REUSABLE HOMOGENEOUS COBALT PYRIDINE DIIMINE CATALYSTS FOR DEHYDROGENATIVE SILYLATION AND TANDEM DEHYDROGENATIVE-SILYLATION-HYDROGENATION
The present application claims priority to U.S. Provisional Patent Application No. 61/819,761 filed on May 6, 2013, which is incorporated by reference herein in its entirety. This application also claims priority as a continuation-in-part application of U.S. application Ser. No. 13/966,568 filed on Aug. 14, 2013, which claims the benefit of U.S. Provisional Patent Application No. 61/819,753 filed on May 6, 2013 and U.S. Provisional Application No. 61/683,882 filed on Aug. 16, 2012, each of which is incorporated by reference herein in its entirety. This invention relates generally to transition metal-containing compounds, more specifically to cobalt complexes containing pyridine di-imine ligands and their utility as efficient and reusable catalysts for dehydrogenative silylation and tandem dehydrogenative-silylation-hydrogenation. Hydrosilylation chemistry, typically involving a reaction between a silyl hydride and an unsaturated organic group, is the basis for synthetic routes to produce commercial silicone-based products like silicone surfactants, silicone fluids and silanes as well as many addition cured products like sealants, adhesives, and silicone-based coating products. See, for example, US Patent Application Publication 2011/0009573A1 to Delis et al. Typical hydrosilylation reactions use precious metal catalysts to catalyze the addition of a silyl-hydride (Si—H) to an unsaturated group, such as an olefin. In these reactions, the resulting product is a silyl-substituted, saturated compound. In most of these cases, the addition of the silyl group proceeds in an anti-Markovnikov manner, i.e., to the less substituted carbon atom of the unsaturated group. Most precious metal catalyzed hydrosilylations only work well with terminally unsaturated olefins, as internal unsaturations are generally non-reactive or only poorly reactive. There are currently only limited methods for the general hydrosilylation of olefins where after the addition of the Si—H group there still remains an unsaturation in the original substrate. This reaction, termed a dehydrogenative silylation, has potential uses in the synthesis of new silicone materials, such as silanes, silicone fluids, crosslinked silicone elastomers, and silylated or silicone-crosslinked organic polymers such as polyolefins, unsaturated polyesters, and the like. Various precious metal complex catalysts are known in the art. For example, U.S. Pat. No. 3,775,452 discloses a platinum complex containing unsaturated siloxanes as ligands. This type of catalyst is known as Karstedt's catalyst. Other exemplary platinum-based hydrosilylation catalysts that have been described in the literature include Ashby's catalyst as disclosed in U.S. Pat. No. 3,159,601, Lamoreaux's catalyst as disclosed in U.S. Pat. No. 3,220,972, and Speier's catalyst as disclosed in Speier, J. L, Webster J. A. and Barnes G. H., J. Am. Chem. Soc. 79, 974 (1957). There are examples of the use of Fe(CO)5to promote limited hydrosilylations and dehydrogenative silylations. (See Nesmeyanov, A. N.; Freidlina, R. Kh.; Chukovskaya, E. C.; Petrova, R. G.; Belyaysky, A. B. A rhodium complex was found to give low to moderate yields of allyl-silanes and vinyl silanes. (Doyle, M. P.; Devora G. A.; Nevadov, A. O.; High, K. G. A palladium-catalyzed silyl-Heck reaction was recently reported to result in the formation of allyl-silanes and vinyl silanes (McAtee J R, et al., U.S. Pat. No. 5,955,555 discloses the synthesis of certain iron or cobalt pyridine di-imine (PDI) dianion complexes. The preferred anions are chloride, bromide and tetrafluoroborate. U.S. Pat. No. 7,442,819 discloses iron and cobalt complexes of certain tricyclic ligands containing a “pyridine” ring substituted with two imino groups. U.S. Pat. Nos. 6,461,994, 6,657,026 and 7,148,304 disclose several catalyst systems containing certain transitional metal-PDI complexes. U.S. Pat. No. 7,053,020 discloses a catalyst system containing, inter alia, one or more bisarylimino pyridine iron or cobalt catalyst. However, the catalysts and catalyst systems disclosed in these references are described for use in the context of olefin polymerizations and/or oligomerisations, not in the context of dehydrogenative silylation reactions. Many industrially important homogeneous metal catalysts suffer from the drawback that following consumption of the first charge of substrates, the catalytically active metal is lost to aggregation and agglomeration whereby its catalytic properties are substantially diminished via colloid formation or precipitation. This is a costly loss, especially for noble metals such as Pt. Heterogeneous catalysts are used to alleviate this problem but have limited use for polymers and also have lower activity than homogeneous counterparts. For example, it is well-known in the art and in the hydrosilylation industry that the two primary homogeneous catalysts, Speier's and Karstedt's often lose activity after catalyzing a charge of olefin and silyl- or siloxyhydride reaction. Further, many multistep organic transformations use different catalysts to catalyze separate steps. These catalysts must be tolerant of many species in the mixture, including catalysts used in previous steps, functional groups and by-products. If the number of catalysts could be reduced, and/or if one charge of the homogeneous catalyst could be re-used for multiple charges of substrates via appropriate process design, then cost advantages would be significant. Thus, if products produced via dehydrogenative silylation using one pre-catalyst could also be hydrogenated to saturated products using the active catalyst already present in the mixture, efficiency advantages would be significant, in addition to the flexibility to generate either unsaturated or saturated product classes from one substrate mixture for broader scope of commercial utility. In one aspect, the present invention is directed to a process for producing a dehydrogenatively silylated product comprising reacting a mixture comprising (a) an unsaturated compound containing at least one unsaturated functional group, (b) a silyl hydride containing at least one silylhydride functional group, and (c) a catalyst, optionally in the presence of a solvent, in order to produce the dehydrogenatively silylated product, wherein the catalyst is a complex of the Formula (I) or an adduct thereof; wherein each occurrence of R1, R2, R3, R4, and R5is independently hydrogen, C1-C18 alkyl, a C1-C18 substituted alkyl, an aryl, a substituted aryl, or an inert substituent, wherein one or more of R1-R5, other than hydrogen, optionally contain at least one heteroatom; each occurrence of R6and R7is independently C1-C18 alkyl, C1-C18 substituted alkyl, aryl or substituted aryl, wherein R6and R7optionally contain at least one heteroatom; optionally any two of R1-R7vicinal to one another, R1-R2, and/or R4-R5taken together may form a ring being a substituted or unsubstituted, saturated or unsaturated cyclic structure, with the proviso that R1-R7and R8-R6are not taken to form a terpyridine ring; and L is hydroxyl, or a C1-C18 alkyl, C1-C18 substituted alkyl, aryl, or substituted aryl group, wherein L optionally contains at least one heteroatom. In another aspect, the present invention is directed to a compound of Formula (II) wherein each occurrence of R1, R2, R3, R4, and R5is independently hydrogen, C1-C18 alkyl, a C1-C18 substituted alkyl, an aryl, a substituted aryl, or an inert substituent, wherein one or more of R1-R5, other than hydrogen, optionally contain at least one heteroatom; each occurrence of R6and R7is independently C1-C18 alkyl, C1-C18 substituted alkyl, aryl or substituted aryl, wherein R6and R7optionally contain at least one heteroatom; optionally any two of R1-R7vicinal to one another, R1-R2, and/or R4-R5taken together may form a ring being a substituted or unsubstituted, saturated or unsaturated cyclic structure, with the proviso that R1-R7and R8-R6are not taken to form a terpyridine ring. In another aspect, the present invention is directed to a process for producing a crosslinked material, comprising reacting a reaction mixture comprising (a) a silyl-hydride containing polymer, (b) a mono-unsaturated olefin, or an unsaturated polyolefin or mixtures thereof and (c) a catalyst, optionally in the presence of a solvent, in order to produce the crosslinked material, wherein the catalyst is a complex of the Formula (I) or an adduct thereof; wherein each occurrence of R1, R2, R3, R4, and R5is independently hydrogen, C1-C18 alkyl, a C1-C18 substituted alkyl, an aryl, a substituted aryl, or an inert substituent, wherein one or more of R1-R5, other than hydrogen, optionally contain at least one heteroatom; each occurrence of R6and R7is independently C1-C18 alkyl, C1-C18 substituted alkyl, aryl or substituted aryl, wherein R6and R7optionally contain at least one heteroatom; optionally any two of R1-R7vicinal to one another, R1-R2, and/or R4-R5taken together may form a ring being a substituted or unsubstituted, saturated or unsaturated cyclic structure, with the proviso that R1-R7and R8-R6are not taken to form a terpyridine ring; and L is hydroxyl, or a C1-C18 alkyl, C1-C18 substituted alkyl, aryl, or substituted aryl group, wherein L optionally contains at least one heteroatom. In yet another aspect, this invention relates to the reusability of a single charge of catalyst for multiple and sequential charges of the unsaturated substrate and SiH compound for dehydrogenative silylation or for tandem hydrogenation of a dehydrogenatively silylated product formed, without the need for additional charges