicles, wherein each vehicle of the set of vehicles executes the AV model or the driver assistant model in parallel with an existing AV model or an existing driver assistant model.18. The system of claim 17 , wherein the data ingestion system is further configured to receive additional sensor data from the plurality of vehicles claim 17 , wherein the additional sensor data is obtained based on a deviation between an output of the AV model or the driver assistant model claim 17 , and a reference.19. The system of claim 13 , further comprising a vehicle management system configured to:receive a request for a first type of sensor data;forward the request for the first type of sensor data to the plurality of vehicles; andreceive additional sensor data from the plurality of vehicles, wherein the additional sensor data is of the first type.20. A non-transitory computer-readable storage medium including instructions that claim 13 , when executed by a computer processing device claim 13 , cause the computer processing device to perform operations comprising:receiving sensor data generated by a set of vehicles;performing a first set of processing operations on the sensor data;providing an exploration interface configured to allow one or more of browsing, searching, and visualization of the sensor data.selecting a subset of the sensor data;performing a second set of processing operations on the subset of the sensor data; andprovisioning one or more of computational resources and storage resources for developing an autonomous vehicle (AV) model based on the subset of the sensor data.

Описание: Aspects of the present disclosure relate to digital assets, and more particularly, to a data science system for developing machine learning models.As devices become more complex and as more devices operate autonomously (e.g., autonomous vehicles (AVs)), machine learning (ML) models, artificial intelligence (AI) models, etc., are often used to control the operation of these complex and/or autonomous devices. Developing these models may be an expensive and time consuming process. It may be difficult to gather training data and to clean/process the training data. It may also be difficult to select which training data should be used to train a model. Many of the processes or workflows for developing these models is manual (e.g., manually performed by a data scientist/engineer).Developing AV models (e.g., artificial intelligence (AI) models, machine learning (ML) models, etc.) for autonomous functions are an increasingly time-consuming and difficult task. Users (e.g., data scientists and/or data engineers) may perform various functions, tasks, etc., when developing the AV models. The user may also manage the sensor data that is received from various vehicles (e.g., a fleet of vehicles). These tasks are often manually performed which is time consuming. In addition, these tasks are also prone to error because they are manually done (e.g., users may forget a task or perform a task differently).In addition, multiple tools, applications, services, software, etc., may be used to develop an AV model. These tools, applications, services, software are often disconnected from each other and are often not compatible with each other (e.g., the output of one tool may not be usable as an input to another tool without modifying the output). Using these disparate and disconnected tools, applications, services, software, etc., further increases the time and complexity of developing AV models.The examples, implementations, and embodiments described herein may help address these issues when developing AV models. In one embodiment, a data science system provides an end-to-end platform that supports ingesting the data, view/browsing the data, visualizing the data, selecting different sets of data, processing and/or augmenting the data, provisioning of computational and storage resources, and testing AV models. The data science system supports multiple workflows or processes within a single ecosystem/platform which allows users to transition between different phases of the development cycle more easily. The data science system also automates various tasks such as ingesting data, processing data, and/or augmenting data. This may help improve the quality of the AV models that are developed and/or may decrease the amount of time to develop the AV models.Although the present disclosure may refer to AV models, the examples, implementations, aspects, and/or embodiments described herein may be used with other types of models (e.g., other types of machine learning models, other types of artificial intelligence models, etc.). For example, the data science system may be used to develop, modify, update, etc., a driver assistant model (e.g., a ML/AI model that may assist a driver of a vehicle with the operation of the vehicle). In another example, the data science system may be used to develop, modify, update, etc., semi-autonomous vehicle model (e.g., a ML/AI model that may partially automate one or more functions/operations of a vehicle).is a block diagram that illustrates an example system architecture , in accordance with some embodiments of the present disclosure. The system architecture includes a data science system , computing resources , storage resources , and vehicles . One or more network may interconnect the data vehicles , the data science system , the computing resources , and/or the storage resources . A network may be a public network (e.g., the internet), a private network (e.g., a local area network (LAN) or wide area network (WAN)), or a combination thereof. In one embodiment, network may include a wired or a wireless infrastructure, which may be provided by one or more wireless communications systems, such as a wireless fidelity (Wi-Fi) hotspot connected with the network, a cellular system, and/or a wireless carrier system that can be implemented using various data processing equipment, communication towers (e.g. cell towers), etc. The network may carry communications (e.g., data, message, packets, frames, etc.) between the vehicles , the data science system , the computing resources and/or the storage resources .The vehicles may be commercial vehicles, test vehicles, and/or may be autonomous vehicles (AVs). In one embodiment, the vehicles may be a fleet of vehicles that are used to collect, capture, gather, compile, etc., sensor data and/or other data that may be used to develop, improve, refine, or enhance AV models. AV models may be ML and/or AI models that may be used to manage and/or control the operation of a vehicle. Each of the vehicles may include various sensors that may generate data (e.g., sensor data) as the respective vehicle operates (e.g., drives, moves around, or is otherwise on). Examples of sensors may include, but are not limited to, tire pressure sensors, steering sensors (e.g., to determine the positions/angles of one or more wheels), a compass, temperature sensors, a global positioning system (GPS) receiver/sensor, a light detection and ranging (LIDAR) device/sensor, an ultrasonic device/sensor, a camera (e.g., a video camera), a radar device/sensor, etc. The sensors of the vehicles may generate sensor data such as video data, image data, GPS data, LIDAR data, time series data, etc. Each of the vehicles by way of its sensors may generate gigabytes (e.g., tens, hundreds, thousands, etc., of gigabytes) of data per hour of operation.The computing resources may include computing devices which may include hardware such as processing devices (e.g., processors, central processing units (CPUs), processing cores), memory (e.g., random access memory (RAM), storage devices (e.g., hard-disk drive (HDD), solid-state drive (SSD), etc.), and other hardware devices (e.g., sound card, video card, etc.). The computing devices may comprise any suitable type of computing device or machine that has a programmable processor including, for example, server computers, desktop computers, rackmount servers, etc. In some examples, the computing devices may include a single machine or may include multiple interconnected machines (e.g., multiple servers configured in a cluster, cloud computing resources, etc.).The computing resources may also include virtual environments. In one embodiment, a virtual environment may be a virtual machine (VM) that may execute on a hypervisor which executes on top of the OS for a computing device. The hypervisor may also be referred to as a virtual machine monitor (VMM). A VM may be a software implementation of a machine (e.g., a software implementation of a computing device) that includes its own operating system (referred to as a guest OS) and executes application programs, applications, software. The hypervisor may be a component of an OS for a computing device, may run on top of the OS for a computing device, or may run directly on host hardware without the use of an OS. The hypervisor may manage system resources, including access to hardware devices such as physical processing devices (e.g., processors, CPUs, etc.), physical memory (e.g., RAM), storage device (e.g., HDDs, SSDs), and/or other devices (e.g., sound cards, video cards, etc.). The hypervisor may also emulate the hardware (or other physical resources) which may be used by the VMs to execute software/applications. The hypervisor may present other software (i.e., “guest” software) the abstraction of one or more virtual machines (VMs) that provide the same or different abstractions to various guest software (e.g., guest operating system, guest applications). A VM may execute guest software that uses an underlying emulation of the physical resources (e.g., virtual processors and guest memory).In another embodiment, a virtual environment may be a container that may execute on a container engine which executes on top of the OS for a computing device, as discussed in more detail below. A container may be an isolated set of resources allocated to executing an application, software, and/or process independent from other applications, software, and/or processes. The host OS (e.g., an OS of the computing device) may use namespaces to isolate the resources of the containers from each other. A container may also be a virtualized object similar to virtual machines. However, a container may not implement separate guest OS (like a VM). The container may share the kernel, libraries, and binaries of the host OS with other containers that are executing on the computing device. The container engine may allow different containers to share the host OS (e.g., the OS kernel, binaries, libraries, etc.) of a computing device. The container engine may also facilitate interactions between the container and the resources of the computing device. The container engine may also be used to create, remove, and manage containers.The storage resources may include various different types of storage devices, such as hard disk drives (HDDs), solid state drives (SSD), hybrid drives, storage area networks, storage arrays, etc. The storage resources may also include cloud storage resources or platforms which allow for dynamic scaling of storage space.Although the computing resources and the storage resources are illustrated separate from the data science system , one or more of the computing resources and the storage resources may be part of the data science system in other embodiments. For example, the data science system may include both the computing resources and the storage resources .As discussed above, developing AV models (e.g., artificial intelligence (AI) models, machine learning (ML) models, autonomous functions is an increasingly time-consuming and difficult task. Users (e.g., data scientists and/or data engineers) may perform various functions, tasks, etc., when developing the AV models. For example, a user may setup or configure development environments (e.g., computing devices, integrated development/programming environments, and/or software) that may be used to code, create, modify, etc., AV models. In another example, the user may configure the training environment for various AV models. In a further example, a user may perform various pre-processing tasks, such as selecting/finding data, cleaning data (e.g., converting/changing the format of the data), organizing data, etc. The user may also manage the sensor data that is received from the various vehicles (e.g., a fleet of vehicles). These tasks are often manually performed which is time consuming. In addition, these tasks are also prone to error because they are manually done (e.g., users may forget a task or perform do a step different from before).As AV models become more complex/sophisticated, more and more computing resources and/or storage resources may be used to develop the AV models and/or store the data used by the AV models (e.g., training data). For example, whole clusters or groups of computing devices (e.g., server computers, virtual machines (VMs), containers, etc.) and terabytes, petabytes, etc., of data may be used to train an AV model. In addition, a multiple AV models may be used in a single vehicle .Previously, the development of AV models used various disparate and disconnected tools, applications, services, software, etc. For example, different applications may be used for data configuration management, data collection, feature extraction, data verification, resource management (e.g., storage and/or computing resource management), analysis of data, process management, etc. Using these disparate and disconnected tools, applications, services, software, etc., further increased the time and complexity of developing AV models.In one embodiment, the data science system may be an application and data-source agnostic system. For example, the data science system may be able to work with a multitude of different applications, services, etc., and may be able to ingest data from various different sources of data (e.g., ingest multiple types/formats of data from multiple types and/or brands of sensors). The data science system may provide a cloud-based infrastructure (e.g., computing resources and/or storage resources ) that may be tailored/customized for the development of AV models (e.g., ML models, statistical models, rule-based models, etc.). The data science system may support the various workflows, processes, operations, actions, tasks, etc., in the development cycle for AV models. The development cycle for an AV model may be referred to as a loop, a development loop, a big loop, a development process, etc. The development cycle may include the ingestion of data from the vehicles . The data may be selected, processed, cleaned, analyzed, annotated, visualized (e.g., viewed), as discussed in more detail below. Computational resources and storage resources may be allocated to develop AV models using the data and/or to store modifications to the data. The AV models may be deployed in the vehicles for testing (e.g., using shadow mode as discussed in more detail below) and additional data may be collected. Other models (e.g., driver assistant models, semi-autonomous vehicle models, etc., may also be deployed in the vehicles for testing (e.g., a driver assistant model may also be run in shadow mode). The additional data may be ingested by the data science system and may be used to develop further AV models or update/improve existing AV models, restarting the development cycle.In one embodiment, data (e.g., sensor data such as CAN data, images, videos, GPS data, LIDAR data, speed, acceleration, etc.) may be received, collected, ingested, etc., from vehicles (e.g., a fleet of vehicles). The data may be processed, cleaned, formatted, scrubbed, massaged, for further feature labelling, annotation, extraction, manipulation, and/or processing. Users (e.g., data scientists and/or data engineers) may be use the data science system to explore the data (e.g., using a data explorer or data visualizer to search for certain types of data, metadata, annotations, etc.) and to create, test, update, and/or modify various AV models.In one embodiment, the data science system may allow users the flexibility to use and/or modify the data as needed. For example, a user may modify a copy of a set of sensor data and may use the modified set of sensor data to train one or more AV models. The trained (e.g., resulting AV model) and/or the modified set of sensor data may be stored using a version control system so that the AV model and/or the data (e.g., the modified or processed data) used to train the AV model may be used or verified at a later time (e.g., to reproduce the training of the AV model).In one embodiment, the data science system may enable end-to-end development and/or testing of AV models and/or other AV functions. The data science system may streamline, simplify, and/or automate (e.g., fully automate or at least partially automate) various tasks related to the development and/or testing of AV models. For example, the data science system may streamline and/or automate data ingestion, data preparation, data exploration and visualization, model development, testing, training, and deployment. The data science system may allow for a faster and/or more efficient development cycle (e.g., AV model or application development cycle), as discussed in more detail below. The data science system may also allow AV models (e.g., AV models that have been updated, modified, etc.) to be tested in the vehicles safely (e.g., shadow mode, as discuss in more detail below). This allows the data science system to test new AV models using real/live data from vehicles without affecting the operation of the vehicles (e.g., without endangering passengers).In one embodiment, the data science system may manage the data ingestion and data storage for the data (e.g., sensor data such as LIDAR data, images, videos, CAN data, log files, traces, etc.) generated by the vehicles . The data science system may prepare and/or pre-process the data (e.g., sensor data) that is received from the vehicles . For example, the data science system may format the data (e.g., convert the data from one format to another). In another example, the data science system may clean the data (e.g., may remove portions of the data that are not used, may convert units of measurement, etc.). The data may be prepared and/or pre-processed when the data is ingested or received by the data science system . In addition, a modified version of the data may also be generated when the data is ingested to allow for playback and/or viewing of the data, as discussed in more detail below. Preparing/pro-processing the data and/or generating the modified data (for playback/viewing) at ingestion may allow a multitude of users and/or AV models to leverage the time and computational resources used to prepare/pre-process the data. The original data (e.g., raw data) that was received from the vehicles is also stored to maintain the original data.In one embodiment, the data science system may manage the allocation and/or use of computing resources (e.g., computing clusters, server computers, VMs, containers, etc.). The computing resources may be used for data transformation, feature extraction, development and testing of AV models, etc. The computing resources may use various cloud service platforms (e.g., cloud computing resources).In one embodiment, the data science system may also manage the allocation and/or use of storage resources . The storage resources may store different versions of data (e.g., different versions of sensor data) and/or different version of AV models. The different versions of data may be used to train the different versions of AV models. The data science system may maintain and manage the different versions of AV models and the different versions of data used to train the AV models. This may allow a user to develop a new AV model using a previous version of data (e.g., a previous set of training data) and may allow a user to track the development of the AV model and reproduce the development/testing of the AV model.In one embodiment, the data science system may also allow a user to explore, visualize, and/or view sensor data. The data science system may provide a user interface (e.g., a graphical user interface) which allows a user to stream, playback, and/or view multiple streams of sensor data simultaneously. For example, the user interface may allow a user to view videos from multiple cameras (e.g., streams of video data), view LIDAR data from one or more LIDAR sensors (e.g., streams of LIDAR data), the location of a vehicle (e.g., streams of GPS data or a map) and view the speed/acceleration of the vehicle (e.g., a stream of odometer data). The data science system may generate the sensor data by downsampling without removing outliers or corner cases in the downsampled sensor data. This allows the data science system to generate a smaller data stream to allow users to playback the data, but still allow users to see when outliers, variations, or corner cases occur in the downsampled sensor data. The data science system may allow the user to zoom in or zoom out on a particular stream of data (e.g., view more samples of data per second in a stream of time series data), fast-forward or rewind a data stream, and download frames or images from specific cameras etc. The different streams of sensor data may be synchronized in time to allow the user to comprehensively visualize the state and/or operation of a vehicle at different points in time.The data science system may also allow users to update, modify, improve, augment, enhance, etc., the data (e.g., sensor data) received from the vehicles . For example, the data science system may allow users to add metadata (e.g., labels, descriptions, annotations, tags, identifiers, text, and/or other information) to the data received from the vehicle . In one embodiment, the data science system may analyze the data to create and/or add the metadata (e.g., may automatically analyze video data to identify objects, such as trees, in the video data). In another embodiment, the data science system may a third part service, application, process, etc., for generating metadata. The metadata may be time based metadata. For example, the metadata may be associated with a portion of a time period in a stream of data (e.g., in a ten second portion of video data, time series data).In one embodiment, the data science system may deploy an AV model to vehicles to test the AV model (e.g., to perform experiments using the AV model). The AV model that is deployed for testing may be referred to as a test AV model. The test AV model may be a newer, updated, modified version of an existing AV model. The existing AV model may be an AV model that is currently approved for use in the vehicles (e.g., an AV model that has already been test and approved). The existing AV model may be referred to as a production AV model. The test AV model may operate in parallel with the existing AV model on a vehicle , however, the test AV model may not be able to control and/or influence the operation of the vehicle . This may be referred to as running the test AV model in shadow mode, allowing the test AV model to shadow the production AV model, etc. This may allow the test AV model to receive live data (e.g., live sensor data as the vehicle moves through an environment) and generate predictions, inferences, decisions, etc., based on the live data.When a test AV model is operation in shadow mode, the vehicle (e.g., a computing device, a processing device, etc., on the vehicle ) may monitor the output of the test AV model (e.g., the decisions, inferences, predictions, actions, etc., generated by the test AV model). The vehicle may determine whether the output of the test AV model deviates from a reference output (e.g., a reference decision, inference, prediction, action, etc.). For example, the vehicle may determine whether the output of the test AV model deviates from a reference output by more than a threshold. If the output of the test AV model deviates from the reference output by more than the threshold, the vehicle may save the sensor for a period of time before and after the deviation occurred (e.g., for thirty seconds before and thirty seconds after the deviation occurred).In one embodiment, the vehicle may use the behavior, actions, etc., of a driver of the vehicle to determine whether the output of the test AV model deviates from reference (e.g., the driver of the vehicle is the reference). For example, if the test AV model determines that the vehicle should turn left by ten degrees and the user turns the vehicle to the left by thirty degrees, the vehicle may determine that the test AV model (e.g., the output of the test AV model) has deviated from the user (e.g., the reference). In another embodiment, the vehicle may use the output of the production AV model to determine whether the output of the test AV model deviates from reference (e.g., the production AV model is the reference).In one embodiment, users (e.g., data scientists/engineers) may analyze the outputs/results of AV models and/or the data ingested by the data storage system . The users may determine that certain types, categories, classes, etc., of data are needed for the development and/or improvement of one or more AV models. For example, the user may determine that additional videos of driving through snowy weather are needed to refine or improve an AV model. The user may provide a request to the data science system for the additional videos of driving through snowy weather. The data science system may forward the request to the vehicles . The drivers of the vehicle may collect the requested videos the videos may be provided to the data science system . The data science system may ingest, process, and enhance the data, as discussed above. After the new videos have been ingested, the user may be notified that the requested videos (e.g., new or additional sensor data) are now available for use (e.g., viewing, selection, augmentation, etc.). The user can re-train their AV model and/or perform additional experiments using the AV model and the requested videos.As discussed above, the data science system provides various functions, operations, capabilities, etc., that may be useful during the development of AV models. The data science system provides an end-to-end platform for the development of AV models, starting from data ingestion all the way through testing. The data science system also provides for storage and visualization of heterogeneous data (e.g., different types of sensor data). The data science system allows users to organize, transform, and augment sensor data. The data science system also allows users to save different versions of data so that the testing and development of the AV models can be tracked or correlated with the different version of data (e.g., which versions of data were used to train and/or test which versions of AV models). The data science system also allows users to provision computational and storage resources that include custom-integrated development environments, software or tools. The single data science system may streamline the development process/cycle for AV models by automating various tasks (e.g., processing or augmenting data) and seamlessly integrating the different tools, services, processes that are used at different parts of the development cycle.is a block diagram that illustrates an example data science system , in accordance with some embodiments of the present disclosure. The data science system includes a data ingestion system , a data exploration system , a data selection system , a data transform system , a provisioning system , a data augmentation system , a development system , a post processing system , and a vehicle management system . The data ingestion system , the data exploration system , the data selection system , the data transform system , the provisioning system , the data augmentation system , the development system , the post processing system , and the vehicle management system may be interconnected via one or more or more networks (e.g., wired networks, wireless networks, etc.). Some or all of systems - may be implemented in software, hardware, firmware, or a combination thereof. For example, one or more of systems - may be installed in persistent storage device, loaded into memory, and executed by one or more processors (not shown). In another example, one or more of systems - may be processing devices, such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), VMs, containers, etc. Some of systems - may be integrated together as an integrated component. In addition, some of systems - may be located in different computing devices (e.g., different server computers).In one embodiment, the data ingestion system may receive data that is generated, captured, gathered, etc., by various vehicles (e.g., test vehicles, such as vehicles illustrated in ). The data may be received via wireless networks (e.g., may be receive via cellular network, may be received over the air (OTA), etc.). The data may also be obtained offline. For example, data may be directly downloaded from a vehicle (e.g., from a flash drive in the vehicle) onto a storage device at a specific location (e.g., a service or body shop). The data may also be simulated data.The data ingestion system may perform various operations, functions, actions, tasks, processes, on the data that is ingested or received. For example, the data ingestion system may interpret time series data (e.g., temperature readings, rotations per minute readings, etc.) and may downsample time series data. The data ingestion system may also extract frames and/or images from videos (e.g., digital videos, video streams, etc.). The images may be used to create thumbnails and/or may be fused together to create a video (e.g., an exploration or preview video) that may be used by the data exploration system as discussed in more detail below. The downsampled data may also be used by the data exploration system as discussed in more detail below.The data ingestion system may also perform data indexing to allow users to search for the data that was ingested. For example, the data ingestion system may index the data by the type of sensor data (e.g., video data, LIDAR data, radar data, etc.), the vehicle that collected/captured the data, the time the data was captured, etc. The data ingestion system may also ingest any metadata was included with the data. For example, labels, tags, annotations, etc., that were generated by the vehicle and that are associated with or accompany the data may also be processed and ingested. The data ingestion system may also perform some initial enrichment or augmentation of the data. For example, the data ingestion system may automatically analyze the data to add labels, tabs, annotations to the data (e.g., an image analyzer may analyze the environment depicted in an image and add a label indicating that a freeway is detected in the image).The