ELECTRONIC DEVICE
This application is a divisional application of U.S. patent application Ser. No. 16/362,676, filed Mar. 24, 2019, which claims the benefit of Chinese Patent Application Serial No. 201811103070.4, filed Sep. 20, 2018 and the benefit of U.S. Provisional Application Ser. No. 62/660,222, filed Apr. 19, 2018, and the entire contents of which are incorporated herein by reference. The present disclosure relates to an electronic device, and more particularly to a flexible electronic device. With the advance of display technology, large-sized display apparatus are used in more and more places, such that more consumers can watch the same image at the same time. Since the size of the large-sized display apparatus is beyond the size of the display device that can be generally produced, in order to achieve large-sized display, the display apparatus is formed by jointing a plurality of display devices. Because the display apparatus is formed by the plural display devices, the manufacturing cost is relatively high, such that if one of the display devices is damaged, other undamaged display devices still need to be taken apart for repairing. Therefore, to repair the large-sized tiling display apparatus is not convenient. An embodiment of the present disclosure provides an electronic device comprising a base substrate, a first circuit layer and a plurality of light-emitting elements. The base substrate has a first surface and a second surface opposite to each other. The first circuit layer comprises a first portion and a second portion, in which the first portion is disposed on the first surface of the base substrate, and the second portion is disposed on the second surface of the base substrate. The light-emitting elements are disposed on the first portion of the first circuit layer. At least one of the second surface of the base substrate and the first portion of the first circuit layer comprises at least one microstructure. Another embodiment of the present disclosure provides a tiling electronic apparatus comprising a first substrate and a plurality of electronic devices. The first substrate comprises a plurality of protrusion parts. At least one of the electronic devices comprises a base substrate, a first circuit layer and a plurality of light-emitting elements. The base substrate has a first surface and a second surface opposite to each other. The first circuit layer comprises a first portion and a second portion, in which the first portion is disposed on the first surface of the base substrate, and the second portion is disposed on the second surface of the base substrate. The light-emitting elements are disposed on the first circuit layer. At least one of the protrusion parts is engaged between adjacent two of the light-emitting elements. These and other objectives of the present disclosure will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the embodiment that is illustrated in the various figures and drawings. The present disclosure may be understood by reference to the following detailed description, taken in conjunction with the drawings as described below. For purposes of illustrative clarity and being easily understood by the readers, various drawings of this disclosure show a portion of the display device, and certain elements in various drawings may not be drawn to scale. In addition, the number and dimension of each device shown in drawings are illustrative and are not intended to limit the scope of the present disclosure. Certain terms are used throughout the description and following claims to refer to particular components. As one skilled in the art will understand, electronic equipment manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following description and in the claims, the terms “include” and “comprise” are used in an open-ended fashion, and thus should be interpreted to mean “include, but not limited to . . . ”. It will be understood that when a component is referred to as being “coupled to” another component (or its variant), it can be directly connected to the another component, or be indirectly connected (for example electrically connected) to the another component through one or more intervening component. However, the use of like and/or corresponding numerals in the drawings of different embodiments does not suggest any correlation between different embodiments. In addition, in this specification, expressions such as “first material layer disposed above/on/over a second material layer”, may indicate the direct contact of the first material layer and the second material layer, or it may indicate a non-contact state with one or more intermediate layers between the first material layer and the second material layer. In the above situation, the first material layer may not be in direct contact with the second material layer. It should be noted that the technical features in different embodiments described in the following can be replaced, recombined, or mixed with one another to constitute another embodiment without departing from the spirit of the present disclosure. Refer to In one embodiment, the electronic device 10A may be a display device. Each light-emitting element 16 may serve as a display unit, such as a pixel or a sub-pixel, but the present disclosure is not limited thereto. In some embodiments, the electronic device 10A may be a sensing device or an antenna for example. In this embodiment, the first circuit layer 14 may comprise a first portion 14 In this embodiment, the electronic device 10A may optionally comprise a second circuit layer 20 disposed on the second surface S2 of the base substrate 12 and electrically connected to the