Macrocyclic indole derivatives useful as hepatitisC virus inhibitors
The present invention is concerned with macrocyclic indole derivatives having inhibitory activity on the replication of the hepatitis C virus (HCV). It further concerns compositions comprising these compounds as active ingredients as well as processes for preparing these compounds and compositions. Hepatitis C virus is the leading cause of chronic liver disease worldwide and has become a focus of considerable medical research. HCV is a member of the HCV replicates preferentially in hepatocytes but is not directly cytopathic, leading to persistent infection. In particular, the lack of a vigorous T-lymphocyte response and the high propensity of the virus to mutate appear to promote a high rate of chronic infection. There are 6 major HCV genotypes and more than 50 subtypes, which are differently distributed geographically. HCV type 1 is the predominant genotype in the US and Europe. For instance, HCV type 1 accounts for 70 to 75 percent of all HCV infections in the United States. The extensive genetic heterogeneity of HCV has important diagnostic and clinical implications, perhaps explaining difficulties in vaccine development and the lack of response to therapy. An estimated 170 million persons worldwide are infected with hepatitis C virus (HCV). Following the initial acute infection, a majority of infected individuals develops chronic hepatitis, which can progress to liver fibrosis leading to cirrhosis, end-stage liver disease, and HCC (hepatocellular carcinoma) (National Institutes of Health Consensus Development Conference Statement: Management of Hepatitis C. Current HCV therapies are based on (pegylated) interferon-alpha (IFN-α) in combination with ribavirin. This combination therapy yields a sustained virologic response in more than 40% of patients infected by genotype 1 viruses and about 80% of those infected by genotypes 2 and 3. Beside the limited efficacy on HCV type 1, combination therapy has significant side effects and is poorly tolerated in many patients. For instance, in registration trials of pegylated interferon and ribavirin, significant side effects resulted in discontinuation of treatment in approximately 10 to 14 percent of patients. Major side effects of combination therapy include influenza-like symptoms, hematologic abnormalities, and neuropsychiatric symptoms. The development of more effective, convenient and tolerated treatments is a major public health objective. Thus, the treatment of this chronic disease is an unmet clinical need, since current therapy is only partially effective and limited by undesirable side effects. One area of particular focus has been the search for inhibitors of the NS5b RNA-dependent RNA polymerase (RdRp). Close structural homologs of this polymerase do not exist within the uninfected host cell and the finding of inhibitors of said polymerase would provide a more specific mode of action. Inhibitors that are currently under investigation can be classified as either nucleoside inhibitors (NIs) or non-nucleoside inhibitors (NNIs). NIs directly compete with nucleotide substrates for binding to highly conserved active sites. Greater specificity may be achieved by NNIs, which may interact outside of the highly conserved active site at a unique allosteric site common only to structurally related polymerases. Indole derivatives have been described for HCV inhibitory activity. To date, preliminary clinical trials have resulted in a high failure rate, thereby highlighting the need to pursue the search for novel NS5b inhibitors. There is a high medical need for safe and effective anti-HCV treatment. Such HCV inhibitors may overcome the disadvantages of current HCV therapy such as side effects, limited efficacy, the emergence of resistance, and compliance failures, as well as improve the sustained viral response. In particular wherein the therapeutic compounds have good bioavailability and a favorable pharmacokinetic and metabolic profile. It has been found that certain macrocyclic indole derivatives exhibit antiviral activity in subjects infected with HCV with useful properties regarding one or more of the following parameters: antiviral efficacy, favorable mutant prophile, lack of toxicity, favorable pharmacokinetic and metabolic profile, and ease of formulation and administration. These compounds are therefore useful in treating or combating HCV infections. The present invention concerns inhibitors of HCV replication, which can be represented by formula (I), including stereochemically isomeric forms, and N-oxides, salts, hydrates, and solvates thereof, wherein: The invention further relates to methods for the preparation of the compounds of formula (I), including stereochemically isomeric forms, and The invention relates to the compounds of formula (I) The invention also relates to the use of a compound of formula (I), including stereochemically isomeric forms, or The present invention will now be further described. In the following passages, different aspects or embodiments of the invention are defined in more detail. Each aspect or embodiment so defined may be combined with any other aspect(s) or embodiment(s) unless clearly indicated to the contrary. In particular, any feature indicated as being preferred or advantageous may be combined with any other feature or features indicated as being preferred or advantageous to formulate a particular embodiment. As used in the foregoing and hereinafter, the following definitions apply unless otherwise noted. For the purpose of the present invention, the terms "subject" or "infected subject" or "patient" refers to an individual infected with HCV, in need of treatment. The term "halo" or "halogen" is generic to fluoro, chloro, bromo and iodo. As used herein "C1-4alkyl" as a group or part of a group defines straight or branched chain saturated hydrocarbon radicals having from 1 to 4 carbon atoms such as for example methyl, ethyl, prop-1-yl, prop-2-yl, but-1-yl, but-2-yl, isobutyl, 2-methylprop-1-yl; "C1-3alkyl" as a group or part of a group defines straight or branched chain saturated hydrocarbon radicals having from 1 to 3 carbon atoms such as for example methyl, ethyl, prop-1-yl, prop-2-yl. The term "C1-6alkylene" as a group or part of a group refers to C1-6alkyl groups that are divalent, i.e., with two single bonds for attachment to two other groups. Non-limiting examples of alkylene groups includes methylene, ethylene, methylmethylene, propylene, ethylethylene, 1-methylethylene and 1,2-dimethylethylene. "C3-7cycloalkyl" is generic to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl. The term "C3-5cycloalkyl" is meant to comprise cyclopropyl, cyclobutyl and cyclopentyl. The term "C1-4alkoxy" or "C1-4alkyloxy" as a group or part of a group refers to a radical having the Formula -ORa wherein Ra is C1-4alkyl as defined above. Non-limiting examples of suitable C1-4alkoxy include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, It should be noted that the radical positions on any molecular moiety used in the definitions may be anywhere on such moiety as long as it is chemically stable. Radicals used in the definitions of the variables include all possible isomers unless otherwise indicated. For instance, piperidinyl includes piperidin-1-yl, piperidin-2-yl, piperidin-3-yl, and piperidin-4-yl; pentyl includes pent-1-yl, pent-2-yl and pent-3-yl. When any variable occurs more than one time in any constituent, each definition is independent. Whenever used hereinafter, the term "compounds of formula (I)", or "the present compounds" or similar terms, it is meant to include the compounds of formula (I), including stereochemically isomeric forms, and their Whenever used hereinafter, the term "optionally substituted" is meant to include unsubstituted as well as substituted with at least one of the specified substituting radicals. For the purpose of example, "C1-4alkyl optionally substituted with chloro" is meant to include unsubstituted C1-4alkyl as well as C1-4alkyl substituted with chloro. The compounds of formula (I) may have one or more centers of chirality and may exist as stereochemically isomeric forms. The term "stereochemically isomeric forms" as used herein defines all the possible compounds made up of the same atoms bonded by the same sequence of bonds but having different three-dimensional structures, which the compounds of formula (I) may possess. With reference to the instances where (R) or ( In one aspect, the present invention provides compounds of formula (I) including stereochemically isomeric forms, and N-oxides, salts, hydrates, and solvates thereof, wherein R1, R2, R4, R5, R6, R7 and A have the same meaning as defined herein. Embodiments of the present inventions concerns compounds of formula (I), or any subgroup thereof as defined herein, wherein one or more of the definitions for R1, R2, R4, R5, R6, and R7 as specified in the embodiments herein-under apply: In one embodiment, R1 is a bivalent chain selected from and In a particular embodiment, R1 is selected from wherein a and c are as defined herein above, or wherein a is 4 or 5 and c is 1 or 2. In another particular embodiment R1 is selected from -N(R3)-(CH2)4-N(R3)-, When R1 is it is understood R1 may be oriented in two directions, i.e. the piperazinyl moiety may be connected to the sulfonamide group while the aliphatic amine is connected to the carbonyl group, or, the piperazinyl moiety is connected to the carbonyl group and the aliphatic amine is connected to the sulfonamide group. Preferably, when R1 is the piperazinyl moiety is connected to the carbonyl group and the aliphatic amine is connected to the sulfonamide group. In a more particular embodiment, R1 is selected from Alternatively, R1 is selected from In a preferred embodiment, R1 is In another embodiment, R1 is In another embodiment R1 is In another preferred embodiment, R1 is Each R3 is independently selected from the group comprising hydrogen, C1-4alkyl and C3-5cycloalkyl. In a particular embodiment, R3 is independently selected from the group consisting of hydrogen, methyl, ethyl, isopropyl and cyclopropyl. In a more particular embodiment, each R3 is independently selected from the group consisting of hydrogen and methyl; or, R3 is methyl. Macrocycle A has 14 to 18 member atoms. In a particular embodiment, macrocycle A has 16, 17 or 18 member atoms. In a more particular embodiment, A has 17 member atoms. R2 is selected from the group comprising hydrogen, halo or C1-4alkoxy. In a particular embodiment, R2 is selected from the group comprising hydrogen, chloro, fluoro or methoxy. In a more particular embodiment, R2 is hydrogen or methoxy or chloro; or, alternatively, R2 is fluoro or methoxy; or, in a preferred embodiment, R2 is methoxy. In another embodiment, R2 is positioned on the benzene ring in meta or para with respect to the bond linking the benzene to the indole group. In a preferred embodiment, R2 is positioned on the benzene ring in para with respect to the bond linking this benzene to the indole group. R4 and R5 are hydrogen or R4 and R5 together form a double bond or a methylene group to form a fused cyclopropyl. In a particular embodiment, R4 and R5 are hydrogen or R4 and R5 together form a methylene group to form a fused cyclopropyl. In another particular embodiment, R4 and R5 together form a double bond. In another embodiment, R6 is selected from hydrogen and methyl. In a particular embodiment, R6 is hydrogen when the compound of formula (I) is a compound of formula (III) or (IV). In another particular embodiment, R6 is methyl when the compound of formula (I) is a compound of formula (II). R7 is a C3-7cycloalkyl optionally substituted with halo. In a particular embodiment, R7 is selected from cyclopentyl, cyclohexyl, and fluorocyclohexyl (in particular, 2-fluorocyclohexyl). In a preferred embodiment, R7 is cyclohexyl. A particular subgroup of compounds of formula (I) are compounds of formula (I) wherein R4 and R5 together form a double bond, and wherein one or more of the definitions for R1, R2, R6, and R7 as specified in the embodiments herein apply. A more particular subgroup of compounds of formula (I) are compounds of formula (II), wherein R1, R2, R4, R5, R6, R7 and A have the same meaning as defined herein. More particular are those compound represented by the following structural formulae (II-1), (II-2), and (II-3) wherein R2, R6 and R7 have the same meaning as defined herein for compounds of formula (I) or subgroups thereof. and In a particular embodiment, the invention provides compounds of, independently, formula (II), (II-1), (II-2) and (II-3) wherein R6 is hydrogen or methyl, more in particular, wherein R6 is a methyl. In another embodiment, the invention provides compounds of formula (II) or subgroups thereof wherein R7 is cyclohexyl or 2-fluorocyclohexyl. In another embodiment, the invention provides compounds of formula (II) or subgroups thereof wherein R2 is hydrogen, methoxy or chloro. Alternatively, the invention provides compounds of formula (II) or subgroups thereof wherein R2 is fluoro or methoxy. A particular subgroup of compounds of formula (I) are compounds of formula (III), wherein R1, R2, R4, R5, R6, R7 and A have the same meaning as defined herein. More particular are those compounds represented by the following structural formulae (III-1), (III-2), (III-3) and (III-4) wherein R2, R6 and R7 have the same meaning as defined herein for compounds of formula (I). In particular, the invention provides compounds of, independently, formula (III), (III-1), (III-2), (III-3) and (III-4) wherein R6 is hydrogen. In another embodiment, the invention provides compounds of formula (III) or subgroups thereof wherein R7 is cyclohexyl or 2-fluorocyclohexyl. In another embodiment, the invention provides compounds of formula (III) or subgroups thereof wherein R2 is hydrogen, methoxy or chloro. A particular subgroup of compounds of formula (I) are compounds of formula (IV), wherein R1, R2, R4, R5, R6, R7 and A have the same meaning as defined herein. More particular are those compound represented by the following structural formulae (IV-1), (IV-2), and (IV-3) wherein R2, R6 and R7 have the same meaning as defined herein for compounds of formula (I). In another embodiment, the invention provides compounds of formula (IV) or subgroups thereof wherein R7 is cyclohexyl or 2-fluorocyclohexyl. In another embodiment, the invention provides compounds of formula (IV) or subgroups thereof wherein R2 is hydrogen, methoxy or chloro. In a particular embodiment, the present invention concerns compounds of formula (II-1), (III-1), and (IV-1). Another embodiment of the present invention concerns compounds of formula (II-2), (III-2) and (IV-2). Another embodiment of the present invention concerns compounds of formula (II-3), (III-3) and (IV-3). In a particular embodiment, the invention provides compounds of formula (I) selected from the group comprising More in particular, the present invention provides compounds of formula (I) selected from Alternatively, the present invention provides compounds of formula (I) selected from More in particular, the present invention provides compounds of formula (I) selected from Unless otherwise mentioned or indicated, the chemical designation of a compound encompasses the mixture of some or all possible stereochemically isomeric forms, which said compound might possess. Said mixture may contain all diastereomers and/or enantiomers of the basic molecular structure of said compound. All stereochemically isomeric forms of the compounds of the present invention both in pure form or mixed with each other are intended to be embraced within the scope of the present invention. Pure stereoisomeric forms of the compounds and intermediates as mentioned herein are defined as isomers substantially free of other enantiomeric or diastereomeric forms of the same basic molecular structure of said compounds or intermediates. In particular, the term "stereoisomerically pure" concerns compounds or intermediates having a stereoisomeric excess of at least 80% (i.e. minimum 90% of one isomer and maximum 10% of the other possible isomers) up to a stereoisomeric excess of 100% (i.e. 100% of one isomer and none of the other), more in particular, compounds or intermediates having a stereoisomeric excess of 90% up to 100%, even more in particular having a stereoisomeric excess of 94% up to 100% and most in particular having a stereoisomeric excess of 97% up to 100%. The terms "enantiomerically pure" and "diastereomerically pure" should be understood in a similar way, but then having regard to the enantiomeric excess, and the diastereomeric excess, respectively, of the mixture in question. Pure stereoisomeric forms of the compounds and intermediates of this invention may be obtained by the application of art-known procedures. For instance, enantiomers may be separated from each other by the selective crystallization of their diastereomeric salts with optically active acids or bases. Examples thereof are tartaric acid, dibenzoyltartaric acid, ditoluoyltartaric acid and camphosulfonic acid. Alternatively, enantiomers may be separated by chromatographic techniques using chiral stationary phases. Said pure stereochemically isomeric forms may also be derived from the corresponding pure stereochemically isomeric forms of the appropriate starting materials, provided the reaction occurs stereospecifically. Preferably, if a specific stereoisomer is desired, said compound is synthesized by stereospecific methods of preparation. These methods will advantageously employ enantiomerically pure starting materials. The diastereomeric racemates of the compounds of formula (I) or any subgroup thereof, can be obtained separately by conventional methods. Appropriate physical separation methods that may advantageously be employed are, for example, selective crystallization and chromatography, e.g. column chromatography. For some of the compounds of formula (I), their In an embodiment, the present invention concerns compounds of formula (IIIA), (IIIB), (IVA) and (IVB), wherein R1, R2, R6, R7 and A have the same meaning as that defined herein. In a more particular embodiment, the present invention concerns compounds of Formula (IIIA-1), (IIIA-2), (IIIA-3), (IIIA-4), (IIIB-1), (IIIB-2), (IIIB-3), (IIIB-4), (IVA-1), (IVA-2), (IVA-3), (IVB-1), (IVB-2) and (IVB-3) wherein R2, R6 and R7 have the same meaning as that defined herein. In another embodiment, where applicable, compounds of formula (I) or subgroups thereof have the stereochemical configuration as illustrated by formula (IA). The present invention is also intended to include all isotopes of atoms occurring on the present compounds. Isotopes include those atoms having the same atomic number but different mass numbers. By way of general example and without limitation, isotopes of hydrogen include tritium and deuterium. Isotopes of carbon include C-13 and C-14. For therapeutic use, salts of the compounds of formula (I) are those wherein the counter-ion is pharmaceutically acceptable. However, salts of acids and bases, which are non-pharmaceutically acceptable, may also find use, for example, in the preparation or purification of a pharmaceutically acceptable compound. All salts, whether pharmaceutically acceptable or not are included within the ambit of the present invention. The pharmaceutically acceptable acid and base salts as mentioned hereinabove are meant to comprise the therapeutically active non-toxic acid and base addition salt forms that the compounds of formula (I) are able to form. The pharmaceutically acceptable acid addition salts can conveniently be obtained by treating the base form with such appropriate acid. Appropriate acids comprise, for example, inorganic acids such as hydrohalic acids, e.g. hydrochloric or hydrobromic acid, sulfuric, nitric, phosphoric and the like acids; or organic acids such as, for example, acetic, propanoic, hydroxyacetic, lactic, pyruvic, oxalic (i.e. ethanedioic), malonic, succinic (i.e. butanedioic acid), maleic, fumaric, malic (i.e. hydroxybutanedioic acid), tartaric, citric, methanesulfonic, ethanesulfonic, benzenesulfonic, Conversely, said salt forms can be converted by treatment with an appropriate base into the free base form. The compounds of formula (I) or any subgroup thereof containing an acidic proton may also be converted into their non-toxic metal or amine addition salt forms by treatment with appropriate organic and inorganic bases. Appropriate base salt forms comprise, for example, the ammonium salts, the alkali and earth alkaline metal salts, e.g. the lithium, sodium, potassium, magnesium, calcium salts and the like, salts with organic bases, e.g. the benzathine, The term "quaternary amine" as used hereinbefore defines the quaternary ammonium salts which the compounds of formula (I) or any subgroup thereof are able to form by reaction between a basic nitrogen of a compound of formula (I) or any subgroup thereof and an appropriate quaternizing agent, such as, for example, an optionally substituted alkylhalide, arylhalide or arylalkylhalide, e.g. methyliodide or benzyliodide. Other reactants with good leaving groups may also be used, such as alkyl trifluoromethanesulfonates, alkyl methanesulfonates, and alkyl p-toluenesulfonates. A quaternary amine has a positively charged nitrogen. Pharmaceutically acceptable counterions include chloro, bromo, iodo, trifluoroacetate and acetate. The counterion of choice can be introduced using ion exchange resins. The It will be appreciated that the compounds of formula (I) or any subgroup thereof may have metal binding, chelating, complex forming properties and therefore may exist as metal complexes or metal chelates. Such metalated derivatives of the compounds of formula (I) or any subgroup thereof are intended to be included within the scope of the present invention. Some of the compounds of formula (I) or any subgroup thereof and intermediates may also exist in one or more tautomeric form. Such forms although not explicitly indicated in the above formula are intended to be included within the scope of the present invention. Accordingly, the compounds and intermediates may be present as a mixture of tautomers or as an individual tautomer. In the invention, particular preference is given to compounds of Formula I or any subgroup thereof, that in the inhibition assays described below have an inhibition value of less than 100 µM, preferably less than 50 µM, more preferably less than 10 µM, preferably less than 5 µM, even more preferably less than 1 µM preferably less than 100 nM, and in particular less than 10 nM, as determined by a suitable assay, such as the assays used in the Examples below. It is to be understood that the above defined subgroups of compounds of formula (I) as well as any other subgroup defined herein, are meant to include stereochemically isomeric forms, and any Compounds of formula (I) may be prepared following the different methods A, B, C, D, E, F and G described below, from indole derivatives A-1 wherein R2, R4, R5, R6 and R7 are as defined for compounds of formula (I) or subgroups thereof, and Ra is selected from methyl and A schematic overview for the synthesis of the compounds of formula (I) is given in scheme 1. The method starts from a compound of formula A-1. Compounds of formula A-2 may be prepared by the regioselective hydrolysis of the ester bearing the Rb group, under basic conditions, using a hydroxide such as LiOH or NaOH, in polar solvents such as water, an alcohol such as methanol or ethanol, tetrahydrofurane (THF), or a mixture thereof. This method may be used when Rb is a methyl group and Ra is a A monoprotected bifunctional R1 derived reagent of formula PG-R1-H wherein R1 is as defined for formula (I) or subgroups thereof; may then be coupled to the carboxylic acid of compounds A-2 to form an amide bond, leading to compounds A-3. "PG", as used herein, is a suitable amine protecting group, chosen from the ones known in the art. Preferably PG is a The formation of amide bonds can be carried out using standard procedures such as those used for coupling amino acids in peptide synthesis. The latter involves the dehydrative coupling of a carboxyl group of one reactant with an amino group of the other reactant to form a linking amide bond. The amide bond formation may be performed by reacting the starting materials in the presence of a coupling agent or by converting the carboxyl functionality into an active form such as an active ester, mixed anhydride or a carboxyl acid chloride or bromide. General descriptions of such coupling reactions and the reagents used therein can be found in general textbooks on peptide chemistry, for example, Examples of coupling reactions with amide bond formation include the azide method, mixed carbonic-carboxylic acid anhydride (isobutyl chloroformate) method, the carbodiimide (dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIC), or water-soluble carbodiimide such as The coupling reactions preferably are conducted in an inert solvent, such as halogenated hydrocarbons, e.g. dichloromethane (DCM), chloroform, dipolar aprotic solvents such as acetonitrile, dimethylformamide (DMF), dimethylacetamide, DMSO, HMPT, ethers such as tetrahydrofuran (THF). In many instances the coupling reactions are done in the presence of a suitable base such as a tertiary amine, e.g. triethylamine, diisopropylethylamine (DIPEA), Removal of the protecting group following methods known in the art may lead to compounds A-4. These methods include the reaction of compounds A-3 with trifluoro acetic acid (TFA) in a suitable solvent such as DCM, when PG is a Boc-protecting group, or the reaction of compounds A-3 with a thiol like mercapto acetic acid or thiophenol, in solution or in solid phase, in the presence of a base, such as cesium carbonate or LiOH, in a suitable solvent, such as DMF, THF when PG is nosyl. When Ra is a Compounds A-4 are then reacted with sulfamide, in a suitable solvent, for example dioxane, under heating conditions, ie 100°C. This reaction may take place under microwave irradiation and lead to compounds A-5. Another method to introduce the sulfamide moiety may consist of the reaction of compound A-4 with aminosulfonyl-chloride, in the presence of a suitable base, such as triethylamine, DIPEA, or pyridine, in a suitable solvent, such as a chlorinated solvent like DCM, or DMF, THF. The ester function of compounds A-5, i.e. -CO-O-Ra, may then be hydrolyzed, using conditions known in the art, and including the saponification in basic media as described above, leading to compounds A-6. Heating may be required to complete this reaction. Acidic conditions may also be used to hydrolyze the ester function of compounds A-5, for example TFA in a suitable solvent like DCM, when Ra is a Compounds (I) may be obtained by macrocyclisation by forming the intramolecular acylsulfamide bond, in the presence of coupling agents, such as CDI which converts the carboxylic acid group to a reactive species acylimidazole, under heating. This acylimidazole may then be purified before adding a suitable base such as DBU, in order to perform the ring closure, which may take place under heating conditions. Solvents used for these reactions may include acetonitrile or THF. Other coupling agents, such as those known in the art, may also be used to achieve the ring closure. An alternate method leading to compounds A-4 as illustrated in scheme 2, may be the formation of an amide bond between compounds A-2 and a symmetrical bivalent chain R1, used in excess compared to compounds A-2. This amide bond may be synthesized as described above, in particular using a coupling agent such as [dimethylamino-([1,2,3]triazolo[4,5-b]pyridin-3-yloxy)-methylene]-dimethyl-ammonium hexafluorophosphate (HATU), in the presence of a base such as DIPEA and in a suitable solvent like DCM, DMF, or more preferably THF. Compounds A-4 may then be reacted as described above in method A in order to prepare compounds (I). Compounds may be prepared directly from compounds A-2, in a similar way as described above for the synthesis of compounds A-3, but using a bivalent chain R1 bearing one sulfamide moiety instead of a protecting group. Such a sulfamide chain R1 may be introduced on H-R1-H by heating a reagent of formula H-R1-H, which can either be mono-protected by a suitable protecting group (i.e. PG-R1-H), or not if it is symmetrical, with sulfamide in a suitable solvent, such as dioxane, under microwave irradiation. The protecting group may then be removed by methods known in the art, for example by reaction with TFA in dichloromethane when the protecting group is a Boc-protecting group, leading to the monosulfamide derivatized R1 chain. Compounds of formula A-3 or A-4 may undergo functional group manipulation, such as alkylation or reductive amination, before PG removal of compounds A-3 and/or reaction leading to the sulfamide A-4. The ester bearing the Ra group of compounds A-1 (Ra being for example a Reaction of compounds E-2 with the sulfamide moiety introduced on a mono-protected bivalent chain R1, may lead to the acyl sulfamide compounds E-3, using the conditions described for the last step of method A. Preferably the coupling agent used to activate the carboxylic acid group may be CDI, in a suitable solvent like acetonitrile or THF, under heating conditions. Addition of the sulfamide chain in the presence of a base such as DBU may subsequently lead to compounds E-3. PG is a suitable amine protecting group, chosen from the ones known in the art. Preferably, within method E, PG is a Boc-protecting group. Removal of the protecting group PG of compounds E-3 following methods known in the art may lead to compounds E-4. These methods include the reaction of compounds E-3 with TFA in a suitable solvent such as DCM, when PG is a Boc-protecting group. The ester function of compounds E-4 (Rb is a methyl group) may then be hydrolyzed, using conditions known in the art, and including the saponification in basic media as described above, leading to compounds E-5. Alternatively, compounds E-3 may undergo the saponification reaction in basic media to hydrolyze the ester bearing Rb, prior to the removal of the amine protecting group using the conditions described above, and leading to compounds E-5. Compounds (I) may be obtained by macrocyclisation of compounds E-5 by forming the intramolecular amide bond, in the presence of coupling agents, as described in method A. Preferably this amide formation step may be performed under high dilution conditions. Compounds F-3 may be obtained by an amide forming reaction, starting from compounds A-2 and an alkenylamine, as described for the second step of method A. Subsequent ester hydrolysis under basic or acidic conditions as described previously may lead to compounds F-4. The acylsulfamide bond may then be formed using the method described for the last step of method A, using an alkenyl sulfamide compound and leading to compounds F-5. Alternatively, the acylsulfamide group may be introduced on a compound of formula E-2, prior to the hydrolysis of the ester bearing the Rb group and coupling of the obtained carboxylic acid with an alkenamine as described above, leading to compound F-5. Formation of the macrocycle, i.e. compound of formula F-6, which is a compound of formula (I) bearing the following bivalent chain as R1: can be carried out via an olefin metathesis reaction in the presence of a suitable metal catalyst such as e.g. the Ru-based catalyst reported by Air-stable ruthenium catalysts such as bis(tricyclohexylphosphine)-3-phenyl-1H-inden-1-ylidene ruthenium chloride (Neolyst M1®) or bis(tricyclohexylphosphine)-[(phenylthio)methylene] ruthenium (IV) dichloride can be used. Other catalysts that can be used are Grubbs first and second generation catalysts, i.e. benzylidene- The metathesis reactions may be conducted in a suitable solvent such as for example ethers, e.g. THF, dioxane; halogenated hydrocarbons, e.g. dichloromethane, CHCl3, 1,2-dichloroethane and the like, hydrocarbons, e.g. toluene. These reactions are conducted at increased temperatures under nitrogen atmosphere. Compounds of formula (I) or any subgroup thereof or any subgroups thereof may be converted into each other following art-known functional group transformation reactions. For example, amino groups may be Compounds of formula F-6 may be submitted to catalytic hydrogenation, using for example Pd/C as a catalyst, in a suitable solvent such as methanol, ethanol, THF, acetic acid or a mixture thereof, to yield compounds of formula F-7, where the alkene of the bivalent chain R1 is reduced to the corresponding alkane. Compounds of formula F-6 belonging to the group of compounds of formula (II) may lead to compounds F-7 having the structure of compounds of formula (IV) after this hydrogenation step. More generally, a compound of formula (II) may be transformed to a compound of formula (IV) by catalytic hydrogenation as shown below. The compounds of formula (I) may be converted to the corresponding Pure stereochemically isomeric forms of the compounds of formula (I) may be obtained by the application of art-known procedures. Diastereomers may be separated by physical methods such as selective crystallization and chromatographic techniques, e.g., counter-current distribution, liquid chromatography and the like. The compounds of formula (I) may be obtained as racemic mixtures of enantiomers which can be separated from one another following art-known resolution procedures. The racemic compounds of formula (I), which are sufficiently basic or acidic may be converted into the corresponding diastereomeric salt forms by reaction with a suitable chiral acid, respectively chiral base. Said diastereomeric salt forms are subsequently separated, for example, by selective or fractional crystallization and the enantiomers are liberated therefrom by alkali or acid. An alternative manner of separating the enantiomeric forms of the compounds of formula (I) involves liquid chromatography, in particular liquid chromatography using a chiral stationary phase. Said pure stereochemically isomeric forms may also be derived from the corresponding pure stereochemically isomeric forms of the appropriate starting materials, provided that the reaction occurs stereospecifically. Preferably if a specific stereoisomer is desired, said compound may be synthesized by stereospecific methods of preparation. These methods may advantageously employ enantiomerically pure starting materials. Method G describes the synthesis of enantiomerically pure starting materials A-2, belonging to the groups of compounds (III) and (IV). A racemic mixture A-2 may be reacted with a chiral auxiliary, such as (S)-4-benzyl-2-oxazolidinone, after having being transformed to its acylchloride using methods known in the art, such as reaction of A-2 with oxalyl chloride in a suitable solvent like THF, in the presence of a catalytic amount of DMF. The acid chloride may then be reacted with the anion of (S)-4-benzyl-2-oxazolidinone formed by the reaction with a strong base, such as butyl lithium, in a suitable solvent such as THF, at low temperatures, typically -78°C, and under an inert atmosphere, leading to the diastereoisomers G1 and G2, which can be isolated by methods known in the art, such as chromatography on silica gel. Removal of the chiral auxiliary from each of the diastereoisomers G1 and G2 may then be performed with a base such as NaOH in a suitable solvent, such as methanol, water, THF, leading to the enantiomerically pure compounds A-2' and A-2". Using these enantiomerically pure starting materials may lead to enantiomerically pure compounds of formula (I) bearing one stereocenter, such as compounds of formula (IIIA), (IIIB). Pure stereochemically isomeric forms of the compounds of formula (I) or any subgroups thereof may be obtained by the application of art-known procedures. Diastereomers may be separated by physical methods such as selective crystallization and chromatographic techniques, e.g., counter-current distribution, liquid chromatography and the like. The compounds of formula (I) or any subgroups thereof may be obtained as racemic mixtures of enantiomers, which can be separated from one another following art-known resolution procedures. The racemic compounds of formula (I) or any subgroups thereof, which are sufficiently basic or acidic may be converted into the corresponding diastereomeric salt forms by reaction with a suitable chiral acid, respectively chiral base. Said diastereomeric salt forms are subsequently separated, for example, by selective or fractional crystallization and the enantiomers are liberated therefrom by alkali or acid. An alternative manner of separating the enantiomeric forms of the compounds of formula (I) or any subgroups thereof involves liquid chromatography, in particular liquid chromatography using a chiral stationary phase. Said pure stereochemically isomeric forms may also be derived from the corresponding pure stereochemically isomeric forms of the appropriate starting materials, provided that the reaction occurs stereospecifically. Preferably if a specific stereoisomer is desired, said compound may be synthesized by stereospecific methods of preparation. These methods may advantageously employ enantiomerically pure starting materials. In a further aspect, the present invention concerns a pharmaceutical composition comprising a therapeutically effective amount of a compound of formula (I) or any subgroups thereof, as specified herein, and a pharmaceutically acceptable carrier. A therapeutically effective amount in this context is an amount sufficient to prophylactically act against, to stabilize or to reduce viral infection, and in particular HCV viral infection, in infected subjects or subjects being at risk of being infected. In still a further aspect, this invention relates to a process of preparing a pharmaceutical composition as specified herein, which comprises intimately mixing a pharmaceutically acceptable carrier with a therapeutically effective amount of a compound of formula (I) or any subgroups thereof, as specified herein. Therefore, according to an embodiment of the present invention, the compounds of formula (I) or any subgroup thereof may be formulated into various pharmaceutical forms for administration purposes. It is understood that all compositions usually employed for systemically administering drugs are included as appropriate compositions. To prepare the pharmaceutical compositions of this invention, an effective amount of the particular compound, optionally in salt form or a metal complex, as the active ingredient is combined in intimate admixture with a pharmaceutically acceptable carrier, which carrier may take a wide variety of forms depending on the form of preparation desired for administration. These pharmaceutical compositions are desirable in unitary dosage form suitable, particularly, for administration orally, rectally, percutaneously, or by parenteral injection. For example, in preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed such as, for example, water, glycols, oils, alcohols and the like in the case of oral liquid preparations such as suspensions, syrups, elixirs, emulsions and solutions; or solid carriers such as starches, sugars, kaolin, lubricants, binders, disintegrating agents and the like in the case of powders, pills, capsules, and tablets. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit forms, in which case solid pharmaceutical carriers are obviously employed. For parenteral compositions, the carrier will usually comprise sterile water, at least in large part, though other ingredients, for example, to aid solubility, may be included. Injectable solutions, for example, may be prepared in which the carrier comprises saline solution, glucose solution or a mixture of saline and glucose solution. Injectable suspensions may also be prepared in which case appropriate liquid carriers, suspending agents and the like may be employed. Also included are solid form preparations that are intended to be converted, shortly before use, to liquid form preparations. In the compositions suitable for percutaneous administration, the carrier optionally comprises a penetration enhancing agent and/or a suitable wetting agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not introduce a significant deleterious effect on the skin. The compounds of the present invention may also be administered via oral inhalation or insufflation by means of methods and formulations employed in the art for administration via this way. Thus, in general the compounds of the present invention may be administered to the lungs in the form of a solution, a suspension or a dry powder, a solution being preferred. Any system developed for the delivery of solutions, suspensions or dry powders via oral inhalation or insufflation are suitable for the administration of the present compounds. Thus, the present invention also provides a pharmaceutical composition adapted for administration by inhalation or insufflation through the mouth comprising a compound of formula (I) or any subgroups thereof and a pharmaceutically acceptable carrier. Preferably, the compounds of the present invention are administered via inhalation of a solution in nebulized or aerosolized doses. It is especially advantageous to formulate the aforementioned pharmaceutical compositions in unit dosage form for ease of administration and uniformity of dosage. Unit dosage form as used herein refers to physically discrete units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. Examples of such unit dosage forms are tablets (including scored or coated tablets), capsules, pills, suppositories, powder packets, wafers, injectable solutions or suspensions and the like, and segregated multiples thereof. The compounds of formula (I) and any subgroup thereof show antiviral properties. Viral infections and their associated diseases treatable using the compounds and methods of the present invention include those infections brought on by HCV and other pathogenic flaviviruses such as Yellow fever, Dengue fever (types 1-4), St. Louis encephalitis, Japanese encephalitis, Murray valley encephalitis, West Nile virus and Kunjin virus. The diseases associated with HCV include progressive liver fibrosis, inflammation and necrosis leading to cirrhosis, end-stage liver disease, and HCC; and for the other pathogenic flaviviruses the diseases include yellow fever, dengue fever, hemorrhagic fever and encephalitis. However, compounds of the invention may also be attractive due to the fact that they lack activity against other viruses, in particular against HIV. HIV infected patients often suffer from co-infections such as HCV. Treatment of such patients with an HCV inhibitor that also inhibits HIV may lead to the emergence of resistant HIV strains. Due to their antiviral properties, particularly their anti-HCV properties, the compounds of formula (I) or any subgroup thereof, including stereochemically isomeric forms, and their The compounds of the present invention or any subgroup thereof may therefore be used as medicines. Said use as a medicine or method of treatment comprises the systemic administration to virally infected subjects or to subjects susceptible to viral infections of an amount effective to combat the conditions associated with the viral infection, in particular the HCV infection. The present invention also relates to the use of the present compounds or any subgroup thereof in the manufacture of a medicament for the treatment or the prevention of viral infections, particularly HCV infection. The present invention also concerns combinations of a compound of formula (I) or any subgroup thereof, as specified herein with other anti-HCV agents. In an embodiment, the invention concerns combination of a compound of Formula (I) or any subgroup thereof with at least one anti-HCV agent. In a particular embodiment, the invention concerns combination of a compound of Formula (I) or any subgroup thereof with at least two anti-HCV agents. In a particular embodiment, the invention concerns combination of a compound of Formula (I) or any subgroup thereof with at least three anti-HCV agents. In a particular embodiment, the invention concerns combination of a compound of Formula (I) or any subgroup thereof with at least four anti-HCV agents. The combination of previously known anti-HCV compound, such as interferon-α (IFN-α), pegylated interferon-α, ribavirin or a combination thereof, and, a compound of formula (I) or any subgroup thereof can be used as a medicine in a combination therapy. In an embodiment, the term "combination therapy" relates to a product containing mandatory (a) a compound of formula (I), and (b) at least one other anti-HCV compound, as a combined preparation for simultaneous, separate or sequential use in treatment of HCV infections, in particular, in the treatment of infections with HCV. Anti-HCV compounds encompass agents selected from HCV polymerase inhibitors, R-7128, MK-0608, VCH759, PF-868554, GS9190, NM283, valopicitabine, PSI-6130, XTL-2125, NM-107, R7128 (R4048), GSK625433, R803, R-1626, BILB-1941, HCV-796, JTK-109 and JTK-003, ANA-598, IDX-184, MK-3281, MK-1220, benzimidazole derivatives, benzo-1,2,4-thiadiazine derivatives, phenylalanine derivatives, A-831 and A-689; HCV proteases (NS2-NS3 and NS3-NS4A) inhibitors, the compounds of Thus, to combat or treat HCV infections, the compounds of formula (I) or any subgroups thereof may be co-administered in combination with for instance, interferon-α (IFN-α), pegylated interferon-α, ribavirin or a combination thereof, as well as therapeutics based on antibodies targeted against HCV epitopes, small interfering RNA (si RNA), ribozymes, DNAzymes, antisense RNA, small molecule antagonists of for instance NS3 protease, NS3 helicase and NS5B polymerase. The combinations of the present invention may be used as medicaments. Accordingly, the present invention relates to the use of a compound of formula (I) or any subgroup thereof as defined above for the manufacture of a medicament useful for inhibiting HCV activity in a mammal infected with HCV viruses, wherein said medicament is used in a combination therapy, said combination therapy preferably comprising a compound of formula (I) and at least one other HCV inhibitory compound, e.g. IFN-α, pegylated IFN-α, ribavirin or a combination thereof. Furthermore, it is known that a large percentage of patients infected with human immunodeficiency virus 1 (HIV) are also infected with HCV, i.e. they are HCV/HIV co-infected. HIV infection appears to adversely affect all stages of HCV infection, leading to increased viral persistence and accelerated progression of HCV-related liver disease. In turn, HCV infection may affect the management of HIV infection, increasing the incidence of liver toxicity caused by antiviral medications. The present invention therefore also concerns combinations of a compound of Formula (I) or any subgroup thereof with anti-HIV agents. Also, the combination of one or more additional anti-HIV compounds and a compound of Formula (I) or any subgroups thereof can be used as a medicine. In particular, said combination can be used for inhibition HCV and HIV replication. The term "combination therapy" also encompasses a product comprising (a) a compound of Formula (I) or any subgroup thereof, and (b) at least one anti-HIV compound, and (c) optionally at least one other anti-HCV compound, as a combined preparation for simultaneous, separate or sequential use in treatment of HCV and HIV infections, in particular, in the treatment of infections with HCV and HIV, or for preventing or treating conditions associated with HCV and HIV. Thus, the present invention also relates to a product containing (a) at least one compound of Formula (I) or any subgroup thereof, and (b) one or more additional anti-HIV compounds, as a combined preparation for simultaneous, separate or sequential use in anti-HCV and anti-HIV treatment. The different drugs may be combined in a single preparation together with pharmaceutically acceptable carriers. Said anti-HIV compounds may be any known antiretroviral compounds such as suramine, pentamidine, thymopentin, castanospermine, dextran (dextran sulfate), foscarnet-sodium (trisodium phosphono formate); nucleoside reverse transcriptase inhibitors (NRTIs), e.g. zidovudine (AZT), didanosine (ddI), zalcitabine (ddC), lamivudine (3TC), stavudine (d4T), emtricitabine (FTC), abacavir (ABC), amdoxovir (DAPD), elvucitabine (ACH-126,443), AVX 754 ((-)-dOTC), fozivudine tidoxil (FZT), phosphazide, HDP-990003, KP-1461, MIV-210, racivir (PSI-5004), UC-781 and the like; non-nucleoside reverse transcriptase inhibitors (NNRTIs) such as delavirdine (DLV), efavirenz (EFV), nevirapine (NVP), dapivirine (TMC120), etravirine (TMC125), rilpivirine (TMC278), DPC-082, (+)-Calanolide A, BILR-355, and the like; nucleotide reverse transcriptase inhibitors (NtRTIs), e.g. tenofovir ((R)-PMPA) and tenofovir disoproxil fumarate (TDF), and the like; nucleotide-competing reverse transcriptase inhibitors (NcRTIs), e.g. NcRTI-1 and the like; inhibitors of transactivating proteins, such as TAT-inhibitors, e.g. RO-5-3335, BI-201, and the like; REV inhibitors; protease inhibitors e.g. ritonavir (RTV), saquinavir (SQV), lopinavir (ABT-378 or LPV), indinavir (IDV), amprenavir (VX-478), TMC126, nelfinavir (AG-1343), atazanavir (BMS 232,632), darunavir (TMC114), fosamprenavir (GW433908 or VX-175), brecanavir (GW-640385, VX-385), P-1946, PL-337, PL-100, tipranavir (PNU-140690), AG-1859, AG-1776, Ro-0334649 and the like; entry inhibitors, which comprise fusion inhibitors (e.g. enfuvirtide (T-20)), attachment inhibitors and co-receptor inhibitors, the latter comprise the CCR5 antagonists (e.g. ancriviroc, CCR5mAb004, maraviroc (UK-427,857), PRO-140, TAK-220, TAK-652, vicriviroc (SCH-D, SCH-417,690)) and CXR4 antagonists (e.g. AMD-070, KRH-27315), examples of entry inhibitors are PRO-542, TNX-355, BMS-488043, BlockAide/CR™, FP 21399, hNM01, nonakine, VGV-1; a maturation inhibitor for example is PA-457; inhibitors of the viral integrase e.g. raltegravir (MK-0518), elvitegravir (JTK-303, GS-9137), BMS-538158; ribozymes; immunomodulators; monoclonal antibodies; gene therapy; vaccines; siRNAs; antisense RNAs; microbicides; Zinc-finger inhibitors. Therefore, HCV infected patients also suffering from conditions associated with HIV or even other pathogenic retroviruses, such as AIDS, AIDS-related complex (ARC), progressive generalized lymphadenopathy (PGL), as well as chronic CNS diseases caused by retroviruses, such as, for example HIV mediated dementia and multiple sclerosis, can conveniently be treated with the present composition. The compositions may be formulated into suitable pharmaceutical dosage forms such as the dosage forms described above. Each of the active ingredients may be formulated separately and the formulations may be co-administered or one formulation containing both and if desired further active ingredients may be provided. As used herein, the term "composition" is intended to encompass a product comprising the specified ingredients, as well as any product that results, directly or indirectly, from the combination of the specified ingredients. The term "therapeutically effective amount" as used herein means that amount of active compound or component or pharmaceutical agent that elicits the biological or medicinal response in a tissue, system, animal or human that is being sought, in the light of the present invention, by a researcher, veterinarian, medical doctor or other clinician, which includes alleviation of the symptoms of the disease being treated. Since the instant invention refers as well to combinations comprising two or more agents, the "therapeutically effective amount" in the context of combinations is also that amount of the agents taken together so that the combined effect elicits the desired biological or medicinal response. For example, the therapeutically effective amount of a composition comprising (a) the compound of formula (I) and (b) another anti-HCV agent, would be the amount of the compound of formula (I) and the amount of the other anti-HCV agent that when taken together have a combined effect that is therapeutically effective. In general, it is contemplated that an antiviral effective daily amount would be from 0.01 mg/kg to 500 mg/kg body weight, more preferably from 0.1 mg/kg to 50 mg/kg body weight. It may be appropriate to administer the required dose as two, three, four or more sub-doses at appropriate intervals throughout the day. Said sub-doses may be formulated as unit dosage forms, for example, containing 1 to 1000 mg, and in particular 5 to 200 mg of active ingredient per unit dosage form. The exact dosage and frequency of administration depends on the particular compound of formula (I) used, the particular condition being treated, the severity of the condition being treated, the age, weight, sex, extent of disorder and general physical condition of the particular patient as well as other medication the individual may be taking, as is well known to those skilled in the art. Furthermore, it is evident that said effective daily amount may be lowered or increased depending on the response of the treated subject and/or depending on the evaluation of the physician prescribing the compounds of the instant invention. The effective daily amount ranges mentioned hereinabove are therefore only guidelines. In one embodiment of the present invention there is provided an article of manufacture comprising a composition effective to treat an HCV infection or to inhibit the NS5B polymerase of HCV; and packaging material comprising a label which indicates that the composition can be used to treat infection by the hepatitis C virus; wherein the composition comprises a compound of the formula (I) or any subgroup thereof, or the combination as described herein. Another embodiment of the present invention concerns a kit or container comprising a compound of the formula (I) or any subgroup thereof, in an amount effective for use as a standard or reagent in a test or assay for determining the ability of potential pharmaceuticals to inhibit HCV NS5B polymerase, HCV growth, or both. This aspect of the invention may find its use in pharmaceutical research programs. The compounds and combinations of the present invention can be used in high-throughput target-analyte assays such as those for measuring the efficacy of said combination in HCV treatment. The following examples are intended to illustrate the present invention and not to limit it thereto. Unless otherwise indicated, purification of the synthesized compounds by column chromatography or flash chromatography is performed on a silica gel column. A solution of NaOH (6.38 g) in 25 mL of water was added to a stirred solution of 1a (10- HATU (1.17 g, 3.08 mmol) was added under nitrogen to a stirred solution of 1b (1.00 g, 2.05 mmol), DIPEA (1.07 mL, 6.15 mmol) and 2,2'-oxybis( A solution of 1c (1.15 g, 1.91 mmol) and sulfamide (1.84 g, 19.1 mmol) in dioxane (10 mL) was heated at 100°C in a microwave oven for 20 minutes. The reaction mixture was cooled down to room temperature, then evaporated under vacuum. The residue was triturated in water, filtered and washed with water. The powder was reconstituted in EtOAc, dried (Na2SO4) and evaporated to give 1.15 g (88%) of the desired product 1d as a yellowish powder: TFA (3.0 g, 26.3 mmol) was added to a solution of 1d (1.15 g, 1.70 mmol) in dichloromethane (3 mL). After 1h, the reaction mixture was concentrated under vacuum. The residue was triturated in ether, filtered and washed with ether, then purified by chromatography (gradient EtOAc to EtOAc/EtOH, 9:1) to give 802 mg (76%) of the desired product 1e: Carbonyldiimidazole (389 mg, 2.40 mmol) was added to a stirred solution of 1e (500 mg, 0.80 mmol) in dry THF (3 mL). The reaction mixture was stirred at room temperature for 1h: complete conversion to intermediate 1f was observed. The resulting solution was evaporated, then the residue was purified by flash chromatography (gradient EtOAc to CH3CN 1:0 to 0:1) to give 550 mg of the target product 1f which was used as such in the next step: DBU (244 mg, 0.32 mmol) was added to a solution of If (550 mg) in acetonitrile (25 mL). The reaction mixture was stirred overnight at room temperature, then concentrated under reduced pressure. The residue was dissolved in water (30 mL) and the pH of the resulting solution was adjusted to 5. The precipitate was collected by filtration, washed with water and dried. Recrystallization from ethanol followed by a purification by column chromatography (gradient EtOAc to EtOAc/EtOH 9:1) provided 380 mg (78%) of the title product 1 as a white powder: A solution of 1 (56 mg, 0.092 mmol) in MeOH (15 mL) and THF (5 mL) was hydrogenated in an H-cube apparatus using a 10% Pd on Carbon cartridge. Then, solvent was evaporated and the residue was purified by column chromatography (CH2Cl2/CH3CN, 9:1) to give 23 mg (41%) of the desired product 2 as a white powder: The racemic mixture 2 was purified by SFC, using a 6.5 minutes run on a chiral CHIRALCEL OD-H column (250 x 10 mm, coated on 5 µm silica gel) and 55% methanol / 45% CO2 as mobile phase, at a flow rate of 10 mL/min and lead to the two pure enantiomers 3 and 4. Retention times under these conditions were observed at 4.25 min and 5.54 min. The compound 5a was synthesized in 96% yield from intermediate 1b and 2-[4-(tert-butyloxycarbonyl)piperazin-1-yl]ethylamine following the procedure reported for the synthesis of intermediate 1c: Trifluoroacetic acid (5.00 g, 43.9 mmol) was added to 740 mg of intermediate 5a. After 1 hour at room temperature, the solvent was evaporated. The residue was triturated in EtOH/Et2O, filtered and dried under high vacuum to give 380 mg (64%) of the desired product 5b as a yellowish powder: A solution of 5b (380 mg, 0.700 mmol) and sulfamide (673 mg, 7.00 mmol) in dioxane (10 mL) was heated at 100 °C in a microwave oven for 15 minutes. Then, the reaction mixture was successively cooled down at room temperature, concentrated under vacuum, triturated in water and filtered. Purification by column chromatography (gradient EtOAc/CH2Cl2 1:1 to 1:0) gave 210 mg (46%) of the desired product 5c: The title product 5d was synthesized in 11 % yield following the procedure (steps 5 and 6) reported for the synthesis of compound 1, followed by a recrystallization from ethanol, affording the desired product as white powder, To a solution of To a solution of carboxylic acid 1b (500 mg, 1.025 mmole), HATU (585 mg, 1.5 eq) and diisopropylethylamine (212 mg, 1.6 eq) in dry DMF (10 mL) was added To a solution of 13-cyclohexyl-3-methoxy-6-(2-{methyl-[2-(2-nitro-benzenesulfonyl-amino)-ethyl]-amino}-ethylcarbamoyl)-7H-benzo [3,4] azepino [1,2-a] indole-10-carboxylic acid A mixture of 13-cyclohexyl-3-methoxy-6-[2-(methyl-[2-[methyl-(2-nitro-benzenesulfonyl)amino]-ethyl}-amino)-ethylcarbamoyl]-7H-benzo[3,4]azepino[1,2-a]indole-10-carboxylic acid The synthesis of product 6f was performed using the procedure described for the synthesis of compound 1d, using intermediate 6e instead of intermediate 1c, yielding 200 mg (50%) of the target product; The synthesis of product 6g was performed using the procedure described for the synthesis of compound 1e, using intermediate 6f instead of intermediate 1d, yielding 187 mg (quantitative yield) of the target product; The synthesis of product 6 was performed using the procedure described for the synthesis of compound 1, using intermediate 6g instead of intermediate 1e, yielding 43 mg (22% yield) of the target product; To a solution of A mixture of The synthesis of 13-cyclohexyl-3-methoxy-6-(methyl-{2-[methyl-(2-methylaminoethyl)-amino]-ethyl}-carbamoyl)-7H-benzo[3,4]azepino[1,2-a]indole-10-carboxylic acid The synthesis of 7d was performed following the procedure reported for the synthesis of compound 1d, using 13-cyclohexyl-3-methoxy-6-(methyl-{2-[methyl-(2-methyl-amino-ethyl)-amino]-ethyl}-carbamoyl)-7H-benzo[3,4]azepino[1,2-a]indole-10-carboxylic acid The synthesis of 7e was performed following the procedure reported for the synthesis of compound 1e, using intermediate 7d instead of intermediate 1d; The synthesis of product 7 is being performed using the procedure described for the synthesis of compound 1, using intermediate 7e instead of intermediate 1e. The synthesis of 8b was performed following the procedure reported for the synthesis of compound 1b, using methyl ester 8a instead of 1a. The desired product 8b was obtained in 95% yield as a light yellow solid; At 0 °C and under protective atmosphere, oxalyl chloride (4.07 ml, 47.4 mmol) was added to a solution of carboxylic acid 8b (19.83 g, 39.5 mmol) and DMF (5 drops) in tetrahydrofuran (dry) (100 mL). Upon addition of oxalyl chloride immediate formation of gas was observed. The reaction was stirred at 0 °C for 1.5 hour. Then, an extra amount of 0.5 eq of oxalyl chloride was added and the reaction was stirred for 1 more hour (repeated once until full conversion was obtained). The reaction was then evaporated to dryness in vacuo to afford 20.5 g (97%) of the acid chloride 8c as a white solid; To a solution of ( Diastereoisomer 8d (11.17 g, 16.90 mmol) was first dissolved in THF (130 ml) then methanol (130 ml) was added. 