PHARMACEUTICAL COMPOSITION COMPRISING A CURCUMIN DERIVATIVE
This application is a continuation application of U.S. application Ser. No. 12/571,303, filed Sep. 30, 2009, which is a continuation-in-part of International Application No. PCT/US2008/060569, which designated the United States and was filed on Apr. 17, 2008, published in English, which claims priority to and is a CIP of, both U.S. application Ser. No. 12/029,904, filed Feb. 12, 2008 and U.S. application Ser. No. 11/736,278, filed Apr. 17, 2007. The entire teachings of the above applications are incorporated herein by reference. In Alzheimer's Disease (AD), the abnormal cleavage of beta amyloid protein precursor from the intracellular membrane often produces a protein Aβ 1-42 which is incompletely removed by normal clearance processes. It has been reported that soluble beta amyloid oligomers are highly neurotoxic. Moreover, over time, this soluble protein assemblage is deposited as a beta amyloid protein Aβ plaque within brain tissue, leading to the local destruction of neurons. The Aβ plaque deposition is also believed to provoke an inflammatory response by microglia and macrophages, which recognize the plaque as a foreign body. These cells are believed to respond to the plaque deposition by releasing pro-inflammatory cytokines and reactive oxygen species (ROS). Although the inflammatory response may be provoked in an effort to clear the brain tissue of the detrimental plaque, it is now believed that this inflammation also injures local neuronal tissue, thereby exacerbating AD. Soluble oligomers of beta amyloid or “ADDLs” are a neurotoxic species implicated in AD pathogenesis. Yang, In the book “ It has been reported that 0.1-1.0 μM curcumin inhibits the in vitro formation of amyloid beta oligomers, and blocks the in vitro toxicity of Aβ1-42 oligomers in differentiated neuroblastoma cells. Yang, It appears that curcumin also benefically reduces deposits of beta amyloid. In middle aged female Sprague-Dawley rats, 500 ppm dietary curcumin reduced amyloid beta deposits induced by beta amyloid infusion by about 80%. Frautschy, Because curcumin is able to effectively act against many targets of AD, it has been hypothesized that the 4.4 fold lower incidence of AD in the Indian population between the ages of 70 and 79 is due to the high dietary consumption of curcumin. Lim, Because the above-mentioned in vivo effects of curcumin upon AD symptoms were achieved by providing curcumin in the diet, it appears that curcumin is effectively able to cross the blood brain barrier. As curcumin is highly lipophilic, it is expected to easily cross the blood brain barrier. Frautschy, Despite the beneficial effects of curcumin, the present inventors have noted that there are many bioavailability problems associated with the oral delivery of curcumin. First, because curcumin does not easily penetrate the human digestive tract and is subject to intestine-based metabolism and rejection, less than 1% of oral curcumin enters the plasma. Second, the small amount of curcumin that enters the bloodstream is rapidly metabolized by the liver and kidney. Therefore, although curcumin is highly lipophilic (and so easily crosses the blood brain barrier), only very small amounts of orally administered curcumin are registered in the serum and in the brain tissue. One study found that ingesting up to 3.6 g of curcumin per day produced a plasma curcumin level in the range of only about 10 nM. Sharma, It appears that, in the brain tissue concentration range about 1 uM, some but not all of the beneficial therapeutic qualities of curcumin are realized. For example, it has been reported that 0.1-1.0 μM curcumin inhibits the in vitro formation of amyloid beta oligomers, and blocks the in vitro toxicity of Aβ1-42 oligomers in differentiated neuroblastoma cells. Yang, In some embodiments, the present invention relates to the intranasal administration of a formulation comprising an effective amount of curcumin. In particular, in some embodiemts, the present invention relates to the intranasal administration of a formulation comprising an effective amount of curcumin to the olfactory mucosa across the cribriform plate and into the brain in order to treat a neurodegenerative disease, such as AD. An objective of some embodiments of the present invention is to improve curcumin brain bioavailability by administering curcumin via the nasal route in order to deliver curcumin through the olfactory mucosa and to the brain, and to reduce the dose required for its beneficial effect. As curcumin is highly lipophilic, it will easily pass through the olfactory mucosa located high in the nasal cavity, and enter olfactory neurons and thereby the brain. This mode of delivery will also pass less curcumin into the circulation, and so will result in lower plasma concentrations of metabolites of curcumin, and, therefore, fewer side effects. Intranasal delivery will improve drug bioavailability to the brain by passive diffusion through the olfactory mucosa, thereby avoiding extensive hepatic first-pass metabolism which significantly lowers the plasma and brain concentrations of curcumin administered orally. Therefore, small doses of curcumin can be administered which will result in fewer side effects, and the drug will be more tolerable and more effective. Lipophilic drugs such as curcumin generally achieve higher brain levels after intranasal administration than after oral or intravenous administration. Therefore, the nasal route of administration of curcumin may help to enhance the effectiveness of curcumin in the brain (the site of action). Additionally, as curcumin is heavily metabolized by the liver, administration by the nasal route may help to reduce drug interactions with other drugs that are also extensively metabolized by the liver. Lastly, because intranasally administered curcumin will passively diffuse through the olfactory mucosa and into the olfactory bulb, which is connected to the hippocampus and amygdala through the limbic system, it is believed that intranasal administration of curcumin will preferentially deposit in the hippocampus and amygdala portions of the brain. These regions are believed to be origination sites of Alzheimer's Disease. Therefore, in accordance with the present invention, there is provided a method for administering curcumin to a brain of a mammal, comprising: a) applying a pharmaceutical composition comprising curcumin to an upper third of a nasal cavity of the mammal, wherein the curcumin is absorbed through an olfactory mucosa and transported to the brain of the mammal. In one embodiment, the present invention is directed to a compound represented by the following structural formula: or a pharmaceutically acceptable salt thereof, wherein: represents a single bond or a double bond; each R1, R2 and R3 are independently selected from the group consisting of —OH, —O(C1-C6)alkyl, halo, —C(Y)3 and —OP; Y is a halogen; P is selected from the group consisting of —C(O)—(C1-C6)alkylene-N(R5)(R6), —C(O)—N(R7)—(C1-C6)alkylene-COOH, —C(O)—(C1-C6)alkylene-heterocyclyl and —C(O)—(C1-C6)alkylene-aryl; each R4, R5 and R6 are independently selected from —H and (C1-C6)alkyl; R7 is —H or (C1-C4)alkyl; X− is an anion; n is an integer from 1 to 4; m is an integer from 1 to 5; and p is an integer from 1 to 5, wherein each alkyl is optionally substituted with one or more substituents independently selected from —OH, —O—(C1-C4)alkyl, —COOH, —O—C(O)—(C1-C4)alkyl, —N(R7)2 and In another embodiment, the present invention is directed to a pharmaceutical composition comprising a pharmaceutically acceptable carrier or diluent and a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof. The pharmaceutical composition is used in therapy, such as treating Alzheimer's disease, cancer, diabetes, arthritis or sclerosis in a subject. Another embodiment of the present invention is a method of treating a subject with a disorder selected from Alzheimer's disease, cancer, diabetes, arthritis and sclerosis comprising administering to the subject an effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof. Another embodiment of the present invention is the use of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for treating Alzheimer's disease, cancer, diabetes, arthritis or sclerosis in a subject. Another embodiment of the present invention is the use of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof in therapy, such as treating Alzheimer's disease, cancer, diabetes, arthritis or sclerosis in a subject. The present invention is directed to a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof. Values and alternative values for the variables in Structural Formula (I) and for each of the embodiments described herein are defined as the following: represents a single bond or a double bond. In one embodiment, represents a double bond. Each R1, R2 and R3 are independently selected from the group consisting of —OH, —O(C1-C6)alkyl, halo, —C(Y)3 and —OP. In one embodiment, each R1, R2 and R3 are independently selected from the group consisting of —OH, —O(C1-C6)alkyl and —OP. In another embodiment, each R1, R2 and R3 are independently selected from the group consisting of —OH, —OCH3 and —OP. In a further embodiment, each R1, R2 and R3 are independently —OH or —OCH3. Y is a halogen (—F, —Cl, —Br or —I). In one embodiment, Y is —F, —Cl or —Br. P is a hydrolyzable group. In one embodiment, P is selected from the group consisting of —C(O)—(C1-C6)alkylene-N(R5)(R6), —C(O)—N(R7)—(C1-C6)alkylene-COOH, —C(O)—(C1-C6)alkylene-heterocyclyl and —C(O)—(C1-C6)alkylene-aryl. In another embodiment, P is selected from the group consisting of —C(O)—(CH2)1-3—N(R5)(R6), —C(O)—NH—(CH2)1-3—COOH, —C(O)—(CH2)-heterocyclyl and —C(O)—(CH2)-phenyl. In a further embodiment, P is selected from the group consisting of the R groups depicted in Each R4, R5 and R6 are independently selected from —H and (C1-C6)alkyl. R7 is —H or (C1-C4)alkyl. X− is an anion. In one embodiment, X− is Cl−. n is an integer from 1 to 4. In one embodiment, n is 1. In another embodiment, n is 2. In another embodiment, n is 3. m is an integer from 1 to 5. In one embodiment, m is an integer from 1 to 3. In one embodiment, m is 1. In another embodiment, m is 2. In yet another embodiment, m is 3. p is an integer from 1 to 5. In one embodiment, p is an integer from 1 to 3. In one embodiment, p is 1. In another embodiment, p is 2. In yet another embodiment, p is 3. Each alkyl described above is optionally substituted with one or more substituents independently selected from —OH, —O—(C1-C4)alkyl, —COOH, —O—C(O)—(C1-C4)alkyl, —N(R7)2 and In one embodiment, the substituents are independently selected from —OH, —OMe and —COOH. Each aryl or heterocyclyl described above is independently substituted with one or more substituents independently selected from halo, (C1-C4)alkyl, —OH, —O—(C1-C4)alkyl, —COOH, —O—C(O)—(C1-C4)alkyl, —N(R7)2 and wherein each alkyl is optionally substituted with halo, —OH, —O—(C1-C4)alkyl, —COOH, —N(R7)2 and In one embodiment, each aryl or heterocyclyl is independently substituted with one or more substituents independently selected from (C1-C4)alkyl, —N(R7)2 and wherein each alkyl is optionally substituted with —N(R7)2 and In a first alternative embodiment, the compound of the present invention is represented by Structural Formula (II): or a pharmaceutically acceptable salt thereof. Values and specific values for the variables are as described above for Structural Formula (I). In a second alternative embodiment, for the compounds represented by Structural Formula (II), R2 and R3 are the same; and m and p are the same. In a third alternative embodiment, for compounds represented by Structural Formula (II), R1 is —OH or —O—(C1-C6)alkyl and the remainder of the variables are as described above in the first or second alternative embodiment. In a fourth alternative embodiment, P is selected from the group consisting of —C(O)—(CH2)1-3—N(R5)(R6), —C(O)—NH—(CH2)1-3—COOH, —C(O)—(CH2)-heterocyclyl and —C(O)—(CH2)-phenyl. The remainder of the variables are as described above in the third alternative embodiment. In a fifth alternative embodiment, the compounds of the present invention are represented by a structural formula selected from the following structural formulas: or a pharmaceutically acceptable salt thereof. Values and specific values for variables in Structural Formulas (III)-(VI) are as described above in the fourth alternative embodiment. In one embodiment, R1 is —OH or —OMe and the remainder of the variables are as described above in the fifth alternative embodiment. In another embodiment, m and p are an integer