first circuit layer 14. Specifically, the second circuit layer 20 may be electrically connected to the driving unit 18 and the first circuit layer 14 through a conductive adhesive or a connector. The connector may for example a slot. By means of the second circuit layer 20, different electronic devices 10A may be electrically connected to each other, such that the plural electronic devices 10A may display a full image. In one embodiment, a composition of the second circuit layer 20 may be different from that of the first circuit layer 14. At least one of the second circuit layer 20, the second surface S2 of the base substrate 12 and a surface of the first circuit layer 14 facing the light-emitting elements 16 comprises at least one microstructure. The microstructure may be for example a recess, a bump or a through hole, and a sectional shape of the recess or the bump taken along a direction (such as a horizontal direction H) may be arc, triangle, rectangular, polygonal or other suitable shapes. In some embodiments, the microstructure may also comprise the recess with bump disposed therein (not shown in figures). By means of disposition of the microstructure, the electronic device 10A may have better flexibility when the electronic device 10A is bent and may not be damaged due to bending. In this embodiment, the second circuit layer 20 may comprise at least one first microstructure MS1. Besides the recess or bump, the first microstructure MS1 may be for example a bent structure of the second circuit layer 20 protruding toward a direction away from the second surface S2, such that the first microstructure MS1 may not be in contact with the base substrate 12. For this reason, when the electronic device 10A is bent, the first microstructure MS1 may provide a stretchable space for the second circuit layer 20. In this embodiment, the number of the first microstructure MS1 may be plural, and the plural first microstructures MS1 are dispersed on the second surface S2 without the first circuit layer 14 disposed thereon. A spacing G1 may exist between center points of two adjacent first microstructures MS1. In this embodiment, the spacings G1 of the plural first microstructures MS1 may be close to or equal to each other, but not limited thereto. When the spacings G1 are close to each other, an absolute value of a difference between two spacings G1 may be less than 0.5 times radius of curvature of the electronic device 10A when the electronic device 10A is bent. In other embodiments, the spacings G1 of the first microstructures MS1 may be determined based on the positions of the electronic device 10A that the first microstructures MS1 correspond to. For example, a bending range of the electronic device 10A in a peripheral region adjacent to the edge may be greater than that of the electronic device 10A in a central region far away from the edge, so the spacing G1 of the first microstructures MS1 in the peripheral region of the electronic device 10A may be less than the spacing G1 of the microstructures MS1 in the central region of the electronic device 10A. The second surface S2 of the base substrate 12 may optionally comprise at least one second microstructure MS2, the surface of the first circuit layer 14 facing the light-emitting elements 16 may optionally comprise at least one third microstructure MS3, and the first microstructure MS1 may correspond to at least one of the second microstructure MS2 and the third microstructure MS3. In this embodiment, one of the first microstructures MS1 may overlap at least one of the second microstructure MS2 and the third microstructure MS3 in a top-view direction V, for example a center point of the first microstructure MS1 may be close to a center point of the second microstructure MS2 in the top-view direction V. As an example, the second surface S2 of the base substrate 12 may comprise a plurality of second microstructures MS2, and the first portion 14 In some embodiments, the second microstructures MS2 may comprise a plurality of first sub-microstructures MS21 and a plurality of second sub-microstructures MS22, and a spacing G21 between two adjacent first sub-microstructures MS21 may be different from a spacing G22 between two adjacent second sub-microstructures MS22. For example, the first sub-microstructures MS21 may be disposed in the central region of the electronic device 10A far away from the edge, the second sub-microstructures MS22 may be disposed in the peripheral region of the electronic device 10A adjacent to the edge, and the spacing G21 is greater than the spacing G22. Furthermore, a size of each first sub-microstructure MS21 may also be different from a size of each second sub-microstructure MS22. For example, a width of each first sub-microstructure MS21 in the horizontal direction H may be greater than a width of each second sub-microstructure MS22 in the horizontal direction H. The width of the microstructure may be the largest width of the microstructure in the horizontal direction H for instance. When the microstructure has an irregular shape, the width of the microstructure may be the largest length in the horizontal direction H formed by two points in the opening of the microstructure. Alternatively, a surface area of each first sub-microstructure MS21 may be greater than a surface area of each second sub-microstructure MS22. In some embodiments, the first microstructures MS1 and the third microstructures MS3 may also comprise the first sub-microstructures and the second sub-microstructures respectively, and the relative relations between the first sub-microstructures and the second sub-microstructures of the first sub-microstructures