of catalyst. The invention relates to cobalt complexes containing pyridine di-imine ligands and their use as efficient dehydrogenative silylation and crosslinking catalysts. In one embodiment of the invention, there is provided a complex of the Formulae (I) or (II) as illustrated above, wherein Co in any valence or oxidation state (e.g., +1, +2, or +3) for use in said dehydrogenative silylation and crosslinking reactions. In particular, according to one embodiment of the invention, a class of cobalt pyridine di-imine complexes has been found that are capable of dehydrogenative silylation reactions. It has now been discovered that less expensive transition metal catalysts based on cobalt-diimine complexes can be reused to catalyze a fresh charge of substrates, or can be re-used to catalyze tandem dehydrogenative-silylation-hydrogentation in the same vessel without the need to isolate or purify the intermediate dehydrogenative silylation product. The stability of the catalysts of the present invention can allow for more efficient industrial silylation processes at lower cost. By “alkyl” herein is meant to include straight, branched and cyclic alkyl groups. Specific and non-limiting examples of alkyls include, but are not limited to, methyl, ethyl, propyl and isobutyl. By “substituted alkyl” herein is meant an alkyl group that contains one or more substituent groups that are inert under the process conditions to which the compound containing these groups is subjected. The substituent groups also do not substantially or deleteriously interfere with the process. By “aryl” herein is meant a non-limiting group of any aromatic hydrocarbon from which one hydrogen atom has been removed. An aryl may have one or more aromatic rings, which may be fused, connected by single bonds or other groups. Specific and non-limiting examples of aryls include, but are not limited to, tolyl, xylyl, phenyl and naphthalenyl. By “substituted aryl” herein is meant an aromatic group substituted as set forth in the above definition of “substituted alkyl.” Similar to an aryl, a substituted aryl may have one or more aromatic rings, which may be fused, connected by single bonds or other groups; however, when the substituted aryl has a heteroaromatic ring, the free valence in the substituted aryl group can be to a heteroatom (such as nitrogen) of the heteroaromatic ring instead of a carbon. If not otherwise stated, it is preferred that substituted aryl groups herein contain 1 to about 30 carbon atoms. By “alkenyl” herein is meant any straight, branched, or cyclic alkenyl group containing one or more carbon-carbon double bonds, where the point of substitution can be either a carbon-carbon double bond or elsewhere in the group. Specific and non-limiting examples of alkenyls include, but are not limited to, vinyl, propenyl, allyl, methallyl, ethylidenyl norbornane. By “alkynyl” is meant any straight, branched, or cyclic alkynyl group containing one or more carbon-carbon triple bonds, where the point of substitution can be either at a carbon-carbon triple bond or elsewhere in the group. By “unsaturated” is meant one or more double or triple bonds. In a preferred embodiment, it refers to carbon-carbon double or triple bonds. By “inert substituent” herein is meant a group other than hydrocarbyl or substituted hydrocarbyl, which is inert under the process conditions to which the compound containing the group is subjected. The inert substituents also do not substantially or deleteriously interfere with any process described herein that the compound in which they are present may take part in. Examples of inert substituents include halo (fluoro, chloro, bromo, and iodo), ether such as —OR8wherein R8is hydrocarbyl or substituted hydrocarbyl. By “hetero atoms” herein is meant any of the Group 13-17 elements except carbon, and can include for example oxygen, nitrogen, silicon, sulfur, phosphorus, fluorine, chlorine, bromine, and iodine. By “olefin” herein is meant any aliphatic or aromatic hydrocarbon also containing one or more aliphatic carbon-carbon unsaturations. Such olefins may be linear, branched or cyclic and may be substituted with heteroatoms as described above, with the proviso that the substituents do not interfere substantially or deleteriously with the course of the desired reaction to produce the dehydrogenatively silylated product. In one embodiment, the unsaturated compound useful as a reactant in the dehydrogenative silylation is an organic compound having the structural group, R2C═C—CHR, where R is an organic fragment or hydrogen. As used herein, the term room temperature can refer to a temperature of from about 23° C. to about 30° C. As indicated above, the present invention is directed to a process for producing a dehydrogenatively silylated product comprising reacting a mixture comprising (a) an unsaturated compound containing at least one unsaturated functional group, (b) a silyl hydride containing at least one silylhydride functional group, and (c) a catalyst, optionally in the presence of a solvent, in order to produce the dehydrogenative silylated product, wherein the catalyst is a complex of the Formula (I) or an adduct thereof; wherein
L is hydroxyl, or a C1-C18 alkyl, C1-C18 substituted alkyl, aryl, or substituted aryl group, wherein L optionally contains at least one heteroatom. The catalyst utilized in the process of the present invention is illustrated in Formula (I) above wherein Co is in any valence or oxidation state (e.g., +1, +2, or +3). In one embodiment, at least one of R6and R7is One particularly preferred embodiment of the catalyst of the process of the invention is the compound of Formula (II) wherein each occurrence of R1, R2, R3, R4, and R5is independently hydrogen, C1-C18 alkyl, a C1-C18 substituted alkyl, an aryl, a substituted aryl, or an inert substituent, wherein one or more of R1-R5, other than hydrogen, optionally contain at least one heteroatom; each occurrence of R6and R7is independently C1-C18 alkyl, C1-C18 substituted alkyl, aryl or substituted aryl, wherein R6and R7optionally contain at least one heteroatom; optionally any two of R1-R7vicinal to one another, R1-R2, and/or R4-R5taken together may form a ring being a substituted or unsubstituted, saturated or unsaturated cyclic structure, with the proviso that R1-R7and R8-R6are not taken to form a terpyridine ring. Various methods can be used to prepare the catalyst utilized in the process of the present invention. In one embodiment, the catalyst is generated in-situ by contacting a catalyst precursor with an activator in the presence of a liquid medium containing at least one component selected from the group consisting of a solvent, the silyl hydride, the compound containing at least one unsaturated group, and combinations thereof, wherein the catalyst precursor is represented by structural Formula (III) wherein each occurrence of R1, R2, R3, R4, and R5is independently hydrogen, C1-C18 alkyl, a C1-C18 substituted alkyl, an aryl, a substituted aryl, or an inert substituent, wherein one or more of R1-R5, other than hydrogen, optionally contain at least one heteroatom; each occurrence of R6and R7is independently C1-C18 alkyl, C1-C18 substituted alkyl, aryl or substituted aryl, wherein R6and R7optionally contain at least one heteroatom; optionally any two of R1-R7vicinal to one another, R1-R2, and/or R4-R5taken together may form a ring being a substituted or unsubstituted, saturated or unsaturated cyclic structure, with the proviso that R1-R7and R8-R6are not taken to form a terpyridine ring; and X is an anion selected from the group consisting of F−, Cl−, Br−, I−, CF3R14SO3−or R15COO−, wherein R14is a covalent bond or a C1-C6 alkylene group, and R15is a C1-C10 substituted or unsubstituted hydrocarbyl group. The activator may be a reducing agent or an alkylating agent such as NaHBEt3, CH3Li, DIBAL-H, LiHMDS, a Grignard reagent as well as combinations thereof. Preferably, the reducing agent has a reduction potential more negative than −0.6 v (versus ferrocene, as described in Chem. Rev. 1996, 96, 877-910. A larger negative number represents a larger reduction potential). Preferably, the reduction potential ranges from −0.76 V to −2.71V. The most preferred reducing agents have a reduction potential in the range of −2.8 to −3.1 V. The methods to prepare the catalysts are known to a person skilled in the field. For example, the catalysts can be prepared by reacting a PDI ligand with a metal halide, such as FeBr2as disclosed in US Patent Application Publication 2011/0009573A1. Typically, the PDI ligands are produced through condensation of an appropriate amine or aniline with 2,6-diacetylpyridine and its derivatives. If desired, the PDI ligands can be further modified by known aromatic substitution chemistry. In the process of the invention, the catalysts can be unsupported or immobilized on a support material, for example, carbon, silica, alumina, MgCl2or zirconia, or on a polymer or prepolymer, for example polyethylene, polypropylene, polystyrene, poly(aminostyrene), or sulfonated polystyrene. The metal complexes can also be supported on dendrimers. In some embodiments, for the purposes of attaching the metal complexes of the invention to a support, it is desirable that at least one of R1to R7of the metal complexes has a functional group that is effective to covalently bond to the support. Exemplary functional groups include but are not limited to SH, COOH, NH2or OH groups. In one embodiment, silica supported catalyst may be prepared via Ring-Opening Metathesis Polymerization (ROMP) technology as discussed in the literature, for example Macromol. Chem. Phys. 2001, 202, No. 5, pages 645-653; Journal of Chromatography A, 1025 (2003) 65-71. One way to immobilize