4-AMINO-6-(HETEROCYCLIC) PICOLINATES AND 6-AMINO-2-2(HETEROCYCLIC) PYRIMIDINE-4-CARBOXYLATES AND THEIR USE AS HERBICIDES
The invention relates to herbicidal compounds and compositions and to methods for controlling undesirable vegetation. The occurrence of undesirable vegetation, e.g., weeds, is a constant problem facing famers in crops, pasture, and other settings. Weeds compete with crops and negatively impact crop yield. The use of chemical herbicides is an important tool in controlling undesirable vegetation. Substituted picolinic acids and pyrimidine-4-carboxylic acids and their use as herbicides are discussed e.g. in There remains a need for new chemical herbicides that offer a broader spectrum of weed control, selectivity, minimal crop damage, storage stability, ease of handling, higher activity against weeds, and/or a means to address herbicide-tolerance that develops with respect to herbicides currently in use. Provided herein are compounds of Formula (I): wherein In certain embodiments, R2 is Cl, and R3 and R4 are hydrogen. In one embodiment, the compound is 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1 Also provided are methods of controlling undesirable vegetation comprising (a) contacting the undesirable vegetation or area adjacent to the undesirable vegetation or (b) pre-emergently contacting soil or water a herbicidally effective amount of at least one compound of Formula (I) or agriculturally acceptable derivative thereof. As used herein, herbicide and herbicidal active ingredient mean a compound that controls undesirable vegetation when applied in an appropriate amount. As used herein, control of or controlling undesirable vegetation means killing or preventing the vegetation, or causing some other adversely modifying effect to the vegetation As used herein, a herbicidally effective or vegetation controlling amount is an amount of herbicidal active ingredient the application of which controls the relevant undesirable vegetation. As used herein, applying a herbicide or herbicidal composition means delivering it directly to the targeted vegetation or to the locus thereof or to the area where control of undesired vegetation is desired. Methods of application include, but are not limited to pre-emergently contacting soil or water, post-emergently contacting the undesirable vegetation or area adjacent to the undesirable vegetation. As used herein, plants and vegetation include, but are not limited to, dormant seeds, germinant seeds, emerging seedlings, plants emerging from vegetative propagules, immature vegetation, and established vegetation. As used herein, agriculturally acceptable salts and esters refer to salts and esters that exhibit herbicidal activity, or that are or can be converted in plants, water, or soil to the referenced herbicide. Exemplary agriculturally acceptable esters are those that are or can by hydrolyzed, oxidized, metabolized, or otherwise converted, Suitable salts include those derived from alkali or alkaline earth metals and those derived from ammonia and amines. Preferred cations include sodium, potassium, magnesium, and aminium cations of the formula: R13R14R15R16N+ wherein R13, R14, R15 and R16 each, independently represents hydrogen or C1-C12 alkyl, C3-C12 alkenyl or C3-C12 alkynyl, each of which is optionally substituted by one or more hydroxy, C1-C4 alkoxy, C1-C4 alkylthio or phenyl groups, provided that R13, R14, R15 and R16 are sterically compatible. Additionally, any two R13, R14, R15 and R16 together may represent an aliphatic difunctional moiety containing one to twelve carbon atoms and up to two oxygen or sulfur atoms. Salts of the compounds of Formula I can be prepared by treatment of compounds of Formula I with a metal hydroxide, such as sodium hydroxide, with an amine, such as ammonia, trimethylamine, diethanolamine, 2-methylthiopropylamine, bisallylamine, 2-butoxyethylamine, morpholine, cyclododecylamine, or benzylamine or with a tetraalkylammonium hydroxide, such as tetramethylammonium hydroxide or choline hydroxide. Amine salts are often preferred forms of the compounds of Formula I because they are watersoluble and lend themselves to the preparation of desirable aqueous based herbicidal compositions. Compounds of the formula (I) include N-oxides. Pyridine N-oxides can be obtained by oxidation of the corresponding pyridines. Suitable oxidation methods are described, for example, in Houben-Weyl, As used herein, unless otherwise specified, acyl refers to formyl, C1-C3 alkylcarbonyl, and C1-C3 haloalkylcarbonyl. C1-C6 acyl refers to formyl, C1-C5 alkylcarbonyl, and C1-C5 haloalkylcarbonyl (the group contains a total of 1 to 6 carbon atoms). As used herein, alkyl refers to saturated, straight-chained or branched saturated hydrocarbon moieties. Unless otherwise specified, C1-C10 alkyl groups are intended. Examples include methyl, ethyl, propyl, 1-methyl-ethyl, butyl, 1-methyl-propyl, 2-methyl-propyl, 1,1-dimethyl-ethyl, pentyl, 1-methyl-butyl, 2-methyl-butyl, 3-methyl-butyl, 2,2-dimethyl-propyl, 1-ethyl-propyl, hexyl, 1,1-dimethyl-propyl, 1,2-dimethyl-propyl, 1-methyl-pentyl, 2-methyl-pentyl, 3-methyl-pentyl, 4-methyl-pentyl, 1,1-dimethyl-butyl, 1,2-dimethyl-butyl, 1,3-dimethyl-butyl, 2,2-dimethyl-butyl, 2,3-dimethyl-butyl, 3,3-dimethyl-butyl, 1-ethyl-butyl, 2-ethyl-butyl, 1,1,2-trimethyl-propyl, 1,2,2-trimethyl-propyl, 1-ethyl-1-methyl-propyl, and 1-ethyl-2-methyl-propyl. As used herein, "haloalkyl" refers to straight-chained or branched alkyl groups, wherein