data ingestion system may further perform version control functions for the data that is ingested and/or processed. For example, when the data is initially ingested, the original version of the data is stored to maintain a copy of the original version. The downsampled data and thumbnails (used by the data exploration system ) are also stored as a separate version of that data, which may be leveraged by multiple users (e.g., data engineers/scientists) who want to explore the data at a later time.The data exploration system may access the data after it has been ingested and processed by the data ingestion system . In one embodiment, the data exploration system may allow users to view the data that has been ingested by the data ingestion system . For example, the data exploration system may provide a graphical user interface that may allow the user to browse through data that was collected over a period of time, browse certain types of data (e.g., video data, LIDAR data, data that have certain tags/annotations, etc.).The data exploration system may also allow a user to search for and/or filter out certain types of data and/or certain tags/annotations. For example, the data exploration system may allow a user to search for video data that includes images of rainy weather (e.g., search or tags/annotations that indicate a video depicts rainy weather). In another example, the data exploration system may allow a user to search for LIDAR data from a particular vehicle during a particular period of time.The data exploration system may also allow a user to visualize the data. The data exploration system may provide a graphical user interface (GUI) that allows a user to view multiple streams of sensor data (e.g., a video, a stream of time series data, etc.), simultaneously. For example, the GUI may display multiple videos captured by multiple cameras of a vehicle. The GUI may also display a data stream that indicates the speeds of the vehicle, a data stream that indicates the angle of the steering wheel, a stream of LIDAR data, etc. The different data streams may be synchronized in time. For example, the timestamps of the videos may be synchronized with the timestamps in the streams of sensor data. This may allow the user to obtain a better understanding of the operation and/or conditions of a vehicle as time progresses. This may also allow a user to identify points in time that may be of interest and select sensor data that was generated during the points in time. For example, if the angle of the steering wheel changes rapidly at a point in time, this may indicate that an event occurred (e.g., an external event) which caused the vehicle to swerve in a direction. A user may be interested in viewing the sensor data around the time of the event to determine what happened and/or to determine whether the data would be useful in training an AV model.The data exploration system may also provide a heatmap to a user. The heatmap may indicate locations on a geographical area or geographical map where sensor data exhibits rapid, unexpected, or abnormal changes. For example, if the sensor data indicates that all vehicles that drive past a certain location on a street actuate their braking systems (e.g., apply their brakes), the heatmap may indicate this on a geographical map. This may allow a user to correlate sensor readings and the behavior of the car with geographical locations.The data selection system allows the user to select, organize, and/or split data into different data sets. For example, after viewing an hour's worth of streams of sensor data using the data exploration system , a user may identify certain portions of the streams of sensor data that may be useful for developing and/or modifying an AV model. The user may select different time periods from different streams of sensor data. The data selection system may create new sets of data that include the selected portions of the streams. The new sets of data may also be version controlled so that other users may use the same sets of data and/or determine how the sets of data were used (e.g., which version of a set of data was used to train an AV model).The users may also indicate a purpose for the selected data. For example, a first data set may be used for training an AV model and a second data set may be used for testing/verifying the operation of the AV model. User preferences on how data should be divided or split into data sets may also be saved and reused by other users.The data transformation system allows a user to perform additional transformations and/or processing on the data that was selected (using the data selection system ). For example, the data transformation system may allow a user to downsample data (e.g., downsample sensor readings from a rate of 60 times a second to 20 times a second). In another example, the data transformation system may lower the resolution and/or framerate of a digital video.The data transformation system may also perform time synchronization for the data. For example, sensor data may have been downsampled from 60 times a second to 20 times a second. The data transformation system may select downsampled the data across multiple streams of data at the same time interval (e.g., the data from all streams at time T is used, the data from all streams at time 1/20 of second is used, the data from all streams at time 2/20 of second is used, etc.).The data transformation system may also use applications or scripts to perform additional processing on the data. For example, a user may provide a script that may blur out people's faces in a video for privacy purposes. In another example, a user may provide a script that may crop out certain portions of an image. In a further example, a user may provide a script that may enhance the lighting in a digital video.The provisioning system may allocate computational resources that may be used to develop and/or test AV models. For example, the provisioning system may allocate a cluster of ten server computers, or ten VMs, etc., that may be used to develop the AV model. The computational resources may be configured for specific development environments and/or may include certain applications, services, etc. For example, a particular coding tool/environment or mathematical tool/program may be included with a VM by the provisioning system when the provisioning system allocates the VM for a user. The computational resources may also be used to execute an AV model using training data to training the AV model. For example, multiple containers may be allocated to execute and train an AV model.The provisioning system may also allocate storage resources that maybe used to develop and/or test AV models. For example, the provisioning system may allocate storage space (e.g., a folder, a set of drives, a logical storage location, etc.) to store different versions of the AV model as a user develops, refines, or modifies an AV model. Each of the versions of the AV model may be stored in allocated storage space. The storage resources may also be used to store the data sets that were selected by the data selection system and/or transformed by the data transform system . For example, a user may select certain sets of data from sensor data receive from multiple vehicles. The selected/transformed sets of data may be stored in the allocated storage space.In one embodiment, the computational resources may be allocated based on the location of the storage resources, or vice versa. For example, if the data sets (e.g., training data) are stored on storage devices within a particular data center, the provisioning system may allocate computational resources using computing devices (e.g., server computers, VMs, containers, etc.) that also located within the same data center, or are located within a threshold distance of the data center.The development system may allow users to develop (e.g., code), refine, modify, and/or test AV models. In one embodiment, the development may optionally include the computational resources and/or storage resources that were allocated by the provisioning system . The development system may allow a user to maintain a copy of each version of the AV model as the AV model is being developed. These different versions may be stored to allow for better tracking of the development of the AV model and to accurately reproduce the development of the AV model. The development system may also allow a user to deploy an AV model to one or more vehicles. For example, the development system may allow a user to deploy a new version of an AV model to a fleet of vehicles in shadow mode. This may allow the user to test the operation of the AV model using live or real-time data generated by a fleet of test vehicles, as discussed above.The data augmentation system may allow a user to further augment data. The data may be received from one or more of the data selection system and the data transform system . For example, after a user selects a set of data using the data selection system , the selected set of data may be provided to the data augmentation system . In another example, after the data is transformed by the data transform system (e.g., after the data is downsampled), the data may be provided to the data augmentation system . As discussed above, a user may select one or more sets of sensor data and/or transform the one or more sets of sensor data. The selected and/or transformed data may be augmented to include additional tags and/or annotations. The data augmentation system may include services, processes, applications, etc., that may analyze the selected and/or transformed data to augment the data. For example, the data augmentation system may include a video analysis application that may add tags/annotations indicating what features were detected in a video. The data augmentation system may also interface with other or external (e.g., third party) services, processes, or applications to augment the data, which are outside of or separate from the data science system . For example, the data augmentation system may provide the video data to a camera vendor that manufactures the camera used to generate the video data. The camera vendor may perform augmentation of the video data (e.g., add annotations and/or tags) and may transmit the data back to the data augmentation system . The data that is sent out of the data science system for augmentation may be sent securely using encrypted communication channels (e.g., secure shell (SSH), transport later security (TSL), virtual private networks, etc.).The post processing system may receive data that has been augmented (e.g., augmented data that may include additional tags/annotations) and may perform post processing on the augmented data. For example, the post processing system may convert the format of the tag/annotations to a different format. The post processing system may also consolidate different tags/annotations. For example, the post processing system may combine similar tags/annotations into one tag/annotation.The vehicle management system may be used to request certain types, categories, classes, etc., of data from the vehicles or drives of the vehicles. For example, a user may wish to improve the performance of an AV model when the AV model encounters an unprotected left turn on a street. The user may request sensor data (e.g., video data, LIDAR data, radar data, CAN data, etc.) that was collected while a vehicle was making an unprotected left turn. The vehicle management system may receive the request and may forward the request to one or more vehicles (e.g., a fleet of test vehicles). When the users and/or vehicles collect the requested data, the users and/or vehicles may inform the vehicles management system . The vehicles may also provide the requested data to the data ingestion system for processing, transformation, and/or augmentation. The vehicle management system may provide an indication to a user (e.g., transmit a message, an email, display an icon on a GUI etc.) to indicate that the requested data (e.g., new data) has been collected and provided to the data ingestion system for ingestion. The user may use the data exploration system and/or the data selection system to select the new data and may use new data to refine or modify the AV model.is a block diagram that illustrates an example data ingestion system , in accordance with one or more embodiments of the present disclosure. The data ingestion system includes a time series module , a frame module , an indexing module , and a metadata module . Some or all of modules - may be implemented in software, hardware, firmware, or a combination thereof.The time series module may interpret time series data and may downsample time series data, as discussed above. The frame module may extract frames and/or images from videos. As discussed above, the downsampled data and/or extracted frames may be used to provide a visualization of the data, as discussed above. The indexing module may perform data indexing to allow users to search for the data that was ingested (e.g., index by the type of sensor data, time collected, vehicle, etc. The metadata module may ingest any metadata that was included with the data. For example, the metadata module may analyze the metadata that is associated with and/or part of the data. The metadata may be converted from one format to another format.is a block diagram that illustrates an example data exploration system , in accordance with one or more embodiments of the present disclosure. The data exploration system includes a browsing module , a search module , visualization module . Some or all of modules - may be implemented in software, hardware, firmware, or a combination thereof. The browsing module may allow a user to browse through data that was collected over a period of time and/or browse certain types of data. The search module may allow a user to search for and/or filter out certain types of data and/or certain tags/annotations. The visualization module may allow a user to visualize and/or view multiple streams of data simultaneously. The visualization module may also provide a heatmap that is associated with the streams of data.is a block diagram that illustrates an example data selection system , in accordance with one or more embodiments of the present disclosure. The data selection system includes a selection module , a data set module , and a preference module . Some or all of modules - may be implemented in software, hardware, firmware, or a combination thereof.The selection module may allow a user to select, organize, and/or split data into different data sets. The data set module may create new sets of data that include the selected portions of the streams. The new sets of data may also be version controlled, as discussed above. The preference module may allow a user to indicate and save preferences on how data should be divided into sets and what purpose the data may be used for.is a block diagram that illustrates an example data transformation system , in accordance with one or more embodiments of the present disclosure. The data transformation system includes a transformation module , a synchronization module , and an external module . Some or all of modules - may be implemented in software, hardware, firmware, or a combination thereof.The transformation module may perform additional transformations and/or processing (e.g., lower the resolution of an image) on the data that was selected by a user. The synchronization module may also perform time synchronization for the data. The external module may include user applications or scripts that may perform additional processing on the data.is a block diagram that illustrates an example provisioning system , in accordance with one or more embodiments of the present disclosure. The provisioning system includes a computation module and a storage module . Some or all of modules - may be implemented in software, hardware, firmware, or a combination thereof.The computational module may allocate computational resources that may be used to develop and/or test AV models. The computational module may also deallocate the computational resources once a user is done using the resources. The storage module may allocate storage resources that may be used to store versions of an AV model and/or data sets used by train and/or test the AV model. The storage module may also deallocate the storage resources (e.g., release storage space) once the user is done using the resources.is a block diagram that illustrates an example data augmentation system , in accordance with one or more embodiments of the present disclosure. The data augmentation system includes an augmentation module and an external augmentation module . Some or all of modules - may be implemented in software, hardware, firmware, or a combination thereof.As discussed above, a user may select one or more sets of sensor data and/or transform the one or more sets of sensor data. The augmentation module may augment the selected/transformed data to include additional tags and/or annotations. The augmentation module may include services, processes, applications, etc., that may analyze the selected and/or transformed data to augment the data. The external augmentation module may interface or communicate with other (e.g., third party) services, processes, or applications to augment the data. The external augmentation module may setup a secure communication channel to communicate with the other services, processes, or applications.is a block diagram that illustrates an example development system , in accordance with one or more embodiments of the present disclosure. The development system includes a development module and a test module . Some or all of modules - may be implemented in software, hardware, firmware, or a combination thereof.The development module may allow users to develop (e.g., code), refine, modify, and/or test AV models. For example, the development module may include computing devices, virtual machines, integrated development environments (IDEs), etc. the test module may allow users to test and/or train AV models using training or test data. The development module and/or the test module may include computational and/or storage resources.is a block diagram that illustrates an example post processing system , in accordance with one or more embodiments of the present disclosure. The post processing system includes a processing module . The processing module may be implemented in software, hardware, firmware, or a combination thereof. The processing module may receive data that has been augmented and may perform post processing on the augmented data (e.g., may convert tags/annotations to different formats, may consolidate tags/annotations, etc.).is a block diagram that illustrates an example vehicle management system , in accordance with one or more embodiments of the present disclosure. The vehicle management system includes a user module and a requesting module . Some or all of modules - may be implemented in software, hardware, firmware, or a combination thereof.The user module may receive requests from users to request certain types, classes, categories, etc., of data. For example, the user module may provide a user interface for the user to indicate different types of data. The requesting module may forward the request to one or more vehicles. When the vehicles provide the requested data to the data science system, the requesting module may inform the user that the requested data has been ingested and is ready for viewing, selecting, augmenting, etc.is a flow diagram of a process for developing an autonomous vehicle (AV) model. Process may be performed by processing logic that may comprise hardware (e.g., circuitry, dedicated logic, programmable logic, a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a processor, a processing device, a central processing unit (CPU), a system-on-chip (SoC), etc.), software (e.g., instructions running/executing on a processing device), firmware (e.g., microcode), or a combination thereof. In some embodiments, the method may be performed by a data science system and/or components/sub-systems of a data science system, as illustrated in .The process starts at block where the process receives (e.g., ingests) sensor data. For example, the sensor data may be received via wireless communications or directly for a vehicle (e.g., downloaded from the vehicle via a cable). A first set of processing operations may be performed on the sensor data at block . For example, the sensor data may be downsampled, indexed, etc. Metadata may be added to or associated with the sensor data.At block , an exploration interface (e.g., a user interface, a graphical user interface) may be provided to a user. The exploration interface may allow a user to browse and/or view multiple streams of data simultaneously. The exploration interface may also allow the user to provide user input identifying a subset of the sensor data. At block , the process may select the subset of the sensor data based on the user input (e.g., may select sensor data between a certain time period and/or from certain sensors). At block , the process may provision computational resources and/or storage resources. At block , the process may optionally augment the subset of sensor data (e.g., may provide the subset of sensor data to an external computing device for augmentation). At block , the process may send the AV model to one or more vehicles for testing (e.g., to run the AV model in shadow mode on the vehicles). The process may also receive additional sensor data when the output of the AV model deviates from a reference. At block , the process may optionally send a request for a type of sensor data to the vehicles and may receive additional sensor data that matches the requested type.is a block diagram of an example computing device that may perform one or more of the operations described herein, in accordance with some embodiments. Computing device may be connected to other computing devices in a LAN, an intranet, an extranet, and/or the Internet. The computing device may operate in the capacity of a server machine in client-server network environment or in the capacity of a client in a peer-to-peer network environment. The computing device may be provided by a personal computer (PC), a set-top box (STB), a server, a network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine. Further, while only a single computing device is illustrated, the term “computing device” shall also be taken to include any collection of computing devices that individually or jointly execute a set (or multiple sets) of instructions to perform the methods discussed herein.The example computing device may include a processing device (e.g., a general purpose processor, a PLD, etc.) , a main memory (e.g., synchronous dynamic random access memory (DRAM), read-only memory (ROM)), a static memory (e.g., flash memory and a data storage device ), which may communicate with each other via a bus .Processing device may be provided by one or more general-purpose processing devices such as a microprocessor, central processing unit, or the like. In an illustrative example, processing device may comprise a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, or a processor implementing other instruction sets or processors implementing a combination of instruction sets. Processing device may also comprise one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like. The processing device may be configured to execute the operations described herein, in accordance with one or more aspects of the present disclosure, for performing the operations and steps discussed herein.Computing device may further include a network interface device which may communicate with a network . The computing device also may include a video display unit (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)), an alphanumeric input device (e.g., a keyboard), a cursor control device (e.g., a mouse) and an acoustic signal generation device (e.g., a speaker). In one embodiment, video display unit , alphanumeric input device , and cursor control device may be combined into a single component or device (e.g., an LCD touch screen).Data storage device may include a computer-readable storage medium on which may be stored one or more sets of instructions, e.g., instructions for carrying out the operations described herein, in accordance with one or more aspects of the present disclosure. Instructions implementing the different systems described herein (e.g., the data science system , the data ingestion system , the data exploration system , the data selection system , the data transform system , the provisioning system , the data augmentation system , the development system , the post processing system , and/or the vehicle management system illustrated in ) may also reside, completely or at least partially, within main memory and/or within processing device during execution thereof by computing device , main memory and processing device also constituting computer-readable media. The instructions may further be transmitted or received over a network via network interface device .While computer-readable storage medium is shown in an illustrative example to be a single medium, the term “computer-readable storage medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database and/or associated caches and servers) that store the one or more sets of instructions. The term “computer-readable storage medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that cause the machine to perform the methods described herein. The term “computer-readable storage medium” shall accordingly be taken to include, but not be limited to, solid-state memories, optical media and magnetic media.Unless specifically stated otherwise, terms such as “performing,” “providing,” “selecting,” “provisioning,” “generating,” “augmenting,” “transmitting,” “receiving,” “forwarding,” “sending,” or the like, refer to actions and processes performed or implemented by computing devices that manipulates and transforms data represented as physical (electronic) quantities within the computing device's registers and memories into other data similarly represented as physical quantities within the computing device memories or registers or other such information storage, transmission or display devices. Also, the terms “first,” “second,” “third,” “fourth,” etc., as used herein are meant as labels to distinguish among different elements and may not necessarily have an ordinal meaning according to their numerical designation.Examples described herein also relate to an apparatus for performing the operations described herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general purpose computing device selectively programmed by a computer program stored in the computing device. Such a computer program may be stored in a computer-readable non-transitory storage medium.The methods and illustrative examples described herein are not inherently related to any particular computer or other apparatus. Various general purpose systems may be used in accordance with the teachings described herein, or it may prove convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will appear as set forth in the description above.The above description is intended to be illustrative, and not restrictive. Although the present disclosure has been described with references to specific illustrative examples, it will be recognized that the present disclosure is not limited to the examples described. The scope of the disclosure should be determined with reference to the following claims, along with the full scope of equivalents to which the claims are entitled.As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises”, “comprising”, “includes”, and/or “including”, when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. Therefore, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.It should also be noted that in some alternative implementations, the functions/acts noted may occur out of the order noted in the figures. For example, two figures shown in succession may in fact be executed substantially concurrently or may sometimes be executed in the reverse order, depending upon the functionality/acts involved.Although the method operations were described in a specific order, it should be understood that other operations may be performed in between described operations, described operations may be adjusted so that they occur at slightly different times or the described operations may be distributed in a system which allows the occurrence of the processing operations at various intervals associated with the processing.Various units, circuits, or other components may be described or claimed as “configured to” or “configurable to” perform a task or tasks. In such contexts, the phrase “configured to” or “configurable to” is used to connote structure by indicating that the units/circuits/components include structure (e.g., circuitry) that performs the task or tasks during operation. As such, the unit/circuit/component can be said to be configured to perform the task, or configurable to perform the task, even when the specified unit/circuit/component is not currently operational (e.g., is not on). The units/circuits/components used with the “configured to” or “configurable to” language include hardware—for example, circuits, memory storing program instructions executable to implement the operation, etc. Reciting that a unit/circuit/component is “configured to” perform one or more tasks, or is “configurable to” perform one or more tasks, is expressly intended not to invoke 35 U.S.C. 112, sixth paragraph, for that unit/circuit/component. Additionally, “configured to” or “configurable to” can include generic structure (e.g., generic circuitry) that is manipulated by software and/or firmware (e.g., an FPGA or a general-purpose processor executing software) to operate in manner that is capable of performing the task(s) at issue. “Configured to” may also include adapting a manufacturing process (e.g., a semiconductor fabrication facility) to fabricate devices (e.g., integrated circuits) that are adapted to implement or perform one or more tasks. “Configurable to” is expressly intended not to apply to blank media, an unprogrammed processor or unprogrammed generic computer, or an unprogrammed programmable logic device, programmable gate array, or other unprogrammed device, unless accompanied by programmed media that confers the ability to the unprogrammed device to be configured to perform the disclosed function(s).The foregoing description, for the purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the embodiments and its practical applications, to thereby enable others skilled in the art to best utilize the embodiments and various modifications as may be suited to the particular use contemplated. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.