catalysts on the surface of dendrimers is by the reaction of S1-C1 bonded parent dendrimers and functionalized PDI in the presence of a base is as illustrated by Kim et al. in Journal of Organometallic Chemistry 673 (2003) 77-83. The unsaturated compound containing at least one unsaturated functional group utilized in the process of the invention can be a compound having one, two, three, or more unsaturations. Examples of such unsaturated compounds include an olefin, a cycloalkene, unsaturated polyethers such as an alkyl-capped allyl polyether, a vinyl-functional alkyl-capped allyl or methallyl polyether, an alkyl-capped terminally unsaturated amine, an alkyne, terminally unsaturated acrylate or methacrylate, unsaturated aryl ether, vinyl-functionalized polymer or oligomer, vinyl-functionalized silane, vinyl-functionalized silicone, unsaturated fatty acids, unsaturated esters, and combinations thereof. Unsaturated polyethers suitable for the dehydrogenative silylation reaction preferably are polyoxyalkylenes having the general formula: wherein R16denotes an unsaturated organic group containing from 2 to 10 carbon atoms such as allyl, methylallyl, propargyl or 3-pentynyl. When the unsaturation is olefinic, it is desirably terminal to facilitate smooth dehydrogenative silylation. However, when the unsaturation is a triple bond, it may be internal. R17is hydrogen, vinyl, or a polyether capping group of from 1 to 8 carbon atoms such as the alkyl groups: CH3, n-C4H9, t-C4H9or i-C8H17, the acyl groups such as CH3COO, t-C4H9COO, the beta-ketoester group such as CH3C(O)CH2C(O)O, or a trialkylsilyl group. R18and R19are monovalent hydrocarbon groups such as the C1-C20 alkyl groups, for example, methyl, ethyl, isopropyl, 2-ethylhexyl, dodecyl and stearyl, or the aryl groups, for example, phenyl and naphthyl, or the alkaryl or aralkyl groups, for example, benzyl, phenylethyl and nonylphenyl, or the cycloalkyl groups, for example, cyclohexyl and cyclooctyl. R19may also be hydrogen. Methyl is the most preferred R18and R19groups. Each occurrence of z is 0 to 100 inclusive and each occurrence of w is 0 to 100 inclusive. Preferred values of z and w are 1 to 50 inclusive. Specific examples of preferred unsaturated compounds useful in the process of the present invention include N,N-dimethylallyl amine, allyloxy-substituted polyethers, propylene, 1-butene, 1-hexene, styrene, vinylnorbornane, 5-vinyl-norbornene, long-chain, linear alpha olefins such as 1-octadecene, internal olefins such as cyclopentene, cyclohexene, norbornene, and 3-hexene, branched olefins such as isobutylene and 3-methyl-1-octene, unsaturated polyolefins, e.g., polybutadiene, polyisoprene and EPDM, unsaturated acids or esters such as oleic acid, linoleic acid and methyl oleate, a vinyl siloxane of the Formula (VII), and combinations thereof, wherein Formula (VII) is wherein each occurrence of R20is independently a C1-C18 alkyl, C1-C18 substituted alkyl, vinyl, C3-C18 terminal alkenyl, aryl, or a substituted aryl, and n is greater than or equal to zero. As defined herein, “internal olefin” means an olefin group not located at a chain or branch terminus, such as 3-hexene. The silyl hydride employed in the reaction is not particularly limited. It can be any compound selected from the group consisting of RaSiR4-a, (RO)aSiR4-a, QuTvTpHDwDHxMHyMz, and combinations thereof. The silyl hydride can contain linear, branched or cyclic structures, or combinations thereof. As used herein, each occurrence of R is independently C1-C18 alkyl, C1-C18 substituted alkyl, wherein R optionally contains at least one heteroatom, each occurrence of a independently has a value from 1 to 3, each of p, u, v, y and z independently has a value from 0 to 20, w and x are from 0 to 500, provided that p+x+y equals 1 to 500 and the valences of the all the elements in the silyl hydride are satisfied. Preferably, p, u, v, y, and z are from 0 to 10, w and x are from 0 to 100, wherein p+x+y equals 1 to 100. As used herein, an “M” group represents a monofunctional group of formula R′3SiO1/2, a “D” group represents a difunctional group of formula R′2SiO2/2, a “T” group represents a trifunctional group of formula R′SiO3/2, and a “Q” group represents a tetrafunctional group of formula SiO4/2, an “MH” group represents HR′2SiO1/2, a “TH” represents HSiO3/2, and a “DH” group represents R′HSiO2/2. Each occurrence of R′ is independently C1-C18 alkyl, C1-C18 substituted alkyl, wherein R′ optionally contains at least one heteroatom. Examples of silyl hydrides containing at least one silylhydride functional group include RaSiR4-a, (RO)aSiH4-a, HSiRa(OR)3-a, R3Si(CH2)f(SiR20)kSiR2H, (RO)3Si(CH2)f(SiR2O)kSiR2H, QuTvTpHDwDHxMHyMz, and combinations thereof, wherein Q is SiO4/2, T is R′SiO3/2, THis HSiO3/2, D is R′2SiO2/2, DHis R′HSiO2/2, MHis HR′2SiO1/2, MHis R′3SiO1/2, each occurrence of R and R′ is independently C1-C18 alkyl, C1-C18 substituted alkyl, aryl, or substituted aryl, wherein R and R′ optionally contain at least one heteroatom, each occurrence of a independently has a value from 1 to 3, f has a value of 1 to 8, k has a value of 1 to 11, p is from 0 to 20, u is from 0 to 20, v is from 0 to 20, w is from 0 to 1000, x is from 0 to 1000, y is from 0 to 20, and is from 0 to 20, provided that p+x+y equals 1 to 3000, and the valences of the all the elements in the silyl hydride are satisfied. In the above formulations, p, u, v, y, and z may also be from 0 to 10, w and x may be from 0 to 100, wherein p+x+y equals 1 to 100. In one embodiment, the silyl hydride has one of the following structures: wherein each occurrence of R21, R22, R23, R24, and R25is independently a C1-C18 alkyl, C1-C18 substituted alkyl, aryl, or substituted aryl, R26is hydrogen, a C1-C18 alkyl, C1-C18 substituted alkyl, aryl, or substituted aryl, x and w are independently greater than or equal to 0 (x is at least equal to 1 for Formula IX)), and a and b are integers from 0 to 3 provided that a+b=3. The catalysts of the invention are useful for catalyzing dehydrogenative silylation reactions. For example, when an appropriate silyl hydride, such as triethoxysilane, triethyl-silane, MDHM, or a silyl-hydride functional polysiloxane (SL 6020 from Momentive Performance Materials, Inc., for example) are reacted with a mono-unsaturated hydrocarbon, such as octene, dodecene, butene, etc, in the presence of the Co catalyst, the resulting product is a terminally-silyl-substituted alkene, where the unsaturation is in a beta position relative to the silyl group. A by-product of this reaction is the hydrogenated olefin. When the reaction is performed with a molar ratio of silane to olefin of 0.5:1, the resulting products are formed in a 1:1 ratio. An example is shown in the reaction scheme below. The reactions are typically facile at ambient temperatures and pressures, but can also be run at lower or higher temperatures (0 to 300° C.) or pressures (ambient to 3000 psi). A range of unsaturated compounds can be used in this reaction, such as N,N-dimethylallyl amine, allyloxy-substituted polyethers, cyclohexene, and linear alpha olefins (i.e., 1-butene, 1-octene, 1-dodecene, etc.). When an alkene containing internal double bonds is used, the catalyst is capable of first isomerizing the olefin, with the resulting reaction product being the same as when the terminally-unsaturated alkene is used. If the reaction is run with a 1:1 silyl-hydride to olefin ratio, the reaction can give a bis-substituted silane, where the silyl groups are in the terminal positions of the compound, and there is still an unsaturated group present in the product. If the catalyst is first used to prepare a terminally-substituted silyl-alkene, a second silane may be added to produce an asymmetrically substituted bis-silyl alkene. The resulting silane is terminally substituted at both ends. This bis-silane can be a useful starting material for the production of alpha,omega-substituted alkanes or alkenes, such as diols and other compounds easily derived from the silylated product. Long chain alpha,omega-substituted alkanes or alkenes are not easily prepared today, and could have a variety of uses for preparing unique polymers (such as polyurethanes) or other useful compounds. Because the double bond of an alkene is preserved during the dehydrogenative silylation reaction employing these cobalt catalysts, a singly-unsaturated olefin may be used to crosslink silyl-hydride containing polymers. For example, a silyl-hydride polysiloxane, such as SL6020 (MD15DH30M), may be reacted with 1-octene in the presence of the cobalt catalysts of this invention to produce a crosslinked, elastomeric material. A variety of new materials can be produced by this method by varying the hydride polymer and length of the olefin used for the crosslinking. Accordingly, the catalysts used in the process of the invention have utility in the preparation of useful silicone products, including, but not limited to, coatings, for example release coatings, room temperature vulcanizates, sealants, adhesives, products for agricultural and personal care applications, and silicone surfactants for stabilizing polyurethane foams. Additionally, this invention also provides for tandem hydrogenation of the unsaturated product to saturated species simply via introducing hydrogen gas into the reaction vessel following the dehydrogenative silylation reaction. Furthermore, the dehydrogenative silylation may be carried out on any of a number of unsaturated polyolefins, such as polybutadiene, polyisoprene or EPDM-type copolymers, to either functionalize these commercially important polymers with silyl groups or crosslink them via the use of hydrosiloxanes containing multiple SiH groups at lower temperatures than conventionally