from 1 to 3 and the remainder of the variables are as described above in the fifth alternative embodiment. In another embodiment, R1 is —OH or —OMe; m and p are an integer from 1 to 3 and the remainder of the variables are as described above in the fifth alternative embodiment. In a sixth alternative embodiment, the compounds of the present invention are represented by a structural formula selected from the following structural formulas: or a pharmaceutically acceptable salt thereof. Values and specific values for the variables in Structural Formulas (IIIa)-(IIIc), (IVa)-(IVc), (Va)-(Vc) and (VIa)-(VIc) are as described above in the fifth alternative embodiment. Exemplary compounds represented by Structural Formula (I) are shown below: In one embodiment, each R2 and R3 are independently —OH or —OMe and the remainder of the variables are as described above in the sixth alternative embodiment. As used herein, “alkyl” means a saturated aliphatic branched or straight-chain monovalent hydrocarbon radical having the specified number of carbon atoms. Thus, “(C1-C6)alkyl” means a radical having from 1-6 carbon atoms in a linear or branched arrangement. “(C1-C6)alkyl” includes methyl, ethyl, propyl, butyl, pentyl and hexyl. “Alkylene” means a saturated aliphatic straight-chain divalent hydrocarbon radical having the specified number of carbon atoms. Thus, “(C1-C6)alkylene” means a divalent saturated aliphatic radical having from 1-6 carbon atoms in a linear arrangement, e.g., —[(CH2)n], where n is an integer from 1 to 6. “(C1-C6)alkylene” includes methylene, ethylene, propylene, butylene, pentylene and hexylene. “Aryl” or “aromatic” means an aromatic monocyclic or polycyclic (e.g., bicyclic or tricyclic) carbocyclic ring system. In one embodiment, “aryl” is a 6-12 membered monocylic or bicyclic system. Aryl systems include, but not limited to, phenyl, naphthalenyl, fluorenyl, indenyl, azulenyl, and anthracenyl. In one embodiment, “aryl” is phenyl optionally substituted with substituents described above. “Heterocyclyl” means a cyclic 4-12 membered saturated or unsaturated aliphatic ring containing 1, 2, 3, 4 or 5 heteroatoms independently selected from N, O or S or a heteroaromatic ring. When one heteroatom is S, it can be optionally mono- or di-oxygenated (i.e., —S(O)— or —S(O)2—). The heterocyclyl can be monocyclic, fused bicyclic, bridged bicyclic, spiro bicyclic or polycyclic. “Saturated heterocyclyl” means an aliphatic heterocyclyl group without any degree of unsaturation (i.e., no double bond or triple bond). It can be monocyclic, fused bicyclic, bridged bicyclic, spiro bicyclic or polycyclic. Examples of monocyclic saturated heterocyclyls include, but are not limited to, azetidine, pyrrolidine, piperidine, piperazine, azepane, hexahydropyrimidine, tetrahydrofuran, tetrahydropyran, morpholine, thiomorpholine, thiomorpholine 1,1-dioxide, tetrahydro-2H-1,2-thiazine, tetrahydro-2H-1,2-thiazine 1,1-dioxide, isothiazolidine, isothiazolidine 1,1-dioxide. Examples of heteroaromatic rings include, but are not limited to, furan, thiophene, pyrrole, imidazole, pyrazole, oxazole, isoxazole, thiazole, isothiazole, 1,2,3-triazole, 1,2,4-triazole, 1,3,4-oxadiazole, 1,2,5-thiadiazole, 1,2,5-thiadiazole 1-oxide, 1,2,5-thiadiazole 1,1-dioxide, 1,3,4-thiadiazole, pyridine, pyridine-N-oxide, pyrazine, pyrimidine, pyridazine, 1,2,4-triazine, 1,3,5-triazine, and tetrazole. A fused bicyclic heterocyclyl has two rings which have two adjacent ring atoms in common. The first ring is a monocyclic heterocyclyl and the second ring is a monocyclic carbocycle (such as a cycloalkyl or phenyl) or a monocyclic heterocyclyl. For example, the second ring is a (C3-C6)cycloalkyl, such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. Alternatively, the second ring is phenyl. Examples of fused bicyclic heterocyclyls include, but are not limited to, octahydrocyclopenta[c]pyrrolyl, indoline, isoindoline, 2,3-dihydro-1H-benzo[d]imidazole, 2,3-dihydrobenzo[d]oxazole, 2,3-dihydrobenzo[d]thiazole, octahydrobenzo[d]oxazole, octahydro-1H-benzo[d]imidazole, octahydrobenzo[d]thiazole, octahydrocyclopenta[c]pyrrole, 3-azabicyclo[3.1.0]hexane, 3-azabicyclo[3.2.0]heptane, indolizine, indole, isoindole, indazole, benzimidazole, benzthiazole, purine, quinoline, isoquinoline, cinnoline, phthalazine, quinazoline, quinoxaline, 1,8-naphthyridine, and pteridine. A spiro bicyclic heterocyclyl has two rings which have only one ring atom in common. The first ring is a monocyclic heterocyclyl and the second ring is a monocyclic carbocycle (such as a cycloalkyl or phenyl) or a monocyclic heterocyclyl. For example, the second ring is a (C3-C6)cycloalkyl. Alternatively, the second ring is phenyl. Examples of spiro bicyclic heterocyclyl include, but are not limited to, azaspiro[4.4]nonane, 7-azaspiro[4.4]nonane, azasprio[4.5]decane, 8-azaspiro[4.5]decane, azaspiro[5.5]undecane, 3-azaspiro[5.5]undecane and 3,9-diazaspiro[5.5]undecane. A bridged bicyclic heterocyclyl has two rings which have three or more adjacent ring atoms in common. The first ring is a monocyclic heterocyclyl and the other ring is a monocyclic carbocycle (such as a cycloalkyl or phenyl) or a monocyclic heterocyclyl. Examples of bridged bicyclic heterocyclyls include, but are not limited to, azabicyclo[3.3.1]nonane, 3-azabicyclo[3.3.1]nonane, azabicyclo[3.2.1]octane, 3-azabicyclo[3.2.1]octane, 6-azabicyclo[3.2.1]octane and azabicyclo[2.2.2]octane, 2-azabicyclo[2.2.2]octane. Polycyclic heterocyclyls have more than two rings, one of which is a heterocyclyl (e.g., three rings resulting in a tricyclic ring system) and adjacent rings having at least one ring atom in common. Polycyclic ring systems include fused, bridged and spiro ring systems. A fused polycyclic ring system has at least two rings that have two adjacent ring atoms in common. A spiro polycyclic ring system has at least two rings that have only one ring atom in common. A bridged polycyclic ring system has at least two rings that have three or more adjacent ring atoms in common. “Carbocycle” means a cyclic group with only ring carbon atoms. “Halogen” used herein refers to fluorine, chlorine, bromine, or iodine. “Halo” used herein refers to fluoro, chloro, bromo or iodo. “Anion” used herein refers to a negatively charged ion. An anion can be an inorganic anion or an organic anion. Anion can include, but is not limited to, halides (F−, Cl−, Br− or I−), NO3−, PO43−, HPO42−, H2PO4−, SO42−, acetate, oxalate, tetrakis(1-imidazolyl)borate, BF4−, CF3SO3−, PF6−, BPh4−, B(3,5-(CF3)2C6H3))4−, carbonate, benzenesulfonate, benzoate, bicarbonate, bitartrate, calcium edetate, camsylate, citrate, edetate, edisylate, estolate, esylate, fumarate, glyceptate, gluconate, glutamate, glycollylarsanilate, hexylresorcinate, hydroxynaphthoate, isethionate, lactate, lactobionate, malate, maleate, mandelate, mesylate, methylsulfate, mucate, napsylate, nitrate, pamoate, pantothenate, polygalacturonate, salicylate, stearate, subacetate, succinate, tannate, tartrate, teoclate, tosylate, and triethiodide. As used herein, the term “hydrolyzable group” refers to a moiety that, when present in a molecule of the invention, yields a phenol or salt thereof upon hydrolysis. Hydrolysis can occur, for example, spontaneously under acidic or basic conditions in a physiological environment (e.g., blood, metabolically active tissues such as, for example, liver, kidney, lung, brain), or can be catalyzed by an enzyme(s), (e.g., esterase, peptidases, hydrolases, oxidases, dehydrogenases, lyases or ligases). A hydrolyzable group can confer upon a compound of the invention advantageous properties in vivo, such as improved water solubility, improved circulating half-life in the blood, improved uptake, improved duration of action, or improved onset of action. In one embodiment, the hydrolyzable group does not destroy the biological activity of the compound. In an alternative embodiment, a compound with a hydrolyzable group can be biologically inactive, but can be converted in vivo to a biologically active compound. Another embodiment of the present invention is a pharmaceutical composition comprising one or more pharmaceutically acceptable carriers and/or diluents and a compound disclosed herein or a pharmaceutically acceptable salt thereof. “Pharmaceutically acceptable carrier” and “pharmaceutically acceptable diluent” means non-therapeutic components that are of sufficient purity and quality for use in the formulation of a composition of the invention that, when appropriately administered to an animal or human, typically do not produce an adverse reaction, and that are used as a vehicle for a drug substance (i.e., a compound of the present invention). Pharmaceutically acceptable salts of the compounds of the present invention are also included. For example, an acid salt of a compound of the present invention containing an amine or other basic group can be obtained by reacting the compound with a suitable organic or inorganic acid, resulting in pharmaceutically acceptable anionic salt forms. Examples of anionic salts include the acetate, benzenesulfonate, benzoate, bicarbonate, bitartrate, bromide, calcium edetate, camsylate, carbonate, chloride, citrate, dihydrochloride, edetate, edisylate, estolate, esylate, fumarate, glyceptate, gluconate, glutamate, glycollylarsanilate, hexylresorcinate, hydrobromide, hydrochloride, hydroxynaphthoate, iodide, isethionate, lactate, lactobionate, malate, maleate, mandelate, mesylate, methylsulfate, mucate, napsylate, nitrate, pamoate, pantothenate, phosphate/diphosphate, polygalacturonate, salicylate, stearate, subacetate, succinate, sulfate, tannate, tartrate, teoclate, tosylate, and triethiodide salts. Salts of the compounds of the present invention containing a carboxylic acid or other acidic functional group can be prepared by reacting with a suitable base. Such a pharmaceutically acceptable salt may be made with a base which affords a pharmaceutically acceptable cation, which includes alkali metal salts (especially sodium and potassium), alkaline earth metal salts (especially calcium and magnesium), aluminum salts and ammonium salts, as well as salts made from physiologically acceptable organic bases such as trimethylamine, triethylamine, morpholine, pyridine, piperidine, picoline, dicyclohexylamine, N,N′-dibenzylethylenediamine, 2-hydroxyethylamine, bis-(2-hydroxyethyl)amine, tri-(2-hydroxyethyl)amine, procaine, dibenzylpiperidine, dehydroabietylamine, N,N′-bisdehydroabietylamine, glucamine, N-methylglucamine, collidine, quinine, quinoline, and basic amino acids such as lysine and arginine. The invention also includes various isomers and mixtures thereof. Certain of the compounds of the present invention may exist in various stereoisomeric forms. Stereoisomers are compounds which differ only in their spatial arrangement. Enantiomers are pairs of stereoisomers whose mirror images are not superimposable, most commonly because they contain an asymmetrically substituted carbon atom that acts as a chiral center. “Enantiomer” means one of a pair of molecules that are mirror images of each other and are not superimposable. Diastereomers are stereoisomers that are not related as mirror images, most commonly because they contain two or more asymmetrically substituted carbon atoms. “R” and “S” represent the configuration of substituents around one or more chiral carbon atoms. When a chiral center is not defined as R or S, either a pure enantiomer or a mixture of both configurations is present. “Racemate” or “racemic mixture” means a compound of equimolar quantities of two enantiomers, wherein such mixtures exhibit no optical activity; i.e., they do not rotate the plane of polarized light. The compounds of the invention may be prepared as individual isomers by either isomer-specific synthesis or resolved from an isomeric mixture. Conventional resolution techniques include forming the salt of a free base of each isomer of an isomeric pair using an optically active acid (followed by fractional crystallization and regeneration of the free base), forming the salt of the acid form of each isomer of an isomeric pair using an optically active amine (followed by fractional crystallization and regeneration of the free acid), forming an ester or amide of each of the isomers of an isomeric pair using an optically pure acid, amine or alcohol (followed by chromatographic separation and removal of the chiral auxiliary), or resolving an isomeric mixture of either a starting material or a final product using various well known chromatographic methods. When the stereochemistry of a disclosed compound is named or depicted by structure, the named