Вам могут быть интересны следующие патенты

Рисунок 1. Взаимосвязь патентов (ближайшие 20).

Data science system for developing machine learning models

Номер патента: WO2021110659A1. Автор: Mohamed Kacem ABIDA,Danil KAZANKOV. Владелец: VOLKSWAGEN AKTIENGESELLSCHAFT. Дата публикации: 2021-06-10.

Method and system for detecting sensor anomalies

Номер патента: US20230385691A1. Автор: Mitchell Joblin,Dianna YEE. Владелец: SIEMENS AG. Дата публикации: 2023-11-30.

Methods and systems for facilitating feature engineering for machine learning models

Номер патента: US20240202576A1. Автор: Olli Pekka Kostamaa,Ahmad Said Ghazal,Hanumath Rao Maduri. Владелец: Individual. Дата публикации: 2024-06-20.

Method and system for managing plant safety using machine learning

Номер патента: US20230115475A1. Автор: Bashar Y. Melhem,Hisham Alsumail. Владелец: Saudi Arabian Oil Co. Дата публикации: 2023-04-13.

Automatic analysis system for quality data based on machine learning

Номер патента: US20230035461A1. Автор: Joon Hyung Park. Владелец: Hyundai Mobis Co Ltd. Дата публикации: 2023-02-02.

Method and system for data transformation based on machine learning

Номер патента: US11640442B2. Автор: Sridharan Muthuswamy. Владелец: Wipro Ltd. Дата публикации: 2023-05-02.

Method, apparatus, and system for progressive training of evolving machine learning architectures

Номер патента: US11783187B2. Автор: Tero Juhani Keski-Valkama. Владелец: Here Global BV. Дата публикации: 2023-10-10.

Method and System for Data Transformation Based on Machine Learning

Номер патента: US20210256415A1. Автор: Sridharan Muthuswamy. Владелец: Wipro Ltd. Дата публикации: 2021-08-19.

Methods for development of a machine learning system

Номер патента: EP4405870A1. Автор: William James,Richard Bland,Rachael McNaughton,Colin Towers. Владелец: Towers Watson Software Ltd. Дата публикации: 2024-07-31.

Methods for development of a machine learning system

Номер патента: WO2024003609A1. Автор: William James,Richard Bland,Rachael McNaughton,Colin Towers. Владелец: Towers Watson Software Limited. Дата публикации: 2024-01-04.

Method for developing machine operation classifier using machine learning

Номер патента: CA2961203C. Автор: Paul Lee,Benjamin Hodel,Sangkyum Kim. Владелец: Caterpillar Inc. Дата публикации: 2023-05-16.

Computer-implemented method for providing explanations concerning a global behavior of a machine learning model

Номер патента: US20240353827A1. Автор: Michael LEBACHER. Владелец: SIEMENS AG. Дата публикации: 2024-10-24.

Methods and systems for training and providing a machine learning model for audio compensation

Номер патента: US12118472B2. Автор: Jesper Pedersen,Finnur Pind. Владелец: Treble Technologies. Дата публикации: 2024-10-15.

Methods and systems for secure data analysis and machine learning

Номер патента: WO2022051237A1. Автор: David Neale CARLEY. Владелец: Argo AI, LLC. Дата публикации: 2022-03-10.

Methods and systems for secure data analysis and machine learning

Номер патента: EP4208805A1. Автор: David Neale CARLEY. Владелец: Argo AI LLC. Дата публикации: 2023-07-12.

Hybrid quantum computing system for hyper parameter optimization in machine learning

Номер патента: US20230401284A1. Автор: Maharaj Mukherjee,Utkarsh Raj. Владелец: Bank of America Corp. Дата публикации: 2023-12-14.

Methods and systems for training and providing a machine learning model for audio compensation

Номер патента: US20240177016A1. Автор: Jesper Pedersen,Finnur Pind. Владелец: Trebble Technologies. Дата публикации: 2024-05-30.

Method and system for overcoming tagging shortage for machine learning purposes

Номер патента: US20220261684A1. Автор: Asaf VALADARASKY. Владелец: Otonomo Technologies Ltd. Дата публикации: 2022-08-18.

Machine learning model operation management system and method

Номер патента: US12073295B2. Автор: Shin Tezuka,Daisuke Komaki,Souichi Takashige. Владелец: HITACHI LTD. Дата публикации: 2024-08-27.

Computer-implemented method for performing a computational task using a machine learning model

Номер патента: FI20226119A1. Автор: Jussi Ruutu,Ville Ruutu,Honain Derrar. Владелец: Elisa Oyj. Дата публикации: 2024-06-20.

Method and system for conditioning data sets for efficient computational processing

Номер патента: EP4136593A1. Автор: Warren du Preez. Владелец: Australia and New Zealand Banking Group Ltd. Дата публикации: 2023-02-22.

Method and system for conditioning data sets for efficient computational

Номер патента: WO2021207797A1. Автор: Warren du Preez. Владелец: Australia And New Zealand Banking Group Limited. Дата публикации: 2021-10-21.

Computer-implemented method for performing a computational task using a machine learning model

Номер патента: WO2024134011A1. Автор: Jussi Ruutu,Ville Ruutu,Honain Derrar. Владелец: Elisa Oyj. Дата публикации: 2024-06-27.

Automated metadata asset creation using machine learning models

Номер патента: US20210374187A1. Автор: Kyle Miller. Владелец: Rovi Guides Inc. Дата публикации: 2021-12-02.

Upgrading a machine learning model's training state

Номер патента: US11604998B2. Автор: Konstantin MEHL,Maximilian STROBEL. Владелец: Kaia Health Software GmbH. Дата публикации: 2023-03-14.

Automatic analysis system for quality data based on machine learning

Номер патента: US20230041209A1. Автор: Joon Hyung Park. Владелец: Hyundai Mobis Co Ltd. Дата публикации: 2023-02-09.

Methods and systems for processing natural language for machine learning

Номер патента: US09418059B1. Автор: William R. Murray,Dragos D. Margineantu,Robert E. Cranfill,Tomas Singliar. Владелец: Boeing Co. Дата публикации: 2016-08-16.

Hybrid methods and systems for feature selection

Номер патента: US20210241140A1. Автор: Thejas Gubbi SADASHIVA,Sundararaj S. IYENGAR. Владелец: Florida International University FIU. Дата публикации: 2021-08-05.

Methods and systems for determining physical properties via machine learning

Номер патента: US20240232576A1. Автор: Teresa HEAD-GORDON,Mojtaba HAGHIGHATLARI. Владелец: UNIVERSITY OF CALIFORNIA. Дата публикации: 2024-07-11.

Method and system for faster seismic imaging using machine learning

Номер патента: US12032111B2. Автор: Roald van Borselen,Paul M. Zwartjes,Rob Hegge. Владелец: Saudi Arabian Oil Co. Дата публикации: 2024-07-09.

Method and system for confidence estimation of a trained deep learning model

Номер патента: US20220245430A1. Автор: Bernhard Kainz,Antonios Makropoulos. Владелец: Thinksono Ltd. Дата публикации: 2022-08-04.

Method and system for confidence estimation of a trained deep learning model

Номер патента: WO2020249972A1. Автор: Bernhard Kainz,Antonios Makropoulos. Владелец: Thinksono Ltd. Дата публикации: 2020-12-17.

Method and system for confidence estimation of a trained deep learning model

Номер патента: EP3983957A1. Автор: Bernhard Kainz,Antonios Makropoulos. Владелец: Thinksono Ltd. Дата публикации: 2022-04-20.

Artificial intelligence system for efficient interactive training of machine learning models

Номер патента: US11868436B1. Автор: Sedat Gokalp,Abhishek Dan. Владелец: Amazon Technologies Inc. Дата публикации: 2024-01-09.

Method, apparatus, and system for selecting training observations for machine learning models

Номер патента: US20190102674A1. Автор: Anish Mittal,David Lawlor,Richard Kwant. Владелец: Here Global BV. Дата публикации: 2019-04-04.

ANALYTIC SYSTEM FOR FEATURE ENGINEERING IMPROVEMENT TO MACHINE LEARNING MODELS

Номер патента: US20190251467A1. Автор: Kaynar Kabul Ilknur,Silva Jorge Manuel Gomes da,Lokare Namita Dilip. Владелец: . Дата публикации: 2019-08-15.

Method and System for Data Transformation Based on Machine Learning

Номер патента: US20210256415A1. Автор: Muthuswamy Sridharan. Владелец: . Дата публикации: 2021-08-19.

Drilling speed prediction method and system for petroleum drilling based on machine learning

Номер патента: CN113887049A. Автор: 白凯,张万兴,董阿兵. Владелец: Yangtze University. Дата публикации: 2022-01-04.

Technical injection system for injecting a retrained machine learning model

Номер патента: EP4220491A1. Автор: Joachim FRÖHLICH,Tudor Ionescu. Владелец: SIEMENS AG. Дата публикации: 2023-08-02.

Multi-phase training of machine learning models for search ranking

Номер патента: US20230177097A1. Автор: Aleksandr Alekseevich Boymel,Daria Mikhailovna SOBOLEVA. Владелец: YANDEX EUROPE AG. Дата публикации: 2023-06-08.

Technical injection system for injecting a retrained machine learning model

Номер патента: US20230237324A1. Автор: Joachim FRÖHLICH,Tudor Ionescu. Владелец: Siemens AG Oesterreich. Дата публикации: 2023-07-27.

Computer-Implemented Data Structure, Method, Inspection Device, and System for Transferring a Machine Learning Model

Номер патента: US20240273415A1. Автор: Daniel SCHALL. Владелец: SIEMENS AG. Дата публикации: 2024-08-15.

Generating and/or utilizing a machine learning model in response to a search request

Номер патента: US20230273923A1. Автор: Steven Ross,Christopher Farrar. Владелец: Google LLC. Дата публикации: 2023-08-31.

Secure process for validating machine learning models using homomorphic encryption techniques

Номер патента: US12120216B2. Автор: Michael Brochonski. Владелец: Unify Patente GmbH and Co KG. Дата публикации: 2024-10-15.

Quality control of a machine learning model

Номер патента: EP4075348A1. Автор: Markus Sauer,Saurabh Narayan Singh. Владелец: SIEMENS AG. Дата публикации: 2022-10-19.

Method and system for identifying causal recourse in machine learning

Номер патента: US20240281684A1. Автор: Freddy Lecue,Daniele Magazzeni,Margarita BOYARSKAYA. Владелец: JPMorgan Chase Bank NA. Дата публикации: 2024-08-22.

Method and System for Improving Detection Capabilities of Machine Learning-Based Driving Assistance Systems

Номер патента: US20210024064A1. Автор: NICOSEVICI Tudor. Владелец: . Дата публикации: 2021-01-28.

METHOD, APPARATUS, AND SYSTEM FOR PROGRESSIVE TRAINING OF EVOLVING MACHINE LEARNING ARCHITECTURES

Номер патента: US20210279585A1. Автор: Keski-Valkama Tero Juhani. Владелец: . Дата публикации: 2021-09-09.

Method and system for auto image dehazing using machine learning

Номер патента: KR102483159B1. Автор: 이승민,이기동,강봉순,응오닷,강의진. Владелец: 동아대학교 산학협력단. Дата публикации: 2022-12-29.

Notebook interface for authoring enterprise machine learning models

Номер патента: US11941494B2. Автор: Shankar Srinivasan,Pari Sawant,Nirmal Mani. Владелец: Adobe Inc. Дата публикации: 2024-03-26.

Systems and methods for an automated data science process

Номер патента: US20230289623A1. Автор: Wei Lin,Yongqiang Zhang,William SCHMARZO. Владелец: Hitachi Vantara LLC. Дата публикации: 2023-09-14.

Secure multi-user machine learning on a cloud data platform

Номер патента: US11989630B2. Автор: Justin Langseth,William L. Stratton, Jr.,Stuart Ozer,Monica J. Holboke. Владелец: Snowflake Inc. Дата публикации: 2024-05-21.

Method of and system for generating a stress balance instruction set for a user

Номер патента: US12073294B2. Автор: Kenneth Neumann. Владелец: KPN Innovations LLC. Дата публикации: 2024-08-27.

Machine-learned model for duplicate crash dump detection

Номер патента: US20220108191A1. Автор: Hao Yang,Yang Xu,YONG Li,Hyun Deok Choi. Владелец: SAP SE. Дата публикации: 2022-04-07.

System and a method of training a machine-learning models for search results ranking

Номер патента: US20240256558A1. Автор: Vsevolod SVETLOV,Kirill KHRYLCHENKO. Владелец: YE Hub Armenia LLC. Дата публикации: 2024-08-01.

Method and system for generating a decision logic and electric power system

Номер патента: EP4402548A1. Автор: Pawel Dawidowski,James Ottewill,Jhelum CHAKRAVORTY. Владелец: Hitachi Energy Ltd. Дата публикации: 2024-07-24.

Machine-learning techniques for evaluating suitability of candidate datasets for target applications

Номер патента: US11704598B2. Автор: Kourosh Modarresi,Charles Menguy,Hongyuan Yuan. Владелец: Adobe Inc. Дата публикации: 2023-07-18.

Reinforcement learning system for maintenance decision making

Номер патента: US20240255939A1. Автор: Haiyan Wang,Chetan GUPTA,Ahmed FARAHAT,Takuya Kanazawa,Hamed KHORASGANI. Владелец: HITACHI LTD. Дата публикации: 2024-08-01.

Reinforcement learning system for maintenance decision making

Номер патента: EP4407523A1. Автор: Haiyan Wang,Chetan GUPTA,Ahmed FARAHAT,Takuya Kanazawa,Hamed KHORASGANI. Владелец: HITACHI LTD. Дата публикации: 2024-07-31.

Ai-system for flow chemistry

Номер патента: EP4157512A1. Автор: Christian Holtze,Daniel GEOERG,Philipp Staehle,Astrid Elisa NIEDERLE,Marcel Vranceanu. Владелец: BASF SE. Дата публикации: 2023-04-05.

Learning model generation support apparatus, learning model generation support method, and computer-readable recording medium

Номер патента: US12066417B2. Автор: Riki ETO. Владелец: NEC Corp. Дата публикации: 2024-08-20.

Transforming natural language request into enterprise analytics query using fine-tuned machine learning model

Номер патента: US20240220489A1. Автор: Shashank Mohan Jain,Suchin Chouta. Владелец: SAP SE. Дата публикации: 2024-07-04.

Transforming natural language request into enterprise analytics query using fine-tuned machine learning model

Номер патента: US12032564B1. Автор: Shashank Mohan Jain,Suchin Chouta. Владелец: SAP SE. Дата публикации: 2024-07-09.

System and method for monitoring machine learning models

Номер патента: US11531930B2. Автор: Leandro Axel Guelman. Владелец: ROYAL BANK OF CANADA. Дата публикации: 2022-12-20.

Machine learning model tracking platform

Номер патента: US09996804B2. Автор: Stuart Michael Bowers,Parul Agarwal,Parv Ajay Oberoi,Hussein Mohamed Hassan Mehanna. Владелец: Facebook Inc. Дата публикации: 2018-06-12.

Automated generation of explainable machine learning

Номер патента: WO2021216104A1. Автор: Yehezkel Shraga RESHEFF,Tzvika Barenholz,Talia Tron,Nitzan Bavly. Владелец: INTUIT INC.. Дата публикации: 2021-10-28.

Automated generation of explainable machine learning

Номер патента: EP4139856A1. Автор: Yehezkel Shraga RESHEFF,Tzvika Barenholz,Talia Tron,Nitzan Bavly. Владелец: Intuit Inc. Дата публикации: 2023-03-01.