1N NaOH solution (101 mL, 101 mmol) was added slowly so that the temperature was kept below 30°C. The reaction mixture was stirred at room temperature for 2 hours. When the reaction was finished 1 N HCl solution was added until the pH reached 2. 500 mL H2O was then added and the reaction mixture was extracted with EtOAc, washed with brine and concentrated. Purification by flash column chromatography using 1:1 Heptane/EtOAc afforded 5.24 g (60%) of the desired enantiomer (4b To a stirred solution of intermediate 8f (2 g, 3.99 mmol) in dry DMF (50 mL) at 0°C, were added di-isopropyl ethylamine (DIEA, 1.54 g, 11.9 mmol), HATU (2.27 g, 5.98 mmol) and 2,2'-oxybis( The synthesis of (1a To a solution of intermediate 8h (0.474 g, 0.847 mmol) in dioxane (10 mL) was added sulfamide (0.814 g, 8.47 mmol). The resulting mixture was stirred at 100°C in a microwave oven for 4 hours. The reaction mixture was then cooled down to room temperature and concentrated. The residue was purified by column chromatography using a gradient of methanol in dichloromethane (0 to 10%) to give 143 mg (26%) of the title product (1a The synthesis of (1a Enantiomer (4bS,5aR)-9-( To a solution of intermediate 9b (0.73 g, 1.185 mmol) in dioxane (10 mL) was added sulfamide (1.14 g, 11.85 mmol). The resulting mixture was stirred at 100°C in a microwave oven for 3 hours. The reaction mixture was cooled down to room temperature then concentrated. The residue was purified by column chromatography using a gradient of methanol in dichloromethane (0 to 10%) to yield 743 mg (80%) of the title product The synthesis of (1a The synthesis of (1a To a solution of 5- 1,1'-Carbonyldiimidazole (0.847 g, 5.22 mmol) was added to a stirred solution of 8-cyclohexyl-11-methoxy-1a-(methoxycarbonyl)-1,1a,2,12b-tetrahydrocyclopropa[ To a solution of intermediate 10c (0.65 g, 0.899 mmol) in THF (20 mL) was added lithium hydroxide (0.75 g, 1.8 mmol) dissolved in water (5 mL). The resulting mixture was stirred at room temperature overnight then diluted with water and neutralized with a 2M HCl aqueous solution. The resulting mixture was extracted with dichloromethane, dried over MgSO4 then concentrated. The residue was purified by column chromatography using a gradient of methanol in CH2Cl2 to yield 0.55 g (86%) of the title product 5-({[{4-[( TFA (2.5 g, 22 mmol) was added to a solution of intermediate 10d (0.52 g, 0.734 mmol) in DCM (10 mL). The resulting mixture was stirred at RT for approximately 10 hours. The reaction was then evaporated to dryness and the residue was purified by column chromatography using a gradient of methanol in DCM to afford 0.3 g (68%) of the title compound 5-({[(4-aminobutyl) (methyl]amino]sulfonyl}carbamoyl)-8-cyclohexyl-11-methoxy-1,12b-dihydrocyclopropa[ To a stirred solution of intermediate 10e (0.22 g, 0.36 mmol) in dry DMF (100 mL), at 0°C, were added DIPEA (0.14 g, 1.08 mmol) and HATU (0.206 g, 0.542 mmol). The resulting mixture was stirred at 0°C for 1 hour then kept at room temperature for 12 hours. The reaction mixture was then successively poured into an iced watered solution, extracted with dichloromethane, dried over MgSO4 and then concentrated. The residue was purified by column chromatography to yield 0.188 g (88%) of the title product 8-cyclohexyl-11-methoxy-16-methyl-1,12b-dihydro-5,1a-(methanoiminothioiminobutanoimino)cyclopropa[ 1,1'-carbonyldiimidazole (0.522 g, 3.22 mmol) was added to a stirred solution of 8-cyclohexyl-11-methoxy-1a-(methoxycarbonyl)-1,1a,2,12b-tetrahydrocyclopropa-[ To a solution of intermediate 11b (0.6 g, 0.785 mmol) in THF (20 mL) was added LiOH (0.82 g, 1.96 mmol) in water (5 mL). The resulting mixture was stirred at room temperature overnight then diluted with water and neutralized with a 2M HCl aqueous solution. The resulting mixture was extracted with dichloromethane, dried over MgSO4 then concentrated. The resulting residue was purified by column chromatography using CH2Cl2 and methanol to yield 0.4 g (68%) of the title compound 5-({[{2-[4-( TFA (1.44 g, 12.7 mmol) was added to a solution of intermediate 11c (0.38 g, 0.507 mmol) in dichloromethane (10 mL). The resulting mixture was stirred at RT for approximately 10 hours. The reaction was then evaporated to dryness and the residue was purified by column chromatography using dichloromethane and methanol to afford the title compound 8-cyclohexyl-11-methoxy-5-({[methyl(2-piperazin-1-yl-ethyl)amino]sulfonyl}carbamoyl)-1,12b-dihydrocyclopropa[ To a stirred solution of intermediate 11d (0.24 g, 0.37 mmol) in dry DMF (100 mL), at 0°C, were added di-isopropyl ethylamine (0.143 g, 1.1 mmol) and HATU (0.211 g, 0.554 mmol). The resulting mixture was stirred at 0°C for 1 hour then kept at room temperature for 12 hours. The reaction mixture was then successively poured into an iced watered solution, extracted with dichloromethane, dried over MgSO4 and concentrated. The residue was purified by column chromatography using dichloromethane / methanol to yield 0.018 g (18%) of the title compound 31-cyclohexyl-8-methoxy-22-methyl-21-thia-1,13,20,22,25-pentaazaheptacyclo-[23.2.2.13,13.112,15.114,18.03,5.06,11]dotriaconta-6,8,10,12(31),14(30),15,17-heptaene-2,19-dione 21,21-dioxide 11 as a white solid; m/z 632 (M+H)+ To a solution of 5- To a solution of intermediate 12a (1.73 g, 3.76 mmol) in THF (25 mL) at 0°C were added successively 4-dimethylaminopyridine (DMAP) (1.38 g, 3.76 mmol), To a solution of intermediate 12c (0.5 g, 0.845 mmol) in THF (20 mL) was added lithium hydroxide (0.73 g, 1.69 mmol) in water (5 mL). The resulting mixture was stirred at room temperature overnight then diluted with water and neutralized with a 2M HCl aqueous solution. The resulting mixture was extracted with dichloromethane, dried over MgSO4 then concentrated. The resulting residue was purified by column chromatography using CH2Cl2 and methanol to yield 0.4 g (75%) of the title product 5-({[allyl(methyl)amino]sulfonyl}carbamoyl)-8-cyclohexyl-11-methoxy-1,12b-dihydrocyclopropa[ To a solution of intermediate 12d (0.2 g, 0.346 mmol) in THF (15 mL), at 0°C, were added successively 4-dimethylaminopyridine (DMAP) (0.127 g, 1.04 mmol), A solution of intermediate 12e (0.1 g, 0.16 mmol) in dichloroethane (50 mL) was degassed with argon for 10 minutes then Hoveyda-Grubbs 1st generation catalyst (0.03 mg, 0.032 mmol) was added. The resulting mixture was warmed to 70°C and kept under argon overnight. The mixture was then cooled down to room temperature and the solvent was removed under vacuum. The resulting dark residue was purified by column chromatography using DCM and ethyl acetate to give 15 mg (16%) of the title product 8-cyclohexyl-11-methoxy-16-methyl-1,12b-dihydro-5,1a-(methaniminothio-iminopent[2]enoiminomethano)cyclopropa[ 13-Cyclohexyl-3-methoxy-7 13-Cyclohexyl-3-hydroxy-7 Compound 13b (0.60 g, 1 eq) was dissolved in a mixture of tetrahydrofurane:methanol (1:1) (20 ml), followed by the addition of a LiOH solution in water (0.09 g, 2 eq). The solution was stirred overnight at RT for several days. The solvents were then evaporated under reduced pressure and the water layer was acidified with a 3 N HCl solution until pH 2. The resulting crystals were filtered off, washed with water and isopropyl ether and dried under vacuum overnight to afford 0.44 g (74%) of the title product 13c; LC-MS: Rt. 5.84 min., Compound 13c (0.44 g, 1 eq) and HATU (0.47 g, 1.6 eq) were dissolved in dimethylformamide under N2, followed by the addition of DIPEA (0.15 g, 0.20 ml, 1.5 eq) and allylamine (0.07 ml, 1.2 eq). The solution was stirred at RT for 3 days. The dimethylformamide solution was then slowly poured into ice water. The resulting crystals were filtered off, washed with water and dried under vacuum overnight to afford 0.47 g (100%) of the title product 13d; LC-MS: Rt. 3.01 min., N2 was bubbled through a solution of compound 13d (0.47 g, 1 eq) in 50 ml of dichloroethane for 1 h. Then Grubbs 2nd generation catalyst (0.13 g, 0.2 eq) was added and the reaction mixture was heated at 80°C overnight. The solution was cooled down to RT and some extra amount of catalyst was added (65 mg). The solution was heated at 80°C under N2 for several hours. The solution was then evaporated under reduced pressure. The product was purified by flash chromatography on elution of dichloromethane:methanol (100 to 95:5), and was subsequently recrystallized from methanol. Finally the product was purified by preparative HPLC chromatography to afford 30 mg (5.86%) of the title product 13; LC-MS: Rt. 5.33 min., 13-Cyclohexyl-3-methoxy-7 Compound 14a (0.50 g, 1 eq) was dissolved in dry acetonitrile (50 ml), followed by the addition of Compound 14c (0.41 g, 1 eq) was dissolved in dry dichloromethane (10 ml) under N2 followed by the addition of trifluoroacetic acid (1.30 ml, 30 eq). The solution was stirred at RT overnight. The solvent was then removed under reduced pressure and the crude product was stirred in diethyl ether. The resulting crystals were filtered off and dried under reduced pressure to afford 0.31 g (87%) of the title product 14d; LC-MS: RT. 3.81 min., Compound 14d (0.31 g, 1 eq) was dissolved in a mixture of tetrahydrofurane:methanol (1:1), followed by the addition of 50% NaOH-water solution (1 ml). The solution was stirred at RT overnight then evaporated under reduced pressure. The water layer was acidified with acetic acid to pH 4, and extracted with ethyl acetate (7 x 50 ml). The combined ethyl acetate layers were dried over sodium sulfate, filtered off and evaporated under reduced pressure to obtain the desired compound 14e as a yellow powder (0.30 g, 100%); LC-MS: Rt. 3.64 min., The synthesis of the title compound 14 is being performed following the procedure reported for the synthesis of compound 11, using intermediate 14e instead of 11d. Compound 13a (0.20 g, 1 eq) was dissolved in dry acetonitrile under N2, followed by the addition of CDI (0.1 g, 1.3 eq). The solution was stirred at 60°C for 1 h. According to TLC, the reaction went to completion. DBU (0.10 ml, 1.52 eq) and diaminosulfuric diamide 15a (0.29 g, 2 eq) were then added. The solution was stirred at 60°C for 3 h, then was evaporated under reduced pressure. A citric acid water solution (0.1 N) cooled in ice, was added to the crude product. The residual solution was extracted with ethyl acetate (3 x 50 ml). The combined organic layers were washed with brine (50 ml), dried over sodium sulfate, filtered off and evaporated under reduced pressure to afford 0.21 g (62%) of the title product 15b; LC-MS: Rt: 5.63 min., The synthesis of compound 15c was performed following the procedure reported for the synthesis of compound 5-({[{2-[4-( The synthesis of the title compound 15d was performed following the procedure reported for the synthesis of compound 8-cyclohexyl-11-methoxy-5-({[methyl-(2-piperazin-1-ylethyl)amino]sulfonyl}carbamoyl)-1,12b-dihydrocyclopropa[ The synthesis of the title compound 15 was performed following the procedure reported for the synthesis of compound 31-cyclohexyl-8-methoxy-22-methyl-21-thia-1,13,20,22,25-pentaazaheptacyclo[23.2.2.13,13.112,15.114,18.03,5.06,11]dotriaconta-6,8,10,12(31),14(30),15,17-heptaene-2,19-dione 21,21-dioxide 11, using intermediate 15d instead of 8-cyclohexyl-11-methoxy-5-({[methyl(2-piperazin-1-ylethyl)amino]-sulfonyl}carbamoyl)-1,12b-dihydrocyclopropa[ A solution of 50% NaOH w/w in water (9.31 g) was added to a stirred solution of 16a (3.0 g, 5.82 mmoles) in THF (100 mL) and MeOH (150 mL). After 1 hour the reaction mixture was concentrated under reduced pressure, and subsequently diluted with ice-cold water (150 mL). The pH of the resulting solution was adjusted to 6 with diluted HCl. A precipitate was formed, which was collected by filtration, washed with water and dried under vacuum to give 3.17g (89%) of 16b as a yellowish powder. The product was used without any further purification in the next step; HATU (3.6 g, 9.48 mmol) was added under nitrogen to a stirred solution of 16b (3.17 g, 6.32 mmol), DIPEA (3.3 mL, 3 eq) and 2,2'-oxybis( A solution of 16c (3.90g, 6.33 mmol) and sulfamide (3.04g, 6 eq) in dioxane (100 mL) was refluxed at 100°C overnight. The reaction mixture was cooled down to room temperature, then evaporated under vacuum. The residue was redissolved in DCM, washed with water, dried over magnesium sulfate, filtered and concentrated to give 4.48 g (quantitative yield) of the desired product 16d, used directly in the next step: TFA (14.7 g, 129 mmol) was added to a solution of 16d (4.48 g, 6.45 mmol) in dichloromethane (50 mL). After 1h, the reaction mixture was concentrated under vacuum. The residue was triturated in ether, filtered and washed with ether, then purified by chromatography (gradient EtOAc to EtOAc/EtOH, 9:1) to give 3.05 g (68%) of the desired product 16e: Carbonyldiimidazole (1.07 g, 6.59 mmol) was added to a stirred solution of 16e (3.05 mg, 4.39 mmol) in dry ACN (40 mL). The reaction mixture was stirred at 60°C for 1h: complete conversion to the acyl imidazole intermediate was observed. The resulting solution was cooled down to RT, diluted with dry ACN (300 mL) and DBU (1.34 g, 2 eq) was added. The reaction mixture was stirred overnight at room temperature, then concentrated under reduced pressure. The residue was redissolved in DCM, washed with water, dried, filtered and concentrated. Purification by column chromatography (gradient DCM to DCM/MeOH 9:1) provided 930 mg (33%) of the title product 16 as a white powder: The synthesis of the title compound 17a was performed following the procedure reported for the synthesis of compound 16c, using The synthesis of the title compound 17b was performed following the procedure reported for the synthesis of compound 16d, using compound 17a instead of compound 16c, yielding 1 g (54% yield) of a slightly yellow solid; The synthesis of the title compound 17c was performed following the procedure reported for the synthesis of compound 16e, using compound 17b instead of compound 16d, yielding 538 mg (62% yield) of a slightly brown solid; The synthesis of the title compound 17 was performed following the procedure reported for the synthesis of compound 16, using compound 17c instead of compound 16e, yielding 70 mg (15% yield) of a white solid; The synthesis of the title compound 18 was performed following the 4-step procedure reported for the synthesis of compound 17, starting from intermediate 1b instead of 16b, and yielding 0.5 g of a white solid; The synthesis of the title compound 19 was performed following the 5-step procedure reported for the synthesis of compound 1, starting from intermediate 10- The synthesis of the title compound 20 was performed following the 5-step procedure reported for the synthesis of compound 1, starting from intermediate 10- The synthesis of the title compound 21 was performed following the 5-step procedure reported for the synthesis of compound 1, starting from intermediate 10- The synthesis of the title compound 22 was performed following the 5-step procedure reported for the synthesis of compound 1, using The synthesis of the title compound 23 was performed following the 5-step procedure reported for the synthesis of compound 1, using The synthesis of the title compound 24 was performed following the 4-step procedure reported for the synthesis of compound 17, starting from intermediate 10-( The synthesis of the title compound 25 was performed following the 5-step procedure reported for the synthesis of compound 10, starting from intermediate 10- A solution of 606 mg (1.24 mmole) of 1b, 410 mg (1.1 eq) of 26a, 710 mg (1.5 eq) of HATU and 0.65 mL (3 eq) of diisopropylethyl amine in dry DMF (10 mL) was stirred at RT during 1h. The RM was then diluted with water and the resulting yellow precipitate was filtered off, washed with water, and purified by flash chromatography (eluant DCM to DCM/MeOH 0.5%) to give a quantitative yield of the desired product 26b as a yellow powder; To a solution of 1.1g (1.44 mmole) of 26b and thiophenol (0.32 g, 2 eq) in dry DMF (15 mL) was added cesium carbonate (0.94 g, 2 eq) at RT. After 2h, the RM was diluted with water and extracted with EtOAc. The organic layer was washed with brine, dried over magnesium sulfate, filtered and concentrated. The resulting residue was further purified by flash chromatography (eluant: DCM to DCM/ NH3 in MeOH 85/15) to give 0.77 g (90% yield) of 26c as a yellow powder; A mixture of 26c (0.72g, 1.23 mmole) and sulfamide (0.35 g, 3 eq) in dioxane (15 mL) was refluxed until completion (∼7h). The RM was then concentrated under vacuo and the residue was triturated in DCM . The resulting precipitate of sulfamide in excess was filtered off. The organic layer was concentrated and purified by flash chromatography (eluant: DCM to DCM/MeOH 1%) to give 776 mg (95 % yield) of the desired product 26d as a light yellow powder; A solution of 26d (0.72 g, 1.086 mmole) in 10 mL of HCl in isopropanol and 5 mL of DCM was stirred at RT for 3h. The RM was then concentrated under vacuo, and the residue was triturated in diethyl ether. The resulting precipitate was filtered off, washed with ether and dried in a vacuum oven overnight to give 661 mg (97% yield) of the desired product 26e as a light yellow powder; A solution of 26e (0.6g, 0.971 mmole) and CDI (0.205 g, 1.3 eq) in acetonitrile (10 mL) was heated at 60°C until complete formation of the acyl imidazole intermediate (∼1h). The RM was then diluted with 20 mL of acetonitrile and DBU (0.296 g, 2 eq) was added at RT. The RM was stirred at RT until completion, then was concentrated. The residue was redissolved in water and acetic acid was then added until pH 2. The resulting precipitate was filtered off, washed with water, and purified by flash chromatography (eluant: DCM to DCM/MeOH 5%) to give 0.315 g (55% yield) of the desired product 26 as a slightly yellow powder; The synthesis of the title compound 27 was performed following the 5-step procedure reported for the synthesis of compound 26, starting from intermediate 10-( The synthesis of the title compound 28 was performed following the 5-step procedure reported for the synthesis of compound 10, starting from intermediate 10- A mixture of To a solution of To a mixture of A solution of A mixture of A mixture of A mixture of To a mixture of A mixture of To a solution of 2-bromo-5-fluoro-benzonitrile 33a (10 g, 50 mmol) in dry tetrahydrofuran (100 mL) under nitrogen was added methylmagnesium bromide (3.2 M in ether, 19 mL, 60.0 mmol), and the resulting mixture was heated to reflux for 4 hours. The RM was then cooled down to RT, poured into a 2 N HCl solution (100 mL) and then diluted with methanol (100 mL). The resulting green solution was concentrated on a steam bath for 1 h at which point the organic solvents had been removed and the crude product had precipitated. The reaction mixture was then extracted with ethyl acetate, dried over MgSO4 and concentrated. The residue was purified by column chromatography using heptane and dichloromethane to give 4.88 g (45% yield) of the desired product 1-(2-bromo-5-fluorophenyl)ethanone 33b as a pink oil; The title product The title product 10- The bromo indole derivative 32a (5 g, 13.22 mmol), 4-chloro-2-formylphenylboronic acid 34a (3.17 g, 17.18 mmol) and potassium carbonate (4.20 g, 30.4 mmol) were dissolved in 100mL of 1,2-dimethoxyethane (80 ml)/water (20 ml) 4/1 and the obtained solution was flushed thoroughly with argon. Then bis(triphenylphosphine)palladium(II) chloride (0.464 g, 0.661 mmol) was added and the reaction was heated to 63°C under argon during 3h. The reaction was then diluted with EtOAc, washed with water and with sat. aq. NaHCO3, dried (brine, sulfate) and evaporated. The residue was stripped with DIPE and stirred and sonicated in heptane with a few mL DIPE added. The solid was filtered off and dried to afford 4.97 g (86% yield) of the desired product The indole derivative 34b (4.95 g, 11.30 mmol) and cesium carbonate (4.42 g, 13.56 mmol) were dissolved in The title compound 24a was synthesized following the 2-step procedure reported for the synthesis of 10- A solution of NaOH (6.38 g) in 25 mL of water was added to a stirred solution of the indole derivative 24a in THF (100 mL) and MeOH (150 mL). After 1 hour the reaction was concentrated under reduced pressure, then diluted with ice-cold water (150 mL). The pH of the resulting solution was adjusted to 6 with HCl then extracted with dichloromethane and dried over MgSO4. The solvent was removed then the residue was purified by column chromatography using DCM/MeOH as eluant to give 1.7 g (87% yield) of a yellowish solid; Ethane-1,2-diol (4.06 g) and Tos-OH (0.41 g) were added to a solution of 1-(2-bromo-5-methoxyphenyl)ethanone 37a (5 g) in toluene (950 ml). The solution was heated under reflux with stirring in a 3 -neck round-bottomed flask fitted with a Dean-Stark receiver for 3 hours. The reaction mixture was then cooled to room temperature. The mixture was transferred to a separating funnel and a sodium carbonate solution (1 M, 50 ml) was added. The mixture was agitated and two phases formed. The organic layer was separated, washed with water (2 x 50 ml), dried over MgSO4 and concentrated under vacuum to afford 6.5 g (quantitative yield) of the desired product 2-(2-bromo-5-methoxyphenyl)-2-methyl-1,3-dioxolane 37b as a white solid. The bromo derivative 37b (6 g) was dissolved in dry THF (60 ml) and the solution was cooled down to -78°C. Then n-BuLi (16.5 ml) was added carefully at such a rate that the temperature did not exceed -60 °C. After 1 h, B(O-i-Pr)3 (6.2 g) was added neatly dropwise at -78 °C. After all was added, the cooling bath was removed. The mixture was stirred at 0 °C for 2.5 h, then 2 N HCl (60 ml) was added, and the RM stirred at r.t. for 2 h. The organic solvent was then removed under vacuum and the aqueous layer was saturated with NaCl and extracted with EtOAc. The organic layer was dried over Na2SO4 and evaporated under vacuum to give 3 g of the desired product 2-acetyl-4-methoxyphenylboronic acid 37c. The title product The title product 10- The synthesis of the title compound 38 was performed following the 5-step procedure reported for the synthesis of compound 10, starting from intermediate 13-cyclohexyl-3-methoxy-7 The compounds of formula (I) were examined for activity in the inhibition of HCV RNA replication in a cellular assay. The assay demonstrated that the compounds of formula (I) inhibited a HCV functional cellular replicating cell line, also known as HCV replicons. The cellular assay was based on a bicistronic expression construct, as described by The assay utilized the stably transfected cell line Huh-7 luc/neo (hereafter referred to as Huh-Luc). This cell line harbors an RNA encoding a bicistronic expression construct comprising the wild type NS3-NS5B regions of HCV type 1b translated from an Internal Ribosome Entry Site (IRES) from encephalomyocarditis virus (EMCV), preceded by a reporter portion (FfL-luciferase), and a selectable marker portion (neoR, neomycine phosphotransferase). The construct is bordered by 5' and 3' NTRs (non-translated regions) from HCV type 1b. Continued culture of the replicon cells in the presence of G418 (neoR) is dependent on the replication of the HCV RNA. The stably transfected replicon cells that express HCV RNA, which replicates autonomously and to high levels, encoding The replicon cells were plated in 384 well plates in the presence of the test and control compounds which were added in various concentrations. Following an incubation of three days, HCV replication was measured by assaying luciferase activity (using standard luciferase assay substrates and reagents and a Perkin Elmer ViewLux™ ultraHTS microplate imager). Replicon cells in the control cultures have high luciferase expression in the absence of any inhibitor. The inhibitory activity of the compound was monitored on the Huh-Luc cells, enabling a dose-response curve to be generated for each test compound. EC50 values were then calculated, which value represents the amount of the compound required to decrease by 50% the level of detected luciferase activity, or more specifically, the ability of