or depicted stereoisomer is at least 60%, 70%, 80%, 90%, 99% or 99.9% by weight pure relative to the other stereoisomers. When a single enantiomer is named or depicted by structure, the depicted or named enantiomer is at least 60%, 70%, 80%, 90%, 99% or 99.9% by weight optically pure. Percent optical purity by weight is the ratio of the weight of the enantiomer that is present divided by the combined weight of the enantiomer that is present and the weight of its optical isomer. The compounds described herein are useful for treating and/or preventing diseases and disorders including, but not limited to, Alzheimer's disease, cancer, arthritis and sclerosis. For example, compounds represented by Structural Formula (I) (e.g., compounds represented by Structural Formula (I) wherein at least one substitutent selected from the group consisting of R1, R2 and R3 is —OCH3, are useful for treating and/or preventing disorders such as cancer. Accordingly, the present invention also provides a method of treating or preventing a disorder selected from Alzheimer's disease, cancer, arthritis and sclerosis in a subject comprising administering to the subject an effective amount of a compound of the present invention or a pharmaceutically acceptable salt thereof. In one embodiment, the disorder is Alzheimer's disease. In another embodiment, the disorder is cancer. In another embodiment, the disorder is arthritis. In yet another embodiment, the disorder is sclerosis. Cancers that can be treated by the methods of the present invention include, but are not limited to, human sarcomas and carcinomas, e.g., fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilms' tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, meningioma, melanoma, neuroblastoma, retinoblastoma; leukemias, e.g., acute lymphocytic leukemia and acute myelocytic leukemia (myeloblastic, promyelocytic, myelomonocytic, monocytic and erythroleukemia); chronic leukemia (chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia); and polycythemia vera, lymphoma (Hodgkin's disease and non-Hodgkin's disease), multiple myeloma, Waldenstrobm's macroglobulinemia, and heavy chain disease. As used herein, the term “subject” means a mammal in need of treatment or prevention, e.g., companion animals (e.g., dogs, cats, and the like), farm animals (e.g., cows, pigs, horses, sheep, goats and the like) and laboratory animals (e.g., rats, mice, guinea pigs and the like). Typically, the subject is a human in need of the specified treatment. As used herein, the term “treating” or ‘treatment” refers to obtaining desired pharmacological and/or physiological effect. The effect can include achieving, partially or substantially, one or more of the following results: partially or totally reducing the extent of the disease, disorder or syndrome; ameliorating or improving a clinical symptom or indicator associated with the disorder; delaying, inhibiting or decreasing the likelihood of the progression of the disease, disorder or syndrome. As used herein, “preventing” or “prevention” refers to reducing the likelihood of the onset or development of disease, disorder or syndrome. “Effective amount” means that amount of active compound agent that elicits the desired biological response in a subject. In one embodiment, the effective amount of a compound of the invention is from about 0.01 mg/kg/day to about 1000 mg/kg/day, from about 0.1 mg/kg/day to about 100 mg/kg/day, or from about 0.5 mg/kg/day to about 50 mg/kg/day. The invention further includes the process for making the composition comprising mixing one or more of the present compounds and an optional pharmaceutically acceptable carrier; and includes those compositions resulting from such a process, which process includes conventional pharmaceutical techniques. The compositions of the invention include ocular, oral, nasal, transdermal, topical with or without occlusion, intravenous (both bolus and infusion), inhalable, and injection (intraperitoneally, subcutaneously, intramuscularly, intratumorally, or parenterally) formulations. The composition may be in a dosage unit such as a tablet, pill, capsule, powder, granule, liposome, ion exchange resin, sterile ocular solution, or ocular delivery device (such as a contact lens and the like facilitating immediate release, timed release, or sustained release), parenteral solution or suspension, metered aerosol or liquid spray, drop, ampoule, auto-injector device, or suppository; for administration ocularly, orally, intranasally, sublingually, parenterally, or rectally, or by inhalation or insufflation. Compositions of the invention suitable for oral administration include solid forms such as pills, tablets, caplets, capsules (each including immediate release, timed release, and sustained release formulations), granules and powders; and, liquid forms such as solutions, syrups, elixirs, emulsions, and suspensions. Forms useful for ocular administration include sterile solutions or ocular delivery devices. Forms useful for parenteral administration include sterile solutions, emulsions, and suspensions. The compositions of the invention may be administered in a form suitable for once-weekly or once-monthly administration. For example, an insoluble salt of the active compound may be adapted to provide a depot preparation for intramuscular injection (e.g., a decanoate salt) or to provide a solution for ophthalmic administration. The dosage form containing the composition of the invention contains an effective amount of the active ingredient necessary to provide a therapeutic effect. The composition may contain from about 5,000 mg to about 0.5 mg (preferably, from about 1,000 mg to about 0.5 mg) of a compound of the invention or salt form thereof and may be constituted into any form suitable for the selected mode of administration. The composition may be administered about 1 to about 5 times per day. Daily administration or post-periodic dosing may be employed. For oral administration, the composition is preferably in the form of a tablet or capsule containing, e.g., 500 to 0.5 milligrams of the active compound. Dosages will vary depending on factors associated with the particular patient being treated (e.g., age, weight, diet, and time of administration), the severity of the condition being treated, the compound being employed, the mode of administration, and the strength of the preparation. The oral composition is preferably formulated as a homogeneous composition, wherein the active ingredient is dispersed evenly throughout the mixture, which may be readily subdivided into dosage units containing equal amounts of a compound of the invention. Preferably, the compositions are prepared by mixing a compound of the invention (or pharmaceutically acceptable salt thereof) with one or more optionally present pharmaceutical carriers (such as a starch, sugar, diluent, granulating agent, lubricant, glidant, binding agent, and disintegrating agent), one or more optionally present inert pharmaceutical excipients (such as water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents, and syrup), one or more optionally present conventional tableting ingredients (such as corn starch, lactose, sucrose, sorbitol, talc, stearic acid, magnesium stearate, dicalcium phosphate, and any of a variety of gums), and an optional diluent (such as water). Binder agents include starch, gelatin, natural sugars (e.g., glucose and beta-lactose), corn sweeteners and natural and synthetic gums (e.g., acacia and tragacanth). Disintegrating agents include starch, methyl cellulose, agar, and bentonite. Tablets and capsules represent an advantageous oral dosage unit form. Tablets may be sugarcoated or filmcoated using standard techniques. Tablets may also be coated or otherwise compounded to provide a prolonged, control-release therapeutic effect. The dosage form may comprise an inner dosage and an outer dosage component, wherein the outer component is in the form of an envelope over the inner component. The two components may further be separated by a layer which resists disintegration in the stomach (such as an enteric layer) and permits the inner component to pass intact into the duodenum or a layer which delays or sustains release. A variety of enteric and non-enteric layer or coating materials (such as polymeric acids, shellacs, acetyl alcohol, and cellulose acetate or combinations thereof) may be used. Compounds of the invention may also be administered via a slow release composition; wherein the composition includes a compound of the invention and a biodegradable slow release carrier (e.g., a polymeric carrier) or a pharmaceutically acceptable non-biodegradable slow release carrier (e.g., an ion exchange carrier). Biodegradable and non-biodegradable slow release carriers are well known in the art. Biodegradable carriers are used to form particles or matrices which retain an active agent(s) and which slowly degrade/dissolve in a suitable environment (e.g., aqueous, acidic, basic and the like) to release the agent. Such particles degrade/dissolve in body fluids to release the active compound(s) therein. The particles are preferably nanoparticles or nanoemulsions (e.g., in the range of about 1 to 500 nm in diameter, preferably about 50-200 nm in diameter, and most preferably about 100 nm in diameter). In a process for preparing a slow release composition, a slow release carrier and a compound of the invention are first dissolved or dispersed in an organic solvent. The resulting mixture is added into an aqueous solution containing an optional surface-active agent(s) to produce an emulsion. The organic solvent is then evaporated from the emulsion to provide a colloidal suspension of particles containing the slow release carrier and the compound of the invention. The compounds of the invention may be administered orally. For oral administration, the pharmaceutical compositions may be in the form of, for example, a pill (e.g., a tablet, a capsule), suspension or liquid. Preferably, the compounds of the invention are formulated for oral administration as a pill. For example, the compounds disclosed herein may be incorporated for administration orally or by injection in a liquid form such as aqueous solutions, suitably flavored syrups, aqueous or oil suspensions, flavored emulsions with edible oils such as cottonseed oil, sesame oil, coconut oil or peanut oil and the like, or in elixirs or similar pharmaceutical vehicles. Suitable dispersing or suspending agents for aqueous suspensions, include synthetic and natural gums such as tragacanth, acacia, alginate, dextran, sodium carboxymethylcellulose, methylcellulose, polyvinyl-pyrrolidone, and gelatin. The liquid forms in suitably flavored suspending or dispersing agents may also include synthetic and natural gums. For parenteral administration, sterile suspensions and solutions are desired. Isotonic preparations, which generally contain suitable preservatives, are employed when intravenous administration is desired. The compounds may be administered parenterally via injection. A parenteral formulation may consist of the active ingredient dissolved in or mixed with an appropriate inert liquid carrier. Acceptable liquid carriers usually comprise aqueous solvents and other optional ingredients for aiding solubility or preservation. Such aqueous solvents include sterile water, Ringer's solution, or an isotonic aqueous saline solution. Other optional ingredients include vegetable oils (such as peanut oil, cottonseed oil, and sesame oil), and organic solvents (such as solketal, glycerol, and formyl). A sterile, non-volatile oil may be employed as a solvent or suspending agent. The parenteral formulation is prepared by dissolving or suspending the active ingredient in the liquid carrier whereby the final dosage unit contains from 0.005 to 10% by weight of the active ingredient. Other additives include preservatives, isotonizers, solubilizers, stabilizers, and pain-soothing agents. Injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents and the like may be employed. Compounds of the invention may be administered intranasally using a suitable intranasal vehicle. In another embodiment, the compounds of this invention may be administered directly to the lungs by inhalation. Compounds of the invention may also be administered topically or enhanced by using a suitable topical transdermal vehicle or a transdermal patch. For ocular administration, the composition is preferably in the form of an ophthalmic composition. The ophthalmic compositions are preferably formulated as eye-drop formulations and filled in appropriate containers to facilitate administration to the eye, for example a dropper fitted with a suitable pipette. Preferably, the compositions are sterile and aqueous based, using purified water. In addition to the compound of the invention, an ophthalmic composition may contain one or more of: a) a surfactant such as a polyoxyethylene fatty acid ester; b) a thickening agents such as cellulose, cellulose derivatives, carboxyvinyl polymers, polyvinyl polymers, and polyvinylpyrrolidones, typically at a concentration n the range of about 0.05 to about 5.0% (wt/vol); c) (as an alternative to or in addition to storing the composition in a container containing nitrogen and optionally including a free oxygen absorber such as Fe), an anti-oxidant such as butylated hydroxyanisol, ascorbic acid, sodium thiosulfate, or butylated hydroxytoluene at a concentration of about 0.00005 to about 0.1% (wt/vol); d) ethanol at a concentration of about 0.01 to 0.5% (wt/vol); and e) other excipients such as an isotonic agent, buffer, preservative, and/or pH-controlling agent. The pH of the ophthalmic composition is desirably within the range of 4 to 8. In certain embodiments, the compositions of this invention include one or more additional agents for example, therapeutic agents. An additional therapeutic agent can inlcude an agent that is capable of treating, preventing or reducing the symptoms of a disease or disorder disclosed herein. Alternatively, an additional therapeutic agent can include an agent of benefit to a subject when administered in combination with a compound of this invention. The present invention also includes methods of making the compounds described herein. In certain embodiments, compounds of present invention can be synthesized according to general schemes shown below as well as synthetic schemes shown in As used herein, curcumin is also known as diferuloylmethane or (E,E)-1,7-bis (4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5,-dione. Curcumin may be derived from a natural source, the perennial herb In some embodiments, curcumin or compounds of Structural Formula (I) is intranasally administered so that it produces a brain tissue concentration of at least 0.1 μM, more preferably at least 1 μM, more preferably at least 5 μM, more preferably at least 20 μM. Without wishing to be tied to a theory, it is believed that a daily intranasal dose of at least about 0.2 mg/kg, would be sufficient to produce the above-cited brain tissue concentrations. More preferably, the dose is at least 1 mg/kg, more preferably at least 10 mg/kg. It is believed that applying a pharmaceutical composition comprising curcumin or compounds of Structural Formula (I) at the above cited levels to an upper third of a nasal cavity of the mammal, wherein the curcumin or compounds of Structural Formula (I) is absorbed through an olfactory mucosa and transported to the brain of the mammal, will result in attainment of these higher levels of curcumin brain tissue. It is known that the more lipophlilic a molecule, the greater its propensity to cross the olfactory mucosa and the blood brain barrier. In this respect, it has been reported that the octanohwater partition coefficient of curcumin (logio PC) is 3.29. Therefore, curcumin is very lipophilic, and so should easily cross the olfactory mucosa and the blood brain barrier by passive diffusion. It is further known that the blood brain barrier contains the p-glycoprotein (P-gp) transporter which effluxes a number of important molecules such as drugs. Accordingly, the behaviour of these pumps towards curcumin is pertinent to the question of whether curcumin will cross the olfactory mucosa and the blood brain barrier. Since it has been reported that curcumin lowers the expression of P-gp (Holland, Because the octanol:water partition coefficient of curcumin (logio PC) is 3.29 and curcumin has been shown to antagonize P-gp, it is believed that curcumin will easily cross the blood brain barrier. In this respect, it is helpful to compare these qualities of curcumin to those of hydroxyzine. It has been reported by Kandimalla, Since curcumin (MW=368) and carbamazepine (MW=236) have similar molecular weights and are each highly lipophilic, the effects of intranasal carbamazepine upon carbamazepine brain concentration are highly instructive. Barakat, The dose of curcumin or compounds of Structural Formula (I) can be combined with a mucoadhesive to enhance its contact with the olfactory mucosa. In some embodiments, the mucoadhesive is selected from the group consisting of a hydrophilic polymer, a hydrogel and a thermoplastic polymer. Preferred hydrophilic polymers include cellulose-based polymers (such as methylcellulose, hydroxyethyl cellulose, hydroxy propyl methyl cellulose, sodium carboxy methyl cellulose), a carbomer chitosan and plant gum. In some embodiments, the mucoadhesive is a water-soluble high molecular weight cellulose polymer. High molecular weight cellulose polymer refers to a cellulose polymer having an average molecular weight of at least about 25,000, preferably at least about 65,000, and more preferably at least about 85,000. The exact molecular weight cellulose polymer used will generally depend upon the desired release profile. For example, polymers having an average molecular weight of about 25,000 are useful in a controlled-release composition having a time release period of up to about 8 hours, while polymers having an average molecular weight of about 85,000 are useful in a controlled-release composition having a time released period of up to about 18 hours. Even higher molecular weight cellulose polymers are contemplated for use in compositions having longer release periods. For example, polymers having an average molecular weight of 180,000 or higher are useful in a controlled-release composition having a time release period of 20 hours or longer. The controlled-release carrier layer preferably consists of a water-soluble cellulose polymer, preferably a high molecular weight cellulose polymer, selected from the group consisting of hydroxypropyl methyl cellulose (HPMC), hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), carboxy methyl cellulose (CMC), and mixtures thereof. Of these, the most preferred water-soluble cellulose polymer is HPMC. Preferably the HPMC is a high molecular weight HPMC, with the specific molecular weight selected to provide the desired release profile. The HPMC is preferably a high molecular weight HPMC, having an average molecular weight of at least about 25,000, more preferably at least about 65,000 and most preferably at least about 85,000. The HPMC preferably consists of fine particulates having a particle size such that not less than 80% of the HPMC particles pass through an 80 mesh screen. The HPMC can be included in an amount of from about 4 to about 24 wt %, preferably from about 6 to about 16 wt % and more preferably from about 8 to about 12 wt %, based upon total weight of the composition. Hydrogels can also be used to deliver the curcumin to the olfactory mucosa. A “hydrogel” is a substance formed when an organic polymer (natural or synthetic) is set or solidified to create a three-dimensional open-lattice structure that entraps molecules of water or other solution to form a gel. The solidification can occur, e.g., by aggregation, coagulation, hydrophobic interactions, or cross-linking. The hydrogels employed in this invention rapidly solidify to keep the curcumin at the application site, thereby eliminating undesired migration from the site. The hydrogels are also biocompatible, e.g., not toxic, to cells suspended in the hydrogel. A “hydrogel-inducer composition” is a suspension of a hydrogel containing desired curcumin. The hydrogel-inducer composition forms a uniform distribution of inducer with a well-defined and precisely controllable density. Moreover, the hydrogel can support very large densities of inducers. In addition, the hydrogel allows diffusion of nutrients and waste products to, and away from, the inducer, which promotes tissue growth. Hydrogels suitable for use in the present invention include water-containing gels, i.e., polymers characterized by hydrophilicity and insolubility in water. See, for instance, “Hydrogels”, pages 458-459 in In a preferred embodiment, the hydrogel is a fine, powdery synthetic hydrogel. Suitable hydrogels exhibit an optimal combination of such properties as compatibility with the matrix polymer of choice, and biocompatability. The hydrogel can include any of the following: polysaccharides, proteins, polyphosphazenes, poly(oxyethylene)-poly(oxypropylene) block polymers, poly(oxyethylene)-poly(oxypropylene) block polymers of ethylene diamine, poly(acrylic acids), poly(methacrylic acids), copolymers of acrylic acid and methacrylic acid, poly(vinyl acetate), and sulfonated polymers. Other preferred hydrogels include poly(acrylic acid co acrylamide) copolymer, carrageenan, sodium alginate, guar gum and modified guar gum. In general, these polymers are at least partially soluble in aqueous solutions, e.g., water, or aqueous alcohol solutions that have charged side groups, or a monovalent ionic salt thereof. There are many examples of polymers with acidic side groups that can be reacted with cations, e.g., poly(phosphazenes), poly(acrylic acids), and poly(methacrylic acids). Examples of acidic groups include carboxylic acid groups, sulfonic acid groups, and halogenated (preferably fluorinated) alcohol groups. Examples of polymers with basic side groups that can react with anions are poly(vinyl amines), poly(vinyl pyridine), and polyvinyl imidazole). Preferred thermoplastic polymers include PVA, polyamides polycarbonate, polyalkylene glycol, polyvinyl ether, polyvinyl ether, and polyvinyl halides, polymethacrylic acid, polymethylmethacrylic acid, methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, and sodium carboxymethylcellulose, ethylene glycol copolymers. Other polymers that may be suitable for use as a mucoadhesive include aliphatic polyesters, poly(amino acids), copoly(ether-esters), polyalkylenes oxalates, polyamides, tyrosine derived polycarbonates, poly(iminocarbonates), polyorthoesters, polyoxaesters, polyamidoesters, polyoxaesters containing amine groups, poly(anhydrides), polyphosphazenes, biomolecules (i.e., biopolymers such as collagen, elastin, bioabsorbable starches, etc.) and blends thereof. For the purpose of this invention aliphatic polyesters include, but are not limited to, homopolymers and copolymers of lactide (which includes lactic acid, D-,L- and meso lactide), glycolide (including glycolic acid), ε-caprolactone, p-dioxanone (1,4-dioxan-2-one), trimethylene carbonate (1,3-dioxan-2-one), alkyl derivatives of trimethylene carbonate, β-valerolactone, β-butyrolactone, χ-butyrolactone, ε-decalactone, hydroxybutyrate, hydroxyvalerate, 1,4-dioxepan-2-one (including its dimer 1,5,8,12-tetraoxacyclotetradecane-7,14-dione), 1,5-dioxepan-2-one, 6,6-dimethyl-1,4-dioxan-2-one, 2,5-diketomorpholine, pivalolactone, χ,χ-diethylpropiolactone, ethylene carbonate, ethylene oxalate, 3-methyl-1,4-dioxane-2,5-dione, 3,3-diethyl-1,4-dioxan-2,5-dione, 6,8-dioxabicycloctane-7-one and polymer blends thereof. Poly(iminocarbonates), for the purpose of this invention, are understood to include those polymers as described, by Kemnitzer and Kohn, in the In some embodiments, the mucoadhseive is selected from the group consisting of poly(lactic acid) (“PLA”) and poly(glycolic acid)(“PGA”), and copolymers thereof. In some embodiments, the mucoadhesive formulation includes a penetration enhancer such as sodium glycocholate, sodium taurocholate, L-lysophosphotidyl choline, DMSO and a protease inhibitor. In some embodiments, the curcumin or compounds of Structural Formula (I) is tagged with a molecule that binds specifically with the olfactory mucosa, such as an odorant. In some embodiments, the pharmaceutical composition comprising curcumin or compounds of Structural Formula (I) includes a pharmaceutically-acceptable carrier, a lipophilic micelle, a liposome, or a combination thereof. Preferably, the lipophilic micelle or liposome comprises a ganglioside, a phosphatidylcholine, a phosphatidylserine, or a combination thereof. In some embodiments, the pharmaceutical composition comprises a substance having an affinity for a receptor site on a neuron. According to particular methods of intranasal delivery, it can be desirable to prolong the residence time of the pharmaceutical composition in the nasal cavity (e.g., in the olfactory region and/or in the sinus region), for example, to enhance absorption. Thus, the pharmaceutical composition can optionally be formulated with a bioadhesive polymer, a gum (e.g., xanthan gum), chitosan (e.g., highly purified cationic polysaccharide), pectin (or any carbohydrate that thickens like a gel or emulsifies when applied to nasal mucosa), a microsphere (e.g., starch, albumin, dextran, cyclodextrin), gelatin, a liposome, carbamer, polyvinyl alcohol, alginate, acacia, chitosans and/or cellulose (e.g., methyl or propyl; hydroxyl or carboxy; carboxymethyl or hydroxylpropyl), which are agents that enhance residence time in the nasal cavity. As a further approach, increasing the viscosity of the dosage formulation can also provide a means of prolonging contact of agent with olfactory epithelium. The pharmaceutical composition can be formulated as a nasal emulsion, ointment or gel, which offer advantages for local application because of their viscosity. The pharmaceutical composition can also optionally include an absorption enhancer, such as an agent that inhibits enzyme activity, reduces mucous viscosity or elasticity, decreases mucociliary clearance effects, opens tight junctions, and/or solubilizes the active compound. Chemical enhancers are known in the art and include chelating agents (e.g., EDTA), fatty acids, bile acid salts, surfactants, and/or preservatives. Enhancers for penetration can be particularly useful when formulating compounds that exhibit poor membrane permeability, lack of lipophilicity, and/or are degraded by aminopeptidases. The concentration of the absorption enhancer in the pharmaceutical composition will vary depending upon the agent selected and the formulation. To extend shelf life, preservatives can optionally be added to the pharmaceutical composition. Suitable preservatives include but are not limited to benzyl alcohol, parabens, thimerosal, chlorobutanol and benzalkonium chloride, and combinations of the foregoing. The concentration of the preservative will vary depending upon the preservative used, the compound being formulated, the formulation, and the like. In some representative embodiments, the preservative is present in an amount of 2% by weight or less. The pharmaceutical composition can optionally contain an odorant, e.g., as described in EP 0 504 263 B1 to provide a sensation of odor, to aid in inhalation of the composition so as to promote delivery to the olfactory epithelium and/or to trigger transport by the olfactory neurons. In some embodiments, the curcumin or compounds of Structural Formula (I) is delivered in a pharmaceutical composition selected from the group consisting of a liquid, a powder, a spray, a nose drop, a gel, an ointment, or a combination thereof. In some embodiments, the curcumin or compounds of Structural Formula (I) is delivered in a pharmaceutical composition comprising piperine. In some embodiments, the method of the present invention includes applying the pharmaceutical composition to an olfactory area in the upper third of the nasal cavity, such as the olfactory mucosa. In some embodiments, the method of the present invention includes applying the pharmaceutical composition to a roof of a nasal cavity. In some embodiments, the method of the present invention includes applying the pharmaceutical composition by employing a tube, a catheter, a syringe, a packtail, a pledget, a submucosal infusion, an intranasal spray container, or a combination thereof. For delivery, there is provided a standard nose drops squeezable spray container with a long thin semi-flexible tube attached to the distal end. The outer diameter of the tube is less than a millimeter, preferably less than 0.5 mm, more preferably less than 0.25 mm. The exit hole of the tube is preferably located on the peripheral wall near the distal end of the tube so that spray exiting it can be directed upwards. There is a marker on the container that indicates when the exit hole is oriented upwards towards the cribriform plate. Therefore, in accordance with the present invention, there is provided an intranasal spray device comprising: a) a hollow container having a first opening, and b) a flexible tube having a throughbore, a distal end portion having a second opening, and a proximal end having a third opening, and c) a formulation comprising an effective amount of curcumin or compounds of Structural Formula (I) contained within the container, wherein the third opening of the proximal end of the tube is in fluid connection with the first opening of the hollow container. In other embodiments, the intranasal spray device comprises: a) a hollow container having a first opening, b) a flexible tube having a throughbore, a side surface having a second opening, a proximal end having a third opening, and a distal end having an end surface, and c) a formulation comprising an effective amount of curcumin or compounds of Structural Formula (I) contained within the container, wherein the third opening of the proximal end of the tube is in fluid connection with the first opening of the hollow container. The user directs the tube towards the medial wall of the nostril and points upwards so as to direct it medially to and over the middle nasal concha. The length of the tube is predetermined so that when the user has the shoulder of the container flush against the nostril, the hole is adjacent the cribriform plate. If there is concern about the safety of inserting a tube through a nasal passage, then the tube can also be balloon-like, so that it expands to full length upon being pressurized. It has been reported that less than about 10% of inspired air travels through the olfactory slit. Accordingly, a great deal of the curcumin delivered to the nasal cavity does not region the olfactory mucosa. Therefore, it is an object of some embodiments of the present invention to increase the amount of curcumin or compounds of Structural Formula (I) delivered to the olfactory mucosa. It has been reported in the literature that when the airflow in the nasal cavity can be characterized as laminar, streamlines from the anterior 10% of the nares reach the olfactory slit. Accordingly, in some embodiments of the present invention, at least 25% of the formulation comprising curcumin or compounds of Structural Formula (I) is delivered into the anterior 10% of the nares. Preferably, at least 50% of the formulation comprising curcumin or compounds of Structural Formula (I) is delivered into the anterior 10% of the nares. More preferably, at least 75% of the formulation comprising curcumin or compounds of Structural Formula (I) is delivered into the anterior 10% of the nares. In some embodiments, focused delivery of the formulation into the anterior portion of the nares is assisted by providing a guidance tube located substantially in the anterior 10% of the nares. In some embodiments, there is provided a device for assisting delivery of a formulation to the anterior portion of the nares, comprising: a) an annulus adapted to fit in the opening of the nares and b) a guidance tube extending from the annulus and connected to the annulus in the region of the anterior 10% of the nares. As the streamlines just inside the opening of the nares travel at an angle of about 90 degrees, the guidance tube is preferably situated at that angle in order to deliver the formulation into those streamlines. Preferably, the annulus is oval-shaped to correspond to the shape of the nares. In use, the user simultaneously slowly inhales while actuating the spray container containing the formulation. The formulation is delivered to the anterior portion of the guidance tube as an aerosol in a laminar flow. The formulation travels through the guidance tube and exits is posterior end as an aerosol in a laminar flow. Thus, the formulation should enter the nasal cavity in conformance with the laminar streamlines of the inspired air produced by the inhalation. Once in these streamlines, the formulation travels preferentially to the olfactory slit and thus to the olfactory mucosa. In some embodiments, the curcumin or compounds of Structural Formula (I) is delivered to the olfactory mucosa through helium laden microbubbles that can rise in the air. This takes advantage of the fact that the olfactory mucosa is located in the highest portion of the nasal cavity. Theoretically, helium-filled microbubble of proper dimensions that are conventionally delivered into the nasal cavity should travel upwards to the highest spot in the nasal cavity—the olfactory mucosa. Once they arc in place, the microbubbles can be exploded with a simple hand held, non-invasive ultrasound device, thereby releasing their contents. This invention would greatly increase the amount of curcumin or compounds of Structural Formula (I) that ends up in the olfactory mucosa. Therefore, in accordance with the present invention, there is provided a method for transporting a neurotherapeutic drug to a brain of a mammal, comprising:
In other embodiments, the curcumin or compounds of Structural Formula (I) is delivered to the olfactory mucosa as an aerosol in a bolus of helium gas that can rise in the air. This also takes advantage of the fact that the olfactory mucosa is located in the highest portion of the nasal cavity. Theoretically, a helium bolus and the aerosols therein that are conventionally delivered into the nasal cavity should travel en masse to the highest spot in the nasal cavity—the olfactory mucosa. Once they are in place, the aerosols can deposit upon the nasal walls containing the olfactory mucosa. This invention would greatly increase the amount of curcumin or compounds of Structural Formula (I) that ends up in the olfactory mucosa. Therefore, in accordance with the present invention, there is provided a method for transporting a neurotherapeutic drug to a brain of a mammal, comprising:
US Patent Publication No 2003/0199594 (“Shah”) discloses a propellant composition for use with an aerosol wherein the composition comprises between 70% and 100% helium, wherein the composition may be used in intranasal spray devices such as metered dose inhalers. Shah discloses that the composition may further include a solvent (such as an alcohol such as ethanol) and a dispersing agent (such as oleic acid). Therefore, in accordance with the present invention, there is provided an intranasal spray device having a formulation comprising: a) an effective amount of curcumin, and b) a propellant comprising helium (preferably, at least about 70% helium by weight), and c) (optionally) a solvent (such as water or an alcohol such as ethanol), and d) (optionally) a dispersing agent (such as oleic acid). Although high lipophilicity in a therapeutic compound enables it to easily cross the blood brain barrier and penetrate brain tissue, that high lipophilicity also usually means that the compound is not very soluble in water. For example, US 2003/0153512 reports that lipophilic curcumin has a solubility in water of only about 0.004 mg/ml. Because intranasal formulations are generally provided in small doses of between 50 μl and 200 μl (typically, 100 μl), there may be an issue in providing a sufficient amount of the lipophilic compound in a single dose in order to generate a therapeutic response. Therefore, one aspect of the present invention involves providing the therapeutic compound in the form of a water-soluble prodrug. The high water solubility of the prodrug allows large amounts of it to be provided in a single dose, enter the nasal mucosa and passively diffuse across the nasal mucosa. Once the prodrug has reached the boundary of brain tissue, the prodrug is metabolized (typically through a chemical or enzymatic hydrolysis reaction with brain esterases) to the parent lipophilic molecule, whereby it can diffuse into the brain tissue bulk and provide a therapeutic benefit. Therefore, in accordance with the present invention, there is provided a method for administering curcumin to a brain of a mammal, comprising:
In some embodiments, the parent lipophilic compound is a phenol that is rendered water-soluble by creating an ester having an added polar moiety or a permanent charge. Preferably, the ester has a polar moiety. Preferably, the polar moiety contains a tertiary or quaternary nitrogen. Therefore, in some embodiments, the ester contains an aminoalkanecarboxylic acid as the polar moiety. These compounds are characterized by an ester moiety having an alkane group between the nitrogen compound and the carboxyl group. Preferably, the moiety has terminal alkyl groups. More preferably, the aminoalkanecarboxylic acid contains a glycinate moiety, more preferably a methylated glycinate moiety, such as N,N,dimethylglycinate. Therefore, in accordance with the present invention, there is provided a curcumin ester prodrug comprising an aminoalkylcarboxylic acid moeity. Preferably, the aminoalkylcarboxylic acid moiety comprises an aminoalkanecarboxylic acid moiety. In some embodiments, the aminoalkanecarboxylic acid contains a glycinate moiety. Methods of making such compounds are found in Pop, Now referring to Therefore, in some embodiments, the aminoalkanecarboxylic acid moiety comprises a single terminal methyl group (1), two terminal methyl groups (2), (17),(20), or three terminal methyl groups (3)(19). In some embodiments, the aminoalkanecarboxylic acid moiety comprises a single terminal ethyl group (5), two terminal ethyl groups (6)(18), or three terminal ethyl groups (8). In some embodiments, the aminoalkanecarboxylic acid moiety comprises a terminal ethyl group and a terminal methyl group; a terminal ethyl group and two terminal methyl groups (10); or two terminal ethyl groups and a terminal methyl group (9). In some embodiments, the aminoalkanecarboxylic acid moiety comprises a terminal propyl group. In some embodiments, the prodrug is in the form of a salt, as in compounds (3), (8)-(14), (17)-(20). Preferably, the salt comprises an anion selected from the group consisting of chloride (14)(17)(18)(20), iodide (19) and bromide. In some embodiments, the prodrug is characterized by an ester moiety in which an ethane (17-18) or propane (19-20) group lies between the carboxyl group and the nitrogen group, and preferably has a terminal alkyl group. In some embodiments, the prodrug is characterized by an ester moiety in which the alkane that lies between the carboxyl group and the nitrogen group is substituted. In some embodiments, this is a terminal ethyl group (7) lying between the carboxyl group and the nitrogen group. Preferably, the moiety has a second terminal alkyl group. In some embodiments, the curcumin prodrug comprises a carbamoyl moiety, preferably a (carboxymethyl)carbamoyl moiety (16). The (carboxymethyl)carbamoyl moiety of (16) can be made in substantial accordance with Mulholland, In some embodiments, the aminoalkanescarboxylic acid moiety comprises a nitrogen heterocycle (21, 23). In some embodiments, the heterocycle contain oxygen (23). Moeity (23) may be in accordance with the procedure disclosed in Pop, In some embodiments, the aminoalkanecarboxylic acid moiety comprises a L-proline group (15). Moeity (15) may be may in accordance with the procedure disclosed in Altomare, In some embodiments, the aminoalkanecarboxylic acid moiety comprises a benzoate group (22). Moeity (22) may be made in accordance with the procedure disclosed in Bundgaard, Other curcumin glycine esters are disclosed in Mishra, Bioorganic & The curcumin prodrugs of the present invention should have three qualities: high solubility in water, high stability in water and rapid conversion to curcumin in the brain. The literature has demonstrated that glycinate-containing moieties provide much greater water solubility to phenolic compounds, typically increasing the solubility of the parent compound to the 25-50 mg/ml range. Examples of the solubility increase provided to low solubility phenolics by their esterification by glycinates are as follows: The literature shows that, in most eases, providing the ester in an acidic pH (about 4-5) increases its solubility in water by about 10 fold. There also appears to be a special class of glycinate-like moieties that increase the water solubility of the phenolic compound even further. In particular, there are a number of glycinate-like moieties possessing additional oxygens that increase the water solubility of the phenolic compound to concentrations in the 100-1000 mg/ml range. Examples of such compounds are provided below: Examination of these compounds reveals that each is characterized by terminal substitution of the amine by oxygen-containing moeities. They are particularly characterized by:
Without wishing to be tied to a theory, it is believed that that these moieties may act as surfactants which, in the appropriate concentration, produce micelles. Indeed, it has been reported that a (dihydroxyethyl) glycinate moiety acts as a surfactant (U.S. Pat. No. 6,831,108), and that the (carboxymethyl) carbamoyl moiety can produce micelles (Shamsi, Therefore, in accordance with the present invention, there is provided a formulation comprising a micellar curcumin prodrug. The (carboxymethyl)carbamoyl moiety (Mullholland) is of particular interest because is has a high solubility (>20 mg/ml). Its rapid hydrolysis in blood (tm=0.39 hr) may indicate that it is also rapidly hydrolyzed by brain esterases as well. Lastly, it appeats to be relatively stable in water (ty2=16.9 hr) and so likely is very stable in acidic aqueous solutions. It has been reported that converting the prodrug into a salt likewise increases its solubility in water. For example, WO90/08128, which relates to glycine-like ester prodrugs, reports that conversion of such prodrugs into salts produce water solubilities of up to 15 w/v %. Jensen, Because the formulations of the present invention are desirably used in the form of aqueous-based nasal sprays, the ester prodrugs of the present invention should remain stable in water for an appreciable time. It appears that glycinate esters are much more stable in acidic aqueous solutions than in neutral aqueous solutions. Al-Ghananeem, Therefore, in some embodiments of the present invention, the curcumin formulation contains a buffer setting a pH of between about 3.0 and 5.5, preferably a pH of between about 3.5 and 5, preferably a pH of between about 4 and 5. In some embodiments of the present invention, the curcumin formulation contains a buffer setting a pH of between about 3 and 4. It is believed that setting the pH of the formulation in these ranges would allow the formulations to have a commercially satisfactory shelf life. Also in some embodiments of the present invention, there is provided an intranasal spray device comprising a formulation comprising:
Once the prodrug has reached the brain, it is desirable for the esterified prodrug to be converted to its parent compound in a very rapid fashion. Simply, the prodrug should be converted to the parent compound by brain esterases before it is drained from the brain. In order to understand whether a prodrug converts sufficiently rapidly to the parent compound, it is important to know the residence time of the prodrug in the brain or CSF (cerebrospinal fluid). Review of concentration versus time profiles of intranasally instilled compounds reveals behaviors characterized by a two phase model. In the first phase, the drug rapidly attains a peak concentration and then rapidly decreases to about 10-25% of the peak concentration within about 1-2 hours. The second phase is characterized by a very slow decrease in the concentration of the drug over the next 24 hours. Therefore, if the concentration of the drug is approximated as that which is present in the 1-2 hour range (i.e., about 10-25% of the peak concentration), it can be assumed that the drug is present in the brain for about 24 hours. Accordingly, in order to be useful, the conversion rate of the prodrug to the parent compound in the brain should be characterized by a half-life t1/2 of no more than about 12 hours. In at least three instances, the literature has reported conversion rates of a glycinate-containing phenolic ester to the parent compound by brain homogenate. Two of these papers report very rapid conversion. Al-Ghananeem, Since it is desirable to have a prodrug-to-parent conversion rate characterized by a half life t1/2 of no more than about 12 hours, and the literature reports half-lives the rapid conversion of glycinate esters to the parent phenolic compound in about 1-2 minutes, it is clear that glycinate prodrugs should be assumed to be fully converted in the brain to the parent prodrug. It should be noted that one investigator (Trapani, In contrast, the etheric oxygen of both benzyl L-dopa ester and the estradiol glycinate ester experiences much less streric hinderence, and so the brain esterase has an opportunity to freely approach the etheric oxygen from at least one side of the molecule. As a result, the hydrolysis reaction by brain esterases can occur much more quickly. Undertaking a similar analysis with curcumin glycinate esters reveals that, like L-dopa and estradiol, the curcumin glycinate ester experiences much less streric hinderence, and so the brain esterases have the opportunity to freely approach the etheric oxygen of the curcumin glycinate ester from at least one side of the molecule. Moreover, it appears that another research group reports a much faster conversion of the propofol dimethyl glycinate ester to the parent and that the Trapani group has acknowledged this difference. See Altomare, Lastly, the Kao paper is noteworthy in that it reports highly similar half-lives for the conversion of L-dopa esters to L-dopa in brain homogenate and plasma. A high coincidence of half-lives for the conversion of propofol glycinate esters to propofol in brain homogenate and plasma is also reported in Trapani. If conversion in plasma is used to reasonably estimate the conversion of glycinate esters in brain homogenate, then the literature may be further consulted for the conversion of glycinate-containing phenolic esters to the parent phenolic compound in plasma. The literature, reported below in Table III, reports the following: Thus, using literature reports of conversion in plasma to estimate reasonably the likely conversion window of glycinate esters in brain homogenate, it appears that the conversion of glycinate-containing phenolic esters to the parent phenolic compound in brain is again quite rapid. Therefore, because unhindered phenolic glycinate esters rapidly convert to the parent phenol in brain homogenate, and because dimethylglycinate phenolic esters convert rapidly in plasma, it is believed that the conversion rates of glycinate-containing curcumin esters to the parent curcumin compound will be rapid in a brain environment. Al-Ghananeem, In some embodiments, the water-soluble ester prodrug of curcumin or compounds of Structural Formula (I) is created by reacting the phenolic parent compound with dimethylglycine. The literature reports rendering lipophilic phenolic compounds water soluble by reacting the phenolic parent compound with dimethylglycine. For example, Al-Ghananeem, In some embodiments, creation of the water soluble ester prodrug from the parent phenolic compound is carried in substantial accordance with the method described in Hussain, J. Pharm. Sci., 91,3, Mar. 2002, 785-789. In particular, dimethylglycine HCl and oxalyl chloride are gently warmed at 40° C. until evolution of HCl gas ceases. Nitrogen gas is then bubbled through the solution to remove unreacted oxalyl chloride. The resulting acid chloride is dissolved in dimethylformamide and added dropwise with stirring to a solution of the parent phenolic compound in methylene chloride. The reaction mixture is refluxed for 3 hours. The ester is then isolated, and converted to an HCl salt. In some embodiments, creation of the water soluble ester prodrug from the parent compound is carried in substantial accordance with the method described in Al-Ghananeem, The phenolic esters having 3-N,N-dimethylamino butyl ester hydrochloride (3-DMABE2HCl); 3-N,N-dimethylamino propionyl ester hydrochloride (3-DEAPE2HCl); and 3-N,N,N-trimethylamino butyl ester iodide (3-TMABE2 iodide) as moieties are synthesized after the appropriate acid chloride following the procedure reported in Hussian, In some embodiments, creation of the water soluble ester prodrug from the parent compound is carried in substantial accordance with the method described in Takata, Evidence that the intranasal installation of a water soluble prodrug of curcumin can deliver high levels of curcumin to the brain is found in the estradiol-based work of Al-Ghananeem, Because the typical volume of an intranasal dose for a human can be up to 0.2 ml, and Table I above reports increases in solubility in the range of 20 mg/ml, nasal administration can be expected to achieve a payload of up to about 20 mg/ml×0.2 ml=4 mg/dose. Because providing two doses per nostril twice a day provides 8 doses per day, it is believed that up to about 32 mg/day of estradiol can be intranasally administered. This amount provides a whole body concentration of nearly about 0.5 mg/kg. Further, Al-Ghananeem reports that the nasal installation of 0.1 mg/kg of water soluble prodrugs 17β-Estradiol results in peak cerebrospinal fluid (CSF) concentrations of estrdiol of between about 30 ng/ml (for 17-DMABE2-HCl) to about 66 ng/ml (for 3-DMABE2-HCl), which provides a molar concentration of the compound of between about 0.075 μM and 0.15 μM. The pharmacokinetic results of Al-Ghananeem correspond quite well with those of Kao, who reported that nasal installation of 20 mg/kg of water soluble ester prodrug of L-dopa results in peak cerebrospinal fluid (CSF) concentration of about 10-20 ug/ml. Accordingly, a 0.5 mg/kg nasal instillation of a water soluble prodrug of a lipophilic, small molecule phenolic compound such as estradiol curcumin can likely provide CSF concentrations of up to about 0.75 μM. Since it has been reported that 0.1-1.0 μM curcumin inhibits the in vitro formation of amyloid beta oligomers, and blocks the in vitro toxicity of Aβi—42 oligomers in differentiated neuroblastoma cells (Yang, In some embodiments, curcumin or compounds of Structural Formula (I) is present within two separate phases of the formulation. The first phase is preferably a quick release phase that quickly delivers curcumin or compounds of Structural Formula (I) to the olfactory mucosa. The quick delivery of curcumin or compounds of Structural Formula (I) will have the effect of transiently disabling enzymes systems such as UGTs and P450s that metabolize curcumin. The second phase is a slow release phase that slowly delivers curcumin or compounds of Structural Formula (1) to the olfactory mucosa. Once these enzyme systems are transiently disabled, the slow release phase slowly releases curcumin or compounds of Structural Formula (I) in an environment that is substantially free of enzymatic metabolic interference. Therefore, in accordance with the present invention, there is provide a formulation comprising:
In some embodiments, the first quick release phase can be selected from the group consisting of a mucoadhesive and an oil, such as peppermint oil. Peppermint oil has the quality of independently inhibiting UGT and P450 enzymes. In some embodiments, the second slow release phase can be selected from the group consisting of liposomes and thermoplastic polymers (such as PLGA). In accordance with the present invention, there is provided a formulation comprising:
In some embodiments, the mucoadhesive is present as a coating upon the polymeric particulate depot. In some embodiments, the mucoadhesive is present as a separate particulate. In some embodiments, the mucoadhesive comprises a compound selected from the group consisting of a chitosan and a cellulose. In some embodiments, the mucoadhesive further contains curcumin or compounds of Structural Formula (I). In some embodiments, the polymeric particulate depot is a liposome. In some embodiments, the polymeric particulate depot is a thermoplastic bioresorbable polymer. In some embodiments, the curcumin or compounds of Structural Formula (I) is housed in microspheres. Kumar, In some embodiments, the curcumin or compounds of Structural Formula (I) is housed in microspheres that display a biphasic release effect. Although curcumin is susceptible to metabolism by enzymes, curcumin is also known as an inhibitor of those very enzymes. For example, Hong, It has been reported that curcumin influences both multidrug resistance protein 1 (MRP1) multidrug resistance protein 2 (MRP2). It appears that curcumin inhibited both MRP-1 and MRP-2-mediated transport with IC50 values of 15 uM and 5 uM. Wortelboer, Of note, Hong, It appears that curcumin is metabolized mainly through glucuronidation. Pan, Because of the strong inhibition of UGTs by curcumin, curcumin has been proposed as a pre-treatment for cancer chemotherapy, and it has been reported that transient inhibition of glucuronidation by oral pretreatment with curcumin before MPA administration caused a six-fold increase in immunosuppression of antigen-stimulated spleen cytotoxic T-lymphocyte proliferation in mice. See (http://iiichddirsage.nJchd.nih.gov:S08Q/ar2004/pages/hdb/sgddm.htm). There is, however, one investigator (van der Logt, Because the glucuronidation inhibition by curumin is reversible, it appears that curcumin could be used for a pre-treatment of the olfactory mucosa in order to inhibition enzymatic activity upon the later therapeutic dose of curcumin without a concern for drug-drug interactions. Therefore, in some embodiments, a first dose of curcumin or compounds of Structural Formula (I) is intransally administered to the patient (to inhibit enzyme activity in the olfactory mucosa, and then a second dose of curcumin or compounds of Structural Formula (I) is intranasally administered to the patient at least about 15 minutes after the first dose (to travel to the brain). It is well known that that the cytochrome p450 enzymes are significant in the olfactory mucosa, Oetari, In certain embodiments, a glucuronidation inhibitor is used in combination with curcumins or compounds represented by Structural Formula (I). In one embodiment, the glucuronidation inhibitor is administered prior to curcumins or compounds represented by Structrual Formula (I). In another embodiment, the glucuronidation inhibitor is administered after curcumins or compounds represented by Structrual Formula (I). In another embodiment, the glucuronidation inhibitor is administered at the same time with curcumins or compounds represented by Structrual Formula (I). In some embodiments, piperine is used as a glucuronidation inhibitor, In some embodiments, the glucuronidation inhibitor is an analog of piperine. Preferably, the piperine analog is antiepilepsirine. Administration of antiepilepsirine is also effective in raising serotonin synthesis (Liu, In some embodiments, the glucuronidation inhibitor is a surfactant. Kurkela, In some embodiments, the glucuronidation inhibitor is a mucolytic agent, such as N-acetylcysteine (NAC). Takatsuka, In some embodiments, the glucuronidation inhibitor is an NSAID. In preferred embodiments, the NSAID is niflumic acid. Mano, Enzyme inhibition by Buffer In some embodiments, low pH buffers are used as glucuronidation inhibitors. Basu, In some embodiments of the present invention, the curcumin formulation or a formulation of compounds represented by Structural Formula (I) contains a buffer setting a pH of between about 3.0 and 5.5, preferably a pH of between about 3.5 and 5, preferably a pH of between about 4 and 5. In some embodiments of the present invention, the curcumin formulation or a formulation of compounds represented by Structural Formula (I) contains a buffer setting a pH of between about 3 and 4. Below these cited ranges, there is a chance that the acidic nature of the formulation will be irritating to the nasal cavity. Above this range, there may be minimal inhibition of glucronidation. U.S. Pat. No. 6,187,332 (“Gern”) discloses a buffered flowable nasal spray formulation having a pH of between 4 and 5 which is able to maintain its pH for prolonged periods in the human nose. Gern discloses formulation comprising citrate and phosphate buffering agents. Therefore, in accordance with the present invention, there is provided an intranasal spray device comprising a formulation comprising:
In some embodiments, the absorption enhancer is a bile salt. Chavanpatil, In some embodiments, magnesium+2 is used as a glucuronidation inhibitor. Wong, The UGT enzyme is likely very sensitive to temperature. Therefore, it is reasonable to expect that a decrease in the temperature of the mucosal lining will result in a decrease in the enzymatic glucuronidation of curcumin by the UGTs. Indeed, it has been reported by Castuma, Therefore, the present invention also includes embodiments based upon the temporary cooling of the nasal mucosa in order to inhibit the glucuronidation of curcumin or compounds of Structural Formula (I). In one embodiment, the formulation of the present invention contains a cooling agent such as menthol. In one embodiment, the formulation of the present invention contains an endothermic solute. In preferred embodiments, the endothermic solute is a strong salt, acid or base that dissolves in water by an endothermic process. More preferably, the endothermic solute is a salt. In some embodiments, the endothermic solute may be selected from the group consisting of sodium bicarbonate (ΔH=+19.1 kJ/mol); potassium bicarbonate (ΔH=+5.3 kcal/mol); potassium sulfate (ΔH=+23.7 kJ/mol); potassium chloride (ΔH=+17.2 kJ/mol); sodium chloride (ΔH=+19 kJ/mol); and potassium dihydrogenphosphate (ΔH=+19.6 kJ/mol). In some embodiments, the endothermic solute may be magnesium sulfate, which would both promote cooling and inhibition glucuronidation. Therefore, in accordance with the present invention, there is provided an intranasal spray device comprising a formulation comprising:
It is well known that curcumin is poorly soluble in water. Because the olfactory mucosa is aqueous-based, the transport of curcumin from the formulation across the olfactory mucosa is problematic. Therefore, in order to increase the transport of curcumin across the olfactory mucosa, in some embodiments, the curcumin is delivered in a formulation comprising an effective amount of a curcumin-miscible solvent. Preferably, the solvent is selected from the group consisting of dimethyl sulfoxide (DMSO) and ethanol. It is well known that curcumin is highly soluble in DMSO and ethanol. When this formulation is applied to the nasal mucosa, the solvent mixes with the water in the olfactory mucosa and renders curcumin soluble in that mixture. In preferred embodiments, the solvent is DMSO. DMSO is non-toxic and also can temporarily open the blood brain barrier. Kleindienst, Therefore, in accordance with the present invention, there is provided an intranasal spray device comprising a formulation comprising:
Some embodiments increase the solubility of curcumin or compounds represented by Structural Formula (I) in water by employing a solid dispersion, such as those made with polyethylene glycol 6000 (PEG 6000) or polyvinylpyrrolidone K-30 (PVP K30) Ruan, J. Pharm Biomed. Anal. 2005 Jul. 1; 38(3):457-64. Paradkar, Some embodiments increase the solubility of curcumin or compounds represented by Structural Formula (I) in water by employing inclusion complexes, such as those made with beta-cyclodextrin (BCD) and hydroxypropyl-beta-cyclodextrin (HPBCD). Ruan, Modifications of curcumin and its functional fragments that either enhance or do not greatly affect the ability to treat AD, cancer, or other disorders described herein are also included within the term “curcumin.” Such modifications include, for example, additions, deletions or replacements of one or more functional groups. These modifications will either enhance or not significantly alter the structure, conformation or functional activity of curcumin or a functional fragment thereof. Additionally, curcumin or its functional fragments can be modified by the addition of epitope tags or other sequences that aid in its purification and which do not greatly affect its activity. As used herein, the term “functional fragment,” in connection with an curcumin, is intended to mean any portion of curcumin that maintains its ability to inhibit oxidation, or to prevent beta amyloid oligomer formation. If desired, a functional fragment can include regions of the curcumin with activities that beneficially cooperate with the ability to inhibit oxidation or oligomer formation. Also in accordance with the present invention, publicly known analogs of curcumin may be used. In some embodiments, the curcumin analogs are those found in US Published patent application US 2006/0067998. Curcumin is soluble in ethanol, alkalis, ketones, acetic acid and chloroform. It is insoluble in water. Curcumin is therefore lipophilic, and generally readily associates with lipids, e.g., many of those used in the colloidal drug-delivery systems of the present invention. In certain embodiments, curcumin can also be formulated as a metal chelate. As used herein, curcumin analogues are those compounds which due to their structural similarity to curcumin, exhibit anti-proliferative or pro-apoptotic effects on cancer cells similar to that of curcumin. Curcumin analogues which may have anti-cancer effects similar to curcumin include Ar-tumerone, methylcurcumin, demethoxy curcumin, bisdemethoxycurcumin, sodium curcuminate, dibenzoylmethane, acetylcurcumin, feruloyl methane, tetrahydrocurcumin,1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (curcumin1), 1,7-bis(piperonyl)-1,6-heptadiene-3,5-dione(piperonyl curcumin)1,7-bis(2-hydroxy naphthyl)-1,6-heptadiene-2,5-dione(2-hydroxyl naphthyl curcumin), 1,1-bis(phenyl)-1,3,8,10-undecatetraene-5,7-dione (cinnamyl curcumin) and the like (Araujo and Leon, 2001; Lin et al., 2001; John et al, 2002; see also Ishida et al., 2002). Curcumin analogues may also include isomers of curcumin, such as the (Z, E) and (Z,Z) isomers of curcumin. In a related embodiment, curcumin metabolites which have anti-cancer effects similar to curcumin can also be used in the present invention. Known curcumin metabolites include glucoronides of tetrahydrocurcumin and hexahydrocurcumin, and dihydroferulic acid. In certain embodiments, curcumin analogues or metabolites can be formulated as metal chelates, especially copper chelates. Other appropriate derivatives of curcumin, curcumin analogues and curcumin metabolites appropriate for use in the present invention will be apparent to one of skill in the art. In some embodiments, the curcumin analogs are those found in US Published patent application US 2005/0181036. Commercial curcumin includes three major components: curcumin (77%), demethoxycurcumin (17%), and bisdemethoxycurcumin (3%), which are often referred to as “curcuminoids.” As used herein, “curcumin” is defined to include any one or more of these three major components of commercial curcumin, and any active derivative of these agents. This includes natural and synthetic derivatives of curcumin and curcuminoids, and includes any combination of more than one curcumenoid or derivative of curcumin. Derivatives of curcumin and curcumenoids include those derivatives disclosed in U.S. Patent Application Publication 20020019382, which is herein specifically incorporated by reference. In some embodiments, the curcumin analogs are those found in US Published patent application US 2005/0267221. In certain aspects, 1,7,-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadi-ene-3,5-dione is the curcumin that may be used in the present invention. Other curcumin analogues (curcuminoids) that may be used include, for example, demethoxycurcumin, bisdemethoxycurcumin, dihydrocurcumin, tetrahydrocurcumin, hexahydrocurcumin, dihydroxytetrahydrocurcumin, Yakuchinone A and Yakuchinone B, and their salts, oxidants, reductants, glycosides and esters thereof. Such analogues are described in U.S. Patent Application 20030147979; and U.S. Pat. No. 5,891,924 both of which are incorporated in their entirety herein by reference. Other curcumin analogues (curcuminoids) that may be used include dihydroxycurcumin and nordihydroguaiaretic acid (NDGA) Further examples of curcumin analogues include but are not limited to (a) ferulic acid, 4-hydroxy-3-methoxycinnamic acid; 3,4-methylenedioxy cinnamic acid; and 3,4-dimethoxycinnamic acid); (h) aromatic ketones (i.e., 4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one; zingerone; -4-(3,4-methylenedioxyphenyly-2-butanone; 4-(p-hydroxyphenyl)-3-buten-2-one; 4-hydroxyvalerophenone; 4-hydroxybenzylactone; 4-hydroxyhenzophenone;1,5-bis(4-dimethylaminophen-yl)-1,4-pentadien-3-one); (c) aromatic diketones (i.e., 6-hydroxydibenzoylmethane); (d) caffeic acid compounds (i.e., 3,4-dihydroxy cinnamic acid); (e) cinnamic acid; (f) aromatic carboxylic acids (i.e., 3,4-dihydroxyhydocinnainic acid; 2-hydroxycinnamic acid; 3-hydroxy cinnamic acid and A-hydroxycinnamic acid); (g) aromatic ketocarboxylic acids (i.e., 4-hydroxyphenylpyruvic acid); and (h) aromatic alcohols (i.e., 4-hydroxyphenethyl alcohol). These analogues and other representative analogues that can be used in the present invention are further described in WO9518606 and WO 01040188, which are incorporated herein by reference in their entirety. Curcumin or analogues thereof may be purified from plants or chemically synthesized using methods well known and used by those of skill in the art. Plant-derived curcumin and/or its analogues can be obtained by extraction from plants including Zingiberaceae Curcuma, such as Any conventional method can be used to prepare curcumin and its analogues to be used in the present invention. For example, turmericoleoresin, a food additive, which essentially contains curcumin, can be produced by extracting from a dry product of rhizome of turmeric with ethanol at an elevated temperature, with hot oil and fat or propylene glycol, or with hexane or acetone at from room temperature to a high temperature. Alternatively, those can be produced by the methods disclosed in Japanese Patent Applications 2000-236843, H-11-235192 and H-6-9479, and U.S. Patent Application No. 20030147979, which is incorporated by reference herein in its entirety. In certain embodiments, a purified product of at least one curcumin and/or its analogue may be used. Alternatively, a semi-purified or crude product thereof may be used, provided that it does not contain impurities which may not be acceptable as a pharmaceutical or food product. There has been limited testing of the potency of curcumin analogs against beta amyloid. Park, Each of these compounds is shown in Analysis of the Park data reveals that each of compounds (31)-(34) is a more potent neuroprotectant against beta amyloid than curcumin, with compounds (31) and (34) being on the order of 5-fold and 10-fold more potent. Therefore, in preferred embodiments, each of compounds (31)-(34) is used by itself or in combination as the parent compound for the manufacturing and use of a curcumin prodrug. Each of the parent compounds may be obtained by the methods disclosed in Park. Kim, Analysis of the Kim data reveals that each of the demethoxycurcumin and bisdemethoxycurcumin compounds is a more potent neuroprotectant against beta amyloid than curcumin, with the demethoxycurcumin and bisdemethoxycurcumin compounds being on the order of 1.5 and 2 fold more potent. This data is in substantial agreement with the relative potencies of demethoxycurcumin and bisdemethoxycurcumin reported by Park above. In other embodiments, the present invention relates to the intranasal administration of a formulation comprising an effective amount of curcumin or compounds represented by Structural Formula (I) across the cribriform plate and into the brain in order to treat a stroke. In other embodiments, the present invention relates to the intranasal administration of a formulation comprising an effective amount of curcumin or compounds represented by Structural Formula (I) across the cribriform plate and into the brain in order to treat multiple sclerosis. In some embodiments, the curcumin or a compound represented by Structural Formula (I) is combined with a second lipophilic therapeutic agent, preferably another polyphenol, such as resveratrol. In some embodiments, the curcumin or a compound represented by Structural Formula (I) is provided in a formulation with another compound selected from the group consisting of gingko biloba extract, resveratrol, and a green tea catechin, and then is intranasally administered. Also in accordance with the present invention, there is provided a method for transporting a gingko biloba extract to a brain of a mammal, comprising: a) applying a pharmaceutical composition comprising a gingko biloba extract to an upper third of a nasal cavity of the mammal, wherein the gingko biloba extract is absorbed through an olfactory mucosa and transported to the brain of the mammal. Also in accordance with the present invention, there is provided a method for transporting resveratrol to a brain of a mammal, comprising:
Also in accordance with the present invention, there is provided a method for transporting a green tea catechin to a brain of a mammal, comprising:
The prodrug rationale provided above for curcumin or compounds represented by Structural Formula (I) can also be applied to other therapeutic phenolic compounds (preferably, therapeutic polyphenolic compounds), such as those of the flavonoid class. In preferred embodiments, this compound is selected from the group consisting of resveratrol, hispidin, genistein, ellagic acid, 1,25 dihydroxyvitamin D3, the green tea catechin EGCG, and docosahexaenoic acid (DHA). In another embodiment, this compound is docosahexaenoic acid (DHA). Also in accordance with the present invention, there is provided a method for transporting a flavonoid prodrug to a brain of a mammal, comprising:
In especially preferred embodiments, the flavonoid prodrug is resveratrol. Resveratrol, a polyphenolic compound commonly found in red wine, has been promoted as a possible treatment for Alzheimer's Disease (AD) because it appears to affect multiple mechanisms of AD pathology. Anekonda, First, resveratrol has been shown to reduce the amount of beta amyloid in brain tissue. The mechanism by which resveratrol accomplishes this has been subject to debate. One recent paper concludes that resveratrol is a specific inhibitor of BACE1 enzyme, with an IC50 of about 15 uM. Jeon, Second, it is believed that resveratrol inhibits the formation of beta amyloid fibrils. Riviere, Third, 20 μM resveratrol has a neuroprotective effect against beta amyloid-induced neurotoxicity in rat hippocampal neurons, and is believed to provide this neuroprotection through activation of protein kinase C (PKC). Han, The hypothesis that resveratrol acts through PKC is of special interest because it is believed that nonamyloidogenic processing of amyloid precursor protein (APP) also acts through activation of PKC. Fourth, some hypotheses of Alzheimer's Disease involve oxidation via enhanced brain concentrations of heavy metals. Respecting resveratrol, it has been reported that resveratrol is a highly potent chelator of copper. Belguendonz, Fifth, Anekonda, Sixth, resveratrol is a well known anti-oxidant, and 5-25 uM resveratrol has displayed an ability to protect cultured hippocampal cells against nitric oxide related neurotoxicity. Bastianetto, The bioavailability of resveratrol has been well-studied. Since resveratrol appears to be highly susceptible to glucuronidation in the intestine and liver, it has been concluded that the oral bioavailability of resveratrol is “about zero”. Wenzel, Nonetheless, it appears that when resveratrol reaches the brain, it has a fairly significant residence time. El-Mohsen, Trans-resveratrol has a molecular weight of about 228, and is very lipophilic (having an octanol-water partition coefficient Log P of about 3.14). However, its solubility in water is very low (<0.01 mol/L). Thus, the prodrug rationale for trans-resveratrol appears warranted. The teachings of all patents, published applications and references cited herein are incorporated by reference in their entirety. While this invention has been particularly shown and described with references to example embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims. The present invention is directed to a pharmaceutical composition comprising: 1. A pharmaceutical composition comprising:RELATED APPLICATION(S)
BACKGROUND OF THE INVENTION
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION OF THE INVENTION
Intranasal 0.2 12 48 Intravenous 8.0 4 16 Oral 16 3 12
Therefore, if curcumin enters the brain in molar amounts similar to carbamazepine (as is reasonably expected), then the resulting concentrations may be sufficient to both completely prevent toxic oligomer formation and effect Aβ metal binding. If even higher dosages of curcumin are used above 0.2 mg/kg, then the resultant brain tissue concentration would be expected to be even higher.
Delivery Through Anterior Nares
Helium
Curcumin Prodrugs
Desirable Prodrug Qualities
Solubility
dexanabinol 2-7 ~50 (a) d-χ-tocopherol — ~25 (b) 17β-estradiol 0.008 0.8-20 (c) testosterone 0.01 >100 (d) menahydroquinone — ~25 (e) phenol (+L-dopa) — 5 (f) (a) Pop, (b) Takata, (c) Al-Ghananeem, (d) Hussain, (c) Takata, (f) Kao,
It further appears that pH has a great influence upon the solubility of nitrogen-containing esters of phenols. The influence of pH upon the solubility of nitrogen-containing esters of phenols as reported in the literature is presented below:
Propofol 0.064 4.67 (a) 0.735 6.920 (a) 0.213 0.35 (a) Acyclovir 3 300 (b) (a) Trapani. (b) Bundgaard, Stability
Conversion Rate
Dexanabinol 0-26 (a) Phenol (+L-dopa) 0.36 (b) Acyclovir 0.8 (c) Estradiol 1-2 (d) Propofol 24 hrs (e) Menahydroquinone 13 (f) (a) PopJ. (b) Kao. (c) Bundgaard. (d) Al-Ghananeem, (e) Trapani. (f) Takata. How to Make Prodrugs
Brain Levels
Dual Phase Composition
Enzyme Inhibition by Curcumin
Absorption Enhancers
Cooling
Increasing Solubility
Other Curcumin Analogs
Preferred Analogues
curcumin 7.0 +/− 1.1 10.0 +/− 0.9 31 1.0 +/− 0.3 2.0 +/− 0.4 32 4.0 +/− 0.5 5.0 +/− 0.5 33 2.0 +/− 0.6 3.5 +/− 0.7 34 0.5 +/− 0.2 1.0 +/− 0.3 aED50 represents the sample concentration that is required to achieve 50% cell viability. Curcumin 7.1 +/− 0.3 6.8 +/− 0.4 Demethoxycurcumin 4.7 +/− 0.1 4.7 +/− 0.3 Bisdemethoxycurcumin 3.5 +/− 0.2 3.0 +/− 0.3 Other Diseases
Other Polyphenolic Prodrugs
Resveratrol
Hybrids

