used. This offers the potential to extend the application of these already valuable materials in newer commercially useful areas. In one embodiment, the catalysts are useful for dehydrogenative silylation of a composition containing a silyl hydride and a compound having at least one unsaturated group. The process includes contacting the composition with a metal complex of the catalyst, either supported or unsupported, to cause the silyl hydride to react with the compound having at least one unsaturated group to produce a dehydrogenative silylation product, which may contain the metal complex catalyst. The dehydrogenative silylation reaction can be conducted optionally in the presence of a solvent. If desired, when the dehydrogenative silylation reaction is completed, the metal complex can be removed from the reaction product by magnetic separation and/or filtration. These reactions may be performed neat, or diluted in an appropriate solvent. Typical solvents include benzene, toluene, diethyl ether, etc. It is preferred that the reaction is performed under an inert atmosphere. The catalyst can be generated in-situ by reduction using an appropriate reducing agent. The catalyst complexes of the invention are efficient and selective in catalyzing dehydrogenative silylation reactions. For example, when the catalyst complexes of the invention are employed in the dehydrogenative silylation of an alkyl-capped allyl polyether or a compound containing an unsaturated group, the reaction products are essentially free of unreacted alkyl-capped allyl polyether and its isomerization products. In one embodiment, the reaction products do not contain the unreacted alkyl-capped allyl polyether and its isomerization products. Further, when the compound containing an unsaturated group is an unsaturated amine compound, the dehydrogenatively silylated product is essentially free of internal addition products and isomerization products of the unsaturated amine compound. As used herein, “essentially free” is meant no more than 10 wt %, preferably 5 wt % based on the total weight of the hydrosilylation product. “Essentially free of internal addition products” is meant that silicon is added to the terminal carbon. In addition to the above catalytic processes, it has been discovered that the catalysts of the present invention offer two additional advantages. First, the catalysts of the present invention are not destroyed during the catalytic processes outlined above. The stability of these catalysts allows them to be used multiple times without loss of catalytic activity. For example, in one embodiment, it is possible to use the catalysts of the present invention to perform dehydrogenative silylation of a composition containing a silyl hydride and a compound having at least one unsaturated group as described above, and then subsequently add fresh reactants to the reaction vessel and continue the dehydrogenative silylation reaction using the same catalyst. Second, the catalysts of the present invention can be re-used to catalyze tandem dehydrogenative-silylation-hydrogentation in the same vessel without the need to isolate or purify the intermediate dehydrogenative silylation product. For example, in one embodiment, it is possible to use the catalysts of the present invention to perform dehydrogenative silylation of a composition containing a silyl hydride and a compound having at least one unsaturated group as described above, and then subsequently add hydrogen gas directly to the reaction vessel to effect a hydrogenation reaction using the same catalyst. This allows the flexibility to generate a dehydrogenatively silylated product or a saturated product in the same vessel without the need to transfer to another vessel or use another catalyst. The catalyst loading can be chosen as desired for a particular purpose or intended application. In one embodiment, the catalyst is present in an amount of from about 0.1 mol % to about 5 mol %; from about 0.5 mol % to about 3 mol %; even from about 1 mol % to about 5 mol %. Here as elsewhere in the specification and claims, numerical values can be combined to form new and non-disclosed or non-specified ranges. The catalyst loadings expressed as mol % of the cobalt complex are based on the moles of cobalt complex in relation to the moles of unsaturated compound and can be evaluated expressed by (molCo complex/mololefin×100). The following examples are intended to illustrate, but in no way limit the scope of the present invention. All parts and percentages are by weight and all temperatures are in degrees Celsius unless explicitly stated otherwise. All the publications and the US patents referred to in the application are hereby incorporated by reference in their entireties. All air- and moisture-sensitive manipulations were carried out using standard vacuum line, Schlenk, and cannula techniques or in an MBraun inert atmosphere dry box containing an atmosphere of purified nitrogen. Solvents for air- and moisture-sensitive manipulations were initially dried and deoxygenated using literature procedures (Pangborn, A B et al., to Organometallics 15:1518 (1996)). Chloroform-d and benzene-d6were purchased from Cambridge Isotope Laboratories. The complexes (iPrPDI)CoN2, (Bowman A C et al., JACS 132:1676 (2010)), (EtPDI)CoN2, (Bowman A C et al., JACS 132:1676 (2010)), (iPrPDI)CoN2, (Bowman A C et al., JACS 132:1676 (2010)), (MesPDI)CoCH3(Humphries, MJ Organometallics 24:2039.2 (2005)), (MesPDI)CoCl, (Humphries, MJ Organometallics 24:2039.2 (2005)) [(MesPDI)CoN2][MeB(C6F5)3] (Gibson, V C et al., J. Chem. Comm. 2252 (2001)), and [(MesPDI)CoCH3][BArF24] (Atienza, C C H et al., Angew. Chem. Int. Ed. 50:8143 (2011)) were prepared according to reported literature procedures. Bis(trimethylsiloxy)methylsilane (MDHM), (EtO)3SiH and Et3SiH were acquired from Momentive Performance Materials and were distilled from calcium hydride before use. The substrates, 1-octene (TCI America), tert-butylethylene or TBE (Alfa Aesar), N,N-dimethylallylamine (TCI America) and styrene (Alfa Aesar) were dried on calcium hydride and distilled under reduced pressure before use. 1-Butene (TCI America), allylamine (Alfa Aesar) and allylisocyanate (Alfa Aesar) were dried over 4 Å molecular sieves. SilForce® SL6100 (MviD120Mvi), SilForce® SL6020 (MD15DH30M) and the allyl polyethers were acquired from Momentive Performance Materials and dried under high vacuum for 12 hours before use. 1H NMR spectra were recorded on Inova 400 and 500 spectrometers operating at 399.78, and 500.62 MHz, respectively.13C NMR spectra were recorded on an Inova 500 spectrometer operating at 125.893 MHz. All1H and13C NMR chemical shifts are reported relative to SiMe4using the1H (residual) and13C chemical shifts of the solvent as a secondary standard. The following abbreviations and terms are used: bs—broad singlet; s—singlet; t—triplet; bm—broad multiplet; GC—Gas Chromatography; MS—Mass Spectroscopy; THF—tetrahydrofuran GC analyses were performed using a Shimadzu GC-2010 gas chromatograph equipped with a Shimadzu AOC-20s autosampler and a Shimadzu SHRXI-5MS capillary column (15m×250 μm). The instrument was set to an injection volume of 1 μL, an inlet split ratio of 20:1, and inlet and detector temperatures of 250° C. and 275° C., respectively. UHP-grade helium was used as carrier gas with a flow rate of 1.82 mL/min. The temperature program used for all the analyses is as follows: 60° C., 1 min; 15° C./min to 250° C., 2 min. Catalyst loadings in the following text are reported in mol % of the cobalt complex (molCo complex/mololefin×100). This compound was prepared in a manner similar to the synthesis of (iPrPDI)CoN2(Bowman, supra) with 0.500 g (0.948 mmol) of (MesPDI)CoCl2, 0.110 g (4.75 mmol, 5.05 equiv) of sodium and 22.0 g (108 mmol, 114 equiv) of mercury. Recrystallization from 3:1 pentane/toluene yielded 0.321 g (70%) of very dark teal crystals identified as (MesPDI)CoN2. Analysis for C27H31N5Co: Calc. C, 66.93; H, 6.45; N, 14.45. Found. C, 66.65; H, 6.88; N, 14.59.1H NMR (benzene-d6): 3.58 (15 Hz), 4.92 (460 Hz). IR (benzene): υNN=2089 cm−1. A 20 mL scintillation vial was charged with 0.100 g (0.203 mmol) of (MesPDI)CoCl, 0.012 g (0.30 mmol, 1.5 equiv) of NaOH, and approximately 10 mL THF. The reaction was stirred for two days upon which the color of the solution changed from dark pink to red. THF was removed in vacuo and the residue was dissolved in approximately 20 mL toluene. The resulting solution was filtered through Celite and the solvent was removed from the filtrate in vacuo. Recrystallization of the crude product from 3:1 pentane/toluene yielded 0.087 g (90%) of dark pink crystals identified as (MesPDI)CoOH. The compound is dichroic in solution exhibiting a pink color with a green hue. Analysis for C27H32CoN3O: Calc. C, 68.49; H, 6.81; N, 8.87. Found. C, 68.40; H, 7.04; N, 8.77.1H NMR (benzene-d6): δ=0.26 (s, 6H, C(CH3)), 1.07 (s, 1H, CoOH), 2.10 (s, 12H, o-CH3), 2.16 (s, 6H, p-CH3), 6.85 (s, 4H, m-aryl), 7.49 (d, 2H, m-pyridine), 8.78 (t, 1H, p-pyridine).13C {1H} NMR (benzene-d6): δ=19.13 (o-CH3), 19.42 (C(CH3)), 21.20 (p-CH3) 114.74 (p-pyridine), 121.96 (m-pyridine), 129.22 (m-aryl), 130.71 (o-aryl), 134.78 (p-aryl), 149.14 (i-aryl), 153.55 (o-pyridine), 160.78 (C═N). IR (benzene): υOH=3582 cm−1. In a nitrogen-filled drybox, a scintillation vial was charged with 0.100 g (0.891 mmol) of 1-octene and 0.009 mmol (1 mol %) of the cobalt complex (see Table 1 for specific amounts). 0.100 g (0.449 mmol, 0.50 equiv) of MDHM was then added to the mixture and the reaction was stirred at room temperature for one hour/24 hours. The reaction was quenched by exposure to air and the product mixture was analyzed by gas chromatography and NMR spectroscopy. In a nitrogen-filled drybox, a scintillation vial was charged with 0.100 g (0.891 mmol) of 1-octene and 0.009 mmol (1 mol %) of the cobalt complex [0.004 g (MesPDI)CoCH3or 0.004 g (MesPDI)CoN2]. 