System for searching natural language documents

Номер патента: WO2020074786A1. Автор: Sakari Arvela,Juho Kallio,Sebastian Björkqvist. Владелец: Iprally Technologies Oy. Дата публикации: 2020-04-16.

Electronic system for developing a machine learning model

Номер патента: US20230120131A1. Автор: Stephen Walsh,Tapas Kanungo,Dmitrii SIAKOV,Nehal Bengre. Владелец: SAMSUNG ELECTRONICS CO LTD. Дата публикации: 2023-04-20.

METHOD AND SYSTEM FOR UPDATING EMBEDDING TABLES FOR MACHINE LEARNING MODELS

Номер патента: US20210264220A1. Автор: ZHANG Wei,WEI Wei,JIN Lingling,XU Lingjie. Владелец: . Дата публикации: 2021-08-26.

Machine learning on distributed customer data while protecting privacy

Номер патента: AU2019283803A1. Автор: Peter Eberlein,Volker Driesen. Владелец: SAP SE. Дата публикации: 2020-12-03.

System and method for expediting distributed feedback for developing of machine learning classifiers

Номер патента: US20240119344A1. Автор: Mark J. Cherney. Владелец: Deere and Co. Дата публикации: 2024-04-11.

Method and system for building a machine learning model

Номер патента: US20210241182A1. Автор: Abhishek Shrivastava,Boryana MANZ,James FIEDLER,Robert CEZEAUX. Владелец: Capital One Services LLC. Дата публикации: 2021-08-05.

Data sovereignty compliant machine learning

Номер патента: EP3616056A1. Автор: Eric Chen. Владелец: Cisco Technology Inc. Дата публикации: 2020-03-04.

Method for developing machine-learning based tool

Номер патента: US12094180B2. Автор: Ariel Beck,Chandra Suwandi Wijaya. Владелец: Panasonic Intellectual Property Management Co Ltd. Дата публикации: 2024-09-17.

Digital object library management system for machine learning applications

Номер патента: EP3265926A1. Автор: Scott B. Miserendino,Ryan V. Peters,Donald D. STEINER,Guy B. FAIRBANKS. Владелец: BluVector Inc. Дата публикации: 2018-01-10.

Machine learning on distributed customer data while protecting privacy

Номер патента: EP3739487A1. Автор: Peter Eberlein,Volker Driesen. Владелец: SAP SE. Дата публикации: 2020-11-18.

Machine learning pipeline automation

Номер патента: US20240168855A1. Автор: Francisco Garcia Montemayor,Leandro Lopes,Thiagarajan Ramakrishnan,Robert Mujica. Владелец: Dell Products LP. Дата публикации: 2024-05-23.

Device, method and system for pruning video analytics parameters

Номер патента: US12094202B2. Автор: Peter L. Venetianer,Ryan Lee,Qifan Liang,Thomas Christopher HANSEN. Владелец: Motorola Solutions Inc. Дата публикации: 2024-09-17.

Energy efficient machine learning models

Номер патента: GB2627250A. Автор: Thomas Bates Alan. Владелец: BAE SYSTEMS plc. Дата публикации: 2024-08-21.

Machine learning on distributed customer data while protecting privacy

Номер патента: AU2021286319A1. Автор: Peter Eberlein,Volker Driesen. Владелец: SAP SE. Дата публикации: 2022-01-20.

Techniques for validating machine learning models

Номер патента: EP4392909A1. Автор: Ron Shoham,Yuval Friedlander,Tom Hanetz,Gil Ben Zvi. Владелец: Armis Security Ltd. Дата публикации: 2024-07-03.

Shared network learning for machine learning enabled text classification

Номер патента: US20230169362A1. Автор: Thomas Beucher. Владелец: SAP France SA. Дата публикации: 2023-06-01.

Validation of a machine learning model

Номер патента: US20230236960A1. Автор: Xinyuan Huang,Ashutosh Arwind Malegaonkar,Patrick James Riel,Elvira Dzhuraeva. Владелец: Cisco Technology Inc. Дата публикации: 2023-07-27.

Method and system for automating clinical data standards

Номер патента: WO2023278012A1. Автор: Ramanujam ILANGO. Владелец: Ilango Ramanujam. Дата публикации: 2023-01-05.

Systems and methods for automatically building a machine learning model

Номер патента: US11934971B2. Автор: Aleksandr Kotolyan. Владелец: Digital Lion LLC. Дата публикации: 2024-03-19.

Decision boundary enhancement for learning models

Номер патента: US20200387760A1. Автор: TONG Li,David Winston,Richard Daniel Kimmel,Pravin Kamdar. Владелец: International Business Machines Corp. Дата публикации: 2020-12-10.

Data Management And Bootstrapping Processing For Machine Learning And Classification Development

Номер патента: US20210201171A1. Автор: Sean T. O'Hara. Владелец: SRC Inc. Дата публикации: 2021-07-01.

Machine learning method

Номер патента: US20210334701A1. Автор: Chia-Chun Wu,Chih-Yung Chang,Kuo-Chung Yu,Shih-Jung Wu,Li-Pang Lu. Владелец: Tamkang University. Дата публикации: 2021-10-28.

Intelligently optimized machine learning models

Номер патента: WO2023173964A1. Автор: Joseph Kozhaya,Elizabeth Spingola,Paul Samuel Schweigert,Marcos Araque Fiallos. Владелец: Ibm (China) Co., Limited. Дата публикации: 2023-09-21.

Storage medium, machine learning method, and machine learning device

Номер патента: US20220215297A1. Автор: Kenichirou Narita. Владелец: Fujitsu Ltd. Дата публикации: 2022-07-07.

Asynchronous prediction in machine learning model serving

Номер патента: US20240095109A1. Автор: Lawrence Lam,Di Zhao. Владелец: Twitter Inc. Дата публикации: 2024-03-21.

Method and system for automating clinical data standards

Номер патента: US12112837B2. Автор: Ilango Ramanujam. Владелец: Individual. Дата публикации: 2024-10-08.

Federated learning technique for applied machine learning

Номер патента: US12131231B2. Автор: Yi Zhou,Nathalie Baracaldo Angel,Yuya Jeremy Ong. Владелец: International Business Machines Corp. Дата публикации: 2024-10-29.

Differential diagnosis feature engineering for machine learning applications

Номер патента: US20230036102A1. Автор: Douglas Graeme Brown. Владелец: Red Hat Inc. Дата публикации: 2023-02-02.

Embedding optimization for a machine learning model

Номер патента: WO2023140781A3. Автор: XIA XIAO,MING Chen,Youlong Cheng. Владелец: Lemon Inc.. Дата публикации: 2023-08-24.

Machine Learning Model Training Method and Device and Electronic Equipment

Номер патента: US20230030419A1. Автор: Tingting Wang. Владелец: BOE Technology Group Co Ltd. Дата публикации: 2023-02-02.

Method and system for generating training data to be used in machine learning models

Номер патента: WO2021237156A1. Автор: Charles KNOBLOCH. Владелец: Knobloch Charles. Дата публикации: 2021-11-25.

Method and system for generating training data to be used in machine learning models

Номер патента: WO2021237156A4. Автор: Charles KNOBLOCH. Владелец: Knobloch Charles. Дата публикации: 2022-01-13.

Method and system for providing actionable corrections to and code refactoring of executable code

Номер патента: US20240281246A1. Автор: Chris LAFFRA. Владелец: JPMorgan Chase Bank NA. Дата публикации: 2024-08-22.

Machine Learning Model Adversarial Attack Monitoring

Номер патента: US20240320329A1. Автор: James Ballard,Tanner Burns,Chris Sestito. Владелец: Hiddenlayer Inc. Дата публикации: 2024-09-26.

Machine learning model adversarial attack monitoring

Номер патента: WO2024196526A1. Автор: James Ballard,Tanner Burns,Chris Sestito. Владелец: HiddenLayer Inc.. Дата публикации: 2024-09-26.

Automatic generation of ground truth data for training or retraining machine learning models

Номер патента: US12112247B2. Автор: Eric Todd Brower. Владелец: Nvidia Corp. Дата публикации: 2024-10-08.

Machine learning model training method, service data processing method, apparatuses, and systems

Номер патента: EP4455951A1. Автор: Jun Wu,Yunfeng Shao,Kaiyang GUO. Владелец: Huawei Technologies Co Ltd. Дата публикации: 2024-10-30.

Methods and systems for enhanced sensor assessments for predicting secondary endpoints

Номер патента: US12099932B1. Автор: John Wesley Gottula. Владелец: SAS Institute Inc. Дата публикации: 2024-09-24.

Multi-stage machine learning model training for key-value extraction

Номер патента: US20240221407A1. Автор: TAO Sheng,Jun Qian,Yazhe Hu,Jeaff Wang,Mengqing Guo. Владелец: Oracle International Corp. Дата публикации: 2024-07-04.

Distributed machine learning compiler optimization

Номер патента: WO2024107486A1. Автор: Yang Yang,Edward Teague,Joseph Binamira Soriaga,Christopher Lott,Weiliang Zeng. Владелец: QUALCOMM INCORPORATED. Дата публикации: 2024-05-23.

Obfuscating inference operations of a machine learning model

Номер патента: WO2024015062A1. Автор: Nahid Farhady Ghalaty,Matthew Royce MARKWELL. Владелец: Google LLC. Дата публикации: 2024-01-18.

On-device machine learning platform to enable sharing of machine-learned models between applications

Номер патента: WO2019108279A1. Автор: Victor Carbune,Sandro Feuz. Владелец: Google LLC. Дата публикации: 2019-06-06.

Generating and deploying machine learning models packages

Номер патента: EP3714362A1. Автор: Jiazhen Chen,Haiyang Liu,Jingwei Sun,Calvin Yue-Ren Kuo. Владелец: Amazon Technologies Inc. Дата публикации: 2020-09-30.

Machine learning platform

Номер патента: US12067463B2. Автор: Brian Mullins,Stephen Roberts,Rob Williams,Mike Osborne,Paul Reader,Nathan Korda,Stanley Speel. Владелец: Mind Foundry Ltd. Дата публикации: 2024-08-20.

Verifying confidential machine learning models

Номер патента: US11481680B2. Автор: Nitin Singh,Pankaj S. Dayama,Vinayaka Pandit,Dhinakaran Vinayagamurthy. Владелец: International Business Machines Corp. Дата публикации: 2022-10-25.

Methods and systems for enhanced sensor assessments for predicting secondary endpoints

Номер патента: US20240346382A1. Автор: John Wesley Gottula. Владелец: SAS Institute Inc. Дата публикации: 2024-10-17.

Methods and systems for enhanced sensor assessments for predicting secondary endpoints

Номер патента: US20240346324A1. Автор: John Wesley Gottula. Владелец: SAS Institute Inc. Дата публикации: 2024-10-17.

Protection of a machine-learning model

Номер патента: US20240119137A1. Автор: Andrea Giovannini,Frederik Frank Flöther,Tim Uwe Scheideler,Matthias Seul. Владелец: International Business Machines Corp. Дата публикации: 2024-04-11.

Assessing machine learning bias using model training metadata

Номер патента: US20230229734A1. Автор: Chiara Troiani,Frank Michaud,Aviva VAKNIN. Владелец: Cisco Technology Inc. Дата публикации: 2023-07-20.

Documentation file-embedded machine learning models

Номер патента: US20210027190A1. Автор: Changchuan Yin. Владелец: AT&T INTELLECTUAL PROPERTY I LP. Дата публикации: 2021-01-28.

Documentation file-embedded machine learning models

Номер патента: US20230222389A1. Автор: Changchuan Yin. Владелец: AT&T INTELLECTUAL PROPERTY I LP. Дата публикации: 2023-07-13.

Protection of a machine-learning model

Номер патента: GB2623102A. Автор: Giovannini Andrea,Seul Matthias,Uwe Scheideler Tim,Floether Frederik Frank. Владелец: International Business Machines Corp. Дата публикации: 2024-04-10.

General machine learning model, and model file generation and parsing method

Номер патента: EP3751477A1. Автор: Xunyu CHEN,Linyang WU,Weijian DU. Владелец: Shanghai Cambricon Information Technology Co Ltd. Дата публикации: 2020-12-16.

Learning Parameter Sampling Configuration for Automated Machine Learning

Номер патента: US20210304056A1. Автор: Ming Tan,Ladislav Kunc,Saloni Potdar,Haode Qi. Владелец: International Business Machines Corp. Дата публикации: 2021-09-30.

Transfer learning with machine learning systems

Номер патента: US12061991B2. Автор: Chia-Yu Chen,Pin-Yu Chen,I-Hsin Chung,Sijia Liu,Tsung-Yi Ho,Yun-Yun Tsai. Владелец: National Tsing Hua University NTHU. Дата публикации: 2024-08-13.

Using unsupervised machine learning to produce interpretable routing rules

Номер патента: US12061962B2. Автор: Mukund RAMACHANDRAN,Rameil Sarkis. Владелец: Atlassian US Inc. Дата публикации: 2024-08-13.

Automated process execution based on evaluation of machine learning models

Номер патента: US20210110293A1. Автор: Dennis Lehr. Владелец: SAP SE. Дата публикации: 2021-04-15.

Architecture to employ machine-learning model

Номер патента: US20240256313A1. Автор: Generoso Pagano,Davide SANAPO,Michael DEFOIN-PLATEL. Владелец: Amadeus SAS. Дата публикации: 2024-08-01.

Using unsupervised machine learning to produce interpretable routing rules

Номер патента: US20200380380A1. Автор: Mukund RAMACHANDRAN,Rameil Sarkis. Владелец: Atlassian Inc. Дата публикации: 2020-12-03.

Architecture to employ machine-learning model

Номер патента: WO2022253602A1. Автор: Generoso Pagano,Davide SANAPO,Michael DEFOIN-PLATEL. Владелец: AMADEUS S.A.S.. Дата публикации: 2022-12-08.

Learning parameter sampling configuration for automated machine learning

Номер патента: US12106197B2. Автор: Ming Tan,Ladislav Kunc,Saloni Potdar,Haode Qi. Владелец: International Business Machines Corp. Дата публикации: 2024-10-01.

Machine learning method, machine learning system, and program

Номер патента: US20230214482A1. Автор: Isamu Teranishi,Hikaru TSUCHIDA. Владелец: NEC Corp. Дата публикации: 2023-07-06.

Augmenting machine learning models to incorporate incomplete datasets

Номер патента: US20210166308A1. Автор: Don Carmichael. Владелец: Upstart Network Inc. Дата публикации: 2021-06-03.

Systems and Methods for Generating Names Using Machine-Learned Models

Номер патента: US20230186029A1. Автор: Victor Carbune,Alexandru-Marian Damian. Владелец: Google LLC. Дата публикации: 2023-06-15.

Method of and system for performing object recognition in data acquired by ultrawide field of view sensors

Номер патента: CA3207598A1. Автор: Freddy Lecue,Ola AHMAD. Владелец: Thales Canada Inc. Дата публикации: 2022-09-01.

Method of and system for performing object recognition in data acquired by ultrawide field of view sensors

Номер патента: EP4298561A1. Автор: Freddy Lecue,Ola AHMAD. Владелец: Thales Canada Inc. Дата публикации: 2024-01-03.

Method of and system for performing object recognition in data acquired by ultrawide field of view sensors

Номер патента: US20240153261A1. Автор: Freddy Lecue,Ola AHMAD. Владелец: Thales Canada Inc. Дата публикации: 2024-05-09.

Method of and system for performing object recognition in data acquired by ultrawide field of view sensors

Номер патента: GB2618469A. Автор: Lecue Freddy,AHMAD Ola. Владелец: Thales Canada Inc. Дата публикации: 2023-11-08.

Optimizing deployment of machine learning workloads

Номер патента: US12026542B2. Автор: Divyesh Jadav,Luis Angel Bathen,Kunal Chawla. Владелец: International Business Machines Corp. Дата публикации: 2024-07-02.

Machine learning sparse computation mechanism

Номер патента: EP4379648A3. Автор: Balaji Vembu,Tsung-Han Lin,Kamal SINHA,Eriko Nurvitadhi,Rajkishore Barik,Nicolas Galoppo Von Borries. Владелец: Intel Corp. Дата публикации: 2024-09-11.

COMPUTER-BASED SYSTEMS FOR DATA DISTRIBUTION ALLOCATION UTILIZING MACHINE LEARNING MODELS AND METHODS OF USE THEREOF

Номер патента: US20220277327A1. Автор: Deng Peter,Wei Jihan. Владелец: . Дата публикации: 2022-09-01.

Methods and systems for secure data analysis and machine learning

Номер патента: EP4208805A4. Автор: David Neale CARLEY. Владелец: Argo AI LLC. Дата публикации: 2024-10-30.

Machine learning sparse computation mechanism

Номер патента: EP4379648A2. Автор: Balaji Vembu,Tsung-Han Lin,Kamal SINHA,Eriko Nurvitadhi,Rajkishore Barik,Nicolas Galoppo Von Borries. Владелец: Intel Corp. Дата публикации: 2024-06-05.

METHODS AND SYSTEMS FOR SECURE DATA ANALYSIS AND MACHINE LEARNING

Номер патента: US20220067181A1. Автор: Carley David Neale. Владелец: . Дата публикации: 2022-03-03.

Method and system for correcting keyboard typo based on deep learning model

Номер патента: KR102128415B1. Автор: 박선영,이승윤,서대룡. Владелец: 네이버 주식회사. Дата публикации: 2020-06-30.

Systems and methods for machine learning model training and deployment

Номер патента: US20230222382A1. Автор: Xiaolan Wang,Justin E. Patterson,Wenzheng Sun. Владелец: Tektronix Inc. Дата публикации: 2023-07-13.

Federated machine learning in adaptive training systems

Номер патента: WO2023173211A1. Автор: Jean-Francois Delisle,Navpreet Singh,Ben Winokur. Владелец: CAE Inc.. Дата публикации: 2023-09-21.

Federated machine learning in adaptive training systems

Номер патента: US20230297888A1. Автор: Jean-Francois Delisle,Navpreet Singh,Ben Winokur. Владелец: CAE INC. Дата публикации: 2023-09-21.

Method and system for training a machine learning model

Номер патента: EP4134879A1. Автор: Marcel Hildebrandt,Serghei Mogoreanu,Mitchell Joblin,Martin Ringsquandl,Dianna YEE. Владелец: SIEMENS AG. Дата публикации: 2023-02-15.

Systems and methods for evaluating machine-learning models and predictions

Номер патента: US20240220778A1. Автор: Kenneth Wenger,Damian Brunt Fozard. Владелец: Squint Ai Inc. Дата публикации: 2024-07-04.

Systems and methods for evaluating machine-learning models and predictions

Номер патента: WO2024145710A1. Автор: Kenneth Wenger,Damian Brunt Fozard. Владелец: Squint AI Inc.. Дата публикации: 2024-07-11.

Instantiating machine-learning models at on-demand cloud-based systems with user-defined datasets

Номер патента: US20220383150A1. Автор: Doo Soon Kim,Trung Bui,Tuan Manh Lai,Nham Van Le. Владелец: Adobe Inc. Дата публикации: 2022-12-01.

Object-based data science platform

Номер патента: CA3237517A1. Автор: YANG He,Joseph Hernandez,Christopher Edward Couch. Владелец: Liveline Technologies Inc. Дата публикации: 2023-05-25.

Object-based data science platform

Номер патента: EP4433947A1. Автор: YANG He,Joseph Hernandez,Christopher Edward Couch. Владелец: Liveline Technologies Inc. Дата публикации: 2024-09-25.

Method and system for performing machine learning

Номер патента: EP3785179A1. Автор: LIANG Han. Владелец: Alibaba Group Holding Ltd. Дата публикации: 2021-03-03.

Method and system for performing machine learning

Номер патента: US20190332940A1. Автор: LIANG Han. Владелец: Alibaba Group Holding Ltd. Дата публикации: 2019-10-31.

Method and system for performing machine learning

Номер патента: WO2019210237A1. Автор: LIANG Han. Владелец: ALIBABA GROUP HOLDING LIMITED. Дата публикации: 2019-10-31.

Input generation for multimodal learning based machine learning models

Номер патента: US20240202546A1. Автор: Tassilo Klein,Moin Nabi. Владелец: SAP SE. Дата публикации: 2024-06-20.

Method and system for training a machine learning model

Номер патента: US20230046653A1. Автор: Marcel Hildebrandt,Serghei Mogoreanu,Mitchell Joblin,Martin Ringsquandl,Dianna YEE. Владелец: SIEMENS AG. Дата публикации: 2023-02-16.

Systems and methods for providing automated data science as a service

Номер патента: US20230342668A1. Автор: Niraj CHAURASIA. Владелец: JPMorgan Chase Bank NA. Дата публикации: 2023-10-26.

Federated machine learning in adaptive training systems

Номер патента: CA3193081C. Автор: Jean-Francois Delisle,Navpreet Singh,Ben Winokur. Владелец: CAE INC. Дата публикации: 2024-03-05.

Federated machine learning in adaptive training systems

Номер патента: US11915111B2. Автор: Jean-Francois Delisle,Navpreet Singh,Ben Winokur. Владелец: CAE INC. Дата публикации: 2024-02-27.

Federated machine learning in adaptive training systems

Номер патента: AU2023204030A1. Автор: Jean-Francois Delisle,Navpreet Singh,Ben Winokur. Владелец: CAE INC. Дата публикации: 2023-10-05.

Federated machine learning in adaptive training systems

Номер патента: AU2023204030B2. Автор: Jean-Francois Delisle,Navpreet Singh,Ben Winokur. Владелец: CAE INC. Дата публикации: 2023-11-09.

Detecting key items using large language machine-learned models

Номер патента: US20240296385A1. Автор: Shrikar Archak,Shishir Kumar Prasad. Владелец: Maplebear Inc. Дата публикации: 2024-09-05.

Method and system for interpreting machine learning model's prediction

Номер патента: US20230306308A1. Автор: Mustafa Joherbhai Fatakdawala,Kavita Suresh Parab. Владелец: Tata Consultancy Services Ltd. Дата публикации: 2023-09-28.

Machine learning system for automated recommendations of evidence during dispute resolution

Номер патента: US20220309507A1. Автор: Anthony Ross,Raymond Buhr. Владелец: PayPal Inc. Дата публикации: 2022-09-29.

Machine learning system for automated recommendations of evidence during dispute resolution

Номер патента: US20240289807A1. Автор: Anthony Ross,Raymond Buhr. Владелец: PayPal Inc. Дата публикации: 2024-08-29.

Methods and systems for machine learning model training with human-assisted refinement

Номер патента: US20240112455A1. Автор: LIU Ren,Wenbin He,Liang Gou,Md Naimul Hoque. Владелец: ROBERT BOSCH GMBH. Дата публикации: 2024-04-04.

System and method for automatically suggesting a formula for a product using machine learning

Номер патента: US20230368044A1. Автор: Simi Sugathan,Soumya Sugathan. Владелец: Productdev Edge Pvt Ltd. Дата публикации: 2023-11-16.

Computer system for distributed machine learning

Номер патента: WO2018162069A1. Автор: Natan Peterfreund,Uri Weiser,Zuguang WU,Roman Talyansky,Zach MELAMED. Владелец: Huawei Technologies Co., Ltd.. Дата публикации: 2018-09-13.

Interpretable machine learning for data at scale

Номер патента: EP4348514A1. Автор: Fuchen Liu,Jugal Parikh,Kristian Holsheimer,Mesfin Adane Dema. Владелец: Microsoft Technology Licensing LLC. Дата публикации: 2024-04-10.

Systems and methods for machine learning model management

Номер патента: US20240303535A1. Автор: Anupam Arora,John Rollins,Raj ARUMUGAM,Roy THARPE,Venu NELLURI. Владелец: JPMorgan Chase Bank NA. Дата публикации: 2024-09-12.

Device, method, and system for weighted knowledge transfer

Номер патента: US20240320507A1. Автор: Wataru Takeuchi,Shuntaro Yui,George CHALKIDIS. Владелец: HITACHI LTD. Дата публикации: 2024-09-26.

Device, method, and system for weighted knowledge transfer

Номер патента: WO2022190319A1. Автор: Wataru Takeuchi,Shuntaro Yui,George CHALKIDIS. Владелец: Hitachi, Ltd.. Дата публикации: 2022-09-15.

Facilitating implementation of machine learning models in embedded software

Номер патента: US20240296302A1. Автор: Amit Gupta,Nipun Poddar,Sumeet Khurana,Shvet CHAKRA,Neveen Prakash GOEL. Владелец: Adobe Inc. Дата публикации: 2024-09-05.

Machine learning model aggregation

Номер патента: US20240220860A1. Автор: Poorna Kale,Saideep Tiku,Shashank Bangalore Lakshman,Pavana Prakash,Febin Sunny. Владелец: Micron Technology Inc. Дата публикации: 2024-07-04.

Deploying and updating machine learning models over a communication network

Номер патента: CA3239759A1. Автор: Venkat Ganesan,Kaustubh Jain,Krishna SAMAVEDAM,Eddie Beal. Владелец: HUGHES NETWORK SYSTEMS LLC. Дата публикации: 2023-06-22.

Machine learning training content delivery

Номер патента: US20240070523A1. Автор: Allan Rafael CASCANTE VALVERDE. Владелец: Microsoft Technology Licensing LLC. Дата публикации: 2024-02-29.

Machine Learning Model-Guided Training and Development

Номер патента: US20240013673A1. Автор: Anthony M. Accardo,Anna T. Wolfe,Alexandra Hernandez,Shelly Henling. Владелец: Disney Enterprises Inc. Дата публикации: 2024-01-11.

Machine Learning Model Deployment in Inference System

Номер патента: US20240320543A1. Автор: Bo Song,Jun Wang,Xiao Ming Ma,Dong Hai Yu,Jiang Bo Kang,Yao Dong Liu. Владелец: International Business Machines Corp. Дата публикации: 2024-09-26.

Providing a secure and collaborative feedback mechanism for machine learning models

Номер патента: US20240311682A1. Автор: Luca COSTABELLO,Adrianna Janik. Владелец: Accenture Global Solutions Ltd. Дата публикации: 2024-09-19.

Computer-implemented method for generating a combined machine learning model

Номер патента: US20240296383A1. Автор: Andreas Hangauer,Michael LEBACHER,Cecilia Margareta Bruhn. Владелец: SIEMENS AG. Дата публикации: 2024-09-05.

Transfer learning method for a machine learning system

Номер патента: US20240338571A1. Автор: Adi Botea,Chahrazed Bouhini,Suchandra MANDAL,Catriona CLARKE,Tony MARRERO. Владелец: Eaton Intelligent Power Ltd. Дата публикации: 2024-10-10.

System and method for machine learning modeling and estimation of loss

Номер патента: US20240161204A1. Автор: Brian Theodore Bien,Alexander Douglas Findlater. Владелец: Groundspeed Analytics Inc. Дата публикации: 2024-05-16.

Deploying simplified machine learning models to resource-constrained edge devices

Номер патента: US20240169269A1. Автор: Vishal INDER SIKKA,Navin Budhiraja. Владелец: Vianai Systems Inc. Дата публикации: 2024-05-23.

Machine-learning driven real-time data analysis

Номер патента: US12039613B2. Автор: Akash Magoon,Aman Magoon,John Joseph GLORIOSO, Jr.,Sina Chehrazi. Владелец: Nayya Health Inc. Дата публикации: 2024-07-16.

Sparsity-inducing federated machine learning

Номер патента: EP4217931A1. Автор: Max Welling,Joseph Binamira Soriaga,Hossein Hosseini,Christos LOUIZOS,Matthias REISSER. Владелец: Qualcomm Inc. Дата публикации: 2023-08-02.

Computer-readable recording medium storing machine learning program, device, and method

Номер патента: US20240086710A1. Автор: Kenichi Kobayashi,Hiroaki Kingetsu. Владелец: Fujitsu Ltd. Дата публикации: 2024-03-14.

Automated machine learning method and apparatus therefor

Номер патента: US20230297830A1. Автор: Jae Hwan Lee,Hyeong Jin LIM. Владелец: Neurocle Inc. Дата публикации: 2023-09-21.

Techniques for evaluating an effect of changes to machine learning models

Номер патента: US20230214677A1. Автор: FAN Yin,Royce ALFRED. Владелец: Equifax Inc. Дата публикации: 2023-07-06.

Machine-learning driven real-time data analysis

Номер патента: US11763393B2. Автор: Akash Magoon,Aman Magoon,John Joseph GLORIOSO, Jr.,Sina Chehrazi. Владелец: Nayya Health Inc. Дата публикации: 2023-09-19.

Computer-implemented method for providing explanations concerning a global behaviour of a machine learning model

Номер патента: EP4352665A1. Автор: Michael LEBACHER. Владелец: SIEMENS AG. Дата публикации: 2024-04-17.

System and method for providing personal machine learning models

Номер патента: GB2621382A. Автор: Ozay Mete. Владелец: SAMSUNG ELECTRONICS CO LTD. Дата публикации: 2024-02-14.

Machine learning model management

Номер патента: US20240169271A1. Автор: Johannes Noppen,Alistair MCCORMICK,Panagiotis KOUROUKLIDIS. Владелец: British Telecommunications plc. Дата публикации: 2024-05-23.

Attention-based classifier machine learning models using dual-positional-mode segment embeddings

Номер патента: US20240070479A1. Автор: Aravind BRAHMADEVARA,Kartik B. Sharma. Владелец: Optum Inc. Дата публикации: 2024-02-29.

Visually creating and monitoring machine learning models

Номер патента: WO2021051006A1. Автор: Vishal INDER SIKKA,Kevin Frederick DUNNELL,Daniel James AMELANG. Владелец: Vianai Systems, Inc.. Дата публикации: 2021-03-18.

Optimised Machine Learning

Номер патента: US20220318621A1. Автор: Shaogang GONG,Zimo Liu. Владелец: Veritone Inc. Дата публикации: 2022-10-06.

Machine learning model management

Номер патента: EP4315187A1. Автор: Johannes Noppen,Alistair MCCORMICK,Panagiotis KOUROUKLIDIS. Владелец: British Telecommunications plc. Дата публикации: 2024-02-07.

Machine learning model management

Номер патента: WO2022200065A1. Автор: Johannes Noppen,Alistair MCCORMICK,Panagiotis KOUROUKLIDIS. Владелец: BRITISH TELECOMMUNICATIONS PUBLIC LIMITED COMPANY. Дата публикации: 2022-09-29.

Optimised machine learning

Номер патента: EP3983948A1. Автор: Shaogang GONG,Zimo Liu. Владелец: Vision Semantics Ltd. Дата публикации: 2022-04-20.

Machine learning model training

Номер патента: WO2021262140A1. Автор: Madhu Sudan ATHREYA,Manu RASTOGI,Amalendu IYER. Владелец: Hewlett-Packard Development Company, L.P.. Дата публикации: 2021-12-30.

Machine learning assisted satellite based positioning

Номер патента: US20230184961A1. Автор: Benjamin A. Werner,Brent M. Ledvina,Dennis P. HILGENBERG,Aarti SATHYANARAYANA. Владелец: Apple Inc. Дата публикации: 2023-06-15.

Machine learning model remote management in advanced communication networks

Номер патента: US20240202574A1. Автор: Thang Pham,Ramy Atawia,Vamsi Krishna Boyapati. Владелец: Dell Products LP. Дата публикации: 2024-06-20.

Futureproofing a machine learning model

Номер патента: US20240232690A9. Автор: Frederik Frank Flöther,Vladimir Rastunkov,Kavitha Hassan Yogaraj. Владелец: International Business Machines Corp. Дата публикации: 2024-07-11.

Federated Learning in Machine Learning

Номер патента: US20230196123A1. Автор: Nozomu KUBOTA. Владелец: Individual. Дата публикации: 2023-06-22.

Futureproofing a machine learning model

Номер патента: US20240135242A1. Автор: Frederik Frank Flöther,Vladimir Rastunkov,Kavitha Hassan Yogaraj. Владелец: International Business Machines Corp. Дата публикации: 2024-04-25.

Fit-for-basin continuous machine learning for well integrity

Номер патента: EP4394659A1. Автор: Xiaolin Zhang,Salma Benslimane. Владелец: Geoquest Systems BV. Дата публикации: 2024-07-03.

Physics compliance indicator (pci) for machine learning

Номер патента: WO2024108057A1. Автор: Amirmasoud Kalantari DAHAGHI,Vuong Van PHAM,Temoor MUTHER. Владелец: University of Kansas. Дата публикации: 2024-05-23.

Time-based ensemble machine learning model

Номер патента: EP3602317A1. Автор: Srisatish AMBATI,Ashrith Barthur. Владелец: H2oAi Inc. Дата публикации: 2020-02-05.

Time-based ensemble machine learning model

Номер патента: WO2018183473A1. Автор: Srisatish AMBATI,Ashrith Barthur. Владелец: H2O.Ai Inc.. Дата публикации: 2018-10-04.

Fit-for-basin continuous machine learning for well integrity

Номер патента: US20240220862A1. Автор: Xiaolin Zhang,Salma Benslimane. Владелец: Schlumberger Technology Corp. Дата публикации: 2024-07-04.

Error detection and correction systems for data processing implemented via artificial intelligence

Номер патента: US20240256945A1. Автор: Sarita Mantravadi. Владелец: Evicore Healthcare Msi LLC. Дата публикации: 2024-08-01.

Time-based ensemble machine learning model

Номер патента: US12045733B2. Автор: Srisatish AMBATI,Ashrith Barthur. Владелец: H2oAi Inc. Дата публикации: 2024-07-23.

Automated customized machine learning model validation flow

Номер патента: US20240273395A1. Автор: Omar ODIBAT,Sanjana Sahayaraj,Divya Devaraj,Aastha Rai. Владелец: Kyndryl Inc. Дата публикации: 2024-08-15.

Combining rules-based knowledge engineering with machine learning prediction

Номер патента: AU2021318113B2. Автор: Kevin M. McCluskey,Peter E. Lubczynski,Kevin Michael Furbish. Владелец: Intuit Inc. Дата публикации: 2023-05-18.

Method, System and Software to Eliminate Learned Information from a Trained Machine Learning Model

Номер патента: US20240169250A1. Автор: Robert Kern Sears. Владелец: Individual. Дата публикации: 2024-05-23.

Combining rules-based knowledge engineering with machine learning prediction

Номер патента: EP4049191A1. Автор: Kevin M. McCluskey,Peter E. Lubczynski,Kevin Michael Furbish. Владелец: Intuit Inc. Дата публикации: 2022-08-31.

Combining rules-based knowledge engineering with machine learning prediction

Номер патента: WO2022026039A1. Автор: Kevin M. McCluskey,Peter E. Lubczynski,Kevin Michael Furbish. Владелец: INTUIT INC.. Дата публикации: 2022-02-03.

Combining rules-based knowledge engineering with machine learning prediction

Номер патента: AU2021318113A1. Автор: Kevin M. McCluskey,Peter E. Lubczynski,Kevin Michael Furbish. Владелец: Intuit Inc. Дата публикации: 2022-06-09.

Machine learning guided design of viral vector libraries

Номер патента: WO2023081231A2. Автор: Danqing Zhu,David V. Schaffer,Jennifer Listgarten,David Henry BROOKES. Владелец: Chan Zuckerberg Biohub, Inc.. Дата публикации: 2023-05-11.

Effective leveraging of synthetic data for depth estimation machine learning models

Номер патента: US20240371015A1. Автор: Amin Ansari,Avdhut Joshi,Sai Madhuraj JADHAV. Владелец: Qualcomm Inc. Дата публикации: 2024-11-07.

Method, apparatus and system for secure vertical federated learning

Номер патента: US11836583B2. Автор: Yong Zhang,Lingyang CHU,Lanjun Wang,Yutao HUANG. Владелец: Huawei Cloud Computing Technologies Co Ltd. Дата публикации: 2023-12-05.

Method, apparatus and system for secure vertical federated learning

Номер патента: EP3903247A1. Автор: Yong Zhang,Lingyang CHU,Lanjun Wang,Yutao HUANG. Владелец: Huawei Technologies Co Ltd. Дата публикации: 2021-11-03.

System and method for providing personal machine learning models

Номер патента: US20240054395A1. Автор: Mete Ozay. Владелец: SAMSUNG ELECTRONICS CO LTD. Дата публикации: 2024-02-15.

Artificial intelligence based methods and systems for quantifying confidence in insights of an input dataset

Номер патента: US20230169395A1. Автор: Deepak Dube,Pranay K. Pogde. Владелец: Datanomers LLC. Дата публикации: 2023-06-01.

Machine Learning System for Summarizing Tax Documents With Non-Structured Portions

Номер патента: US20240212061A1. Автор: Geralyn R. Hurd,Nathaniel J. Jones,Camron Momeni,Justin A. Bass. Владелец: K1x Inc. Дата публикации: 2024-06-27.

Biased based delegation in machine learning models

Номер патента: US20220318685A1. Автор: Gandhi Sivakumar,Sarvesh S. Patel,Kushal S. Patel,Lynn Kwok. Владелец: International Business Machines Corp. Дата публикации: 2022-10-06.

Data drift impact in a machine learning model

Номер патента: WO2023107366A1. Автор: Jason LOPATECKI,Aparna Dhinakaran,Michael Schiff. Владелец: ARIZE AI, INC.. Дата публикации: 2023-06-15.

Method and systems for simulating a vitality metric

Номер патента: US20220068486A1. Автор: Kenneth Neumann. Владелец: KPN Innovations LLC. Дата публикации: 2022-03-03.

Generating synthetic data based on time series predictions and plural machine learning models

Номер патента: US20240111815A1. Автор: Austin Walters,Jeremy Goodsitt. Владелец: Capital One Services LLC. Дата публикации: 2024-04-04.

Techniques for training and analyzing a machine learning model

Номер патента: WO2024148142A1. Автор: Patrick Joseph LUCEY,Arun Murali,Michael Stöckl,Dominic OLIVER. Владелец: STATS LLC. Дата публикации: 2024-07-11.

Techniques for training and analyzing a machine learning model

Номер патента: US20240232711A1. Автор: Patrick Joseph LUCEY,Arun Murali,Michael Stöckl,Dominic OLIVER. Владелец: STATS LLC. Дата публикации: 2024-07-11.

Environment-specific training of machine learning models

Номер патента: EP4327246A1. Автор: Pei Yu,Zicheng Liu,Ying Jin,Kun LUO,Yinpeng CHEN. Владелец: Microsoft Technology Licensing LLC. Дата публикации: 2024-02-28.

Environment-specific training of machine learning models

Номер патента: WO2022225681A1. Автор: Pei Yu,Zicheng Liu,Ying Jin,Kun LUO,Yinpeng CHEN. Владелец: Microsoft Technology Licensing, LLC. Дата публикации: 2022-10-27.

Generating synthetic images and/or training machine learning model(s) based on the synthetic images

Номер патента: US20210327127A1. Автор: Stefan Hinterstoisser,Hauke Heibel. Владелец: Google LLC. Дата публикации: 2021-10-21.

Machine learning apparatus, method, and non-transitory computer readable medium storing program

Номер патента: US20220108216A1. Автор: Takuya Kaneko. Владелец: NEC Corp. Дата публикации: 2022-04-07.

Machine learning model remote management in advanced communication networks

Номер патента: WO2024136967A1. Автор: Thang Pham,Ramy Atawia,Vamsi Krishna Boyapati. Владелец: Dell Products, L.P.. Дата публикации: 2024-06-27.

Anonymous training of a learning model

Номер патента: EP4226285A1. Автор: Kevin Kelly,Calden Carroll,Tyler LOCKE,Adam Koeppel. Владелец: AquaSys LLC. Дата публикации: 2023-08-16.

Method and systems for simulating a vitality metric

Номер патента: US20220351866A1. Автор: Kenneth Neumann. Владелец: KPN Innovations LLC. Дата публикации: 2022-11-03.

Machine learning program, machine learning method, and machine learning device

Номер патента: EP4411601A1. Автор: Yoshihiro Okawa,Yasuto Yokota. Владелец: Fujitsu Ltd. Дата публикации: 2024-08-07.

Systems and methods for compression and distribution of machine learning models

Номер патента: WO2019009897A1. Автор: Robert Obryk,Jyrki Alakuijala. Владелец: Google LLC. Дата публикации: 2019-01-10.

Techniques for training and analyzing a machine learning model

Номер патента: EP4416657A1. Автор: Patrick Joseph LUCEY,Arun Murali,Michael Stöckl,Dominic OLIVER. Владелец: STATS LLC. Дата публикации: 2024-08-21.

Machine learning for vehicle allocation

Номер патента: AU2021364386B2. Автор: Mashhur Zarif Haque,Kyri Elyse Barton,Kevin Michael Burke. Владелец: Driverdo LLC. Дата публикации: 2024-09-05.

Machine learning for vehicle allocation

Номер патента: AU2021364386A9. Автор: Mashhur Zarif Haque,Kyri Elyse Barton,Kevin Michael Burke. Владелец: Driverdo LLC. Дата публикации: 2024-09-19.

Lidar scene generation for training machine learning models

Номер патента: EP4375700A2. Автор: Vishal Jain,Deepak RANGANATH. Владелец: Velodyne Lidar USA Inc. Дата публикации: 2024-05-29.

Lidar scene generation for training machine learning models

Номер патента: EP4375700A3. Автор: Vishal Jain,Deepak RANGANATH. Владелец: Velodyne Lidar USA Inc. Дата публикации: 2024-09-11.

Method and system for routing path selection

Номер патента: US12094017B2. Автор: Anthony Alexis Ghislain Barrier,Simon Nanty,Youri Thibault Marie LE TOQUIN,Chakib Belgani,Erwan Viollet. Владелец: Amadeus SAS. Дата публикации: 2024-09-17.

Machine learning for vehicle allocation

Номер патента: CA3195948A1. Автор: Mashhur Zarif Haque,Kyri Elyse Barton,Kevin Michael Burke. Владелец: Driverdo LLC. Дата публикации: 2022-04-28.

Machine learning for vehicle allocation

Номер патента: WO2022087455A1. Автор: Mashhur Zarif Haque,Kyri Elyse Barton,Kevin Michael Burke. Владелец: Driverdo LLC. Дата публикации: 2022-04-28.

Machine learning for vehicle allocation

Номер патента: US20220129810A1. Автор: Mashhur Zarif Haque,Kyri Elyse Barton,Kevin Michael Burke. Владелец: Driverdo LLC. Дата публикации: 2022-04-28.

Machine learning for vehicle allocation

Номер патента: AU2021364386A1. Автор: Mashhur Zarif Haque,Kyri Elyse Barton,Kevin Michael Burke. Владелец: Driverdo LLC. Дата публикации: 2023-06-01.

Machine learning for vehicle allocation

Номер патента: EP4232975A1. Автор: Mashhur Zarif Haque,Kyri Elyse Barton,Kevin Michael Burke. Владелец: Driverdo LLC. Дата публикации: 2023-08-30.

Lidar scene generation for training machine learning models

Номер патента: US20240177412A1. Автор: Vishal Jain,Deepak Guntur Ranganath. Владелец: Velodyne Lidar USA Inc. Дата публикации: 2024-05-30.

Method and system for routing path selection

Номер патента: US11756140B2. Автор: Anthony Alexis Ghislain Barrier,Simon Nanty,Youri Thibault Marie LE TOQUIN,Chakib Belgani,Erwan Viollet. Владелец: Amadeus SAS. Дата публикации: 2023-09-12.

Method and system for processing input signals using machine learning for neural activation

Номер патента: US20240115859A1. Автор: Gene Fridman,Cynthia STEINHARDT. Владелец: JOHNS HOPKINS UNIVERSITY. Дата публикации: 2024-04-11.

METHODS AND SYSTEMS FOR OPTIMIZING ENGINE SELECTION USING MACHINE LEARNING MODELING

Номер патента: US20190043487A1. Автор: Rivkin Steven Neal. Владелец: . Дата публикации: 2019-02-07.

METHOD AND SYSTEM FOR LEARNING PERTURBATION SETS IN MACHINE LEARNING

Номер патента: US20220019900A1. Автор: WONG Eric,KOLTER Jeremy,LIN Wan-Yi. Владелец: . Дата публикации: 2022-01-20.

Methods and systems for determining variant properties using machine learning

Номер патента: WO2024064675A1. Автор: Garrett M. FRAMPTON,Dean PAVLICK,Zheng KUANG. Владелец: FOUNDATION MEDICINE, INC.. Дата публикации: 2024-03-28.

METHOD, APPARATUS, AND SYSTEM FOR PROVIDING SKIP AREAS FOR MACHINE LEARNING

Номер патента: US20190188538A1. Автор: Gupta Himaanshu,Chen Zhanwei,Lawlor David,MITTAL Anish,KWANT Richard. Владелец: . Дата публикации: 2019-06-20.

METHOD AND SYSTEM FOR RESOURCE MANAGEMENT BASED ON MACHINE LEARNING

Номер патента: US20210051060A1. Автор: Parvataneni Raghuram,Campbell Kirk,Sharma Ravi,Guntupalli Anil K.. Владелец: . Дата публикации: 2021-02-18.

METHOD AND SYSTEM FOR FASTER SEISMIC IMAGING USING MACHINE LEARNING

Номер патента: US20220283329A1. Автор: Borselen Roald van,Zwartjes Paul M.,Hegge Rob. Владелец: ARAMCO OVERSEAS COMPANY B.V.. Дата публикации: 2022-09-08.

METHOD AND SYSTEM FOR RESOURCE MANAGEMENT BASED ON MACHINE LEARNING

Номер патента: US20210211352A1. Автор: Parvataneni Raghuram,Campbell Kirk,Guntupalli Anil K,Sharma Ravi. Владелец: . Дата публикации: 2021-07-08.

System for predicting wave information through machine learning of sea level image

Номер патента: KR20210150776A. Автор: 최진우,김철현,이영범,최제은. Владелец: 대우조선해양 주식회사. Дата публикации: 2021-12-13.

Method and system for compensating motion artifacts by machine learning

Номер патента: DE102017219307B4. Автор: Bernhard Schmidt,Thomas Allmendinger. Владелец: Siemens Healthcare GmbH. Дата публикации: 2019-07-11.

System for interpreting medical images through machine learnings

Номер патента: KR101880678B1. Автор: 김성현,이병일. Владелец: (주)헬스허브. Дата публикации: 2018-07-20.

Machine Learning Hyperparameter Tuning

Номер патента: US20220366318A1. Автор: Mingge Deng,Amir Hormati,Jiaxun Wu,Ye Zichaun. Владелец: Google LLC. Дата публикации: 2022-11-17.

Machine learning hyperparameter tuning

Номер патента: WO2022246378A9. Автор: Mingge Deng,Zichuan Ye,Amir Hormati,Jiaxun Wu. Владелец: Google LLC. Дата публикации: 2024-02-08.

Machine learning hyperparameter tuning

Номер патента: EP4341860A1. Автор: Mingge Deng,Zichuan Ye,Amir Hormati,Jiaxun Wu. Владелец: Google LLC. Дата публикации: 2024-03-27.

Machine learning hyperparameter tuning

Номер патента: WO2022246378A1. Автор: Mingge Deng,Amir Hormati,Jiaxun Wu,Zichaun YE. Владелец: Google LLC. Дата публикации: 2022-11-24.

Software model testing for machine learning models

Номер патента: US20230036289A1. Автор: Nishant Shah,Maruthi Shanmugam,Karen Trevino,Smruti Soumya Mishra. Владелец: Bank of America Corp. Дата публикации: 2023-02-02.

Machine learning model generator

Номер патента: US20240193490A1. Автор: Marios Anapliotis,Hassan SAWAF,Fady El-Rukby. Владелец: Aixplain Inc. Дата публикации: 2024-06-13.

Methods and systems for fast inference from machine learning models

Номер патента: WO2024118603A1. Автор: Yaniv Leviathan,Yossi Matias,Matan Kalman. Владелец: Google LLC. Дата публикации: 2024-06-06.

Debugging correctness issues in training machine learning models

Номер патента: US12020134B2. Автор: Russell Power,Chi Keung Luk,Jose Americo Baiocchi Paredes,Mehmet Deveci. Владелец: Google LLC. Дата публикации: 2024-06-25.

Debugging Correctness Issues in Training Machine Learning Models

Номер патента: US20240320566A1. Автор: Russell Power,Chi Keung Luk,Jose Americo Baiocchi Paredes,Mehmet Deveci. Владелец: Google LLC. Дата публикации: 2024-09-26.

Dynamic gradient deception against adversarial examples in machine learning models

Номер патента: US12050993B2. Автор: Taesung Lee,Ian Michael Molloy. Владелец: International Business Machines Corp. Дата публикации: 2024-07-30.

System and method for automated construction of data sets for retraining a machine learning model

Номер патента: US20240144654A1. Автор: Peng Yu,Roni GURVICH. Владелец: Shopify Inc. Дата публикации: 2024-05-02.

Method and System for Process Schedule Reconciliation Using Machine Learning and Algebraic Model Optimization

Номер патента: US20220180295A1. Автор: Sahay Nihar,Varvarezos Dimitrios. Владелец: . Дата публикации: 2022-06-09.

Developing machine-learning models

Номер патента: WO2022228679A1. Автор: Andreas Johnsson,Farnaz MORADI,Jalil TAGHIA,Hannes Larsson,Masoumeh EBRAHIMI,Carmen LEE. Владелец: Telefonaktiebolaget lM Ericsson (publ). Дата публикации: 2022-11-03.

Developing machine-learning models

Номер патента: EP4330817A1. Автор: Andreas Johnsson,Farnaz MORADI,Jalil TAGHIA,Hannes Larsson,Masoumeh EBRAHIMI,Carmen LEE. Владелец: Telefonaktiebolaget LM Ericsson AB. Дата публикации: 2024-03-06.

Machine learning framework for tuning interactive voice response systems

Номер патента: US20220051658A1. Автор: Ravisha Andar,Emad Noorizadeh,Bharathiraja Krishnamoorthy. Владелец: Bank of America Corp. Дата публикации: 2022-02-17.

Protecting machine learning models from privacy attacks

Номер патента: US11755743B2. Автор: Amit Sharma,Aditya Vithal Nori,Shruti Shrikant Tople. Владелец: Microsoft Technology Licensing LLC. Дата публикации: 2023-09-12.

Energy efficient machine learning models

Номер патента: WO2024170865A1. Автор: Alan Thomas Bates. Владелец: BAE SYSTEMS plc. Дата публикации: 2024-08-22.

Energy efficient machine learning models

Номер патента: EP4418166A1. Автор: designation of the inventor has not yet been filed The. Владелец: BAE SYSTEMS plc. Дата публикации: 2024-08-21.

Methods and systems for training a machine learning model

Номер патента: EP4139847A1. Автор: Adrian Waller,Naomi FARLEY. Владелец: THALES DIS FRANCE SAS. Дата публикации: 2023-03-01.

Method for securing a machine learning based decision system

Номер патента: WO2019038036A1. Автор: Frédéric Dao,Frederic Faure,Frédéric Paillart,Thomas Dandelot,Fabrice Delhoste. Владелец: GEMALTO SA. Дата публикации: 2019-02-28.

Utilizing multiple stacked machine learning models to detect deepfake content

Номер патента: US12062105B2. Автор: Neil Hayden LIBERMAN,Leah DING. Владелец: Accenture Global Solutions Ltd. Дата публикации: 2024-08-13.

Learning method using machine learning to generate correct sentences, extraction method, and information processing apparatus

Номер патента: US11977975B2. Автор: Tomoya Iwakura. Владелец: Fujitsu Ltd. Дата публикации: 2024-05-07.

Digital watermarking of machine learning models

Номер патента: US20210019605A1. Автор: Farinaz Koushanfar,Bita DARVISH ROUHANI,Huili Chen. Владелец: UNIVERSITY OF CALIFORNIA. Дата публикации: 2021-01-21.

Digital watermarking of machine learning models

Номер патента: US20240242191A1. Автор: Farinaz Koushanfar,Bita DARVISH ROUHANI,Huili Chen. Владелец: UNIVERSITY OF CALIFORNIA. Дата публикации: 2024-07-18.

Method and system for incremental training of machine learning models on edge devices

Номер патента: US12088719B2. Автор: Subash Sundaresan. Владелец: Individual. Дата публикации: 2024-09-10.

Machine learning methods and systems for assessing product concepts

Номер патента: WO2022211730A1. Автор: Baruhupolage Don Kasun Sanjeewa Perera,Himanshu Upreti. Владелец: Ai Palette Pte. Ltd.. Дата публикации: 2022-10-06.

Methods and systems for malware detection

Номер патента: WO2015069572A1. Автор: Mike West,Mark V. Raugas,Riva BORBELY,James L. Ulrich. Владелец: Cyberpoint International Llc. Дата публикации: 2015-05-14.

Providing application programming interface endpoints for machine learning models

Номер патента: US12045678B2. Автор: David Lisuk,Simon Slowik. Владелец: Palantir Technologies Inc. Дата публикации: 2024-07-23.

Method and System for Digital Webpage Testing

Номер патента: US20220043742A1. Автор: Mackenzie Sweeney,Zhun Wang,Priscilla ALEXANDER,Matthew Isaac van Adelsberg. Владелец: Capital One Services LLC. Дата публикации: 2022-02-10.

Machine learning for generative geometric modelling

Номер патента: CA3241710A1. Автор: Yuanming SHU. Владелец: Ecopia Tech Corp. Дата публикации: 2023-11-02.

Automatic generation of ground truth data for training or retraining machine learning models

Номер патента: US20210027103A1. Автор: Eric Todd Brower. Владелец: Nvidia Corp. Дата публикации: 2021-01-28.

Dynamic allocation and re-allocation of learning model computing resources

Номер патента: US20210286650A1. Автор: Jerome Henry,Robert Edgar Barton. Владелец: Cisco Technology Inc. Дата публикации: 2021-09-16.

Dynamic allocation and re-allocation of learning model computing resources

Номер патента: EP4118531A1. Автор: Jerome Henry,Robert Edgar Barton. Владелец: Cisco Technology Inc. Дата публикации: 2023-01-18.

Dynamic allocation and re-allocation of learning model computing resources

Номер патента: WO2021183954A1. Автор: Jerome Henry,Robert Edgar Barton. Владелец: CISCO TECHNOLOGY, INC.. Дата публикации: 2021-09-16.

Meta-learning and auto-labeling for machine learning

Номер патента: US12088621B2. Автор: Nitin S. Sharma. Владелец: PayPal Inc. Дата публикации: 2024-09-10.

Machine learning for generative geometric modelling

Номер патента: EP4437466A1. Автор: Yuanming SHU. Владелец: Ecopia Tech Corp. Дата публикации: 2024-10-02.

Preservation of causal information for machine learning

Номер патента: US12050972B2. Автор: Amit Bansal,Tittu Thomas NELLIMOOTTIL,Thomas Rosati. Владелец: PayPal Inc. Дата публикации: 2024-07-30.

Identification of idle network connections based on machine learning

Номер патента: RU2715802C1. Автор: Синь ЛИ,Фан ЯН. Владелец: ГУГЛ ЭлЭлСи. Дата публикации: 2020-03-03.

Chain schedule management for machine learning model-based processing in computing environment

Номер патента: US20230273814A1. Автор: Victor Fong. Владелец: Dell Products LP. Дата публикации: 2023-08-31.

Training a supervised machine learning model for anomaly detection

Номер патента: WO2024079385A1. Автор: Petteri Lunden,Adriana CHIS. Владелец: Elisa Oyj. Дата публикации: 2024-04-18.

Schedule management for machine learning model-based processing in computing environment

Номер патента: US20230273813A1. Автор: Victor Fong,Kenneth Durazzo. Владелец: Dell Products LP. Дата публикации: 2023-08-31.

System to track and measure machine learning model efficacy

Номер патента: US12066918B2. Автор: Lokesh Nyati,Jonathan Doering,Sruthi Yapalapalli,Sriharsha Vogeti. Владелец: PayPal Inc. Дата публикации: 2024-08-20.

Method For Dynamically Reconfiguring Machine Learning Models

Номер патента: US20210398132A1. Автор: Yu Gu,Fangfang Fu,Ajay Raman Rayapati. Владелец: VISA INTERNATIONAL SERVICE ASSOCIATION. Дата публикации: 2021-12-23.

Automatic generation of ground truth data for training or retraining machine learning models

Номер патента: US20220156520A1. Автор: Eric Todd Brower. Владелец: Nvidia Corp. Дата публикации: 2022-05-19.

Training or using sets of explainable machine-learning modeling algorithms for predicting timing of events

Номер патента: AU2019264923B2. Автор: Michael McBurnett,Jeffery Dugger. Владелец: Equifax Inc. Дата публикации: 2024-07-25.

User equipment (ue) capability report for machine learning applications

Номер патента: WO2022076863A1. Автор: Tao Luo,Taesang Yoo,Hamed Pezeshki. Владелец: QUALCOMM INCORPORATED. Дата публикации: 2022-04-14.

User equipment (UE) capability report for machine learning applications

Номер патента: US12041692B2. Автор: Tao Luo,Taesang Yoo,Hamed Pezeshki. Владелец: Qualcomm Inc. Дата публикации: 2024-07-16.

System and method for training a machine learning model based on user-selected factors

Номер патента: WO2021136701A1. Автор: Eran SIMHON. Владелец: KONINKLIJKE PHILIPS N.V.. Дата публикации: 2021-07-08.

System and method for training a machine learning model based on user-selected factors

Номер патента: EP4085384A1. Автор: Eran SIMHON. Владелец: Koninklijke Philips NV. Дата публикации: 2022-11-09.

Protecting deep learned models

Номер патента: US11763157B2. Автор: Sriram Srinivasan,Ming-Chieh Lee,Mu Han,David Yuheng ZHAO. Владелец: Microsoft Technology Licensing LLC. Дата публикации: 2023-09-19.

Predicting data tampering using augmented machine learning models

Номер патента: CA3192143A1. Автор: Prateek Agrawal,Cuizhen Shen,Philip Munguia,Ledao Chen,Sriram Tirunellayi. Владелец: Equifax Inc. Дата публикации: 2022-04-07.

Training a supervised machine learning model for anomaly detection

Номер патента: FI20225931A1. Автор: Petteri Lunden,Adriana CHIS. Владелец: Elisa Oyj. Дата публикации: 2024-04-15.

Malleable confidence models and machine learning prediction

Номер патента: US20240112022A1. Автор: Benjamen Paul Bycroft. Владелец: Aerospace Corp. Дата публикации: 2024-04-04.

Method and system for interactive imitation learning in video games

Номер патента: US20200122040A1. Автор: Arthur William Juliani, JR.,Mohamed Marwan A. Mattar. Владелец: Unity IPR ApS. Дата публикации: 2020-04-23.

Computer-based visualization of machine-learning models and behavior

Номер патента: US20190156153A1. Автор: Ning Jin,Aysu Ezen Can,Saratendu Sethi,Xiangqian Hu,Ethem F. Can. Владелец: SAS Institute Inc. Дата публикации: 2019-05-23.

Machine learning model deployment, management and monitoring at scale

Номер патента: EP4433966A1. Автор: Yusef ALAAS,Felipe Klein,Hew BOLAND. Владелец: Geoquest Systems BV. Дата публикации: 2024-09-25.

System and method for autonomous learning of contents using a machine learning algorithm

Номер патента: US20210375148A1. Автор: Petros MINA,Nick Kairinos. Владелец: Fountech Solutions Ltd. Дата публикации: 2021-12-02.

Method and system for generation of at least one output analytic for a promotion

Номер патента: US12039564B2. Автор: Fan Zhang,Kanchana PADMANABHAN,Brian Keng. Владелец: Kinaxis Inc. Дата публикации: 2024-07-16.

De-noising using multiple threshold-expert machine learning models

Номер патента: US12046299B2. Автор: Amit Berman,Ron Golan,Evgeny BLAICHMAN,Sergey Gendel. Владелец: SAMSUNG ELECTRONICS CO LTD. Дата публикации: 2024-07-23.

Method and system for multistage candidate ranking

Номер патента: US11727327B2. Автор: Rajiv Kumar,Simon Chow,Sonali Vijay Inamdar. Владелец: Oracle International Corp. Дата публикации: 2023-08-15.

Determining optimal machine learning models

Номер патента: US20210406346A1. Автор: Yu Fu,Xianhong Zhang,WenTsong Shiue. Владелец: Bank of America Corp. Дата публикации: 2021-12-30.

Machine learning for vector map generation

Номер патента: CA3241704A1. Автор: Yuanming SHU. Владелец: Individual. Дата публикации: 2023-11-02.

Automated thresholding of binary classification machine learning models

Номер патента: WO2023163893A1. Автор: Prakhar Gupta,Madhav Datt. Владелец: Google LLC. Дата публикации: 2023-08-31.

Dynamic Animation of Human Motion Using Wearable Sensors and Machine Learning

Номер патента: US20220301353A1. Автор: Daniel Lee Giles,Nicholas GILLIAN. Владелец: Google LLC. Дата публикации: 2022-09-22.

Deduplication of accounts using account data collision detected by machine learning models

Номер патента: AU2022420862A1. Автор: Eric Shiu. Владелец: Brex Inc. Дата публикации: 2024-07-18.

Deduplication of accounts using account data collision detected by machine learning models

Номер патента: CA3242164A1. Автор: Eric Shiu. Владелец: Brex Inc. Дата публикации: 2023-06-29.

Deduplication of accounts using account data collision detected by machine learning models

Номер патента: EP4453813A1. Автор: Eric Shiu. Владелец: Brex Inc. Дата публикации: 2024-10-30.

Method and system for determining a target recipe of a compound

Номер патента: WO2023072993A1. Автор: HAO LIU,Han GAO,Mengyang Zhang,Ruijing Guo,Jim A. THOMPSON-COLÓN. Владелец: Covestro Deutschland AG. Дата публикации: 2023-05-04.

Full life cycle data science environment graphical interfaces

Номер патента: US20240211284A1. Автор: Travis R. Durbin,Abrielle Otero,Timothy M. Loungeway. Владелец: Raytheon Co. Дата публикации: 2024-06-27.

Multiple instance machine learning for question answering systems

Номер патента: US09720981B1. Автор: Branimir K. Boguraev,Bharath Dandala,Benjamin P. Segal. Владелец: International Business Machines Corp. Дата публикации: 2017-08-01.

Building and executing machine learning models via a no-code toolkit

Номер патента: US20240220910A1. Автор: Luke Hollenback,Brigid Mulligan. Владелец: NextWorld LLC. Дата публикации: 2024-07-04.

Adapting a machine learning model based on a second set of training data

Номер патента: US20210042667A1. Автор: Larry James ESHELMAN,Erina GHOSH. Владелец: Koninklijke Philips NV. Дата публикации: 2021-02-11.

Multi-stage training of machine learning models

Номер патента: WO2023158577A1. Автор: Eliot Julien COWAN,Akshina Gupta,Krishna Kumar Rao. Владелец: X Development LLC. Дата публикации: 2023-08-24.

Un-learning of training data for machine learning models

Номер патента: WO2024129224A1. Автор: Rashmi Gangadharaiah,Dan Roth,Vinayshekhar Bannihatti Kumar. Владелец: Amazon Technologies, Inc.. Дата публикации: 2024-06-20.

Multi-stage training of machine learning models

Номер патента: AU2023221883A1. Автор: Eliot Julien COWAN,Akshina Gupta. Владелец: X Development LLC. Дата публикации: 2024-07-25.

Multiple machine learning model anomaly detection framework

Номер патента: US12050628B1. Автор: Ying Wu,Malte Christian Kaufmann,Paul O'Hara. Владелец: BUSINESS OBJECTS SOFTWARE LTD. Дата публикации: 2024-07-30.

Integrated energy data science platform

Номер патента: EP4315009A1. Автор: Lan Lu,Yun Ma,Charu HANS,Babu Sai Sampath Reddy VINTA,Yongdong Zeng,Aaron Perozo. Владелец: Geoquest Systems BV. Дата публикации: 2024-02-07.

Integrated energy data science platform

Номер патента: US20240184416A1. Автор: Lan Lu,Yun Ma,Charu HANS,Babu Sai Sampath Reddy VINTA,Yongdong Zeng,Aaron Perozo. Владелец: Schlumberger Technology Corp. Дата публикации: 2024-06-06.

Method and system for facilitating consistent use of descriptors in radiology reports

Номер патента: US20240257948A1. Автор: Sawarkar ABHIVYAKTI. Владелец: Koninklijke Philips NV. Дата публикации: 2024-08-01.

Method and system for image segmentation and identification

Номер патента: US12067724B2. Автор: Yu Peng. Владелец: Curvebeam AI Ltd. Дата публикации: 2024-08-20.

Systems and methods for controlling magnetic microdevices with machine learning

Номер патента: US20240225764A1. Автор: Michael R. Behrens,Warren RUDER. Владелец: University of Pittsburgh. Дата публикации: 2024-07-11.

Contrast boost by machine learning

Номер патента: US20240311974A1. Автор: Liran Goshen. Владелец: Koninklijke Philips NV. Дата публикации: 2024-09-19.

Machine-learning-based visual-haptic system for robotic surgical platforms

Номер патента: US12108928B2. Автор: Jagadish Venkataraman,Denise Ann Miller. Владелец: Verb Surgical Inc. Дата публикации: 2024-10-08.

Machine learning system for detecting anomalies in hunt data

Номер патента: US12088600B1. Автор: Roy Donald Hodgman,Vasudha Shivamoggi,Jocelyn Beauchesne,John Lim Oh. Владелец: Rapid7 Inc. Дата публикации: 2024-09-10.

Method and system for predicting flow rate data using machine learning

Номер патента: US20240254875A1. Автор: Mohammed H. Al Madan. Владелец: Saudi Arabian Oil Co. Дата публикации: 2024-08-01.

Method and system for determining color match for surface coatings

Номер патента: EP4422806A1. Автор: Klaas De Haas,Asei AKANUMA,Daniel STAMATE,Frederick DE GREEF. Владелец: SWIMC LLC. Дата публикации: 2024-09-04.

Using machine learning and 3d projection to guide medical procedures

Номер патента: US20240268897A1. Автор: Lohrasb Ross Sayadi,Raj M. VYAS. Владелец: UNIVERSITY OF CALIFORNIA. Дата публикации: 2024-08-15.

Evolved machine learning models

Номер патента: US12020132B2. Автор: Mark Landry,Arno Candel,Dmitry Larko,Srisatish AMBATI,Prithvi Prabhu,Jonathan C. McKinney. Владелец: H2oAi Inc. Дата публикации: 2024-06-25.

Machine learning model for automatically detecting faults using optical inspection

Номер патента: US20240127418A1. Автор: Thomas Decker,Michael LEBACHER. Владелец: SIEMENS AG. Дата публикации: 2024-04-18.

Machine-learning image recognition for classifying conditions based on ventilatory data

Номер патента: US12061670B2. Автор: Donald J. Novkov,Matthew J. Phillips. Владелец: COVIDIEN LP. Дата публикации: 2024-08-13.

Machine-learning image recognition for classifying conditions based on ventilatory data

Номер патента: US20240354372A1. Автор: Donald J. Novkov,Matthew J. Phillips. Владелец: COVIDIEN LP. Дата публикации: 2024-10-24.

Data access control and workload management framework for development of machine learning (ml) models

Номер патента: US20210110296A1. Автор: Volker Driesen. Владелец: SAP SE. Дата публикации: 2021-04-15.

Machine learning model fingerprinting

Номер патента: US11921903B1. Автор: Andrew Davis,David Beveridge. Владелец: Hiddenlayer Inc. Дата публикации: 2024-03-05.

Machine learning model renewal

Номер патента: US20240046148A1. Автор: Haitao Tang,Cinzia Sartori,Dario BEGA. Владелец: NOKIA TECHNOLOGIES OY. Дата публикации: 2024-02-08.

Methods and systems for updating machine learning models

Номер патента: EP4214640A1. Автор: Henrik Eriksson,Johan HARALDSON,Ezeddin AL HAKIM,Yeongwoo KIM. Владелец: Telefonaktiebolaget LM Ericsson AB. Дата публикации: 2023-07-26.

Machine-learned model system

Номер патента: EP3616422A1. Автор: Matthew Simmons,Christine MCGAVRAN,Richard William Bukowski,Nima Asgharbeygi,Abraham Jack YACOBIAN. Владелец: Google LLC. Дата публикации: 2020-03-04.

Method and system for determining blending coefficients

Номер патента: EP3683772A1. Автор: Oliver Hume,Fabio Cappello. Владелец: Sony Interactive Entertainment Inc. Дата публикации: 2020-07-22.

Machine learning model validation with verification data

Номер патента: US20230259754A1. Автор: Gavin Bernard Horn,Xipeng Zhu,Taesang Yoo. Владелец: Qualcomm Inc. Дата публикации: 2023-08-17.

Methods and systems for generating physical activity sets for a human subject

Номер патента: US12073296B2. Автор: Kenneth Neumann. Владелец: KPN Innovations LLC. Дата публикации: 2024-08-27.

Machine learning model processing method and apparatus, and storage medium

Номер патента: US20240281719A1. Автор: Xiaoyan Duan. Владелец: Datang Mobile Communications Equipment Co Ltd. Дата публикации: 2024-08-22.

Machine learning model processing method and apparatus, and storage medium

Номер патента: EP4398161A1. Автор: Xiaoyan Duan. Владелец: Datang Mobile Communications Equipment Co Ltd. Дата публикации: 2024-07-10.

Stateful training of machine learning models in wireless networking

Номер патента: GB2627937A. Автор: Song Jian,Feki Afef,Masri Ahmad,Zsolt Kovács István. Владелец: NOKIA TECHNOLOGIES OY. Дата публикации: 2024-09-11.

Methods And Systems For Acoustic Machine Perception For An Aircraft

Номер патента: US20230280462A1. Автор: Nick S. Evans,Tyler C. Staudinger. Владелец: Boeing Co. Дата публикации: 2023-09-07.

Methods and systems for acoustic machine perception for an aircraft

Номер патента: US12061256B2. Автор: Nick S. Evans,Tyler C. Staudinger. Владелец: Boeing Co. Дата публикации: 2024-08-13.

Passive data collection and use of machine-learning models for event prediction

Номер патента: US12057232B2. Автор: Amit Shah,Gari CLIFFORD,Ayse Cakmak,Erik REINERTSEN. Владелец: Georgia Tech Research Corp. Дата публикации: 2024-08-06.

Optimization for cascade machine learning models

Номер патента: US20240303466A1. Автор: Nitin Satyanarayan Sharma,Sanae Amani Geshnigani. Владелец: PayPal Inc. Дата публикации: 2024-09-12.

Machine-learning-based techniques for predictive monitoring of a software application framework

Номер патента: US12141051B2. Автор: Vipul Gupta,Akshar PRASAD. Владелец: Atlassian US Inc. Дата публикации: 2024-11-12.

Using contrarian machine learning models to compensate for selection bias

Номер патента: US09727826B1. Автор: Ian Alan Lindstrom. Владелец: Amazon Technologies Inc. Дата публикации: 2017-08-08.

Cloud-based methods and systems for providing adaptive prescription reminders

Номер патента: US12040066B1. Автор: Ankur Jain,Benjamin Weiss,Kate Louise Paduchowski. Владелец: Walgreen Co. Дата публикации: 2024-07-16.

Machine learning system for routing payment requests to different customer accounts

Номер патента: US20240257091A1. Автор: Michael Dücker,Tilo Sloboda,Taylor Lentz. Владелец: Chime Financial Inc. Дата публикации: 2024-08-01.

Training a machine learning model to generate higher resolution images from inspection images

Номер патента: US12051183B2. Автор: Santosh Kumar,Kedar GRAMA. Владелец: KLA Corp. Дата публикации: 2024-07-30.

Training a machine learning model to generate higher resolution images from inspection images

Номер патента: WO2021222152A9. Автор: Santosh Kumar,Kedar GRAMA. Владелец: KLA Corporation. Дата публикации: 2022-01-13.

Deploying simplified machine learning models to resource-constrained edge devices

Номер патента: WO2024108194A1. Автор: Vishal INDER SIKKA,Navin Budhiraja. Владелец: Vianai Systems, Inc.. Дата публикации: 2024-05-23.

Method and system for scene graph generation

Номер патента: US20220391704A1. Автор: Efthymia TSAMOURA,Davide BUFFELLI. Владелец: SAMSUNG ELECTRONICS CO LTD. Дата публикации: 2022-12-08.

System and method for development of cognitive ability, and computer program therefor

Номер патента: EP4068299A1. Автор: Seung hyun HAN. Владелец: Rowan Inc. Дата публикации: 2022-10-05.

Machine learning model for dynamically boosting order delivery time

Номер патента: US20240249238A1. Автор: Konrad Gustav Miziolek,Parikshit Verma. Владелец: Maplebear Inc. Дата публикации: 2024-07-25.

Systems and method for evaluating and selectively distilling machine-learned models on edge devices

Номер патента: EP4058947A1. Автор: Matthew Sharifi. Владелец: Google LLC. Дата публикации: 2022-09-21.

Machine learning model architecture for combining network data and sequential data

Номер патента: US20240256830A1. Автор: Yair Horesh,Shlomi MEDALION. Владелец: Intuit Inc. Дата публикации: 2024-08-01.

Machine learning model trained based on music and decisions generated by expert system

Номер патента: WO2024178038A1. Автор: Edward Balassanian,Patrick E. Hutchings. Владелец: Aimi Inc.. Дата публикации: 2024-08-29.

Automated machine learning using large language models

Номер патента: US20240283820A1. Автор: Geoffrey Lyall McDonald,Sebastian J. KOCHMAN. Владелец: Microsoft Technology Licensing LLC. Дата публикации: 2024-08-22.

Training a machine learning model to generate higher resolution images from inspection images

Номер патента: WO2021222152A1. Автор: Santosh Kumar,Kedar GRAMA. Владелец: KLA Corporation. Дата публикации: 2021-11-04.

Machine Learning Model Trained based on Music and Decisions Generated by Expert System

Номер патента: US20240290307A1. Автор: Edward Balassanian,Patrick E. Hutchings. Владелец: Aimi Inc. Дата публикации: 2024-08-29.

Automated machine learning using large language models

Номер патента: WO2024173125A1. Автор: Geoffrey Lyall McDonald,Sebastian J. KOCHMAN. Владелец: Microsoft Technology Licensing, LLC. Дата публикации: 2024-08-22.

Network anomaly detection using machine learning models

Номер патента: US20230216766A1. Автор: Hui-Lin Chang,Lance Paul Lukens,Shawn Derek Wallace,Piradee Nganrungruang. Владелец: T Mobile Innovations LLC. Дата публикации: 2023-07-06.

Estimating confidence of machine-learning output

Номер патента: EP3614313A1. Автор: GERBEN KOOIJMAN,Aki Sakari HÄRMÄ,Dimitros MAVRIEUDUS,Bart Jacob Bakker. Владелец: Koninklijke Philips NV. Дата публикации: 2020-02-26.

Method for training a machine learning model for optical fiber sensing measurements

Номер патента: EP4390764A1. Автор: Richard Michael Deetlefs. Владелец: Sensonic Gmbh. Дата публикации: 2024-06-26.

Machine learning to monitor network connectivity

Номер патента: US20230216762A1. Автор: Jinzhao Feng,Amir Nasser SHAMDANI. Владелец: Resmed Digital Health Inc. Дата публикации: 2023-07-06.

Unsupervised federated learning of machine learning model layers

Номер патента: US20240296834A1. Автор: Francoise Beaufays,Johan Schalkwyk,Khe Chai Sim. Владелец: Google LLC. Дата публикации: 2024-09-05.

Systems and methods for chain of thought meta-prompting for machine learning models

Номер патента: WO2024163363A1. Автор: Mohamed Reda KHYATTI. Владелец: Thinkable Holdings Inc.. Дата публикации: 2024-08-08.

Vehicle resiliency, driving feedback and risk assessment using machine learning-based vehicle wear scoring

Номер патента: US12124930B2. Автор: Callum Brook. Владелец: Quanata LLC. Дата публикации: 2024-10-22.

Apparatuses and methods for machine learning model reliability assessment

Номер патента: WO2024199858A1. Автор: Hans Thomas HÖHNE,Jian Song,Afef Feki,Ahmad Masri,Sakira HASSAN. Владелец: NOKIA TECHNOLOGIES OY. Дата публикации: 2024-10-03.

Methods and systems for an online machine-learned non-linear beamforming tuple solver

Номер патента: US20230229908A1. Автор: Yimin Sun. Владелец: Aramco Overseas Co BV. Дата публикации: 2023-07-20.

Method for training a machine learning model

Номер патента: WO2024132977A1. Автор: Richard Michael Deetlefs. Владелец: Sensonic Gmbh. Дата публикации: 2024-06-27.

Techniques for accelerating machine learning models

Номер патента: US20240193409A1. Автор: Gil Shabat,Gilad Saban,Michael Kemelmakher,Naama KADOSH,Tatiana OSOKIN. Владелец: Vianai Systems Inc. Дата публикации: 2024-06-13.

Method and system for converting order book data into 2d data for machine learning models

Номер патента: US20240153003A1. Автор: Byungjae LEE. Владелец: Rebellions Inc. Дата публикации: 2024-05-09.

Method and system for converting order book data into 2D data for machine learning models

Номер патента: US11915316B2. Автор: Byungjae LEE. Владелец: Rebellions Inc. Дата публикации: 2024-02-27.

Non-transitory computer-readable recording medium, machine learning method, and information processing device

Номер патента: US20230214653A1. Автор: Akira Nakagawa,Keizo Kato. Владелец: Fujitsu Ltd. Дата публикации: 2023-07-06.

Training a machine learning model with limited training data

Номер патента: US20190378015A1. Автор: FANG Lin,Farinaz Koushanfar,Bita DARVISH ROUHANI,Mohammad GHASEMZADEH. Владелец: UNIVERSITY OF CALIFORNIA. Дата публикации: 2019-12-12.

Robustness against manipulations in machine learning

Номер патента: US11715004B2. Автор: Cheng Zhang,Yingzhen Li. Владелец: Microsoft Technology Licensing LLC. Дата публикации: 2023-08-01.

Learning method, learned model, detection system, detection method, and program

Номер патента: EP4239568A1. Автор: Tomohiro Yabuuchi. Владелец: Omron Tateisi Electronics Co. Дата публикации: 2023-09-06.

Method for automated ensemble machine learning using hyperparameter optimization

Номер патента: WO2023133213A1. Автор: Balaji MOHAN,Jihad BADRA. Владелец: Aramco Services Company. Дата публикации: 2023-07-13.

Systems and methods for progressive learning for machine-learned models to optimize training speed

Номер патента: US12062227B2. Автор: Quoc V. Le,Mingxing Tan. Владелец: Google LLC. Дата публикации: 2024-08-13.

Systems and methods for progressive learning for machine-learned models to optimize training speed

Номер патента: US20220245928A1. Автор: Quoc V. Le,Mingxing Tan. Владелец: Google LLC. Дата публикации: 2022-08-04.

Machine learning optimization for fraud detection

Номер патента: US11276023B1. Автор: Yi Fan,Matthew Butler,Christos Faloutsos,Mina Loghavi. Владелец: Amazon Technologies Inc. Дата публикации: 2022-03-15.

Systems and Methods for Progressive Learning for Machine-Learned Models to Optimize Training Speed

Номер патента: US20230017808A1. Автор: Quoc V. Le,Mingxing Tan. Владелец: Google LLC. Дата публикации: 2023-01-19.

System and method for watermarking a machine learning model

Номер патента: US12061678B2. Автор: Clayton Davis,Saumil DAVE,Baruch GUTOW,Gabriella MELKI. Владелец: Booz Allen Hamilton Inc. Дата публикации: 2024-08-13.

Training a machine learning model with limited training data

Номер патента: US11386326B2. Автор: FANG Lin,Farinaz Koushanfar,Bita DARVISH ROUHANI,Mohammad GHASEMZADEH. Владелец: UNIVERSITY OF CALIFORNIA. Дата публикации: 2022-07-12.

Systems and Methods for Progressive Learning for Machine-Learned Models to Optimize Training Speed

Номер патента: US20240355101A1. Автор: Quoc V. Le,Mingxing Tan. Владелец: Google LLC. Дата публикации: 2024-10-24.

Schneller konvergierendes vortraining für machine learning-modelle

Номер патента: WO2023213867A1. Автор: Daniel Pototzky. Владелец: ROBERT BOSCH GMBH. Дата публикации: 2023-11-09.

Systems and methods for interacting with a multimodal machine learning model

Номер патента: US12039431B1. Автор: Noah Deutsch,Nicholas Turley,Benjamin Zweig. Владелец: OpenAI Opco LLC. Дата публикации: 2024-07-16.

Deep learning models for electric motor winding temperature estimation and control

Номер патента: EP4358393A1. Автор: Yujiang Wu,Jared Lervik,Lav Thyagarajan,Zhuoyan XU,Abram HAICH. Владелец: Deere and Co. Дата публикации: 2024-04-24.

Methods and systems for generating text with tone or diction corresponding to stylistic attributes of images

Номер патента: US20240256793A1. Автор: Russ Maschmeyer. Владелец: Shopify Inc. Дата публикации: 2024-08-01.

Machine learning models for electrical power simulations

Номер патента: US20240249044A1. Автор: Ananya Gupta,Xinyue Li,Phillip Ellsworth Stahlfeld,Mike Miao He. Владелец: X Development LLC. Дата публикации: 2024-07-25.

Machine learning modeling of probe intensity

Номер патента: US20230316054A1. Автор: YONG Li,Jennifer ZOU. Владелец: Illumina Software Inc. Дата публикации: 2023-10-05.

Using machine learning to locate mobile device

Номер патента: US12051438B1. Автор: Jie Hui,Yasmin Karimli,Antoine T. Tran,Ryan Cyrus Khamneian. Владелец: T Mobile USA Inc. Дата публикации: 2024-07-30.

Selective inference generation with distributed machine-learned models

Номер патента: WO2020204938A1. Автор: Ivan Poupyrev,Gerard Pallipuram,Nicholas GILLIAN. Владелец: Google LLC. Дата публикации: 2020-10-08.

Computer-implemented method for generating a trained machine learning model

Номер патента: EP4141743A1. Автор: Denis Krompaß,Ahmed FRIKHA,Haokun CHEN. Владелец: SIEMENS AG. Дата публикации: 2023-03-01.

Deep learning models for electric motor winding temperature estimation and control

Номер патента: US20240136969A1. Автор: Yujiang Wu,Jared Lervik,Lav Thyagarajan,Abram HAICH,Zhouyan XU. Владелец: Deere and Co. Дата публикации: 2024-04-25.

Security, luggage tracking, and machine learning models

Номер патента: US20240265741A1. Автор: Craig Mateer. Владелец: Individual. Дата публикации: 2024-08-08.

Machine-learning techniques for detecting artifact pixels in images

Номер патента: US20240233347A1. Автор: Jim F. Martin,Uwe Horchner,Karel J. Zuiderveld,Qinle Ba. Владелец: Ventana Medical Systems Inc. Дата публикации: 2024-07-11.

Systems and methods for processing product information using a machine-learning model

Номер патента: US20240289823A1. Автор: Anbang Wu. Владелец: Shopify Inc. Дата публикации: 2024-08-29.

Systems and methods for processing product information using a machine-learning model

Номер патента: WO2024178485A1. Автор: Anbang Wu. Владелец: Shopify Inc.. Дата публикации: 2024-09-06.

Machine-learning techniques for detecting artifact pixels in images

Номер патента: EP4416699A1. Автор: Jim F. Martin,Uwe Horchner,Karel J. Zuiderveld,Qinle Ba. Владелец: Ventana Medical Systems Inc. Дата публикации: 2024-08-21.

Methods and systems for learning language-invariant audiovisual representations

Номер патента: US20240161500A1. Автор: Chih-Wei Wu,Iroro Orife,Nihkil Singh,Mahdi Kalayeh. Владелец: Netflix Inc. Дата публикации: 2024-05-16.

System for imaging and diagnosis of retinal diseases

Номер патента: US20240099577A1. Автор: Lu Yin,Qing Xiang,John Park,Vignesh Suresh. Владелец: Alcon Inc. Дата публикации: 2024-03-28.

System for imaging and diagnosis of retinal diseases

Номер патента: WO2024069482A1. Автор: Lu Yin,Qing Xiang,John Park,Dean Richardson,Vignesh Suresh. Владелец: ALCON INC.. Дата публикации: 2024-04-04.

System for imaging and diagnosis of retinal diseases

Номер патента: WO2024069482A4. Автор: Lu Yin,Qing Xiang,John Park,Dean Richardson,Vignesh Suresh. Владелец: ALCON INC.. Дата публикации: 2024-05-23.

Methods, storage media, and systems for iteratively texturing a three-dimensional model with consistent predictions

Номер патента: WO2024226656A2. Автор: Jack Michael LANGERMAN. Владелец: Hover Inc.. Дата публикации: 2024-10-31.

Method and system for managing drone ports

Номер патента: GB2619816A. Автор: Majoe Dennis. Владелец: Individual. Дата публикации: 2023-12-20.

Machine-learning modeling to generate virtual bolus attributes

Номер патента: US12119102B1. Автор: Hannu Laaksonen,Ville PIETILA,Heini HYVONEN. Владелец: Siemens Healthineers International AG. Дата публикации: 2024-10-15.

Procurement modeling system for predicting price reasonableness

Номер патента: US12051041B2. Автор: Edmund Adam Zagorin,Benjamin Kingsland Leiken,Eric David BURAS. Владелец: Arkestro Inc. Дата публикации: 2024-07-30.

Machine learning enabled analysis of optical coherence tomography angiography scans for diagnosis and treatment

Номер патента: WO2024130046A1. Автор: Acner Camino Benech. Владелец: Genentech, Inc.. Дата публикации: 2024-06-20.

Methods and systems for determining hemodynamic parameters

Номер патента: US20240221156A1. Автор: Xiaodong Wang,Jian Guo,Peiming QIN,Deyuan Kong. Владелец: Shanghai United Imaging Healthcare Co Ltd. Дата публикации: 2024-07-04.

Method and System for Automated Analysis of Coronary Angiograms

Номер патента: US20240273723A1. Автор: Jeffrey E. Olgin,Geoffrey H. Tison,Robert Avram. Владелец: UNIVERSITY OF CALIFORNIA. Дата публикации: 2024-08-15.

Method and system for assessing nash cirrhosis

Номер патента: WO2023086032A2. Автор: Chi Shang TAI. Владелец: HISTOINDEX Pte Ltd. Дата публикации: 2023-05-19.

Method and system for assessing nash cirrhosis

Номер патента: WO2023086032A3. Автор: Chi Shang TAI. Владелец: HISTOINDEX Pte Ltd. Дата публикации: 2023-08-31.

System and method for a machine learning service

Номер патента: US12033216B1. Автор: Ashish Singh,Manoj Arora,Ankita Joshi,Poojan Turakhia,Jeff Preston,Frank Hong. Владелец: Morgan Stanley Services Group Inc. Дата публикации: 2024-07-09.

Blockchain hosted machine learning

Номер патента: US20240211901A1. Автор: Sean James Huntley. Владелец: VMware LLC. Дата публикации: 2024-06-27.

Communication method and apparatus used for training machine learning model

Номер патента: AU2023247499A1. Автор: Xiaoli Shi,Ruiyue XU. Владелец: Huawei Technologies Co Ltd. Дата публикации: 2024-10-17.

Method and system for constructing a digital image depicting an artificially stained sample

Номер патента: WO2023135204A1. Автор: Jesper Jonsson,Martin Almers,Sven Hedlund. Владелец: CELLAVISION AB. Дата публикации: 2023-07-20.

Methods and systems for removing objects from view using machine learning

Номер патента: US20240135667A1. Автор: Peter Groth,Jagdish BHANUSHALI. Владелец: Valeo Schalter und Snsoren GmbH. Дата публикации: 2024-04-25.

Methods and systems for removing objects from view using machine learning

Номер патента: US20240233304A9. Автор: Peter Groth,Jagdish BHANUSHALI. Владелец: Valeo Schalter und Snsoren GmbH. Дата публикации: 2024-07-11.

Machine learning control of environmental systems

Номер патента: WO2019114489A1. Автор: Yi Fan,Xiaochun Li. Владелец: MIDEA GROUP CO., LTD.. Дата публикации: 2019-06-20.

Methods and systems for monitoring manufacturing processes

Номер патента: WO2024188845A1. Автор: Murat Samil Aslan. Владелец: SIEMENS AKTIENGESELLSCHAFT. Дата публикации: 2024-09-19.

Arrangement and method for training a machine learning model for state determination

Номер патента: US20240184253A1. Автор: Kajetan Nuernberger. Владелец: INFINEON TECHNOLOGIES AG. Дата публикации: 2024-06-06.

Wearable silent speech device, systems, and methods for adjusting a machine learning model

Номер патента: US20240296833A1. Автор: Tanay Kothari,Sahaj Garg,Anthony Leonardo. Владелец: Individual. Дата публикации: 2024-09-05.

System for managing vaccination data using machine learning and big data analysis

Номер патента: DE202022101829U1. Автор: . Владелец: Individual. Дата публикации: 2022-06-15.

Systems for assessing risk of developing breast cancer and related methods

Номер патента: US20240161932A1. Автор: Kaitlin CHRISTINE,Ashmitha RAJENDRAN,Balaji KESAVAN. Владелец: Gabbi Inc. Дата публикации: 2024-05-16.

Methods of breath-based pfas exposure assessment, and systems for practicing the same

Номер патента: WO2024108132A1. Автор: Luke Clauson,Chris Wheeler,Karl-Magnus LARSSON. Владелец: Diagnose Early, Inc.. Дата публикации: 2024-05-23.

Method and system for facilitating consistent use of descriptors in radiology reports

Номер патента: EP4341950A1. Автор: Sawarkar ABHIVYAKTI. Владелец: Koninklijke Philips NV. Дата публикации: 2024-03-27.

Machine learning for protein identification

Номер патента: US20220036973A1. Автор: Amit Meller,Shilo OHAYON,Arik GIRSAULT. Владелец: Technion Research and Development Foundation Ltd. Дата публикации: 2022-02-03.

Methods and Systems for Generating and Monitoring Holistic Treatment Processes

Номер патента: US20230230701A1. Автор: Ken Grey,Michael Gioan. Владелец: Vell LLC. Дата публикации: 2023-07-20.

Machine-learning modeling to generate virtual bolus attributes

Номер патента: EP4433158A1. Автор: Hannu Laaksonen,Ville PIETILA,Heini HYVONEN. Владелец: Siemens Healthineers International AG. Дата публикации: 2024-09-25.

Methods and systems for generating peptides

Номер патента: WO2024121621A1. Автор: Colin John Jackson,Matthew Arthur SPENCE,Dana Suzanne MATTHEWS. Владелец: Australian National University. Дата публикации: 2024-06-13.

Methods and systems for fuel design using machine learning

Номер патента: US20240363203A1. Автор: Balaji MOHAN,Junseok Chang. Владелец: Saudi Arabian Oil Co. Дата публикации: 2024-10-31.

Machine-learning-based predictive behavioral monitoring

Номер патента: US12046372B2. Автор: Gregory J. Boss,Jon Kevin Muse,Mark Gregory Megerian,Paul J. Godden. Владелец: Optum Inc. Дата публикации: 2024-07-23.

Geotechnical ground information prediction using machine learning

Номер патента: NL2033824B1. Автор: Staring Myrna,Eddies Rod,Boleve Alexandre. Владелец: FNV IP BV. Дата публикации: 2024-07-04.

Machine learning platform for predicted efficacy of untested pharmaceuticals

Номер патента: US20240321407A1. Автор: Christoforos ANAGNOSTOPOULOS,Maren Eckhoff. Владелец: McKinsey and Co Inc. Дата публикации: 2024-09-26.

Machine learning platform for predicted efficacy of untested pharmaceuticals

Номер патента: WO2024178301A1. Автор: Christoforos ANAGNOSTOPOULOS,Maren Eckhoff. Владелец: MCKINSEY & COMPANY, INC.. Дата публикации: 2024-08-29.

Method and system for predicting liver associated disease

Номер патента: WO2024209473A1. Автор: Eran Segal,Ziv Neeman,Adina WEINBERGER,Iris KALKA,Rawi HAZZAN. Владелец: MOR RESEARCH APPLICATIONS LTD.. Дата публикации: 2024-10-10.

Methods and systems for detecting cancer via nucleic acid methylation analysis

Номер патента: CA3213101A1. Автор: Shivani MAHAJAN,Billie GOULD,Peter Ulz. Владелец: Freenome Holdings Inc. Дата публикации: 2022-09-29.

Oligonucleotide-based machine learning

Номер патента: US12057197B2. Автор: Swagatam MUKHOPADHYAY,Christopher E. Hart. Владелец: Creyon Bio Inc. Дата публикации: 2024-08-06.

Methods and systems for privacy preserving evaluation of machine learning models

Номер патента: US20220247551A1. Автор: Marc Joye,Fabien A. P. PETITCOLAS. Владелец: Onespan Nv. Дата публикации: 2022-08-04.

Systems for malicious website detection using machine learning

Номер патента: US20240356970A1. Автор: Thomas Olofsson. Владелец: Btblock. Дата публикации: 2024-10-24.

METHODS AND SYSTEMS FOR PREDICTING ARRHYTHMIA RISK UTILIZING MACHINE LEARNING MODELS

Номер патента: US20220304612A1. Автор: Davis Kevin,Goil Aditya. Владелец: . Дата публикации: 2022-09-29.

Network security system for preventing unknown network attacks

Номер патента: WO2023059575A2. Автор: Yaniv Karta,Moshe M. Vered. Владелец: Provallo, Inc.. Дата публикации: 2023-04-13.

Machine learning model monitoring with autoencoder

Номер патента: WO2024176165A1. Автор: Zhan Zhang,Yufei Blankenship. Владелец: Telefonaktiebolaget lM Ericsson (publ). Дата публикации: 2024-08-29.

Using machine learning to optimize wireless carrier system testing

Номер патента: US20230199530A1. Автор: Michael J. Mitchell,Peter P. Myron. Владелец: T Mobile USA Inc. Дата публикации: 2023-06-22.

Multi-head machine learning model for processing multi-sensor data

Номер патента: US20240246559A1. Автор: Pranay Agrawal. Владелец: GM Cruise Holdings LLC. Дата публикации: 2024-07-25.

Training Action Prediction Machine-Learning Models for Video Games with Healed Data

Номер патента: US20230390646A1. Автор: William Gordon,Shawn Leaf,Kasey Keltner. Владелец: Electronic Arts Inc. Дата публикации: 2023-12-07.

Training Action Prediction Machine-Learning Models for Video Games with Healed Data

Номер патента: US20230311001A1. Автор: William Gordon,Shawn Leaf,Kasey Keltner. Владелец: Electronic Arts Inc. Дата публикации: 2023-10-05.

Developer automatic configuration system for spin coating developing machine

Номер патента: CN213348762U. Автор: 蒋磊. Владелец: Jiangsu Jinyuda Semiconductor Co ltd. Дата публикации: 2021-06-04.

Improved method and system for cross-lingual named entity recognition

Номер патента: WO2024221383A1. Автор: WENQIANG Liu,Jun Lang,Yucheng Huang,Xianli Zhang. Владелец: Proxima Beta Pte. Limited. Дата публикации: 2024-10-31.

Pre-training machine learning models with contrastive learning

Номер патента: WO2024215335A1. Автор: BO Yang,Nanxiang LI. Владелец: MOTIONAL AD LLC. Дата публикации: 2024-10-17.