these groups the hydrogen atoms may partially or entirely be substituted with halogen atoms. Unless otherwise specified, C1-C8 groups are intended. Examples include chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl, pentafluoroethyl, and 1,1,1-trifluoroprop-2-yl. As used herein, alkenyl refers to unsaturated, straight-chained, or branched hydrocarbon moieties containing a double bond. Unless otherwise specified, C2-C8 alkenyl are intended. Alkenyl groups may contain more than one unsaturated bond. Examples include ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl-1-butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-3-butenyl, 1,1-dimethyl-2-propenyl, 1,2-dimethyl-1-propenyl, 1,2-dimethyl-2-propenyl, 1-ethyl-1-propenyl, 1-ethyl-2-propenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 1-methyl-1-pentenyl, 2-methyl-1-pentenyl, 3-methyl-1-pentenyl, 4-methyl-1-pentenyl, 1-methyl-2-pentenyl, 2-methyl-2-pentenyl, 3-methyl-2-pentenyl, 4-methyl-2-pentenyl, 1-methyl-3-pentenyl, 2-methyl-3-pentenyl, 3-methyl-3-pentenyl, 4-methyl-3-pentenyl, 1-methyl-4-pentenyl, 2-methyl-4-pentenyl, 3-methyl-4-pentenyl, 4-methyl-4-pentenyl, 1,1-dimethyl-2-butenyl, 1,1-dimethyl-3-butenyl, 1,2-dimethyl-1-butenyl, 1,2-dimethyl-2-butenyl, 1,2-dimethyl-3-butenyl, 1,3-dimethyl-1-butenyl, 1,3-dimethyl-2-butenyl, 1,3-dimethyl-3-butenyl, 2,2-dimethyl-3-butenyl, 2,3-dimethyl-1-butenyl, 2,3-dimethyl-2-butenyl, 2,3-dimethyl-3-butenyl, 3,3-dimethyl-1-butenyl, 3,3-dimethyl-2-butenyl, 1-ethyl-1-butenyl, 1-ethyl-2-butenyl, 1-ethyl-3-butenyl, 2-ethyl-1-butenyl, 2-ethyl-2-butenyl, 2-ethyl-3-butenyl, 1,1,2-trimethyl-2-propenyl, 1-ethyl-1-methyl-2-propenyl, 1-ethyl-2-methyl-1-propenyl, and 1-ethyl-2-methyl-2-propenyl. Vinyl refers to a group having the structure -CH=CH2; 1-propenyl refers to a group with the structure-CH=CH-CH3; and 2-propenyl refers to a group with the structure -CH2-CH=CH2. As used herein, alkynyl represents straight-chained or branched hydrocarbon moieties containing a triple bond. Unless otherwise specified, C2-C8 alkynyl groups are intended. Alkynyl groups may contain more than one unsaturated bond. Examples include C2-C6-alkynyl, such as ethynyl, 1-propynyl, 2-propynyl (or propargyl), 1-butynyl, 2-butynyl, 3-butynyl, 1-methyl-2-propynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 3-methyl-1-butynyl, 1-methyl-2-butynyl, 1-methyl-3-butinyul, 2-methyl-3-butynyl, 1,1-dimethyl-2-propynyl, 1-ethyl-2-propynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 3-methyl-1-pentynyl, 4-methyl-1-pentynyl, 1-methyl-2-pentynyl, 4-methyl-2-pentynyl, 1-methyl-3-pentynyl, 2-methyl-3-pentynyl, 1-methyl-4-pentynyl, 2-methyl-4-pentynyl, 3-methyl-4-pentynyl, 1,1-dimethyl-2-butynyl, 1,1-dimethyl-3-butynyl, 1,2-dimethyl-3-butynyl, 2,2-dimethyl-3-butynyl, 3,3-dimethyl-1-butynyl, 1-ethyl-2-butynyl, 1-ethyl-3-butynyl, 2-ethyl-3-butynyl, and 1-ethyl-1-methyl-2-propynyl. As used herein, alkoxy refers to a group of the formula R-O-, where R is alkyl as defined above. Unless otherwise specified, alkoxy groups wherein R is a C1-C8 alkyl group are intended. Examples include methoxy, ethoxy, propoxy, 1-methyl-ethoxy, butoxy, 1-methyl-propoxy, 2-methyl-propoxy, 1,1-dimethyl-ethoxy, pentoxy, 1-methyl-butyloxy, 2-methyl-butoxy, 3-methyl-butoxy, 2,2-di-methyl-propoxy, 1-ethyl-propoxy, hexoxy, 1,1-dimethyl-propoxy, 1,2-dimethyl-propoxy, 1-methyl-pentoxy, 2-methyl-pentoxy, 3-methyl-pentoxy, 4-methyl-penoxy, 1,1-dimethyl-butoxy, 1,2-dimethyl-butoxy, 1,3-dimethyl-butoxy, 2,2-dimethyl-butoxy, 2,3-dimethyl-butoxy, 3,3-dimethyl-butoxy, 1-ethyl-butoxy, 2-ethylbutoxy, 1,1,2-trimethyl-propoxy, 1,2,2-trimethyl-propoxy, 1-ethyl-1-methyl-propoxy, and 1-ethyl-2-methyl-propoxy. As used herein, haloalkoxy refers to a group of the formula R-O-, where R is haloalkyl as defined above. Unless otherwise specified, haloalkoxy groups wherein R is a C1-C8 alkyl group are intended. Examples include chloromethoxy, bromomethoxy, dichloromethoxy, trichloromethoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 1-chloroethoxy, 1-bromoethoxy, 1-fluoroethoxy, 2-fluoroethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy, pentafluoroethoxy, and 1,1,1-trifluoroprop-2-oxy. As used herein, alkylthio refers to a group of the formula R-S- where R is alkyl as defined above. Unless otherwise specified, alkylthio groups wherein R is a C1-C8 alkyl group are intended. Examples include methylthio, ethylthio, propylthio, 1-methylethylthio, butylthio, 1-methyl-propylthio, 2-methylpropylthio, 1,1-dimethylethylthio, pentylthio, 1-methylbutylthio, 2-methylbutylthio, 3-methylbutylthio, 2,2-dimethylpropylthio, 1-ethylpropylthio, hexylthio, 1,1-dimethyl propylthio, 1,2-dimethyl propylthio, 1-methylpentylthio, 2-methylpentylthio, 3-methyl-pentylthio, 4-methyl-pentylthio, 1,1-dimethyl butylthio, 1,2-dimethyl-butylthio, 1,3-dimethyl-butylthio, 2,2-dimethyl butylthio, 2,3-dimethyl butylthio, 3,3-dimethylbutylthio, 1-ethylbutylthio, 2-ethylbutylthio, 1,1,2-trimethyl propylthio, 1,2,2-trimethyl propylthio, 1-ethyl-1-methyl propylthio, and 1-ethyl-2-methylpropylthio. As used herein, haloalkylthio refers to an alkylthio group as defined above wherein the carbon atoms are partially or entirely substituted with halogen atoms. Unless otherwise specified, haloalkylthio groups wherein R is a C1-C8 alkyl group are intended. Examples include chloromethylthio, bromomethylthio, dichloromethylthio, trichloromethylthio, fluoromethylthio, difluoromethylthio, trifluoromethylthio, chlorofluoromethylthio, dichlorofluoro-methylthio, chlorodifluoromethylthio, 