0.449 mmol (0.5 equiv) of the silane (0.100 g MDHM, 0.075 g (EtO)3SiH or 0.052 g Et3SiH) was then added to the mixture and the reaction was stirred at room temperature for the desired amount of time. The reaction was quenched by exposure to air and the product mixture was analyzed by gas chromatography and NMR spectroscopy. Results are shown in Table 2 A 20 mL scintillation vial was charged with 0.100 g (0.891 mmol) of 1-octene, 0.100 g (0.449 mmol) MDHM and 0.005 g (0.009 mmol, 1 mol %) of (MesPDI)CoCl2. 0.019 mmol (2 mol %) of the activator (0.019 mL of 1.0 M NaHBEt3in toluene; 0.012 mL of 1.6 M CH3Li in diethyl ether; 0.019 mL of 1.0 M DIBAL-H in toluene; 0.003 g LiHMDS) was then added to the mixture and the reaction was stirred for 1 hour at room temperature. The reaction was quenched by exposure to air followed by analysis of the mixture by GC. In all cases, full conversion of 1-octene to an approximately 1:1 mixture of 1-bis(trimethylsiloxy)methylsilyl-2-octene and octane was observed. The reactions were carried out in a manner similar to silylation of 1-octene using 0.100 g (0.891 mmol) of cis- or trans-4-octene and 0.009 mmol (1 mol %) of the cobalt complex (0.004 g of (MesPDI)CoCH3), and 0.629 mmol (0.5 equiv) of the silane (0.100 g MDHM, 0.075 g (EtO)3SiH or 0.052 g Et3SiH). The reactions were stirred at room temperature for 24 hours and then quenched by exposure to air and the product mixtures were analyzed by gas chromatography and NMR spectroscopy. Results are shown in Table 3. In a nitrogen-filled drybox, a thick-walled glass vessel was charged with 0.200 g (1.78 mmol) of 1-octene and 0.400 g (1.80 mmol) of MDHM. The solution was frozen in the cold well and 0.008 g (0.017 mmol, 1 mol %) of (MesPDI)CoCH3was added on the surface of the frozen solution. The reaction vessel was quickly capped, brought out of the drybox and placed in a Dewar filled with liquid nitrogen to keep the solution frozen. The vessel was degassed and approximately 1 atm of H2was admitted. The solution was thawed and stirred at room temperature for one hour. The reaction was quenched by opening the glass vessel to air. Analysis of the product mixture by GC showed >98% conversion of 1-octene to octane (74%) and 1-bis(trimethylsiloxy)methylsilyloctane (24%). A thick-walled glass vessel was charged with 0.449 mmol of the silane (0.100 g MDHM, 0.075 g (EtO)3SiH or 0.052 g Et3SiH) and 0.004 g (0.009 mmol) of (MesPDI)CoCH3. The mixture was frozen in liquid nitrogen and the reaction vessel was degassed. 0.891 mmol of 1-butene was admitted into the vessel using a calibrated gas bulb. The mixture was thawed and stirred at room temperature for 1 hour. The volatiles were distilled into a J. Young tube containing CDCl3and analyzed by NMR spectroscopy. The remaining residue was exposed to air and analyzed by GC and NMR spectroscopy. Results are shown in Table 4. Characterization of Products: 1H NMR (CDCl3): δ=0.00 and 0.01 (s, 2×3H, (OTMS)2SiCH3), 0.08 and 0.09 (s, 2×18H, OSi(CH3)3), 1.38 and 1.45 (d, 2×2H, SiCH2CH═CH), 1.57 and 1.64 (d, 2×3H, CH═CHCH3), 5.25 to 5.43 (m, 4×1H, CH═CH).13C {1H} NMR (CDCl3): δ=−0.44 and −0.60 ((OTMS)2SiCH3); 1.98 (OSi(CH3)3); 18.27 (CH═CHCH3); 19.19 and 23.71 (SiCH2CH═CH); 122.17, 124.12, 125.34, 126.09 (CH═CH). 1H NMR (CDCl3): δ=1.21 (t, 2×9H, OCH2CH3), 1.55 and 1.60 (d, 2×2H, SiCH2CH═CH), 1.61 and 1.62 (d, 2×3H, CH═CHCH3), 3.81 and 3.82 (q, 2×6H, OCH2CH3), 5.38 to 5.48 (m, 4×1H, CH═CH).13C {1H} NMR (CDCl3): δ=11.84 (SiCH2CH═CH); 18.20 and 18.23 (CH═CHCH3); 18.36 and 18.38 (OCH2CH3); 58.64 and 58.65 (OCH2CH3); 123.33, 123.68, 124.46, 125.31 (CH═CH). This reaction was carried out in a manner similar to the silylation of 1-butene using 0.100 g (0.449 mmol) of MDHM, 0.004 g (0.009 mmol) of (MesPDI)CoCH3and 0.891 mmol of TBE. Analysis of the volatiles by1H NMR spectroscopy showed a 4:1 mixture of unreacted TBE and 2,2-dimethylbutane (33% conversion). Analysis of the silane product by GC and NMR spectroscopy showed only trans-1-bis(trimethylsiloxy)methylsilyl-3,3-dimethyl-1-butene.1H NMR (CDCl3): δ=0.00 (s, 3H, (OTMS)2SiCH3), 0.09 (s, 18H, OSi(CH3)3), 0.99 (s, 9H, C(CH3)3), 5.37 (d, J=19.07, 1H SiCH═CH), 6.13 (d, J=19.07 Hz, 1H, CH═CHC(CH3)3).13C {1H} NMR (CDCl3): δ=0.00 ((OTMS)2SiCH3); 2.01 (OSi(CH3)3); 28.96 (C(CH3)3); 34.91 (C(CH3)3); 121.01 (SiCH═CH); 159.23 (SiCH═CH). In a nitrogen-filled drybox, a scintillation vial was charged with 0.090 g (1.1 mmol) of N,N-dimethylallylamine and 0.5 mmol (0.5 equiv) of the silane (0.118 g MDHM, 0.087 g (EtO)3SiH or 0.062 g Et3SiH). 0.01 mmol (1 mol %) of the cobalt complex [0.005 g (MesPDI)CoCH3or 0.005 g (MesPDI)CoN2] was then added and the reaction was stirred for one hour at room temperature. The reaction was quenched by exposure to air and the product mixture was analyzed by NMR spectroscopy. Results are shown in Table 5. Characterization of Products: 1H NMR (benzene-d6): δ=0.14 (s, 3H, (OTMS)2SiCH3), 0.18 (s, 18H, OSi(CH3)3), 1.50 (dd, J=7.7, 1.2 Hz, 2H, SiCH2CH═CH), 2.35 (s, 6H, N(CH3)2), 4.25 (dt, J=13.6, 7.7 Hz, 1H, CH2CH═CH), 5.80 (dt, J=13.6, 1.2 Hz, 1H, CH2CH═CH).13C {1H} NMR (benzene-d6): δ=0.61 ((OTMS)2SiCH3), 2.12 (OSi(CH3)3), 20.49 (SiCH2CH═CH), 41.08 (N(CH3)2), 94.09 (CH2CH═CH), 140.57 (CH2CH═CH). 1H NMR (benzene-d6): δ=1.18 (t, J=7.0, 9H, OCH2CH3), 1.66 (dd, J=7.5, 1.2 Hz, 2H, SiCH2CH═CH), 2.30 (s, 6H, N(CH3)2), 3.84 (q, J=7.0, 6H, OCH2CH3), 4.31 (dt, J=13.6, 7.5 Hz, 1H, CH2CH═CH), 5.85 (dt, J=13.6, 1.2 Hz, 1H, CH2CH═CH).13C {1H} NMR (benzene-d6): δ=13.48 (SiCH2CH═CH), 18.41 (OCH2CH3), 40.98 (N(CH3)2), 58.65 (OCH2CH3), 92.95 (CH2CH═CH), 140.82 (CH2CH═CH). A scintillation vial was charged with 0.100 g of methyl capped allyl polyether having an average formula of H2C═CHCH2O(C2H4O)8.9CH3(0.215 mmol) and 0.025 g (0.11 mmol, 0.5 equiv) of MDHM. To the stirring solution of polyether and silane was added 1 mg (0.002 mmol; 1 mol %) of (MesPDI)CoCH3. The scintillation vial was sealed and removed from the drybox and placed in a 65° C. oil bath. The reaction mixture was stirred for 1 hour after which the vial was removed from the oil bath and the reaction was quenched by opening the vessel to air. Analysis of1H NMR spectrum of the product established a 1:1 mixture of silylated product and propylpolyether. (OTMS)2Si(CH3)CH2CH═CHO(C2H4O)8.9CH3. 1H NMR (CDCl3): δ=−0.06 (s, 3H, (OTMS)2SiCH3), 0.03 (s, 18H, OSi(CH3)3), 1.55 (dd, J=7.8, 1.1 Hz, 2H, SiCH2CH═CH), 3.32 (s, 3H, OCH3), 3.5-3.7 (O—CH2CH2—O), 5.28 (dt, J=18.5, 1.1 Hz, 1H, CH2CH═CH), 6.07 (dt, J=18.5, 7.8 Hz, 1H, CH2CH═CH).13C {1H} NMR (CDCl3): δ=0.11 ((OTMS)2SiCH3), 1.65 (OSi(CH3)3), 29.24 (SiCH2CH═CH), 59.00 (OCH3), 70-72 (O—CH2CH2—O), 127.02 (CH2CH═CH), 144.38 (CH2CH═CH). A scintillation vial was charged with 1.0 g of MviD120Mvi(SL 6100) in which Mviis vinyl dimethyl SiO, and 0.044 g of MD15DH30M (SL 6020). In a second vial, a solution of the catalyst was prepared by dissolving 0.010 g of (MesPDI)CoCH3or (MesPDI)CoN2in approximately 0.300 g of toluene. The catalyst solution was added to a stirring solution of SL 6100 and SL 6020 and the reaction was monitored for gel formation. The resulting gel after quenching the reaction by exposure to air was softer than that obtained from the same reaction using Karstedt's compound as catalyst. Polymer crosslinking under neat conditions was also investigated by adding 0.010 g of (MesPDI)CoCH3or (MesPDI)CoN2to a stirring solution of 1.0 g SL 6100 and 0.044 g SL 6020. Soft gels were also obtained from these reactions. These reactions were carried out in a manner similar to those performed at room temperature, with the additional steps of sealing the scintillation vials, removing them from the drybox and placing them in a 65° C. oil bath. The resulting gels after quenching the reaction were indistinguishable from that obtained from the same reaction using Karstedt's compound as catalyst. Results are shown in Table 6. Double Silylation Experiments This experiment was performed in a manner similar to the silylation of 1-octene using 0.100 g (0.301 mmol) of 1-bis(trimethylsiloxy)methylsilyl-2-octene, 0.034 g (0.152 mmol, 0.51 equiv) of MDHM, and 0.001 g (0.002 mmol, 1 mol %) of (MesPDI)CoCH3. The reaction was stirred at room temperature for 24 hours and quenched by exposure to air. Analysis of the mixture by GC-FID, GC-MS and NMR spectroscopy showed an approximately 1:1 mixture of 1-bis(trimethylsiloxy)methylsilyloctane and 1,8-bis(bis(trimethylsiloxy)methylsilyl)-2-octene (major isomer). Attempts to silylate 1-triethoxysilyl-2-octene with MDHM yielded a mixture of disilylated products concomitant with the formation of 1-triethoxysilyloctane. Silylation of 1-bis(trimethylsiloxy)methylsilyl-2-octene and 1-triethoxysilyl-2-octene with triethoxysilane under the same conditions yielded only the hydrogenated products, 1-bis(trimethylsiloxy)methylsilyloctane and 1-triethoxysilyloctane, respectively. This experiment is performed in a manner similar to the silylation of 1-octene using 0.100 g (0.891 mmol) of 1-octene, 0.150 g (0.674 mmol, 0.756 equiv) of MDHM and 0.004 g (0.008 mmol, 1 mol %) of (MesPDI)CoCH3. The reaction was stirred at room temperature for 24 hours and quenched by exposure to air. Analysis of the mixture by GC-FID showed a 1:0.5:0.5 mixture of octane, 1-bis(trimethylsiloxy)methylsilyloctane and 1,8-bis(bis(trimethylsiloxy)methylsilyl)-2-octene (major isomer), respectively. This experiment was performed in a manner similar to the silylation of 1-bis(trimethylsiloxy)methylsilyl-2-octene using 0.100 g (0.361 mmol) of 1-bis(trimethylsiloxy)methylsilyl-2-butene, 0.040 g (0.18 mmol, 0.50 equiv) of MDHM and 0.002 g (0.004 mmol, 1 mol %) of (MesPDI)CoCH3. The reaction was stirred for 24 hours and quenched by exposure to air. Analysis of the mixture by NMR spectroscopy showed the following product distribution: 50% 1-bis(trimethylsiloxy)methylsilylbutane; 26% trans-1,4-bis(bis(trimethylsiloxy)-methylsilyl)-2-butene; 17% cis-1,4-bis(bis(trimethylsiloxy)methylsilyl)-2-butene; 5% trans-1,3-bis(bis(trimethylsiloxy)methylsilyl)-1-butene; and, 2% trans-1,4-bis(bis(trimethylsiloxy)methylsilyl)-1-butene. Characterization of Products: 1H NMR (CDCl3): δ=0.01 (s, 3H, (OTMS)2SiCH3), 0.09 (s, 18H, OSi(CH3)3), 0.45 (m, 2H, SiCH2CH2CH2CH3), 0.88 (t, 3H, SiCH2CH2CH2CH3), 1.26-1.33 (m, 4H, SiCH2CH2CH2CH3).13C {1H} NMR (CDCl3): δ=−0.66 ((OTMS)2SiCH3), 2.02 (OSi(CH3)3), 13.98 (SiCH2CH2CH2CH3), 17.46 (SiCH2CH2CH2CH3), 25.35 and 26.36 (SiCH2CH2CH2CH3). 1H NMR (CDCl3): δ=0.01 (s, 3H, (OTMS)2SiCH3), 0.09 (s, 18H, OSi(CH3)3), 1.39 (d, 4H, SiCH2CH═CHCH2Si), 5.21 (t, 2H, SiCH2CH═CHCH2Si).13C {1H} NMR (CDCl3): δ=−0.66 ((OTMS)2SiCH3), 2.02 (OSi(CH3)3), 23.95 (SiCH2CH═CHCH2Si), 124.28 (SiCH2CH═CHCH2Si). 1H NMR (CDCl3): δ=0.01 (s, 3H, (OTMS)2SiCH3), 0.09 (s, 18H, OSi(CH3)3), 1.41 (d, 4H, SiCH2CH═CHCH2Si), 5.31 (t, 2H, SiCH2CH═CHCH2Si).13C {1H} NMR (CDCl3): δ=−0.38 ((OTMS)2SiCH3), 2.01 (OSi(CH3)3), 19.12 (SiCH2CH═CHCH2Si), 122.86 (SiCH2CH═CHCH2Si). 1H NMR (CDCl3): δ=0.01 (s, 3H, (OTMS)2SiCH3), 0.09 (s, 18H, OSi(CH3)3), 1.04 (d, 3H, CHCH3), 1.64 (m, 1H, CHCH3), 5.28 (d, 1H, SiCH═CH), 6.27 (dd, 1H, SiCH═CH).13C {1H} NMR (CDCl3): δ=−0.13 ((OTMS)2SiCH3), 2.00 (OSi(CH3)3), 12.07 (CHCH3), 31.69 (CHCH3), 123.37 (SiCH═CH), 151.01 (SiCH═CH). 1H NMR (CDCl3): δ=0.01 (s, 3H, (OTMS)2SiCH3), 0.09 (s, 18H, OSi(CH3)3), 0.58 (m, 2H, CH2CH2Si), 2.11 (m, 2H, CH2CH2Si), 5.46 (d, 1H, SiCH═CH), 6.20 (m, 1H, SiCH═CH).13C {1H} NMR (CDCl3): δ=0.29 ((OTMS)2SiCH3), 2.07 (OSi(CH3)3), 16.28 (CH2CH2Si), 29.79 (CH2CH2Si), 125.73 (SiCH═CH), 151.52 (SiCH═CH). A 20 mL scintillation vial was charged with 0.002 g (0.004 mmol, 2000 ppm catalyst loading) of (MesPDI)CoCH3and the olefin (see Table 7 for specific amounts). The mixture was stirred until a homogenous pink solution was obtained. This step typically required between 5 and 20 minutes of stirring. The polysiloxane (1:0.75 ratio of C═C to Si—H, Table 7) was then added to the reaction vessel and the mixture was stirred in an oil bath at 65° C. for 4-6 hours. The resulting gel was crushed into a powder using a mortar and pestle, washed with hexanes to remove the alkane by-product, and dried in vacuo overnight. Each of the hexane-extracted samples was analyzed by nuclear magnetic resonance (NMR) spectroscopy on a Bruker AVANCE 400WB Spectrometer operating at field strength of 9.40T;1H's resonate at 400 MHz. Single pulse excitation (SPE) pulse sequence with magic angle spinning (MAS) was used with a delay of 150 seconds for the {1H-13C} SPE/MAS NMR spectra or a delay of 300 seconds for the {1H-29Si} SPE/MAS NMR spectra. Cross-polarization (CP) pulse sequence with magic angle spinning (MAS) was used with a delay of 10 seconds and a contact time of 5 ms for the {1H-13C} CP/MAS NMR spectra. About 0.1 g of each sample was packed into a 4 mm zirconia (ZrO2) rotor with a Kel-F cap and the rotor spun at ˜8 to 10.8 kHz for the29Si data and ˜10.8 kHz for the13C data. The number of co-added scans were 1000 (13C) or 512 (29Si) for the SPE data and 16,000 for the CP/MAS13C data. The processing parameters used were zero-filling to 4× and LB of 5 or 15 Hz for the13C data or 30 Hz for the29Si data. The chemical shifts and their assignments of the13C SPE/MAS and CP/MAS NMR spectra of samples from Examples 18A, 18C, and 18E are summarized in Table 8. The spectra show a multiple of signals observed in three distinct chemical shift regions, δ 2 to δ −2 consistent with methyl on silicon (CH3Si), δ 14 to δ 35 consistent with linear type hydrocarbons and δ 124 to δ 135 due to olefinic (sp2) carbons. No peak was observed at ˜δ 115 indicating no residual unreacted 1-octene. A comparison of the data from the two different experiments shows significant differences. There is a significant loss in area for the CH2, CH3, and olefinic carbons. The results are consistent with the more mobile phase in the sample being saturated and unsaturated hydrocarbons, while the more rigid phase would consist of the following type structure, SiCH2CH2CH2(CH2)2CH2CH2CH2Si. However, in the CP experiment there is still a large amount of olefinic signals. This result suggests the presence of unsaturated structures with internal double bonds (note that the double bond can be in positions 2 thru 6), SiCH2CH2CH═CH(CH2)2CH2CH2CH3. The two signals observed at δ 125 and δ 131 due to the olefinic carbons are found with approximate equal intensity. The signals are consistent with the double bond being in position 2 or 6. The CP data for sample 18A show a very weak peak observed at δ 14 indicating that if the double bond is in position 6 the major configuration must be trans. The methyl group in the trans 6-position, —CH═CHCH3, would overlap the signal observed at δ 18. The weaker signals observed around δ 130 are consistent with the double bond being in position 3, 4, or 5. The chemical shifts and their assignments of the13C SPE/MAS and CP/MAS NMR spectra of samples from Examples 18B, 18D and 18F are summarized in Table 9. The spectra are very similar those of the 1-octene crosslinked samples in that they show a multiple of signals in three distinct chemical shift regions, δ 2 to δ −2 consistent with methyl on silicon (CH3Si), δ 14 to δ 35 consistent with linear type hydrocarbons and δ 124 to δ 135 due to olefinic (sp2) carbons. However, the signal observed at ˜δ 30 is significantly stronger due to the higher number of methylene groups (CH2) in the 1-octadecene starting material. A second difference is observed in the olefinic chemical shift range. The peak observed at ˜δ 125 is not observed with the same intensity as the peak at ˜δ 131. This result would suggest the double bond is not near one of the ends but is internal. The following list summarizes the similarities to the results of the 1-octene data.
Chemical shifts and assignments of the29Si SPE/MAS NMR spectra for the six samples of Example 18 are summarized in Table 10. The signal observed at δ −26 is assigned to a D* with the organofunctional group having the double bond in the allylic or 2 position, ≡SiCH2CH═CHCH2(CH2)xCH3. This signal is very strong in Example 17A compared to the spectra of the other samples. Also, there appears to be a slight trend in this peak being slightly larger when the samples are prepared with 1-octene than with 1-octadecene. The integral of this signal is grouped with the stronger signals observed at δ −22 because of the peak overlap for the majority of the samples. The spectra of the two samples (Examples 17A and 17B) prepared with the SiH fluid, MD15DH30M show a large amount of what could be a combination of cyclic D3and D1type species and do not contain a signal at δ −35. In terms of the rheological characteristics of the products, one would predict different moduli resulting from molecules dependent on the cross-linked densities and the chain lengths of the linking molecule. These Examples illustrate deuterium labeling experiments that were done to establish that the occurrence of dehydrogenative hydrosilylation when the reaction of to hydridosiloxanes and olefins is catalyzed by (MesPDI)CoCH3. This reaction was performed in a manner similar to the silylation of 1-octene with MDHM using 0.050 g (0.45 mmol) of 1-octene, 0.050 g (0.22 mmol, 0.5 equiv) of MDHM-d1(70% deuterated), and 0.002 g (0.004 mmol, 1 mol %) of (MesPDI)CoCH3. The reaction was quenched after stirring for one hour at room temperature. Analysis of the2H NMR spectrum of the product mixture showed deuterium incorporation into both the methyl and methylene groups of octane as well as traces of deuterium on Cb, Cc, and Cdof 1-bis(trimethylsiloxy)methylsilyl-2-octene. In nitrogen-filled drybox, a J. Young tube was charged with 0.080 g (0.24 mmol) of 1-bis(trimethylsiloxy)methylsilyl-2-octene, 0.005 g (0.011 mmol, 4 mol %) of (MesPDI)CoCH3, and approximately 0.7 mL of benzene-d6. The tube was degassed and approximately 1 atm of D2was admitted. The solution was thawed to room temperature and then placed in an oil bath at 45° C. for 16 hours. Analysis of the1H and2H NMR spectra of the product mixture showed partial deuteration of the starting material to the fully saturated product with deuterium scrambled in all along the octyl chains both compounds. Deutertation occurred principally at the C2 and C3 positions, indicating that unsaturation in the starting material was principally allylic and not vinylic. Example 19A shows that (MesPDI)CoCH3does not isomerize 1-octene. A scintillation vial was charged with 0.100 g (0.891 mmol) of 1-octene and 0.004 g (0.008 mmol, 1 mol %) of (MesPDI)CoCH3. The solution was stirred for one hour at room temperature and then quenched by exposure to air. The1H NMR spectrum of the product showed only 1-octene and traces of free ligand and no evidence for olefin isomerization. Example 19B shows that 1-octene isomerization was not observed with (MesPDI)CoCH3and trace amounts of hydridotrisiloxane, MDHM. This experiment was performed in the same manner as the experiment described above (Example 21A) using 0.100 g (0.891 mmol) of 1-octene, 0.004 g (0.008 mmol, 1 mol %) of (MesPDI)CoCH3, and 0.014 g (0.063 mmol, 7 mol %) of MDHM. The1H NMR spectrum of the product showed only 1-octene, traces of free ligand and 1-bis(trimethylsiloxy)methylsilyl-2-octene, and no evidence for olefin isomerization. Example 19C illustrates isomerization of N,N-dimethylallylamine, (CH3)2NCH2CH═CH2, using (MesPDI)CoCH3. A J. Young tube was charged with 0.017 g (0.20 mmol) of N,N-dimethylallylamine, 0.002 g (0.004 mmol, 2 mol %) of (MesPDI)CoCH3and approximately 0.7 mL of benzene-d6. The solution was allowed sit at room temperature and monitored using1H NMR spectroscopy. Isomerization of the starting material to N,N-dimethyl-1-propenylamine, (CH3)2NCH═CHCH3, was 20% complete after 8 hours and 65% after 46 hours. Example 19D illustrates isomerization of N,N-dimethylallylamine, (CH3)2NCH2CH═CH2, using (MesPDI)CoCH3and trace amounts of the hydrido trisiloxane, MDHM. This reaction was carried out in a manner similar to the experiment described above (Example 19C) using 0.091 g (1.1 mmol) of N,N-dimethylallylamine, 0.003 g (0.006 mmol, 0.6 mol %) of (MesPDI)CoCH3and 0.006 g (0.03 mmol, 3 mol %) of MDHM. Isomerization of the starting material to N,N-dimethyl-1-propenylamine, (CH3)2NCH═CHCH3was 90% complete after 8 hours and >95% after 24 hours. This reaction was carried out in a manner similar to the silylation of 1-butene using 0.11 mmol of silane (0.025 g of MDHM, 0.018 g of (EtO)3SiH or 0.015 g of (OEt)2CH3SiH) 0.001 g (0.002 mmol) of (MesPDI)CoCH3and 5.6 mmol (50 equiv) of propylene. The non-volatiles were analyzed by NMR spectroscopy. 