the genetically linked HCV replicon RNA to replicate. The cDNA encoding NS5B amino acid 1-570 (HC-J4, genotype 1b, pCV-J4L6S, genebank accession number AF054247) was subcloned into the Nhe I and Xho I restriction sites of pET-21b. Expression of the subsequent His-tagged C-terminal 21 amino acid deleted NS5B was performed as follows: Clarified cell lysate was thawed and subsequently loaded onto a 5 mL pre-packed HisTrap FF column equilibrated with 25 mM HEPES, pH 7.5, 500 mM NaCl, 10% glycerol and 5 mM DTT. Proteins were eluted with 500 mM imidazole at a flow rate of 1 mL/min. Fractions containing the protein of interest were applied onto a pre-packed 26/10 HiPrep Desalting Column equilibrated with 25 mM HEPES, pH 7.5, 150 mM NaCl, 10% glycerol and 5 mM DTT. The buffer-exchanged NS5B peak was then applied onto a 20 mL Poly-U Sepharose column. Protein was eluted with an increasing salt gradient and fractions collected. Protein purity was assessed on Nu-PAGE pre-cast gels (Invitrogen, Carlsbad, CA). Purified NS5B samples were concentrated using Centri-Prep concentrators (Millipore, Billerica, MA, USA) and protein concentrations were determined by Bradford assay (Pierce, Rockford, IL, USA). The protein sequence is as described in Measurement of HCV NS5B polymerization activity was performed by evaluating the amount of radiolabeled GTP incorporated by the enzyme in a newly synthesized RNA using heteropolymeric RNA template/primer. The RdRp assay was carried out in 384-well plates using 50 nM of purified NS5B enzyme, which was incubated with 300 nM 5'-biotinylated oligo(rG13)/poly(rC) or oligo (rU15)/poly(rA) primer-template, 600 nM of GTP, and 0.1 µCi of [3H]GTP or [3H]UTP in 25 mM Tris-HCl, pH 7.5, 5 mM MgCl2, 25 mM KCl, 17 mM NaCl and 3 mM of DTT. The 30 µL reaction mixture was incubated at room temperature for 2 h before stopping the reaction by adding 30 µL of streptavidin coated SPA-beads (GE Healthcare, Uppsala, Sweden) in 0.5 M EDTA. The 30 µL reaction was terminated after 2 hours at 25°C upon addition of 30 µl streptavidin-coated SPA beads (GE Healthcare, Uppsala, Sweden 5 mg/ml in 0.5 M EDTA). After incubation at 25°C for 30 min, the plate was counted using a Packard TopCount microplate reader (30 sec/well, 1 min count delay) and IC50 values were calculated (Table 1: IC50 1bJ4). IC50 values represent the concentration of compound required to decrease by 50% the amount of RNA produced which is measured by the detection of incorporated radiolabeled GTP. The coding sequence for NS5B (genotype 1b consensus strain Con1) lacking 21 C-terminal residues was amplified from plasmid pFKI389/ns3-3'_N (Genbank accession no. AJ242654) and subcloned into the pET21b plasmid as described previously ( Fifty-percent inhibitory concentrations (Table 1: IC50 con1b) were determined according to the method as described previously ( The following Table 1 lists compounds according to any one of the above examples. The activities of the compounds tested are also depicted in Table 1. The compounds of formula (I) were examined for their enzymatic binding kinetics using a Surface Plasmon Resonance (SPR)-based method, i.e. Biacore. A slow dissociation of the inhibiting compound from its viral target (low koff, low Kd) is believed to potentially reduce the development of drug resistance against anti-viral drugs ( Data were analyzed using simultaneous nonlinear regression analysis (global fitting) adapted for single-cycle kinetics with Biacore T100 BiaEval evaluation software 2.0 (GE Healthcare). The individual rate constants kon and koff and a derived affinity constant, Kd = koff/kon, were determined by a kinetic evaluation of the sensorgrams. The kinetic models accounted for bulk and limited mass transport effects. Every analysis was performed at least in two independent experiments. The dissociation rate of a kinetic interaction can be translated into a compound residence time (dissociative half-life t1/2 = ln(2)/koff) representative for the interaction time between the polymerase and its inhibitor. The observed association rate constants (kon), dissociation rate constants (koff), derived affinity constant (Kd) and dissociative half-life (t1/2) measured for compounds of formula (I) or subgroups thereof on NS5B wild-type enzyme (genotype 1b, Con1b) are given in Table 2. Table 3 lists binding affinity data for compound nr. 1 on different forms of HCV NS5B polymerase. The different forms studied (NS5B Target) comprise different clinical isolates of different genotypes of the wild type enzyme, and, different mutant NS5B polymerases. The mutant enzymes were obtained by site directed mutagenesis of the lbJ4 or Conlb NS5B enzyme. Mutations P495L, V494A and L392I are located in the binding pocket of the compounds of the invention to NS5B polymerase. It was observed that the strong binding of compounds of formula (I) or subgroups thereof is consistent within one genotype, that the compounds of formula (I) or subgroups thereof show affinity for NS5B polymerase of the different genotypes, as well as for NS5B polymerases with mutation in the indole binding pocket, and that binding of the compounds of formula (I) or subgroups thereof is not affected by mutations to other sites in the enzyme. A compound of Formula (I)
including stereochemically isomeric forms, and N-oxides, salts, hydrates, and solvates thereof, wherein:
- R1 is a bivalent chain selected from
and
- each R3 is independently selected from the group comprising hydrogen, C1-4alkyl and C3-5cycloalkyl; - a is 3, 4, 5 or 6; - each b is independently 1 or 2; - c is 1 or 2; - macrocycle A has 14 to 18 member atoms, in particular macrocycle A has 17 or 18 member atoms; - each R2 is independently hydrogen, halo or C1-4alkoxy; - R4 and R5 are hydrogen or R4 and R5 together form a double bond or a methylene group to form a fused cyclopropyl; - R6 is hydrogen or methyl; and - R7 is a C3-7cycloalkyl optionally substituted with halo. A compound according to claim 1 wherein,
- R1 is selected from -N(R3)-(CH2)4-N(R3)-,
and, - each R3 is independently selected from hydrogen and methyl. A compound according to any of claims 1 or 2 wherein R2 is positioned on the benzene group in para with respect to the bond linking this benzene to the indole group. A compound according to any of claims 1 to 3 wherein R2 is selected from fluoro and methoxy. A compound according to any of claims 1 to 4 wherein R7 is selected from cyclohexyl and 2-fluorocyclohexyl. A compound according to any of claims 1 to 5 wherein R4 and R5 together form a double bond. A compound according to any of claims 1 to 5 wherein the compounds of formula (I) have the stereochemical configuration as illustrated by formula (IA).
A compound according to any of claims 1 to 3, having one of the structural formula II-1, II-2, II-3, III-1, III-2, III-3, III-4, IV-1, IV-2 or IV-3
A compound according to claim 1 having structural formula
A pharmaceutical composition comprising a carrier, and as active ingredient an antivirally effective amount of a compound as claimed in any of claims 1 to 9. A pharmaceutical composition according to claim 10, further comprising at least one other anti-HCV compound. A pharmaceutical composition according to claim 10 or 11, further comprising at least one anti HIV compound. A compound according to any of claims 1 to 9 or a pharmaceutical composition according to any of claims 10 to 12, for use as a medicament. A compound according to any of claims 1 to 9 or a pharmaceutical composition according to any of claims 10 to 12, for inhibiting HCV replication. Use of a compound according to any of claims 1 to 9, for the manufacture of a medicament for inhibiting HCV replication.Field of the invention
Background of the invention
Summary of the invention
Detailed description
Preparation of the compounds of formula (I)
General synthetic schemes
Method A
Method B
MethodC
Method D
Method E
Method F
Method G
Examples
Example 1- synthesis of compound 1
Step 1
Step 2
Step 3
Step 4
Step 5
Step 6
Example 2 - synthesis of compound 2
Examples 3 and 4 - synthesis of compounds 3 and 4
Example 5 - synthesis of compound 5
Step 1
Step 2
Step 3
Step 4
Example 6 - synthesis of compound 6
Step 1
Step 2
Step 3
Step 4
Step 5
Step 6
Step 7
Example 7 - synthesis of compound 7
Step 1
Step 2
Step 3
Step 4
Step 5
Step 6
Example 8 - synthesis of compound 8
Step 1
Step 2
Step 3
Step 4
Step 5
Step 6
Step 7
Step 8
Example 9 - synthesis of compound 9
Step 1
Step 2
Step 3
Step 4
Step 5
Example 10 - synthesis of compound 10
Step 1
Step2
Step3
Step 4
Step 5
Example 11 - synthesis of compound 11
Step 1
Step 2
Step 3
Step 4
Example 12 - synthesis of compound 12
Step 1
Step 2
Step 3
Step 4
Step 5
Example 13 - synthesis of compound 13
Step 1
Step 2
Step 3
Step 4
Step 5
Example 14 - synthesis of compound 14
Step 1
Step 2
Step 3
Step 4
Step 5
Example 15 - synthesis of compound 15
Step 1
Step 2
Step 3
Step 4
Example 16 - synthesis of compound 16
Step 1
Step 2
Step 3
Step 4
Step 5
Example 17 - synthesis of compound 17
Step 1
Step 2
Step 3
Step 4
Example 18 - synthesis of compound 18
Example 19 - synthesis of compound 19
Example 20 - synthesis of compound 20
Example 21 - synthesis of compound 21
Example 22 - synthesis of compound 22
Example 23 - synthesis of compound 23
Example 24 - synthesis of compound 24
Example 25 - synthesis of compound 25
Example 26 - synthesis of compound 26
Step 1
Step 2
Step 3
Step 4
Step 5
Example 27 - synthesis of compound 27
Example 28 - synthesis of compound 28
Example 29 - synthesis of compound 10b
Example 30 - synthesis of compound 26a
Step 1
Step 2
Step 3
Example 31 - synthesis of compound 28a
Step 1
Step 2
Example 32 - synthesis of compound 19a
Step 1
Step 2
Step 3
Example 33 - synthesis of compound 20a
Step 1
Step 2
Step 3
Example 34 - synthesis of compound 21a
Step 1
Step 2
Example 35 - synthesis of compound 24a
Example 36 - synthesis of compound 24b
Example 37 - synthesis of compound 16a
Step 1
Step 2
Step 3
Step 4
Example 38 - synthesis of compound 38
Example 39 - Activity of compounds of formula (I)
Replicon assay
Enzymatic assay
1. HCV NS5B 1bJ4
1.a) Protein purification
1.b) Protein Sequence
PDB: 1nb4, Apo form
1.c) Inhibition assay with NS5b 1bJ4
2. HCV NS5B con1b
2.a) Cloning, expression and purification of NS5B con1b.
2.b) RNA-dependent RNA polymerase assay.
2 = 0.09 = 0.41 1 = 0.07 = 0.24 = 0.038 11 = 0.055 = 0.22 5 = 0.92 = 0.29 12 = 0.29 = 0.93 10 = 0.06 = 0.28 13 = 0.39 = 0.19 3 = 0.079 = 0.53 4 = 3.83 = 2.42 6 = 0.550 8 = 0.040 9 = 0.800 15 = 0.180 16 = 0.078 = 0.040 17 = 0.170 18 = 0.079 = 0.026 19 = 0.072 = 0.031 20 = 0.081 = 0.038 21 = 0.280 22 = 0.160 23 = 0.470 24 = 14.48 25 = 0.550 26 = 0.130 27 = 10.20 28 = 0.330 38 = 0.912 Enzyme binding affinity
16 2,2E+04 3,6E-05 1,6E-09 321,5 18 2,0E+04 4,8E-05 2,4E-09 241,0 1 2,0E+04 9,0E-05 4,4E-09 128,4 28 7,3E+03 6,6E-05 9,0E-09 175,5 25 2,9E+04 3,1E-04 1,1E-08 37,8 17 8,7E+03 1,6E-04 1,8E-08 72,0 27 9,5E+03 3,8E-03 4,0E-07 3,1 24 4,8E+03 3,7E-03 7,6E-07 3,1 38 5,3E+03 4,1E-05 7,7E-09 283,8 1a isolate 1 7,4E+04 4,8E-04 6,5E-09 24,2 1a isolate 2 3,9E+04 3,7E-04 9,4E-09 31,3 1a isolate 3 8,1E+04 6,0E-04 7,4E-09 19,2 1a isolate 4 7,4E+04 7,7E-04 1,1E-08 14,9 1a isolate 5 1,1E+05 3,1E-04 2,8E-09 37,2 1b isolate 1 2,6E+04 1,0E-04 4,0E-09 110,2 1b isolate 2 2,9E+04 6,7E-05 2,3E-09 172,1 1b isolate 3 3,7E+04 1,2E-04 3,3E-09 96,4 1b isolate 4 3,5E+04 1,7E-04 4,9E-09 67,5 2b isolate 1 1,8E+04 1,4E-02 8,2E-07 0,8 2b isolate 2 4,3E+04 1,2E-02 2,7E-07 1,0 2b isolate 3 4,4E+03 1,7E-02 3,8E-06 0,7 3a isolate 1 9,5E+04 3,7E-04 3,9E-09 31,1 3a isolate 2 2,5E+04 4,7E-04 1,9E-08 24,6 3a isolate 3 6,0E+04 3,6E-04 6,1E-09 31,7 4a isolate 1 2,0E+05 4,3E-04 2,1E-09 26,7 4a isolate 2 2,8E+05 3,8E-04 1,4E-09 30,1 4a isolate 3 1,8E+05 6,0E-04 3,4E-09 19,1 5a isolate 4 4,3E+04 9,7E-04 2,2E-08 12,0 6a isolate 5 5,0E+04 1,6E-03 3,2E-08 7,3 1bJ4 2,0E+04 1,0E-04 5,2E-09 110,2 Con1b 2,0E+04 9,0E-05 4,4E-09 128,4 P495L (1bJ4) 5,9E+03 2,2E-02 3,8E-06 0,5 L392I (Con1b) 1,8E+04 9,7E-04 5,5E-08 11,9 P495L (Con1b) 3,4E+03 2,2E-02 6,4E-06 0,5 V494A (Con1b) 5,5E+04 8,4E-04 1,5E-08 13,8 M414T (1bJ4) 2,6E+04 1,5E-04 5,9E-09 75,4 M423T (1bJ4) 2,5E+04 1,5E-04 6,3E-09 75,0 S282T (1bJ4) 3,4E+04 1,3E-04 3,9E-09 88,9 C316Y (Con1b) 3,5E+04 7,6E-05 2,2E-09 151,7