1-chloroethylthio, 1-bromoethylthio, 1-fluoroethylthio, 2-fluoroethylthio, 2,2-difluoroethylthio, 2,2,2-trifluoroethylthio, 2-chloro-2-fluoroethylthio, 2-chloro-2-difluoroethylthio, 2,2-dichloro-2-fluoroethylthio, 2,2,2-trichloroethylthio, pentafluoroethylthio, and 1,1,1-trifluoroprop-2-ylthio. As used herein, aryl, as well as derivative terms such as aryloxy, refers to a phenyl, indanyl or naphthyl group with phenyl being preferred. The term "heteroaryl", as well as derivative terms such as "heteroaryloxy", refers to a 5- or 6-membered aromatic ring containing one or more heteroatoms, As used herein alkylcarbonyl refers to an alkyl group bonded to a carbonyl group. C1-C3 alkylcarbonyl and C1-C3 haloalkylcarbonyl refer to groups wherein a C1-C3 alkyl group is bonded to a carbonyl group (the group contains a total of 2 to 4 carbon atoms). As used herein, alkoxycarbonyl refers to a group of the formula wherein R is alkyl. As used herein, arylalkyl refers to an alkyl group substituted with an aryl group. C7-C10 arylalkyl refers to a group wherein the total number of carbon atoms in the group is 7 to 10. As used herein alkylamino refers to an amino group substituted with one or two alkyl groups, which may be the same or different. As used herein haloalkylamino refers to an alkylamino group wherein the alkyl carbon atoms are partially or entirely substituted with halogen atoms. As used herein, C1-C6 alkylaminocarbonyl refers to a group of the formula RNHC(O)- wherein R is C1-C6 alkyl, and C1-C6 dialkylaminocarbonyl refers to a group of the formula R2NC(O)- wherein each R is independently C1-C6 alkyl. As used herein alkylcarbamyl refers to a carbamyl group substituted on the nitrogen with an alkyl group. As used herein alkylsulfonyl refers to a group of the formula where R is alkyl. As used herein carbamyl (also referred to as carbamoyl and aminocarbonyl) refers to a group of the formula As used herein dialkylphosphonyl refers to a group of the formula where R is independently alkyl in each occurrence. As used herein, C1-C6 trialkylsilyl refers to a group of the formula -SiR3 wherein each R is independently a C1-C6 alkyl group (the group contains a total of 3 to 18 carbon atoms). As used herein Me refers to a methyl group; OMe refers to a methoxy group; As used herein, the term "halogen" including derivative terms such as "halo" refers to fluorine, chlorine, bromine and iodine. As used herein, plants and vegetation include, but are not limited to, germinant seeds, emerging seedlings, plants emerging from vegetative propagules, immature vegetation, and established vegetation. The invention provides compounds of Formula (I) as defined above and N-oxides and agriculturally acceptable salts thereof. In some embodiments, the compound is the carboxylic acid or an agriculturally acceptable ester or salt. In some embodiments, the compound is the carboxylic acid or its methyl ester. In some embodiments, R1' is hydrogen or C1-C8 alkyl. In some embodiments, R1' is hydrogen. R2 is chlorine, methoxy, or vinyl; R3 and R4 are hydrogen; and A is It is particularly noteworthy that the present compounds of Formula (I) exhibit a significant increase in activity due to X being CF. This is demonstrated by comparing the activity of Compounds 1.23 and 1.24 (wherein X is CH) with that of Compounds 1.15 and 1.16 (wherein X is CF). The increased activity is further enhanced since R5 is F (cf. Table 1 below). In one embodiment, the compound is 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1 The following Table 1 describes exemplary compounds of Formula (I') Table 2 sets forth the structure, appearance, preparation method, and precursor(s) used in synthesis of the exemplary compounds. Table 3 sets forth physical data for each of the exemplary compounds. Blank spaces in compound tables herein indicate hydrogen, or that for the A group indicated in a particular row the column in which the blank occurs is not relevant. Exemplary procedures to synthesize the compounds of Formula (I) are provided below. The 4-amino-6-(heterocyclic)picolinic acids of Formula (I) can be prepared in a number of ways. As depicted in Scheme II, the 4,5,6-trichloropicolinate of Formula (VII) can be converted to the corresponding isopropyl ester of Formula (VIII), via a reaction with isopropyl alcohol and concentrated sulfuric acid, As depicted in Scheme III, the 4-amino-5-fluoro-6-chloropicolinate of Formula (XII) can be transformed into the 3-iodo-4-amino-5-fluoro-6-chloropicolinate of Formula (XIII) via reaction with iodinating reagents, such as periodic acid and iodine, in a polar, protic solvent, such as methyl alcohol (reaction Alternatively, the 4-amino-5-fluoro-6-chloropicolinates of Formula (XII) can be converted to the 4-amino-5-fluoro-6-substituted-picolinates of Formula (XV), wherein Ar is as herein defined, via Suzuki coupling with a boronic acid or ester, in the presence of a base, such as potassium fluoride, and a catalyst, such as bis(triphenylphosphine)-palladium(II) dichloride, in a polar, protic solvent mixture, such as acetonitrile-water, at a temperature, such as 110 °C, The compounds of Formula I-B obtained by any of these processes, can be recovered by conventional means and purified by standard procedures, such as by recrystallization or chromatography. The compounds of Formula (I) can be prepared from compounds of Formulae I-B using standard methods well known in the art. In some embodiments, the