1H NMR (CDCl3): δ=0.03 (s, 3H, (OTMS)2SiCH3), 0.09 (s, 18H, OSi(CH3)3), 1.49 (d, J=8.1 Hz, 2H, SiCH2CH═CH), 4.86 (d, J=6.3 Hz, 1H, CH2CH═C(H)H), 4.88 (d, J=15 Hz, 1H, CH2CH═C(H)H), 5.77 (m, 1H, CH2CH═CH2).13C {1H} NMR (CDCl3): δ=−0.77 ((OTMS)2SiCH3), 1.97 (OSi(CH3)3), 25.82 (SiCH2CH═CH), 113.72 (CH2CH═CH2), 134.28 (CH2CH═CH2). 1H NMR (CDCl3): δ=0.00 (s, 3H, (OTMS)2SiCH3), 0.09 (s, 18H, OSi(CH3)3), 0.46 (m, 2H, SiCH2CH2CH3), 0.95 (t, 3H, SiCH2CH2CH3), 1.36 (m, 2H, SiCH2CH2CH3).13C {1H} NMR (CDCl3): δ=−0.07 ((OTMS)2SiCH3), 1.97 (OSi(CH3)3), 16.75 (SiCH2CH2CH3), 18.05 (SiCH2CH2CH3), 20.37 (SiCH2CH2CH3). 1H NMR (CDCl3): δ=1.22 (t, 9H, OCH2CH3), 1.67 (d, 2H, SiCH2CH═CH), 3.84 (q, 6H, OCH2CH3), 4.90-5.05 (d, 2H, CH2CH═CH2), 5.81 (m, 1H, CH2CH═CH2).13C {1H} NMR (CDCl3): δ=18.36 (OCH2CH3), 19.34 (SiCH2CH═CH), 58.73 (OCH2CH3), 114.85 (CH2CH═CH2), 132.80 (CH2CH═CH2). 1H NMR (CDCl3): δ=0.63 (m, 2H, SiCH2CH2CH3), 0.97 (t, 3H, SiCH2CH2CH3), 1.22 (t, 9H, OCH2CH3), 1.45 (m, 2H, SiCH2CH2CH3).13C {1H} NMR (CDCl3): δ=10.94 (SiCH2CH2CH3), 12.92 (SiCH2CH2CH3), 16.50 (SiCH2CH2CH3), 18.43 (OCH2CH3), 58.40 (OCH2CH3). 1H NMR (CDCl3): δ=0.11 (s, 3H, SiCH3), 1.19 (t, 6H, OCH2CH3), 1.63 (d, 2H, SiCH2CH═CH), 3.76 (q, 4H, OCH2CH3), 4.88 (d, 1H, CH2CH═C(H)H), 4.93 (d, 1H, CH2CH═C(H)H), 5.80 (m, 1H, CH2CH═CH2).13C {1H} NMR (CDCl3): δ=−5.19 (SiCH3), 18.44 (OCH2CH3), 21.92 (SiCH2CH═CH), 58.41 (OCH2CH3), 114.45 (CH2CH═CH2), 133.36 (CH2CH═CH2). 1H NMR (CDCl3): δ=0.08 (s, 3H, SiCH3), 0.59 (m, 2H, SiCH2CH2CH3), 0.94 (t, 3H, SiCH2CH2CH3), 1.19 (t, 9H, OCH2CH3), 1.38 (m, 2H, SiCH2CH2CH3).13C {1H} NMR (CDCl3): δ=−4.76 (SiCH3), 16.37 (SiCH2CH2CH3), 16.53 (SiCH2CH2CH3), 18.07 (SiCH2CH2CH3), 18.50 (OCH2CH3), 58.13 (OCH2CH3). A 20 mL scintillation vial was charged with 0.200 g (1.78 mmol) 1-octene and 0.200 g (0.899 mmol) MDHM. 0.002 g (0.004 mmol, 0.5 mol %) of (MesPDI)CoMe was then added, and the reaction was stirred at room temperature for 15 minutes. Analysis of an aliquot of the reaction by GC established complete conversion to 1-(TMSO)2MeSi-2-octene and octane. The reaction mixture was directly transferred to a thick-walled glass vessel, and the latter was degassed. One atm of H2was then admitted, and the reaction was stirred at room temperature for 16 hours. Analysis of the mixture by1H NMR spectroscopy established 41% hydrogenation of the allylsilane to 1-(TMSO)2MeSi-octane. A 20 mL scintillation vial was charged with 0.112 g (1 mmol) 1-octene and 0.082 g (0.5 mmol) (EtO)3SiH. 0.002 g (0.005 mmol, 1 mol %) of (MesPDI)CoMe was then added, and the reaction was stirred at room temperature for 1 h. Analysis of an aliquot of the reaction by GC established complete conversion to 1-triethoxysilyl-2-octene and octane. The reaction mixture was directly transferred to a thick-walled glass vessel, and the latter was degassed. One atm of H2was then admitted, and the reaction was stirred at room temperature for 16 hours. Analysis of the mixture by1H NMR spectroscopy established 32% hydrogenation of the allylsilane to 1-triethoxysilyloctane. A 20 mL scintillation vial was charged with 0.112 g (1 mmol) 1-octene and 0.058 g (0.5 mmol) Et3SiH. 0.010 g (0.025 mmol, 5 mol %) of (MesPDI)CoMe was then added, and the reaction was stirred at room temperature for 12 h. Analysis of an aliquot of the reaction by GC established complete conversion to 1-triethylsilyl-2-octene and octane. The reaction mixture was directly transferred to a thick-walled glass vessel, and the latter was degassed. One atm of H2was then admitted, and the reaction was stirred at room temperature for 16 hours. Analysis of the mixture by1H NMR spectroscopy established quantitative hydrogenation of the allylsilane to 1-triethylsilyl-octane. A 20 mL scintillation vial was charged with 0.100 g (0.891 mmol) of 1-octene and 0.100 (0.449 mmol) of MDHM. 0.001 g (0.002 mmol) of (MesPDI)CoMe was then added, and the reaction was stirred at room temperature. An aliquot of the reaction was analyzed by GC after 30 min, which established complete conversion of the substrates to the allylsilane product. The reaction vial containing the allylsilane product was then charged with another 0.100 g of 1-octene and 0.100 g of MDHM. Complete conversion (based on GC analysis) of the second batch of substrates was observed after stirring the reaction for one hour at room temperature. While the above description contains many specifics, these specifics should not be construed as limitations on the scope of the invention, but merely as exemplifications of preferred embodiments thereof. Those skilled in the art will envision many other possible variations that are within the scope and spirit of the invention as defined by the claims appended hereto. Disclosed herein are cobalt complexes containing terdentate pyridine di-imine ligands and their use as efficient, reusable, and selective dehydrogenative silylation, crosslinking, and tandem dehydrogenative silylation-hydrogenation catalysts. 1. A process for producing a silylated product comprising:
(i) reacting a mixture comprising (a) an unsaturated compound containing at least one unsaturated functional group, (b) a silyl hydride containing at least one silylhydride functional group, and (c) a catalyst, optionally in the presence of a solvent, in order to produce a dehydrogenatively silylated product, wherein the catalyst is a complex of the Formula (I) or an adduct thereof; wherein
each occurrence of R1, R2, R3, R4, and R5is independently hydrogen, C1-C18 alkyl, a C1-C18 substituted alkyl, an aryl, a substituted aryl, or an inert substituent, wherein one or more of R1-R5, other than hydrogen, optionally contain at least one heteroatom; each occurrence of R6and R7is independently C1-C18 alkyl, C1-C18 substituted alkyl, aryl or substituted aryl, wherein R6and R7optionally contain at least one heteroatom; optionally any two of R1-R7vicinal to one another, R1-R2, and/or R4-R5taken together may form a ring being a substituted or unsubstituted, saturated or unsaturated cyclic structure, with the proviso that R1-R7and R8-R6are not taken to form a terpyridine ring; and L is hydroxyl, or a C1-C18 alkyl, C1-C18 substituted alkyl, aryl, or substituted aryl group, wherein L optionally contains at least one heteroatom; and (ii) using the catalyst complex to conduct subsequent reactions to produce additional dehydrogenatively silylated product and/or a saturated silylated product. 2. The process of 3. The process of 4. The process of 5. The process of 6. The process of 7. The process of 8. The process of 9. The process of 10. The process of 11. The process of 12. The process of 13. The process of 14. The process of 15. The process of 16. The process of 17. The process of wherein each occurrence of R20is independently a C1-C18 alkyl, C1-C18 substituted alkyl, C3-C18 terminal alkenyl, vinyl, aryl, or a substituted aryl, and n is greater than or equal to zero. 18. The process of 19. The process of 20. The process of wherein each occurrence of R21, R22, R23, R24, and R25is independently a C1-C18 alkyl, C1-C18 substituted alkyl, aryl, or substituted aryl, R26is hydrogen, a C1-C18 alkyl, C1-C18 substituted alkyl, aryl, or substituted aryl, x and w are independently greater than or equal to 0 (x is at least equal to 1 for Formula IX)), and a and b are integers from 0 to 3 provided that a+b=3. 21. The process of wherein each occurrence of R9, R10, R11, R12, and R13is independently hydrogen, C1-C18 alkyl, C1-C18 substituted alkyl, aryl, substituted aryl, or an inert substituent, wherein R9-R13, other than hydrogen, optionally contain at least one heteroatom. 22. The process of 23. The process of 24. The process of 25. The process of 26. The process of 27. The process of 28. The process of 29. The process of wherein
each occurrence of R1, R2, R3, R4, and R5is independently hydrogen, C1-C18 alkyl, a C1-C18 substituted alkyl, an aryl, a substituted aryl, or an inert substituent, wherein one or more of R1-R5, other than hydrogen, optionally contain at least one heteroatom; each occurrence of R6and R7is independently C1-C18 alkyl, C1-C18 substituted alkyl, aryl or substituted aryl, wherein R6and R7optionally contain at least one heteroatom; optionally any two of R1-R7vicinal to one another, R1-R2, and/or R4-R5taken together may form a ring being a substituted or unsubstituted, saturated or unsaturated cyclic structure, with the proviso that R1-R7and R8-R6are not taken to form a terpyridine ring; and X is an anion selected from the group consisting of F−, Cl−, Br−, I−, CF3R14SO3−or R15COO−, wherein R14is a covalent bond or a C1-C6 alkylene group, and R15is a substituted or unsubstituted C1-C10 hydrocarbyl group; and wherein the activator is a reducing agent or an alkylating agent selected from the group consisting of NaHBEt3, CH3Li, DIBAL-H, LiHMDS, and combinations thereof. 30. The process of 31. The process of 32. The process of 33. A composition produced from a process according to 34. The composition of 35. A process for producing a crosslinked material, comprising reacting a mixture comprising (a) a silyl-hydride containing polymer, (b) a mono-unsaturated olefin or an unsaturated polyolefin, or combinations thereof and (c) a catalyst, optionally in the presence of a solvent, in order to produce the crosslinked material, wherein the catalyst is a complex of the Formula (I) or an adduct thereof; wherein
each occurrence of R1, R2, R3, R4, and R5is independently hydrogen, C1-C18 alkyl, a C1-C18 substituted alkyl, an aryl, a substituted aryl, or an inert substituent, wherein one or more of R1-R5, other than hydrogen, optionally contain at least one heteroatom; each occurrence of R6and R7is independently C1-C18 alkyl, C1-C18 substituted alkyl, aryl or substituted aryl, wherein R6and R7optionally contain at least one heteroatom; optionally any two of R1-R7vicinal to one another, R1-R2, and/or R4-R5taken together may form a ring being a substituted or unsubstituted, saturated or unsaturated cyclic structure, with the proviso that R1-R7and R8-R6are not taken to form a terpyridine ring; and L is hydroxyl, or a C1-C18 alkyl, C1-C18 substituted alkyl, aryl, or substituted aryl group, wherein L optionally contains at least one heteroatom. 36. The process of 37. The process of 38. The process of 39. The process of 40. The process of CROSS REFERENCE TO RELATED APPLICATIONS
FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION
SUMMARY OF THE INVENTION
DETAILED DESCRIPTION OF THE INVENTION
R16(OCH2CH2)z(OCH2CHR3)w—OR17 (Formula IV) or
R17O(CHR18CH2O)w(CH2CH2O)z—CR192—C≡C—CR192—(OCH2CH2)z(OCH2CHR3)wR2 (Formula V) or
H2C═CR19CH2—O—(CH2CH2O)z(CH2CHR18O)wCH2CR19═CH2 (Formula VI)EXAMPLES
General Considerations
Example 1
Synthesis of (MesPDI)CoN2
Example 2
Synthesis of (MesPDI)CoOH
Example 3
Silylation of 1-Octene with MDHM Using Various Co Complexes
Catalyst screening for the silylation of 1-octene with MDHM.* 1 hr 24 hrs % % silylated % silylated % Catalyst Amount % conv pdt octane % conv pdt octane 3A 5 mg (0.009 mmol) Trace — — 39 19 20 3B 6 mg (0.009 mmol) Trace — — 46 23 23 3C 4 mg (0.008 mmol) 87 47 40 >98 52 46 3D 4 mg (0.008 mmol) >98 46 52 — — — 3E 4 mg (0.008 mmol) >98 49 49 — — — 3F 4 mg (0.008 mmol) 65 35 30 >98 49 49 3G 12 mg (0.009 mmol) Trace — — 32 16 16 *% Conversion and product distribution determined by GC-FID. % octane and % silylated product are reported as percentages of the compounds in the reaction mixture. Example 4
Silylation of 1-Octene with Different Silanes Using (MesPDI)CoCH3and (MesPDI)CoN2
Silylation of 1-octene with various silanes.* % silylated % Catalyst Silane Time % conv pdt octane MDHM (EtO)3SiH Et3SiH 15 min 15 min 24 hrs >98 >98 >98 49 43 46 49 55 52 MDHM (EtO)3SiH Et3SiH 30 min 15 min 24 hrs >98 >98 88 46 45 45 52 53 43 *% Conversion and product distribution determined by GC-FID. % octane and % silylated product are reported as percentages of the compounds in the reaction mixture. Example 5
In Situ Activation of Cobalt Pre-Catalysts
Example 6
Silylation of Cis- and Trans-4-Octene with Different Silanes Using (MesPDI)CoCH3
Silylation of cis- and trans-4-octene with various silanes.* % silylated Olefin Silane % conv pdt** % octane cis-4-octene MDHM >98 51 (88% C1) 47 (EtO)3SiH intractable mixture Et3SiH 70 35 (75% C1) 35 trans-4-octene MDHM >98 53 (93% C1) 45 (EtO)3SiH intractable mixture Et3SiH 85 39 (72% C1) 46 *% Conversion and product distribution determined by GC-FID. % octane and % silylated product are reported as percentages of the compounds in the reaction mixture. **Values in parentheses are % 1-silyl-2-octene product. Example 7
Silylation of 1-Octene with MDHM Using (MesPDI)CoCH3in the Presence of H2
Example 8
Silylation of 1-Butene with Different Silanes Using (MesPDI)CoCH3
Silylation of 1-butene with various silanes.* % cis trans Catalyst Silane conv isomer isomer Volatiles MDHM (EtO)3SiH Et3SiH >95 >95 <5 52 32 — 48 68 — butane butane 1-butene *% Conversion and product distribution determined by GC and1H NMR spectroscopy. 1-bis(trimethylsiloxy)methylsilyl-2-butene
1-triethoxysilyl-2-butene
Example 9
Silylation of TBE with MDHM using (MesPDI)CoCH3
Example 10
Silylation of N,N-Dimethylallylamine with Different Silanes Using (MesPDI)CoCH3and (MesPDI)CoN2
Silylation of N,N-dimethylallylamine with various silanes.* Catalyst Silane % conv MDHM (EtO)3SiH Et3SiH >95 >95 <5 53 47 — 42 47 — Trace Trace — MDHM (EtO)3SiH Et3SiH >95 >95 65 38 45 — 28 50 — 29 Trace 65 *% Conversion and product distribution determined by1H NMR spectroscopy. N,N-dimethyl-3-bis(trimethylsiloxy)methylsilyl-1-propenylamine
N,N-dimethyl-3-triethoxysilyl-1-propenylamine
Example 11
Silylation of Methyl Capped Allyl Polyether (H2C═CHCH2O(C2H4O)8.9CH3) with Methylbis(trimethylsilyloxy)silane (MDHM)
Example 12
Crosslinking of MviD120Mvi(SL 6100) and MD15DH30M (SL 6020) at Room Temperature
Example 13
Crosslinking of MviD120Mvi(SL 6100) and MD15DH30M (SL 6020) at 65° C.
Gelation time for the crosslinking of SL 6100 and SL 6020 under various reaction conditions. Reaction Gelation Quality of Catalyst Condtions time Gel Color RT, in toluene RT, neat 65° C., toluene 65° C., neat 5 min 60 min 5 min 15 min soft soft hard hard dark yellow light gray yellow light yellow RT, in toluene RT, neat 65° C., toluene 65° C., neat 20 min 60 min 5 min 15 min soft soft hard hard dark yellow light gray yellow light yellow Example 14
Silylation of 1-bis(trimethylsiloxy)methylsilyl-2-octene with MDHM using (MesPDI)CoCH3
Example 15
Alternative Procedure for the Double Silylation of 1-Octene with MDHM Using (MesPDI)CoCH3
Example 16
Silylation of 1-Bis(Trimethylsiloxy)Methylsilyl-2-Butene with MDHM Using (MesPDI)CoCH3
1-bis(trimethylsiloxy)methylsilylbutane
Trans-1,4-bis(bis(trimethylsiloxy)methylsilyl)-2-butene
Cis-1,4-bis(bis(trimethylsiloxy)methylsilyl)-2-butene
Trans-1,3-bis(bis(trimethylsiloxy)methylsilyl)-1-butene
Trans-1,4-bis(bis(trimethylsiloxy)methylsilyl)-1-butene
Example 17A-17F
Crosslinking of Polysiloxanes with Olefins Using (MesPDI)CoCH3
Crosslinking of polysiloxanes with olefins using (MesPDI)CoCH3. Polymer EXAMPLE Polysiloxane Olefin Yield 17A MD15DH30M (0.500 g) 1-Octene (0.750 g) 0.680 g 17B MD15DH30M (0.285 g) 1-Octadecene 0.733 g (0.965 g) 17C MD13DH5.5M (0.825 g) 1-Octene (0.425 g) 0.905 g 17D MD13DH5.5M (0.580 g) 1-Octadecene 0.865 g (0.672 g) 17E MD13DH5.5M (0.665 g) and 1-Octene (0.360 g) 0.894 g MHD45MH(0.225 g) 17F MD13DH5.5M (0.490 g) and 1-Octadecene 0.789 g MHD45MH(0.165 g) (0.595 g) 13C NMR Results
1. Olefin: 1-Octene
13C SPE/MAS & CP/MAS NMR Intensity Data for 1-Octene Samples (Examples 17A, 17C, 17E) Chemical Example Example Example Shift (δ, 17A 17C 17E ppm) Assignment SPE CP SPE CP SPE CP 133 to 125 sp2carbons: 6.35 3.19 4.70 2.06 3.89 1.88 double bond 109.3 1.07 1.83 40 to 20* —CH2—groups 15.06 6.99 10.22 5.94 10.52 5.96 36.9 2.44 trace 0.29 33.6 Si—CH2CH2CH2— 2.87 2.47 1.91 & —CH2CH2CH3 {open oversize brace} (#3 & #6) 30.3 4th—CH2—from 3.33 1.09 1.16 either end 27.8 0.96 0.31 0.27 — trace 23.7 Si—CH2CH2—& —CH2CH3 5.17 2.73 2.31 (#2 & #7) 18.1 SiCH2—(#1) 2.00 2.00 2.00 2.00 2.00 2.00 14.8 CH3—(#8) 2.98 0.22 1.38 — 1.41 — 2 to −3 SiCH3 9.98 5.28 20.62 6.33 2963 6.39 *The areas of all the methylene carbons are grouped together. 2. Olefin: 1-Octadecene
13C SPE/MAS & CP/MAS NMR Intensity Data of 1-Octadecene Samples (Examples 17B, 17D and 17F) Chemical Example Example Example Shift (δ, Tentative 17B 17D 17F ppm) Assignment SPE CP SPE CP SPE CP 133 to 125 sp2carbons: 3.47 1.73 3.69 2.01 double bond 109.3 1.96 40 to 20* —CH2—groups 37.67 13.25 30.89 17.46 36.9 — — — — 33.6 Si—CH2CH2CH2— 2.58 & —CH2CH2CH3 {open oversize brace} (#3 & #6) 30.3 4th—CH2—from 8.33 either end 27.8 trace trace trace trace 23.7 Si—CH2CH2—& —CH2CH3 5.28 2.34 (#2 & #7) 18.1 SiCH2—(#1) 2.00 2.00 2.00 2.00 14.8 CH3—(#8) 2.60 — 1.70 — 2 to −3 SiCH3 6.90 3.58 19.91 4.52 *The areas of all the methylene carbons are grouped together. 29Si NMR Results
29Si SPE/MAS NMR Intensity Data for Example 17A-17F Chemical Shift (δ, Ex Ex Ex Ex ppm) Assignment 17A 17B 17C 17D Ex 17E Ex 17F 7 M 2.00 2.00 2.00 2.00 2.00 2.00 −5 to −15 Cyclic D3 8.05 10.28 0.97 0.96 0.87 & D1 −22 D & D* 39.18 42.28 22.36 23.45 25.41 −26 D* −35 D′ — — 0.59 0.33 0.43 −37 D′ 8.15 2.76 −55 T2 0.85 — — — 0.10 −66 T3 0.76 — 0.22 0.22 0.18 Examples 18A-18B
Example 18A
Silylation of 1-octene with (OTMS)2CH3Si-D (MDHM-d1)
Example 18B
Deuteration of 1-bis(trimethylsiloxy)methylsilyl-2-octene
Examples 19A-19D
Olefin Isomerization Experiments
Example 20A-20C
Silylation of Propylene with Different Silanes Using (MesPDI)CoCH3
Product Distribution for the Silylation of Propylene. Disproportionation Silane [Si]-allyl [Si]-propyl Product Ex 20A: MDHM 82% 28% None Ex 20B: (EtO)3SiH 40% 20% 40% Ex 20C: Me(OEt)2SiH 60% 30% 10% Characterization of Products of Example 20A
3-bis(trimethylsiloxy)methylsilyl-1-propene
1-bis(trimethylsiloxy)methylsilylpropane
Characterization of Products of Example 20B:
3-triethoxysilyl-1-propene
1-triethoxysilylpropane
Characterization of Products of Example 20C:
3-diethoxymethylsilyl-1-propene
1-diethoxymethylsilylpropane
Example 21
Tandem Catalysis Using (MesPDI)CoMe
Example 22
Tandem Catalysis Using (MesPDI)CoMe
Example 23
Tandem Catalysis Using (MesPDI)CoMe
Example 24
Reusability of the Initial Charge of (MesPDI)CoMe for Catalysis