and the second sub-microstructures may be similar to that between the first sub-microstructures MS21 and the second sub-microstructures MS22 of the second microstructures MS2. In this embodiment, the electronic device 10A may have a bending center axis CA disposed in the first circuit layer 14. For example, when the electronic device 10A is bent, compression or tension is not easily generated at the electronic device 10A of the bending center axis CA. Specifically, a distance between the bending center axis CA and a top surface of each light-emitting element 16 may be substantially equal to a distance between the bending center axis CA and a surface of the second circuit layer 20 far away from the base substrate 12, but not limited thereto. The farther away from the bending center axis CA the spacing is, the less the spacing may be. In other words, when a part of the electronic device 10A is farther away from the bending center axis CA, stress to the part of the electronic device 10A is greater when the electronic device 10A is bent. Accordingly, by means of reduction of the size of the spacing, the stress that the electronic device 10A receives may be reduced. For example, when a distance between the first microstructures MS1 and the bending center axis CA may be greater than a distance between the third microstructures MS3 and the bending center axis CA, the spacing G1 of the first microstructures MS1 may be less than the spacing G3 of the third microstructures MS3. In this embodiment, the spacing G1 of the first microstructures MS1 may be equal to the spacing G21 of the first sub-microstructure MS21, but not limited thereto. In some embodiments, the spacing G1 of the first microstructures MS1 may be less than the spacing G21 of the first sub-microstructures MS21. Additionally, the size of the microstructure may be greater when the microstructure is farther away from the bending center axis CA. For example, since the distance between the first microstructures MS1 and the bending center axis CA is greater than the distance between the second microstructures MS2 and the bending center axis CA and the distance between the third microstructures MS3 and the bending center axis CA, the width of each first microstructure MS1 in the horizontal direction H parallel to the first surface S1 may be greater than the width of each second microstructure MS2 in the horizontal direction H and the width of each third microstructure MS3 in the horizontal direction H. In some embodiments, the distance between the second microstructures MS2 and the bending center axis CA may be greater than the distance between the third microstructures MS3 and the bending center axis CA, so the width of each second microstructure MS2 in the horizontal direction H may be greater than the width of each third microstructure MS3 in the horizontal direction H. Alternatively, in some embodiments, the surface area of each first microstructure MS1 may be greater than the surface area of each second microstructure MS2 and greater than the surface area of each third microstructure MS3. In some embodiments, the electronic device 10A may have the first microstructures MS1, the second microstructures MS2, the third microstructures MS3, or any two of them. The electronic device is not limited by the aforementioned embodiment and may have other different variant embodiments or embodiments. To simplify the description, the identical components in each of the following variant embodiments or embodiments are marked with identical symbols. For making it easier to compare the difference between the first embodiment and the variant embodiment and the difference between the first embodiment and other embodiments, the following description will detail the dissimilarities among different variant embodiments or embodiments and the identical features will not be redundantly described. Refer to Refer to The electronic device of the above-mentioned embodiment may be applied to the tiling electronic apparatus, such as a rollable display screen that replaces the projection screen. Refer to In this embodiment, the first substrate 104 comprises a plurality of protrusion parts 106 arranged along a first horizontal direction H1, and one of the protrusion parts 106 may be engaged between two adjacent light-emitting elements 16 of each electronic device 102A. In some embodiments, the electronic devices 102A may be fixed on the first substrate 104 through the engagement between the protrusion parts 106 and the light-emitting elements. The electronic devices 102A may also be fixed to the first substrate 104 through other components. The first substrate 104 may comprise a plurality of first recesses R1, in which the first recesses R1 are formed between the protrusion parts 106, and one of the light-emitting elements 16 of each electronic device 102A may be disposed in the corresponding first recess R1. Specifically, the first substrate 104 may comprise an engaging layer 108, and a surface of the engaging layer 108 facing the electronic devices 102A has the protrusion parts 106. A width of each protrusion part 106 in the first horizontal direction H1 may be slightly greater than or equal to a gap between two adjacent the light-emitting elements 16. A width of each first recess R1 in the first horizontal direction H1 may be slightly less than or equal to a width of each light-emitting element 16 in the first horizontal direction H1, such that sidewalls of each protrusion part 106 may be engaged between the sidewalls of two adjacent light-emitting elements 16 through compression. In some embodiments, a material of the engaging layer 108 may comprise compressible