compounds provided herein are employed in mixtures containing a herbicidally effective amount of the compound along with at least one agriculturally acceptable adjuvant or carrier. Exemplary adjuvants or carriers include those that are not phytotoxic or significantly phytotoxic to valuable crops, Suitable agricultural adjuvants and carriers that are useful in preparing the herbicidal mixtures of the disclosure are well known to those skilled in the art. Some of these adjuvants include, but are not limited to, crop oil concentrate (mineral oil (85%) + emulsifiers (15%)); nonylphenol ethoxylate; benzylcocoalkyldimethyl quaternary ammonium salt; blend of petroleum hydrocarbon, alkyl esters, organic acid, and anionic surfactant; C9-C11 alkylpolyglycoside; phosphated alcohol ethoxylate; natural primary alcohol (C12-C16) ethoxylate; di- Liquid carriers that can be employed include water and organic solvents. The organic solvents typically used include, but are not limited to, petroleum fractions or hydrocarbons such as mineral oil, aromatic solvents, paraffinic oils, and the like; vegetable oils such as soybean oil, rapeseed oil, olive oil, castor oil, sunflower seed oil, coconut oil, corn oil, cottonseed oil, linseed oil, palm oil, peanut oil, safflower oil, sesame oil, tung oil and the like; esters of the above vegetable oils; esters of monoalcohols or dihydric, trihydric, or other lower polyalcohols (4-6 hydroxy containing), such as 2-ethylhexyl stearate, Suitable solid carriers include talc, pyrophyllite clay, silica, attapulgus clay, kaolin clay, kieselguhr, chalk, diatomaceous earth, lime, calcium carbonate, bentonite clay, Fuller's earth, cottonseed hulls, wheat flour, soybean flour, pumice, wood flour, walnut shell flour, lignin, and the like. In some embodiments, one or more surface-active agents are utilized in the compositions of the present disclosure. Such surface-active agents are, in some embodiments, employed in both solid and liquid compositions, Oftentimes, some of these materials, such as vegetable or seed oils and their esters, can be used interchangeably as an agricultural adjuvant, as a liquid carrier or as a surface active agent. Other adjuvants commonly used in agricultural compositions include compatibilizing agents, antifoam agents, sequestering agents, neutralizing agents and buffers, corrosion inhibitors, dyes, odorants, spreading agents, penetration aids, sticking agents, dispersing agents, thickening agents, freezing point depressants, antimicrobial agents, and the like. The compositions may also contain other compatible components, for example, other herbicides, plant growth regulants, fungicides, insecticides, and the like and can be formulated with liquid fertilizers or solid, particulate fertilizer carriers such as ammonium nitrate, urea and the like. The concentration of the active ingredients in the herbicidal compositions of this disclosure is generally from about 0.001 to about 98 percent by weight. Concentrations from about 0.01 to about 90 percent by weight are often employed. In compositions designed to be employed as concentrates, the active ingredient is generally present in a concentration from about 5 to about 98 weight percent, preferably about 10 to about 90 weight percent. Such compositions are typically diluted with an inert carrier, such as water, before application. The diluted compositions usually applied to weeds or the locus of weeds generally contain about 0.0001 to about 1 weight percent active ingredient and preferably contain about 0.001 to about 0.05 weight percent. The present compositions can be applied to weeds or their locus by the use of conventional ground or aerial dusters, sprayers, and granule applicators, by addition to irrigation or flood water, and by other conventional means known to those skilled in the art. In some embodiments, the compounds and compositions described herein are applied as a post-emergence application, pre-emergence application, in-water application to flooded paddy rice or water bodies (e.g., ponds, lakes and streams), or burn-down application. In some embodiments, the compounds and compositions provided herein are utilized to control weeds in crops, including but not limited to citrus, apple, rubber, oil, palm, forestry, direct-seeded, water-seeded and transplanted rice, wheat, barley, oats, rye, sorghum, corn/maize, pastures, grasslands, rangelands, fallowland, turf, tree and vine orchards, aquatics, or row-crops, as well as non-crop settings, In some embodiments, the compounds and compositions provided herein are utilized to control undesirable vegetation in rice. In certain embodiments, the undesirable vegetation is In some embodiments, the compounds and compositions provided herein are utilized to control undesirable vegetation in cereals. In certain embodiments, the undesirable vegetation is In some embodiments, the compounds and compostions provided herein are utilized to control undesirable vegetation in range and pasture. In certain embodiments, the undesirable vegetation is In some embodiments, the compounds and compositions provided herein are utilized to control undesirable vegetation found in row crops. In certain embodiments, the undesirable vegetation is In some embodiments, application rates of about 1 to about 4,000 grams/hectare (g/ha) are employed in post-emergence operations. In some embodiments, rates of about 1 to about 4,000 g/ha are employed in pre-emergence operations. In some embodiments, the compounds, compositions, and methods provided herein are used in conjunction with one or more other herbicides to control a wider variety of undesirable vegetation. When used in conjunction with other herbicides, the presently claimed compounds can be formulated with the other herbicide or herbicides, tank-mixed with the other herbicide or herbicides or applied sequentially with the other herbicide or herbicides. Some of the herbicides that can be employed in conjunction with the compounds of the present disclosure include: 4-CPA, 4-CPB, 4-CPP, 2,4-D, 2,4-D choline salt, 2,4-D esters and amines, 2,4-DB, 3,4-DA, 3,4-DB, 2,4-DEB, 2,4-DEP, 3,4-DP, 2,3,6-TBA, 2,4,5-T, 2,4,5-TB, acetochlor, acifluorfen, aclonifen, acrolein, alachlor, allidochlor, alloxydim, allyl alcohol, alorac, ametridione, ametryn, amibuzin, amicarbazone, amidosulfuron, aminocyclopyrachlor, aminopyralid, amiprofos-methyl, amitrole, ammonium sulfamate, anilofos, anisuron, asulam, atraton, atrazine, azafenidin, azimsulfuron, aziprotryne, barban, BCPC, beflubutamid, benazolin, bencarbazone, benfluralin, benfuresate, bensulfuron-methyl, bensulide, benthiocarb, bentazon-sodium, benzadox, benzfendizone, benzipram, benzobicyclon, benzofenap, benzofluor, benzoylprop, benzthiazuron, bicyclopyrone, bifenox, bilanafos, bispyribac-sodium, borax, bromacil, bromobonil, bromobutide, bromofenoxim, bromoxynil, brompyrazon, butachlor, butafenacil, butamifos, butenachlor, buthidazole, buthiuron, butralin, butroxydim, buturon, butylate, cacodylic acid, cafenstrole, calcium chlorate, calcium cyanamide, cambendichlor, carbasulam, carbetamide, carboxazole, chlorprocarb, carfentrazone-ethyl, CDEA, CEPC, chlomethoxyfen, chloramben, chloranocryl, chlorazifop, chlorazine, chlorbromuron, chlorbufam, chloreturon, chlorfenac, chlorfenprop, chlorflurazole, chlorflurenol, chloridazon, chlorimuron, chlornitrofen, chloropon, chlorotoluron, chloroxuron, chloroxynil, chlorpropham, chlorsulfuron, chlorthal, chlorthiamid, cinidon-ethyl, cinmethylin, cinosulfuron, cisanilide, clethodim, cliodinate, clodinafop-propargyl, clofop, clomazone, clomeprop, cloprop, cloproxydim, clopyralid, cloransulam-methyl, CMA, copper sulfate, CPMF, CPPC, credazine, cresol, cumyluron, cyanatryn, cyanazine, cycloate, cyclosulfamuron, cycloxydim, cycluron, cyhalofop-butyl, cyperquat, cyprazine, cyprazole, cypromid, daimuron, dalapon, dazomet, delachlor, desmedipham, desmetryn, di-allate, dicamba, dichlobenil, dichloralurea, dichlormate, dichlorprop, dichlorprop-P, diclofop, diclosulam, diethamquat, diethatyl, difenopenten, difenoxuron, difenzoquat, diflufenican, diflufenzopyr, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, dimexano, dimidazon, dinitramine, dinofenate, dinoprop, dinosam, dinoseb, dinoterb, diphenamid, dipropetryn, diquat, disul, dithiopyr, diuron, DMPA, DNOC, DSMA, EBEP, eglinazine, endothal, epronaz, EPTC, erbon, esprocarb, ethalfluralin, ethbenzamide, ethametsulfuron, ethidimuron, ethiolate, ethobenzamid, etobenzamid, ethofumesate, ethoxyfen, ethoxysulfuron, etinofen, etnipromid, etobenzanid, EXD, fenasulam, fenoprop, fenoxaprop, fenoxaprop-P-ethyl, fenoxaprop-P-ethyl + isoxadifen-ethyl, fenoxasulfone, fenteracol, fenthiaprop, fentrazamide, fenuron, ferrous sulfate, flamprop, flamprop-M, flazasulfuron, florasulam, fluazifop, fluazifop-P-butyl, fluazolate, flucarbazone, flucetosulfuron, fluchloralin, flufenacet, flufenican, flufenpyr-ethyl, flumetsulam, flumezin, flumiclorac-pentyl, flumioxazin, flumipropyn, fluometuron, fluorodifen, fluoroglycofen, fluoromidine, fluoronitrofen, fluothiuron, flupoxam, flupropacil, flupropanate, flupyrsulfuron, fluridone, flurochloridone, fluroxypyr, flurtamone, fluthiacet, fomesafen, foramsulfuron, fosamine, furyloxyfen, glufosinate, glufosinate-ammonium, glyphosate, halosafen, halosulfuron-methyl, haloxydine, haloxyfop-methyl, haloxyfop-P-methyl, halauxifen-methyl, hexachloroacetone, hexaflurate, hexazinone, imazamethabenz, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, indanofan, indaziflam, iodobonil, iodomethane, iodosulfuron, iofensulfuron, ioxynil, ipazine, ipfencarbazone, iprymidam, isocarbamid, isocil, isomethiozin, isonoruron, isopolinate, isopropalin, isoproturon, isouron, isoxaben, isoxachlortole, isoxaflutole, isoxapyrifop, karbutilate, ketospiradox, lactofen, lenacil, linuron, MAA, MAMA, MCPA esters and amines, MCPA-thioethyl, MCPB, mecoprop, mecoprop-P, medinoterb, mefenacet, mefluidide, mesoprazine, mesosulfuron, mesotrione, metam, metamifop, metamitron, metazachlor, metazosulfuron, metflurazon, methabenzthiazuron, methalpropalin, methazole, methiobencarb, methiozolin, methiuron, methometon, methoprotryne, methyl bromide, methyl isothiocyanate, methyldymron, metobenzuron, metobromuron, metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, molinate, monalide, monisouron, monochloroacetic acid, monolinuron, monuron, morfamquat, MSMA, naproanilide, napropamide, napropamide-M, naptalam, neburon, nicosulfuron, nipyraclofen, nitralin, nitrofen, nitrofluorfen, norflurazon, noruron, OCH, orbencarb, The compounds and compositions of the present disclosure can generally be employed in combination with known herbicide safeners, such as benoxacor, benthiocarb, brassinolide, cloquintocet (e.g., mexyl), cyometrinil, daimuron, dichlormid, dicyclonon, dimepiperate, disulfoton, fenchlorazole-ethyl, fenclorim, flurazole, fluxofenim, furilazole, harpin proteins, isoxadifen-ethyl, mefenpyr-diethyl, MG 191, MON 4660, naphthalic anhydride (NA), oxabetrinil, R29148 and N-phenylsulfonylbenzoic acid amides, to enhance their selectivity. The compounds, compositions, and methods described herein be used to control undesirable vegetation on glyphosate-tolerant-, glufosinate-tolerant-, dicamba-tolerant-, phenoxy auxin-tolerant-, pyridyloxy auxin-tolerant-, aryloxyphenoxypropionate-tolerant-, acetyl CoA carboxylase (ACCase) inhibitor-tolerant-, imidazolinone-tolerant-, acetolactate synthase (ALS) inhibitor-tolerant-, 4-hydroxyphenyl-pyruvate dioxygenase (HPPD) inhibitor-tolerant-, protoporphyrinogen oxidase (PPO) inhibitor-tolerant-, triazine-tolerant-, and bromoxynil-tolerant- crops (such as, but not limited to, soybean, cotton, canola/oilseed rape, rice, cereals, corn, turf, etc), for example, in conjunction with glyphosate, glufosinate, dicamba, phenoxy auxins, pyridyloxy auxins, aryloxyphenoxypropionates, ACCase inhibitors, imidazolinones, ALS inhibitors, HPPD inhibitors, PPO inhibitors, triazines, and bromoxynil. The compositions and methods may be used in controlling undesirable vegetation in crops possessing multiple or stacked traits conferring tolerance to multiple chemistries and/or inhibitors of multiple modes-of-action. The compounds and compositions provided herein may also be employed to control herbicide resistant or tolerant weeds. Exemplary resistant or tolerant weeds include, but are not limited to, biotypes resistant or tolerant to acetolactate synthase (ALS) inhibitors, photosystem II inhibitors, acetyl CoA carboxylase (ACCase) inhibitors, synthetic auxins, photosystem I inhibitors, 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase inhibitors, microtubule assembly inhibitors, lipid synthesis inhibitors, protoporphyrinogen oxidase (PPO) inhibitors, carotenoid biosynthesis inhibitors, very long chain fatty acid (VLCFA) inhibitors, phytoene desaturase (PDS) inhibitors, glutamine synthetase inhibitors, 4-hydroxyphenyl-pyruvate-dioxygenase (HPPD) inhibitors, mitosis inhibitors, cellulose biosynthesis inhibitors, herbicides with multiple modes-of-action such as quinclorac, and unclassified herbicides such as arylaminopropionic acids, difenzoquat, endothall, and organoarsenicals. Exemplary resistant or tolerant weeds include, but are not limited to, biotypes with resistance or tolerance to multiple herbicides, multiple chemical classes, and multiple herbicide modes-of-action. The described embodiments and following examples are for illustrative purposes. Prepared as described in Prepared as described in Methyl 4-amino-6-chloro-5-fluoro-3-iodopicolinate (7.05 g, 21.33 mmol, prepared as described in Prepared as described in Methyl 4-amino-6-bromo-3-chloro-5-fluoropicolinate (500 mg, 1.8 mmol), 1,1,1,2,2,2-hexamethyldistannane (580 mg, 1.8 mmol) and bis(triphenylphosphine)-palladium(II) chloride (120 mg, 0.18 mmol) were combined in dry dioxane (6 mL), sparged with a stream of nitrogen for 10 min and then heated to 80 °C for 2 h. The cooled mixture was stirred with ethyl acetate (25 mL) and saturated NaCl (25 mL) for 15 min. The organic phase was separated, filtered through diatomaceous earth, dried (Na2SO4) and evaporated. The residue was taken up in ethyl acetate (4 mL), stirred and treated in portions with hexane (15 mL). The milky white solution was decanted from any solids produced, filtered through glass wool and evaporated to give the title compound as an off-white solid (660 mg, 100%):1H NMR (400 MHz, CDCl3) δ4.63 (d To a solution of 1-bromo-4-chloro-2-nitrobenzene (932 mg, 3.95 mmol) in tetrahydrofuran (10 mL), vinylmagnesium bromide (0.7 M in tetrahydrofuran; 12 mmol) in tetrahydrofuran (15 mL) was added drop wise at -40 °C. After 1 h the reaction mixture was poured into saturated ammonium chloride (NH4Cl). The resulting organic layer was concentrated. The resulting residue was purified using a Teledyne ISCO chromatography system with a gradient eluent system of 2% ethyl acetate in hexane to yield the title compound (400 mg, 44%):1H NMR (300 MHz, CDCl3) δ 6.73 (t, 6-Bromo-7-fluoro-1 To a solution of 7-bromo-4-chloro-1 7-Fluoro-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1 7-Fluoro-1-(triisopropylsilyl)-1 Methyl 4-amino-3,6-dichloro-5-fluoropicolinate (0.650 g, 2.72 mmol), 7-fluoro-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1 The preparation method used in this example is referred to in Table 2 as "Coupling 1". To a 5 mL microwave vial was added methyl 4-amino-3,5,6-trichloropicolinate (0.232 g, 0.909 mmol), 2-(benzo[ The preparation method used in this example is referred to in Table 2 as "Coupling 4". Methyl 4-acetamido-3,6-dichloropicolinate (400 mg, 1.520 mmol),7-fluoro-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1 7-Fluoro-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(triisopropylsilyl)-1 The preparation method used in this example is referred to in Table 2 as "Coupling 8". 7-Fluoro-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-l-(triisopropylsilyl)-1 The preparation method used in this example is referred to in Table 2 as "Coupling 9". 7-Fluoro-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-l-(triisopropylsilyl)-1 To a reaction vessel containing methyl 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1 The preparation method used in this example is referred to in Table 2 as "Hydrolysis 1". In a 100 mL round bottom flask, methyl 4-amino-6-(benzo[ The preparation method used in this example is referred to in Table 2 as "Hydrolysis 2". Post-emergent Test II: Seeds or nutlets of the desired test plant species were planted in Sun Gro Metro-Mix® 360 planting mixture, which typically has a pH of 6.0 to 6.8 and an organic matter content of about 30 percent, in plastic pots with a surface area of 64 square centimeters (cm2). When required to ensure good germination and healthy plants, a fungicide treatment and/or other chemical or physical treatment was applied. The plants were grown for 7-21 d in a greenhouse with an approximate 15 h photoperiod which was maintained at about 23-29 °C during the day and 22-28 °C during the night. Nutrients and water were added on a regular basis and supplemental lighting was provided with overhead metal halide 1000-Watt lamps as necessary. The plants were employed for testing when they reached the first or second true leaf stage. A weighed amount, determined by the highest rate to be tested, of each test compound was placed in a 25 mL glass vial and was dissolved in 4 mL of a 97:3 v/v mixture of acetone and DMSO to obtain concentrated stock solutions. If the test compound did not dissolve readily, the mixture was warmed and/or sonicated. The concentrated stock solutions obtained were diluted with 20 mL of an aqueous mixture containing acetone, water, isopropyl alcohol, DMSO, Atplus 411F crop oil concentrate, and Triton® X-155 surfactant in a 48.5:39:10:1.5:1.0:0.02 v/v ratio to obtain spray solutions containing the highest application rates. Additional application rates were obtained by serial dilution of 12 mL of the high rate solution into a solution containing 2 mL of 97:3 v/v mixture of acetone and DMSO and 10 mL of an aqueous mixture containing acetone, water, isopropyl alcohol, DMSO, Atplus 411F crop oil concentrate, and Triton X-155 surfactant in a 48.5:39:10:1.5:1.0:0.02 v/v ratio to obtain 1/2X, 1/4X, 1/8X and 1/16X rates of the high rate. Compound requirements are based upon a 12 mL application volume at a rate of 187 liters per hectare (L/ha). Formulated compounds were applied to the plant material with an overhead Mandel track sprayer equipped with 8002E nozzles calibrated to deliver 187 L/ha over an application area of 0.503 square meters at a spray height of 18 inches (43 cm) above the average plant canopy height. Control plants were sprayed in the same manner with the solvent blank. The treated plants and control plants were placed in a greenhouse as described above and watered by subirrigation to prevent wash-off of the test compounds. After 14 d, the condition of the test plants as compared with that of the untreated plants was determined visually and scored on a scale of 0 to 100 percent where 0 corresponds to no injury and 100 corresponds to complete kill. Some of the compounds tested, application rates employed, plant species tested, and results are given in Tables 4 and 5. Post-emergent Test III. Seeds of the desired test plant species were planted in Sun Gro MetroMix® 306 planting mixture, which typically has a pH of 6.0 to 6.8 and an organic matter content of about 30 percent, in plastic pots with a surface area of 103.2 square centimeters (cm2). When required to ensure good germination and healthy plants, a fungicide treatment and/or other chemical or physical treatment was applied. The plants were grown for 7-36 days (d) in a greenhouse with an approximate 14 hour (h) photoperiod which was maintained at about 18 °C during the day and 17 °C during the night. Nutrients and water were added on a regular basis and supplemental lighting was provided with overhead metal halide 1000-Watt lamps as necessary. The plants were employed for testing when they reached the second or third true leaf stage. A weighed amount, determined by the highest rate to be tested, of each test compound was placed in a 25 mL glass vial and was dissolved in 4 mL of a 97:3 v/v mixture of acetone and DMSO to obtain concentrated stock solutions. If the test compound did not dissolve readily, the mixture was warmed and/or sonicated. The concentrated stock solutions obtained were diluted with 20 mL of an aqueous mixture containing acetone, water, isopropyl alcohol, DMSO, Agri-Dex crop oil concentrate, and X-77 surfactant in a 48:39:10:1.5:1.5:0.02 v/v ratio to obtain spray solutions containing the highest application rates. Additional application rates were obtained by serial dilution of 12 mL of the high rate solution into a solution containing 2 mL of 97:3 v/v mixture of acetone and DMSO and 10 mL of an aqueous mixture containing acetone, water, isopropyl alcohol, DMSO, Agri-Dex crop oil concentrate, and X-77 surfactant in a 48:39:10:1.5:1.5:0.02 v/v ratio to obtain 1/2X, 1/4X, 1/8X and 1/16X rates of the high rate. Compound requirements are based upon a 12 mL application volume at a rate of 187 liters per hectare (L/ha). Formulated compounds were applied to the plant material with an overhead Mandel track sprayer equipped with 8002E nozzles calibrated to deliver 187 L/ha over an application area of 0.503 square meters at a spray height of 18 inches (43 cm) above the average plant canopy height. Control plants were sprayed in the same manner with the solvent blank. The treated plants and control plants were placed in a greenhouse as described above and watered by subirrigation to prevent wash-off of the test compounds. After 21 d, the condition of the test plants as compared with that of the untreated plants was determined visually and scored on a scale of 0 to 100 percent where 0 corresponds to no injury and 100 corresponds to complete kill. By applying the well-accepted probit analysis as described by Some of the compounds tested, application rates employed, plant species tested, and results are given in Table 6. 4-Amino-6-(heterocyclic)picolinic acids, 6-amino-2-(heterocyclic)pyrimidine-4-carboxylates, and derivatives thereof are provided. Also provided are herbicidal compositions including these compounds, as well as methods of using thereof as herbicides. A compound of the Formula (I):
wherein
X is CF; R1 is OR1', wherein R1' is hydrogen, C1-C8 alkyl, or C7-C10 arylalkyl; R2 is chlorine, methoxy, or vinyl; R3 and R4 are hydrogen; and A is
or an N-oxide or agriculturally acceptable salt thereof. The compound of claim 1, wherein R2 is chlorine. The compound of claim 1 or 2, wherein the compound is 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1 The compound of claims 1 or 2, wherein the compound is methyl 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1 A herbicidal composition comprising a compound of any one of claims 1-4 and an agriculturally acceptable adjuvant or carrier. The herbicidal composition of claim 5, further comprising an additional pesticide. The herbicidal composition of claim 5, further comprising another herbicide. The herbicidal composition of any one of claims 5-7, further comprising a herbicidal safener. A method of controlling undesirable vegetation which comprises (a) contacting the undesirable vegetation or an area adjacent the vegetation or (b) pre-emergently contacting soil or water with a herbicidally effective amount of at least one compound of any of claims 1-4 or a herbicidal composition of any one of claims 5-8.Field
Background
Summary of the Invention
Detailed Description
DEFINITIONS
COMPOUNDS OF FORMULA (I)
EXEMPLARY COMPOUNDS
1.15 Me Cl CF A15 F 1.16 H Cl CF A15 F 1.17 H OMe CF A15 F 1.18 Me vinyl CF A15 F 1.19 H vinyl CF A15 F 1.20 Me OMe CF A15 F 1.23* Me Cl CH A15 F 1.24* H Cl CH A15 F *Comparative Example METHODS OF PREPARING THE COMPOUNDS
COMPOSITIONS AND METHODS
SYNTHESIS OF PRECURSORS
Preparation 1: Methyl 4-amino-3,6-dichloro-5-fluoropicolinate (Head B)
Preparation 2: Methyl 4-amino-6-chloro-5-fluoro-3-methoxypicolinate (Head F)
Preparation 3: Methyl 4-amino-6-chloro-5-fluoro-3-vinylpicolinate (Head G)
Preparation 4: Methyl 4-amino-6-bromo-3-chloro-5-fluoropicolinate (Head I)
Preparation 5: Methyl 4-amino-3-chloro-5-fluoro-6-(trimethylstannyl)picolinate (Head J)
Preparation 6: 7-Bromo-4-chloro-1
Preparation 7: 6-Bromo-7-fluoro-1
Preparation 8: 4-Chloro-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1
Preparation 9 (Precursor Example 2): 7-Fluoro-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1
Preparation 10 (Precursor Example 3): 7-Fluoro-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(triisopropylsilyl)-1
EXAMPLES OF SYNTHESIS OF COMPOUNDS OF FORMULA (I)
Example 1. Methyl 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1
Example 2: Methyl 4-amino-6-(benzo[
Example 3: Methyl 4-amino-3-chloro-6-(7-fluoro-1
Example 4: Methyl 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1
Example 5: Methyl 4-amino-5-fluoro-6-(7-fluoro-1
Example 6: Preparation of methyl 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1-(triisopropylsilyl)-1
Example 7: 4-Amino-3-chloro-5-fluoro-6-(7-fluoro-1
Example 8: 4-Amino-6-(benzo[
1.15 White Solid Coupling 4 Head B; 7-fluoro-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1 1.16 Tan Solid Hydrolysis 2 Compound 1.15 1.17 White Solid Hydrolysis 1 Compound 1.20 1.18 White Solid Coupling 9 Head G 1.19 Tan Solid Hydrolysis 1 Compound 1.18 1.20 White Solid Coupling 8 Head F 1.15 1H NMR (DMSO- 1.16 1H NMR (DMSO- 1.17 133-140 1H NMR (400 MHz, DMSO- 1.18 164-166 1H NMR (400 MHz, CDCl3) δ 8.45 (s, 1H), 7.49 (dd, 1.19 1H NMR (400 MHz, DMSO- 1.20 203-205 1H NMR (400 MHz, DMSO- A 95-100 B 85-94 C 75-84 D 60-74 E 45-59 F 30-44 G 0-29 Example C. Evaluation of Postemergent Herbicidal Activity
1.15 35 A A C A A A 70 A A A A A A 140 A A A A A A 1.16 35 B A A A A A 70 A A A A A A 140 A A A A A B 1.17 35 E A A A A A 70 E A A A A A 140 D A A A A A 1.19 35 A A A A A D 70 A A A A A C 140 A A A A A A 1.20 35 E C A A A A 70 D B A A A A 140 D A A A A A 1.23* 35 A A D A A D 70 A A C A A C 140 A A B A A B 1.24* 35 B A B B A D 70 A A E A A C 140 A A A A A B ABUTH: velvetleaf ( 1.15 35 G C D G E G 70 D B D G D F 140 E A B F D D 1.16 35 G C D F F G 70 D B C D D F 140 B A B D D D 1.17 35 E B C G D D 70 E B B G D C 140 E B B G D C 1.19 35 B B D F D D 70 C B C E C D 140 A A B D C B 1.20 35 G G E G G F 70 G D C G E E 140 G C B G D D 1.23* 35 G G G G G G 70 G G G G G G 140 G D D G F G 1.24* 35 G G G G G G 70 G G E G F G 140 G G D G E G ECHCG: barnyardgrass ( Example D. Evaluation of Postemergent Herbicidal Activity in Wheat and Barley
1.15 17.5 F F F D D A F A C A A E 35 E E D B B A E A C A A D 70 E D C A B A D A B A A C GR20 8 13 -- -- -- -- -- -- -- -- -- -- GR50 -- -- 30 9 6 0.1 45 0.06 7 4 0.28 22 GR80 -- -- 70 23 28 1 >140 1 30 8 2 63 GR90 -- -- 109 37 67 2 >140 2 95 12 6 111 1.16 17.5 G G D F C C B A D B A E 35 G G B E B A A A C A A D 70 F F A A A A A A B A A C GR20 44 41 -- -- -- -- -- -- -- -- -- -- GR50 -- -- 9 26 7 3 3 0.0004 10 5 0.0004 19 GR80 -- -- 25 34 20 10 9 0.0004 28 11 0.05 56 GR90 -- -- 43 40 39 19 16 0.0004 78 17 1 99 1.23 (comparative example) 17.5 G G G A F B G D F C B G 35 G G G A E A G A E C B E 70 G G G A D A G A C A A D GR20 >140 66 -- -- -- -- -- -- -- -- -- -- GR50 -- -- >140 1 35 3 >140 11 29 3 1 44 GR80 -- -- >140 4 110 6 >140 17 90 14 8 119 GR90 -- -- >140 7 >140 9 >140 22 >140 32 21 >140