material, such as silicone, polyurethane (PU), or other suitable material. Alternatively, the engaging layer 108 may comprise a hard material, and the hard material may have a plurality of pores spaced apart from the gaps between the protrusion parts 106; that is to say, the hard material may have three-dimensional mesh shape. For example, a material of the engaging layer 108 may comprise sponge. The pores may be filled with for example air or compressible material. By means of the compressibility of the protrusion parts 106, not only the protrusion parts 106 can be engaged between light-emitting elements 16, but also the light-emitting elements 16 can be prevented from damage during the engaging process. In some embodiments, the first substrate 104 may further comprise a base layer 110 serving as a base substrate for supporting the protrusion parts 104. A material of the base layer 110 may comprise polyethylene terephthalate (PET), but not limited thereto. It is noted that since the electronic devices 102A are independently engaged with the protrusion parts 106, single one of the electronic devices 102A may be taken apart from the protrusion parts 106 alone, thereby facilitating repair or exchange for the single one electronic device 102A. In one embodiment, the protrusion parts 106 may be disposed at intervals. In another embodiment, a plurality of light-emitting elements 16 may be disposed in one recess R. In this embodiment, the first circuit layer 14 of each electronic device 102A may be bent onto the second surface S2 of the base substrate 12, such that the second portion 14 In this embodiment, the tiling electronic apparatus 100A may optionally comprise a second substrate 112A with a second recess R2, and a part of the second portion 14 Additionally, in this embodiment, each second circuit layer 20 may be disposed in the corresponding first sub-recess R21 or the corresponding second sub-recess R22 and may electrically connect the adjacent electronic devices 102A to each other. For example, one of the second circuit layers 20 may be electrically connected to one of the first circuit layers 14 through a connector CN. The connector CN may be for example a connecting pad or slot disposed on the first circuit layer 14. The second circuit layers 20 may extend along the first horizontal direction H1 or the second horizontal direction H2 and electrically connect the electronic devices 102A arranged along the first horizontal direction H1 or the electronic devices 102A arranged along the second horizontal direction H2. In some embodiments, the second circuit layers 20 may be integrated into the second substrate 112A; that is, the second substrate 112A may comprise connecting circuit for connecting the electronic devices 102A, thereby saving the second circuit layers 20. Refer to Refer to Refer to Refer to As mentioned above, in the tiling electronic apparatus of the present disclosure, since the electronic devices are independently engaged with the protrusion parts of the first substrate, single one electronic device may be taken apart from the protrusion parts alone, thereby facilitating repair or exchange for the single one electronic device. Furthermore, in the electronic device of the present disclosure, at least one of the second circuit layer, the second surface of the base substrate and the surface of the first circuit layer facing the light-emitting elements comprises at least one microstructure, such that the electronic device may have better flexibility when the electronic device is bent and may not be damaged due to bending. Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the disclosure. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims. An electronic device is disclosed and includes a base substrate, a first circuit layer and a plurality of light-emitting elements. The base substrate has a first surface and a second surface opposite to each other. The first circuit layer includes a first portion and a second portion. The first portion is disposed on the first surface of the base substrate, and the second portion is disposed on the second surface of the base substrate. The light-emitting elements are disposed on the first portion of the first circuit layer. At least one of the second surface of the base substrate and the first portion of the first circuit layer includes at least one microstructure. 1. An electronic device, comprising:
a base substrate, having a first surface and a second surface opposite to the first surface; a first circuit layer, comprising:
a first portion, disposed on the first surface of the base substrate; and a second portion, disposed on the second surface of the base substrate; and a plurality of light-emitting elements, disposed on the first portion of the first circuit layer; wherein at least one of the second surface of the base substrate and the first portion of the first circuit layer comprises at least one microstructure. 2. The electronic device as claimed in 3. The electronic device as claimed in 4. The electronic device as claimed in 5. The electronic device as claimed in 6. The electronic device as claimed in 7. The electronic device as claimed in 8. The electronic device as claimed in 9. The electronic device as claimed in 10. The electronic device as claimed in 11. The electronic device as claimed in 12. The electronic device as claimed in 13. The electronic device as claimed in 14. The electronic device as claimed in CROSS REFERENCE TO RELATED APPLICATIONS
BACKGROUND OF THE DISCLOSURE
1. Field of the Disclosure
2. Description of the Prior Art
SUMMARY OF THE DISCLOSURE
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION







