HETEROCYCLENE DERIVATIVES AS PEST CONTROL AGENTS
The present invention relates to heterocycle derivatives of the formula (I), to their use as acaricides and/or insecticides for controlling animal pests, particularly arthropods and especially insects and arachnids, and to methods and intermediates for their preparation. Heterocycle derivatives having insecticidal properties have already been described in the literature, for example in WO2016/129684, WO 2016/142327, WO2016/162318, WO2017/001311, WO2017/061497, WO2017/093180, JP2018-024658, JP2018-024657, JP2018-70585, WO2017/155103, WO2018/050825 and EP17194731.0. Modern crop protection compositions have to meet many demands, for example in relation to the level, duration and spectrum of their action and possible use. Questions of toxicity, sparing of beneficial species and pollinators, environmental properties, application rates, combinability with other active compounds or formulation auxiliaries play a role, as does the question of the complexity involved in the synthesis of an active compound, and resistances can also occur, to mention just a few parameters. For all these reasons alone, the search for novel crop protection compositions cannot be considered complete, and there is a constant need for novel compounds having improved properties compared to the known compounds, at least in relation to individual aspects. It was an object of the present invention to provide compounds which broaden the spectrum of the pesticides in various aspects and/or improve their activity. Novel heterocycle derivatives have now been found, these having advantages over the compounds already known, examples of which include better biological or environmental properties, a wider range of application methods, better insecticidal or acaricidal action, and good compatibility with useful plants. The heterocycle derivatives can be used in combination with further compositions for improving efficacy, especially against insects that are difficult to control. The subject matter of the present invention is therefore novel compounds of the formula (I) in which (configuration 1)
where
It has additionally been found that the compounds of the formula (I) have very good efficacy as pesticides, preferably as insecticides and/or acaricides, and additionally generally have very good plant compatibility, in particular with respect to crop plants. The compounds according to the invention are defined in general terms by the formula (I). Preferred substituents or ranges of the radicals given in the formulae mentioned above and below are illustrated hereinafter: where
where
where
where
where
where
Specifically, the invention comprises the following structure of the formula (I-A) where R1, R2, R3, R4, R5, R6and n have the meanings described in configuration (1) or configuration (2) or configuration (3) or configuration (4) or configuration (5) or configuration (6). Specifically, the present invention comprises the following structure of the formula (I-B) where R1, R2, R3, R4, R5, R6and n have the meanings described in configuration (1) or configuration (2) or configuration (3) or configuration (4) or configuration (5) or configuration (6). Specifically, the present invention comprises the following structure of the formula (I-C) where R1, R2, R3, R4, A and n have the meanings described in configuration (1) or configuration (2) or configuration (3) or configuration (4) or configuration (5) or configuration (6). Hereinbelow, the term formula (I) naturally also includes formulae (I-A) to (I-C) which fall under formula (I). In a further preferred embodiment, the invention relates to the compounds of the formula (I) where n represents 2 and where R1, R2, R3, Q, A, R4, R5and R6have the meanings described in configuration (1) or configuration (2) or configuration (3) or configuration (4). In a further preferred embodiment, the invention relates to the compounds of the formula (I) where R1represents (C1-C6)-alkyl, (C1-C6)-haloalkyl or (C3-C8)-cycloalkyl
In a particularly preferred embodiment, the invention relates to the compounds of the formula (I) where R1represents (C1-C4)-alkyl
In a very particularly preferred embodiment, the invention relates to the compounds of the formula (I) where R1represents ethyl,
In a further preferred embodiment, the invention relates to the compounds of the formula (I) where at least one of the radicals R2or R3represents cyano-(C3-C6)-cycloalkyl, preferably 1-cyanocyclopropyl, and the respective other radical is selected from hydrogen, (C1-C4)-alkyl or halogen
In a further preferred embodiment, the invention relates to the compounds of the formula (I) where R2represents hydrogen, (C1-C4)-alkyl or halogen
In a particularly preferred embodiment, the invention relates to the compounds of the formula (I) where R2represents hydrogen
In a further preferred embodiment, the invention relates to the compounds of the formula (I) where R3represents (C1-C4)-haloalkyl-(C3-C8)-cycloalkyl, spiro-(C3-C8)-cycloalkyl-(C3-C8)-cycloalkyl or cyano-(C3-C6)-cycloalkyl
In a particularly preferred embodiment, the invention relates to the compounds of the formula (I) where R3represents cyano-(C3-C6)-cycloalkyl
In a very particularly preferred embodiment, the invention relates to the compounds of the formula (I) where R3represents 1-cyanocyclopropyl
In a further preferred embodiment, the invention relates to the compounds of the formula (I) where R2represents hydrogen and R3represents 1-cyanocyclopropyl and R1, Q, A, R4, R5, R6and n have the meanings described in configuration (1) or configuration (2) or configuration (3) or configuration (4) or configuration (5) or configuration (6). Particular preference according to the invention is given to compounds of the formula (I′) where Q, R4, R5and R6have the definitions described in configuration (3) or configuration (4) or configuration (5) or configuration (6). In a further preferred embodiment, the invention relates to the compounds of the formula (I) where Q represents a heteroaromatic 9-membered or 12-membered fused bicyclic or tricyclic ring system from the group consisting of Q1 to Q5 and R1, R2, R3, A, R4, R5, R6and n have the meanings described in configuration (4) or configuration (5) or configuration (6). In a particularly preferred embodiment, the invention relates to the compounds of the formula (I) where Q represents a heteroaromatic 9-membered or 12-membered fused bicyclic or tricyclic ring system from the group consisting of Q1, Q2, Q3 and Q5, and R1, R2, R3, A, R4, R5, R6and n have the meanings described in configuration (1) or configuration (2) or configuration (3) or configuration (5) or configuration (6). In a very particularly preferred embodiment, the invention relates to the compounds of the formula (I) where Q represents a heteroaromatic 9-membered or 12-membered fused bicyclic or tricyclic ring system from the group consisting of Q1, Q2 and Q5, and R1, R2, R3, A, R4, R5, R6and n have the meanings described in configuration (1) or configuration (2) or configuration (3) or configuration (4). In a further preferred embodiment, the invention relates to the compounds of the formula (I) where
In a particularly preferred embodiment, the invention relates to the compounds of the formula (I) where R5represents (C1-C6)-haloalkyl, preferably (C1-C4)-haloalkyl,
In a further preferred embodiment, the invention relates to the compounds of the formula (I) where R4represents (C1-C4)-alkyl or (C1-C4)-alkoxy-(C1-C4)-alkyl,
In a particularly preferred embodiment, the invention relates to the compounds of the formula (I) where R4represents (C1-C4)-alkyl,
In a very particularly preferred embodiment, the invention relates to the compounds of the formula (I) where Q represents a heteroaromatic 9-membered or 12-membered fused bicyclic or tricyclic ring system from the group consisting of Q1, Q2 and Q5, where
In an emphasized embodiment, the invention relates to the compounds of the formula (I) where Q represents a heteroaromatic 9-membered or 12-membered fused bicyclic or tricyclic ring system from the group consisting of Q1, Q2 and Q5, where
In the preferred definitions, unless stated otherwise, halogen is selected from the group of fluorine, chlorine, bromine and iodine, preferably in turn from the group of fluorine, chlorine and bromine, In the context of the present invention, unless defined differently elsewhere, the term “alkyl”, either on its own or else in combination with further terms, for example haloalkyl, is understood to mean a radical of a saturated, aliphatic hydrocarbon group which has 1 to 12 carbon atoms and may be branched or unbranched. Examples of C1-C12-alkyl radicals are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, tert-pentyl, 1-methylbutyl, 2-methylbutyl, 1-ethylpropyl, 1,2-dimethylpropyl, hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl and n-dodecyl. Among these alkyl radicals, particular preference is given to C1-C6-alkyl radicals. Particular preference is given to C1-C4-alkyl radicals. According to the invention, unless defined differently elsewhere, the term “alkenyl”, either on its own or else in combination with further terms, is understood to mean a straight-chain or branched C2-C12-alkenyl radical which has at least one double bond, for example vinyl, allyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1,3-butadienyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1,3-pentadienyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl and 1,4-hexadienyl. Among these, preference is given to C2-C6-alkenyl radicals and particular preference to C2-C4-alkenyl radicals. According to the invention, unless defined differently elsewhere, the term “alkynyl”, either on its own or else in combination with further terms, is understood to mean a straight-chain or branched C2-C12-alkynyl radical which has at least one triple bond, for example ethynyl, 1-propynyl and propargyl. Among these, preference is given to C3-C6-alkynyl radicals and particular preference to C3-C4-alkynyl radicals. The alkynyl radical may also contain at least one double bond. According to the invention, unless defined differently elsewhere, the term “cycloalkyl”, either on its own or else in combination with further terms, is understood to mean a C3-C8-cycloalkyl radical, for example cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl. Among these, preference is given to C3-C6-cycloalkyl radicals. According to the invention, unless defined differently elsewhere, the term “bicycloalkyl”, either on its own or else in combination with further terms, is understood to mean a bicyclic system where the two rings have a common single bond. Here, the two cycles can have the same or a different number of carbon atoms. Examples which may be mentioned are bicyclo[1.1.0]butane or bicyclo[2.1.0]pentane. According to the invention, unless defined differently elsewhere, the term “spiro-cycloalkyl-cycloalkyl”, either on its own or else in combination with further terms, is understood to mean a compound where two cycloalkyl rings are connected to each other via a common carbon atom. Here, the two cycles can have the same or a different number of carbon atoms. Examples which may be mentioned are spiro[2.2]pentane (spiro-(cyclopropyl)-(cyclopropyl)) or spiro[2.3]hexane (spiro-(cyclopropyl)-(cyclobutyl)). The term “alkoxy”, either on its own or else in combination with further terms, for example haloalkoxy, is understood in the present case to mean an O-alkyl radical, where the term “alkyl” is as defined above. Halogen-substituted radicals, for example haloalkyl, are mono- or polyhalogenated up to the maximum number of possible substituents. In the case of polyhalogenation, the halogen atoms may be identical or different. In this case, halogen represents fluorine, chlorine, bromine or iodine, in particular fluorine, chlorine or bromine. Unless stated otherwise, optionally substituted radicals may be mono- or polysubstituted, where the substituents in the case of poly substitutions may be the same or different. The radical definitions or illustrations given above in general terms or listed within ranges of preference apply correspondingly to end products and to starting materials and intermediates. These radical definitions can be combined with one another as desired, i.e. including combinations between the respective ranges of preference. Preference according to the invention is given to using compounds of the formula (I) which contain a combination of the meanings listed above as being preferred. Particular preference according to the invention is given to using compounds of the formula (I) which contain a combination of the meanings listed above as being particularly preferred. Very particular preference according to the invention is given to using compounds of the formula (I) which contain a combination of the definitions listed above as being very particularly preferred. Emphasis according to the invention is given to using compounds of the formula (I) which contain a combination of the meanings listed above as being emphasized. Especially used according to the invention are compounds of the formula (I) which contain a combination of the meanings listed above as being special. Depending on the nature of the substituents, the compounds of the formula (I) may be in the form of geometric and/or optically active isomers or corresponding isomer mixtures in different compositions. These stereoisomers are, for example, enantiomers, diastereomers, atropisomers or geometric isomers. The invention therefore encompasses pure stereoisomers and any desired mixtures of these isomers. The compounds of the formula (I) can also be present as salts, in particular acid addition salts and metal salt complexes. The compounds of the formula (I) and their acid addition salts and metal salt complexes have good efficacy, especially for control of animal pests. Suitable salts of the compounds of the general formula (I) include customary nontoxic salts, i.e. salts with appropriate bases and salts with added acids. Preference is given to salts with inorganic bases, such as alkali metal salts, for example sodium, potassium or cesium salts, alkaline earth metal salts, for example calcium or magnesium salts, ammonium salts, salts with organic bases and with inorganic amines, for example triethylammonium, dicyclohexylammonium, N,N′-dibenzylethylenediammonium, pyridinium, picolinium or ethanolammonium salts, salts with inorganic acids, for example hydrochlorides, hydrobromides, dihydrosulfates, trihydrosulfates, or phosphates, salts with organic carboxylic acids or organic sulfonic acids, for example formates, acetates, trifluoroacetates, maleates, tartrates, methanesulfonates, benzenesulfonates or para-toluenesulfonates, salts with basic amino acids, for example arginates, aspartates or glutamates, and the like. The compounds of the formula (I) according to the invention can be obtained by the processes shown in the following schemes: The radicals R1, R2, R3, R4, R5, R6and n have the meanings described above, A2and A3represent CH or N and X1represents halogen. The compounds of the formula (IV) can be prepared in analogy to the process described in U.S. Pat. No. 5,576,335 by the reaction of compounds of the formula (II) with carboxylic acids of the formula (III) in the presence of a condensing agent or a base. Compounds of the formula (II) are either commercially available or can be prepared by known methods, for example analogously to the processes described in WO2014/171528, Journal of Medicinal Chemistry, 54(24), 8541-8554; 2011, WO2012/057269, European Journal, 22(15), 5102-5106; 2016, Chemistry—A European Journal, 22(15), 5102-5106; 2016 or Organic Letters, 18(18), 4570-4573 2016. Carboxylic acids of the formula (III) are either commercially available or can be prepared by known methods. Possible preparation routes are described in processes D and E. The reaction of the compounds of the formula (II) with carboxylic acids of the formula (III) can be carried out neat or in a solvent, preference being given to conducting the reaction in a solvent selected from customary solvents that are inert under the prevailing reaction conditions. Preference is given to ethers, for example diisopropyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane; halogenated hydrocarbons, for example dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane or chlorobenzene; nitriles, for example acetonitrile or propionitrile; aromatic hydrocarbons, for example toluene or xylene; aprotic polar solvents, for example N,N-dimethylformamide or N-methylpyrrolidone, or nitrogen compounds, for example pyridine. Suitable condensing agents are, for example, carbodiimides such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) or 1,3-dicyclohexylcarbodiimide Suitable bases are inorganic bases which are typically used in such reactions. Preference is given to using bases selected by way of example from the group consisting of acetates, phosphates, carbonates and bicarbonates of alkali metals or alkaline earth metals. Particular preference is given here to sodium acetate, sodium phosphate, potassium phosphate, cesium carbonate, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate. The reaction can be carried out under reduced pressure, at standard pressure or under elevated pressure and at temperatures of 0° C. to 180° C.; with preference, the reaction is carried out at atmospheric pressure and temperatures of 20 to 140° C. The compounds of the formula (V) can be prepared by condensing the compounds of the formula (IV), for example analogously to the processes described in WO2009/131237, WO2010/125985, WO2011/043404, WO2011/040629, WO2012/086848, WO2013/018928, WO2015/000715 or WO 2015/121136. The conversion to compounds of the formula (V) can be carried out neat or in a solvent, preference being given to conducting the reaction in a solvent selected from customary solvents that are inert under the prevailing reaction conditions. Preference is given to ethers, for example diisopropyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane, tert-butyl methyl ether; halogenated hydrocarbons, for example dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane or chlorobenzene; nitriles, for example acetonitrile or propionitrile; aromatic hydrocarbons, for example toluene or xylene; aprotic polar solvents, for example N,N-dimethylformamide or N-methylpyrrolidone, or nitrogenous compounds, for example pyridine. The reaction can be carried out in the presence of a condensing agent, an acid, a base or a chlorinating agent. Examples of suitable condensing agents are carbodiimides such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) or 1,3-dicyclohexylcarbodiimide; anhydrides such as acetic anhydride, trifluoroacetic anhydride; a mixture of triphenylphosphine, a base and carbon tetrachloride, or a mixture of triphenylphosphine and an azo diester, for example diethylazodicarboxylic acid. Examples of suitable acids which can be used in the reaction described are sulfonic acids such as para-toluenesulfonic acid; carboxylic acids such as acetic acid, or polyphosphoric acids. Examples of suitable bases are nitrogenous heterocycles such as pyridine, picoline, 2,6-lutidine, 1,8-diazabicyclo[5.4.0]-7-undecene (DBU); tertiary amines such as triethylamine and N,N-diisopropylethylamine; inorganic bases such as potassium phosphate, potassium carbonate and sodium hydride. An example of a suitable chlorinating agent is phosphorus oxychloride. The reaction can be carried out under reduced pressure, at atmospheric pressure or under elevated pressure, and at temperatures of 0° C. to 200° C. The compounds of the formula (I) where n is 0 can be prepared by reacting the compounds of the formula (V) with the compounds of the formula (VIa) in the presence of a base. Mercaptan derivatives of the formula (VIa), for example methyl mercaptan, ethyl mercaptan or isopropyl mercaptan, are either commercially available or can be prepared by known methods, for example analogously to the processes described in US2006/25633, US2006/111591, U.S. Pat. No. 2,820,062 The conversion to the compound of the formula (I) where n represents 0 can be carried out neat or in a solvent, preference being given to conducting the reaction in a solvent selected from customary solvents that are inert under the prevailing reaction conditions. Preference is given to ethers, for example diisopropyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane, tert-butyl methyl ether; nitriles, for example acetonitrile or propionitrile; aromatic hydrocarbons, for example toluene or xylene; aprotic polar solvents, for example N,N-dimethylformamide, N-methylpyrrolidone or dimethyl sulfoxide. Examples of suitable bases are inorganic bases from the group consisting of acetates, phosphates, hydrogencarbonates and carbonates of alkali metals or alkaline earth metals. Preference is given to cesium carbonate, sodium carbonate, potassium carbonate and sodium hydrogencarbonate. Further suitable bases are alkali metal hydrides, for example sodium hydride. The reaction can be carried out under reduced pressure, at atmospheric pressure or under elevated pressure, and at temperatures of 0° C. to 200° C. In the reaction described, X1preferably represents a fluorine or chlorine atom. If X1represents bromine, an alternative option is transmetallation with a suitable lithium base, followed by reaction with the appropriate commercially available disulfide. In this regard, see Bioorganic and Medicinal Chemistry Letters, 20 (2010), 2770-2775. Suitable lithium bases are, for example, n-butyllithium. The conversion to the compound of the formula (I) where n represents 0 can be carried out neat or in a solvent, preference being given to conducting the reaction in a solvent selected from customary solvents that are inert under the prevailing reaction conditions. Preference is given to ethers, for example diisopropyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane, tert-butyl methyl ether. The reaction can be carried out under reduced pressure, at atmospheric pressure or under elevated pressure, and at temperatures of 0° C. to 200° C. The reaction can be conducted in the microwave. The compounds of the formula (I) where n represents 1 can be prepared by oxidizing the compounds of the formula (I) where n represents 0. The oxidation is generally carried out in a solvent selected from customary solvents which are inert under the prevailing reaction conditions. Preference is given to halogenated hydrocarbons, for example dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane or chlorobenzene; alcohols such as methanol or ethanol; formic acid, acetic acid, propionic acid or water. Examples of suitable oxidizing agents are hydrogen peroxide, meta-chloroperbenzoic acid or sodium periodate. The reaction can be carried out under reduced pressure, at atmospheric pressure or under elevated pressure, and at temperatures from −20° C. to 120° C. The compounds of the formula (I) where n represents 2 can be prepared by oxidizing the compounds of the formula (I) where n represents 1. The oxidation is generally carried out in a solvent. Preference is given to halogenated hydrocarbons, for example dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane or chlorobenzene; alcohols such as methanol or ethanol; formic acid, acetic acid, propionic acid or water. Examples of suitable oxidizing agents are hydrogen peroxide and meta-chloroperbenzoic acid. The reaction can be carried out under reduced pressure, at atmospheric pressure or under elevated pressure, and at temperatures from −20° C. to 120° C. The compounds of the formula (I) where n represents 2 can also be prepared in a one-step process by oxidizing the compounds of the formula (I) where n represents 0. The oxidation is generally carried out in a solvent. Preference is given to halogenated hydrocarbons, for example dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane or chlorobenzene; alcohols such as methanol or ethanol; formic acid, acetic acid, propionic acid or water. Examples of suitable oxidizing agents are hydrogen peroxide and meta-chloroperbenzoic acid. The reaction can be carried out under reduced pressure, at atmospheric pressure or under elevated pressure, and at temperatures from −20° C. to 120° C. Alternatively, compounds of the formula (I) where n represents 2 can be prepared in a one-step process from compounds of the formula (V). The process is described on the basis of the conversion of compounds of the formula (V) to compounds of the formula (I) from process A. The radicals R1, R2, R3, R4, R5, R6and n have the meanings described above, A2and A3represent CH or N and X1represents halogen (preferably bromine or iodine). M represents an alkali metal (preferably sodium or potassium). Compounds of the formula (I) where n represents 2 can be prepared in a one-step procedure from compounds of the formula (V), for example in analogy to the process described in Journal of Organic Chemistry 70 (2005) 2696-2700 by a halogen-sulfone exchange with a compound of the formula (VIb). The exchange is generally carried out in a solvent. Preference is given to using polar aprotic solvents, for example dimethyl sulfoxide and N,N-dimethylformamide. The reaction is generally catalyzed by adding a copper(I) salt such as copper(I) iodide. Compounds of the formula (VIb) are either commercially available or can be prepared by known methods, for example analogously to the processes described in Organic Synthesis 57 (1977) 88-92; Tetrahedron Letters 9 (1979) 821-824 and Bulletin de la Societe Chimique de France 4 (1958) 447-450. Examples of suitable sulfur reagents are salts of sulfinic acid. The reaction can be conducted under reduced pressure, at standard pressure or under elevated pressure, and at temperatures of from −20° C. to 120° C. The radicals R1, R2, R4, R5, R6and n have the meanings described above, A2and A3represent CH or N, q represents 1 or 2 and X and X1represent halogen. Compounds of the formula (VIII) can be prepared by cyanomethylation of the compounds of the formula (VII) with compound of the formula (M) in the presence of a catalyst, a ligand and a base, for example by the process described in J. Am. Chem. Soc. (2002), 124, 9330, J. Am. Chem. Soc. (2005), 127, 15824 or WO2016/041819. The compound of the formula (M) is commercially available. The conversion to compounds of the formula (VIII) is generally effected in a solvent. Preference is given to aprotic polar solvents such as N,N-dimethylformamide, N-methylpyrrolidone or dimethyl sulfoxide. Suitable for use as catalyst are palladium complexes, for example tris(dibenzylideneacetone)dipalladium(0) or [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II), and the ligands employed are generally organophosphane compounds, for example bis(diphenylphosphine)-9,9-dimethylxanthene (xanthphos). A suitable base is, for example, zinc fluoride. The reaction can be carried out under reduced pressure, at atmospheric pressure or under elevated pressure, and at temperatures of 0° C. to 200° C. Alternatively, the cyanomethylation can also be carried out by Suzuki coupling, for example by the process described in J. Am. Chem. Soc. (2011), 133, 6948-6951. Compounds of the formula (I) where n represents 2 can be prepared, for example, by reacting the compounds of the formula (VIII) with compounds of the formula (0) in the presence of a base, for example by the processes described in WO2016/041819. The compounds of the formula (O) are commercially available. The conversion to compounds of the formula (I) where n represents 2 is generally carried out in a solvent. Preference is given to halogenated hydrocarbons, for example dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane or chlorobenzene, aprotic polar solvents, for example acetone, N,N-dimethylformamide, N-methylpyrrolidone, dimethyl sulfoxide, nitriles, for example acetonitrile, or esters, for example ethyl acetate. Examples of suitable bases are nitrogenous heterocycles such as pyridine, 1,8-diazabicyclo[5.4.0]-7-undecene (DBU); tertiary amines such as triethylamine and N,N-diisopropylethylamine; inorganic bases such as potassium phosphate, cesium carbonate, potassium carbonate and sodium hydride. The reaction can be carried out under reduced pressure, at atmospheric pressure or under elevated pressure, and at temperatures of 0° C. to 200° C. The corresponding compounds where n=0 or n=1 can be prepared analogously. Carboxylic acids of the formula (III) are either commercially available or can be prepared by known methods, for example from pyridines of the formula (IX) analogously to the processes described in WO2011/15343, WO2014/14874 or WO2010/34738. The radicals R2and R3have the meanings described above, X− represents a halide ion, preferably iodide, X1represents halogen and R14represents (C1-C4)-alkyl. The compounds of the formula (X) can be prepared analogously to the processes described in WO2011/15343, WO2014/14874 or WO2010/34738 by converting compounds of the formula (IX) with hydroxylamine-O-sulfonic acid in the presence of a base such as potassium carbonate into an N-iminopyridinium intermediate which is converted in a second step in the presence of an acid such as hydroiodic acid (HI) in a suitable solvent such as ethanol into the 1-aminopyridinium derivative of the formula (X). The pyridine derivatives of the formula (IX) are commercially available. Compounds of the formula (XII) can be prepared analogously to the processes described in WO2011/15343, WO2014/14874 or WO2010/34738 from compounds of the formula (X) in a 1,3-dipolar cycloaddition with an alkyne of the formula (XI). If isomers are formed, these can be separated into the individual isomers by chromatographic methods. In this manner, the diester of the formula (XII) can be obtained in isomerically pure form. By heating in a suitable acid such as, for example, aqueous sulfuric acid, compounds of the formula (XII) can be converted into acids of the formula (XIII) by decarboxylation and simultaneous hydrolysis of the ester function. Compounds of the formula (III) can be prepared by standard processes via halogenation, for example analogously to the processes described in WO2011/50284 or WO2016/12896, for example with N-chlorosuccinimide or N-bromosuccinimide as halogenating agent in a suitable solvent such as dichloromethane or 1,2-dichloroethane. In a further process, carboxylic acids of the formula (III) can be prepared from 2-formylpyridine derivatives of the formula (XIV) analogously to the processes described in Journal of Medicinal Chemistry 56 (2013), 9635-9645, Synthesis 16 (2005), 2751-2757 or WO2009/29625. The radicals R2and R3have the meanings described above, X1represents halogen and R14represents (C1-C4)-alkyl. The compounds of the formula (XVI) can be prepared analogously to the processes described in Journal of Medicinal Chemistry 56 (2013), 9635-9645, Synthesis 16 (2005), 2751-2757 or WO2009/29625 by reaction of compounds of the formula (XIV) with an alkyl azidoacetate derivative of the formula (XV) in the presence of a suitable base such as sodium methoxide in a suitable solvent such as methanol. The compounds of the formula (XIV) are commercially available or can be prepared by standard processes. Compounds of the formula (XVII) can be prepared analogously to the processes described in Journal of Medicinal Chemistry 56 (2013), 9635-9645, Synthesis 16 (2005), 2751-2757 or WO2009/29625 by cyclization of compounds of the formula (XVI) in a suitable solvent such as xylene. The reaction can be carried out under reduced pressure, at atmospheric pressure or under elevated pressure, and at elevated temperatures. Preference is given to a temperature greater than 100° C. The ester of the formula (XVII) can be converted by standard methods into the acid of the formula (XVIII), for example using an alkali metal hydroxide such as sodium hydroxide or lithium hydroxide as base in an alcohol, for example ethanol or a mixture of tetrahydrofuran and water, as solvent. Further conversion into compounds of the formula (III) takes place according to standard processes via halogenation analogously to that described in process D. The radicals R2, R3and R4have the meanings described above, A represents CH or N, Y represents a leaving group such as chlorine, bromine, iodine, O-triflate or O-mesyl and X1represents halogen. The compounds of the formula (XX) can be prepared in analogy to the process described in U.S. Pat. No. 5,576,335 by the reaction of compounds of the formula (XIX) with carboxylic acids of the formula (III) in the presence of a condensing agent or a base. Compounds of the formula (XIX) are either commercially available or can be prepared by known methods, for example analogously to the processes described in Journal of Medicinal Chemistry, 57(19), 7933-7946; 2014 or WO2014/001464. Carboxylic acids of the formula (III) are either commercially available or can be prepared by known methods. Possible preparation routes are described in processes D and E. The reaction of the compounds of the formula (XIX) with carboxylic acids of the formula (III) can be carried out neat or in a solvent, preference being given to conducting the reaction in a solvent selected from customary solvents that are inert under the prevailing reaction conditions. Preference is given to ethers, for example diisopropyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane; halogenated hydrocarbons, for example dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane or chlorobenzene; nitriles, for example acetonitrile or propionitrile; aromatic hydrocarbons, for example toluene or xylene; aprotic polar solvents, for example N,N-dimethylformamide or N-methylpyrrolidone, or nitrogen compounds, for example pyridine. Suitable condensing agents are, for example, carbodiimides such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) or 1,3-dicyclohexylcarbodiimide Suitable bases are inorganic bases which are typically used in such reactions. Preference is given to using bases selected by way of example from the group consisting of acetates, phosphates, carbonates and bicarbonates of alkali metals or alkaline earth metals. Particular preference is given here to sodium acetate, sodium phosphate, potassium phosphate, cesium carbonate, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate. The reaction can be carried out under reduced pressure, at standard pressure or under elevated pressure and at temperatures of 0° C. to 180° C.; with preference, the reaction is carried out at atmospheric pressure and temperatures of 20 to 140° C. The compounds of the formula (XXI) can be prepared by condensing the compounds of the formula (XX), for example analogously to the processes described in WO2009/131237, WO2010/125985, WO2011/043404, WO2011/040629, WO2012/086848, WO2013/018928, WO2015/000715 or WO 2015/121136. The conversion to compounds of the formula (XXI) can be carried out neat or in a solvent, preference being given to conducting the reaction in a solvent selected from customary solvents that are inert under the prevailing reaction conditions. Preference is given to ethers, for example diisopropyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane, tert-butyl methyl ether; halogenated hydrocarbons, for example dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane or chlorobenzene; nitriles, for example acetonitrile or propionitrile; aromatic hydrocarbons, for example toluene or xylene; aprotic polar solvents, for example N,N-dimethylformamide or N-methylpyrrolidone, or nitrogenous compounds, for example pyridine. The reaction can be carried out in the presence of a condensing agent, an acid, a base or a chlorinating agent. Examples of suitable condensing agents are carbodiimides such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) or 1,3-dicyclohexylcarbodiimide; anhydrides such as acetic anhydride, trifluoroacetic anhydride; a mixture of triphenylphosphine, a base and carbon tetrachloride, or a mixture of triphenylphosphine and an azo diester, for example diethylazodicarboxylic acid. Examples of suitable acids which can be used in the reaction described are sulfonic acids such as para-toluenesulfonic acid; carboxylic acids such as acetic acid, or polyphosphoric acids. Examples of suitable bases are nitrogenous heterocycles such as pyridine, picoline, 2,6-lutidine, 1,8-diazabicyclo[5.4.0]-7-undecene (DBU); tertiary amines such as triethylamine and N,N-diisopropylethylamine; inorganic bases such as potassium phosphate, potassium carbonate and sodium hydride. An example of a suitable chlorinating agent is phosphorus oxychloride. The reaction can be carried out under reduced pressure, at atmospheric pressure or under elevated pressure, and at temperatures of 0° C. to 200° C. The compounds of the formula (XXI) can be converted by standard methods (cf., e.g. Heterocycles 1999, 50, 1081-1090; WO2009/70045 or Bioorganic and Medicinal Chemistry Letters 2007, 17, 1369-1375) by reaction with electrophilic compounds comprising a leaving group (Y=chlorine, bromine, iodine, O-triflate, O-mesyl) into N-substituted imidazole derivatives of the formula (XXIII) using, for example, a carbonate such as potassium carbonate as base, in a ketone such as acetone as solvent. The further conversion to compounds of the formula (I) takes place analogously to the methods described in processes A and B. The invention also relates to methods for controlling animal pests, in which compounds of the formula (I) are allowed to act on animal pests and/or their habitat. The animal pests are preferably controlled in agriculture and forestry, and in material protection. This preferably excludes methods for surgical or therapeutic treatment of the human or animal body and diagnostic methods carried out on the human or animal body. The invention further relates to the use of the compounds of the formula (I) as pesticides, especially crop protection agents. In the context of the present application, the term “pesticides” in each case also always encompasses the term “crop protection compositions”. The compounds of the formula (I), given good plant tolerance, favorable endotherm toxicity and good environmental compatibility, are suitable for protecting plants and plant organs against biotic and abiotic stress factors, for increasing harvest yields, for improving the quality of the harvested material and for controlling animal pests, especially insects, arachnids, helminths, especially nematodes, and molluscs, which are encountered in agriculture, in horticulture, in animal husbandry, in aquatic cultures, in forests, in gardens and leisure facilities, in the protection of stored products and of materials, and in the hygiene sector. In the context of the present patent application, the term “hygiene” should be understood to mean any and all measures, provisions and procedures which have the aim of preventing diseases, especially infection diseases, and which serve to protect the health of humans and animals and/or protect the environment and/or maintain cleanliness. According to the invention, this especially includes measures for cleaning, disinfection and sterilization, for example of textiles or hard surfaces, especially surfaces made of glass, wood, cement, porcelain, ceramic, plastic or else metal(s), in order to ensure that these are free of hygiene pests and/or their secretions. The scope of protection of the invention in this regard preferably excludes surgical or therapeutic treatment procedures to be applied to the human body or the bodies of animals, and diagnostic procedures which are conducted on the human body or the bodies of animals The term “hygiene sector” covers all areas, technical fields and industrial applications in which these hygiene measures, provisions and procedures are important, for example with regard to hygiene in kitchens, bakeries, airports, bathrooms, swimming pools, department stores, hotels, hospitals, stables, animal keeping, etc. The term “hygiene pest” should therefore be understood to mean one or more animal pests whose presence in the hygiene sector is problematic, especially for reasons of health. A main aim is therefore that of avoiding, or limiting to a minimum degree, the presence of hygiene pests and/or the exposure to these in the hygiene sector. This can especially be achieved through the use of a pesticide which can be used both for prevention of infestation and for prevention of an existing infestation. It is also possible to use formulations which prevent or reduce exposure to pests. Hygiene pests include, for example, the organisms mentioned below. The term “hygiene protection” thus covers all acts by which these hygiene measures, provisions and procedures are maintained and/or improved. The compounds of the formula (I) can preferably be used as pesticides. They are active against normally sensitive and resistant species and also against all or specific stages of development. The abovementioned pests include: pests from the phylum of the Arthropoda, in particular from the class of the Arachnida, for example from the order of the Hemiptera, for example from the suborder of the Heteroptera, for example The compounds of the formula (I) can, as the case may be, at certain concentrations or application rates, also be used as herbicides, safeners, growth regulators or agents to improve plant properties, as microbicides or gametocides, for example as fungicides, antimycotics, bactericides, virucides (including agents against viroids) or as agents against MLO (mycoplasma-like organisms) and RLO (rickettsia-like organisms). They can, as the case may be, also be used as intermediates or precursors for the synthesis of other active ingredients. The present invention further relates to formulations and use forms prepared therefrom as pesticides, for example drench, drip and spray liquors, comprising at least one compound of the formula (I). Optionally, the use forms comprise further pesticides and/or adjuvants which improve action, such as penetrants, e.g. vegetable oils, for example rapeseed oil, sunflower oil, mineral oils, for example paraffin oils, alkyl esters of vegetable fatty acids, for example rapeseed oil methyl ester or soya oil methyl ester, or alkanol alkoxylates, and/or spreaders, for example alkylsiloxanes and/or salts, for example organic or inorganic ammonium or phosphonium salts, for example ammonium sulfate or diammonium hydrogenphosphate, and/or retention promoters, for example dioctyl sulfosuccinate or hydroxypropylguar polymers, and/or humectants, for example glycerol and/or fertilizers, for example ammonium-, potassium- or phosphorus-containing fertilizers. Customary formulations are, for example, water-soluble liquids (SL), emulsion concentrates (EC), emulsions in water (EW), suspension concentrates (SC, SE, FS, OD), water-dispersible granules (WG), granules (GR) and capsule concentrates (CS); these and further possible formulation types are described, for example, by Crop Life International and in Pesticide Specifications, Manual on development and use of FAO and WHO specifications for pesticides, FAO Plant Production and Protection Papers—173, prepared by the FAO/WHO Joint Meeting on Pesticide Specifications, 2004, ISBN: 9251048576. The formulations, in addition to one or more compounds of the formula (I), optionally comprise further active agrochemical ingredients. Preference is given to formulations or use forms comprising auxiliaries, for example extenders, solvents, spontaneity promoters, carriers, emulsifiers, dispersants, frost protection agents, biocides, thickeners and/or further auxiliaries, for example adjuvants. An adjuvant in this context is a component which enhances the biological effect of the formulation, without the component itself having any biological effect. Examples of adjuvants are agents which promote retention, spreading, attachment to the leaf surface or penetration. These formulations are produced in a known manner, for example by mixing the compounds of the formula (I) with auxiliaries, for example extenders, solvents and/or solid carriers and/or other auxiliaries, for example surfactants. The formulations are produced either in suitable facilities or else before or during application. The auxiliaries used may be substances suitable for imparting special properties, such as certain physical, technical and/or biological properties, to the formulation of the compounds of the formula (I), or to the use forms prepared from these formulations (for example ready-to-use pesticides such as spray liquors or seed-dressing products). Suitable extenders are, for example, water, polar and nonpolar organic chemical liquids, for example from the classes of the aromatic and non-aromatic hydrocarbons (such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes), the alcohols and polyols (which, if appropriate, may also be substituted, etherified and/or esterified), the ketones (such as acetone, cyclohexanone), esters (including fats and oils) and (poly)ethers, the simple and substituted amines, amides, lactams (such as N-alkylpyrrolidones) and lactones, the sulfones and sulfoxides (such as dimethyl sulfoxide). If the extender utilized is water, it is also possible to use, for example, organic solvents as auxiliary solvents. Useful liquid solvents are essentially: aromatics such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons such as cyclohexane or paraffins, for example petroleum fractions, mineral and vegetable oils, alcohols such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulfoxide, and also water. In principle, it is possible to use all suitable solvents. Examples of suitable solvents are aromatic hydrocarbons, for example xylene, toluene or alkylnaphthalenes, chlorinated aromatic or chlorinated aliphatic hydrocarbons, for example chlorobenzene, chloroethylene or methylene chloride, aliphatic hydrocarbons, for example cyclohexane, paraffins, petroleum fractions, mineral and vegetable oils, alcohols, for example methanol, ethanol, isopropanol, butanol or glycol and their ethers and esters, ketones, for example acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents, for example dimethyl sulfoxide, and water. In principle, it is possible to use all suitable carriers. Suitable carriers include more particularly the following: for example ammonium salts and natural, finely ground rocks, such as kaolins, aluminas, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and synthetic, finely ground rocks, such as finely divided silica, aluminum oxide and natural or synthetic silicates, resins, waxes and/or solid fertilizers. It is likewise possible to use mixtures of such carriers. Useful carriers for granules include: for example crushed and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite, and synthetic granules of inorganic and organic flours, and also granules of organic material such as sawdust, paper, coconut shells, corn cobs and tobacco stalks. It is also possible to use liquefied gaseous extenders or solvents. Especially suitable extenders or carriers are those which are gaseous at standard temperature and under atmospheric pressure, for example aerosol propellants such as halogenated hydrocarbons, and also butane, propane, nitrogen and carbon dioxide. Examples of emulsifiers and/or foam formers, dispersants or wetting agents having ionic or nonionic properties or mixtures of these surface-active substances are salts of polyacrylic acid, salts of lignosulfonic acid, salts of phenolsulfonic acid or naphthalenesulfonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, with substituted phenols (preferably alkylphenols or arylphenols), salts of sulfosuccinic esters, taurine derivatives (preferably alkyl taurates), phosphoric esters of polyethoxylated alcohols or phenols, fatty acid esters of polyols, and derivatives of the compounds containing sulfates, sulfonates and phosphates, for example alkylaryl polyglycol ethers, alkylsulfonates, alkyl sulfates, arylsulfonates, protein hydrolyzates, lignosulfite waste liquors and methylcellulose. The presence of a surfactant is advantageous if one of the compounds of the formula (I) and/or one of the inert carriers is insoluble in water and if the application takes place in water. Further auxiliaries which may be present in the formulations and the use forms derived therefrom include dyes such as inorganic pigments, for example iron oxide, titanium oxide and Prussian Blue, and organic dyes such as alizarin dyes, azo dyes and metal phthalocyanine dyes, and nutrients and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc. Additional components which may be present are stabilizers, such as cold stabilizers, preservatives, antioxidants, light stabilizers, or other agents which improve chemical and/or physical stability. Foam formers or antifoams may also be present. In addition, the formulations and use forms derived therefrom may also comprise, as additional auxiliaries, stickers such as carboxymethylcellulose and natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, or else natural phospholipids such as cephalins and lecithins and synthetic phospholipids. Further auxiliaries may be mineral and vegetable oils. It is possible if appropriate for still further auxiliaries to be present in the formulations and the use forms derived therefrom. Examples of such additives are fragrances, protective colloids, binders, adhesives, thickeners, thixotropic agents, penetrants, retention promoters, stabilizers, sequestrants, complexing agents, humectants, spreaders. In general, the compounds of the formula (I) can be combined with any solid or liquid additive commonly used for formulation purposes. Useful retention promoters include all those substances which reduce dynamic surface tension, for example dioctyl sulfosuccinate, or increase viscoelasticity, for example hydroxypropylguar polymers. Useful penetrants in the present context are all those substances which are typically used to improve the penetration of active agrochemical ingredients into plants. Penetrants are defined in this context by their ability to penetrate from the (generally aqueous) application liquor and/or from the spray coating into the cuticle of the plant and hence to increase the mobility of the active ingredients in the cuticle. The method described in the literature (Baur et al., 1997, Pesticide Science 51, 131-152) can be used for determining this property. Examples include alcohol alkoxylates such as coconut fatty ethoxylate (10) or isotridecyl ethoxylate (12), fatty acid esters, for example rapeseed oil methyl ester or soya oil methyl ester, fatty amine alkoxylates, for example tallowamine ethoxylate (15), or ammonium and/or phosphonium salts, for example ammonium sulfate or diammonium hydrogenphosphate. The formulations preferably comprise between 0.00000001% and 98% by weight of the compound of the formula (I), more preferably between 0.01% and 95% by weight of the compound of the formula (I), most preferably between 0.5% and 90% by weight of the compound of the formula (I), based on the weight of the formulation. The content of the compound of the formula (I) in the use forms prepared from the formulations (in particular pesticides) may vary within wide ranges. The concentration of the compound of the formula (I) in the use forms may typically be between 0.00000001% and 95% by weight of the compound of the formula (I), preferably between 0.00001% and 1% by weight, based on the weight of the use form. Application is accomplished in a customary manner appropriate for the use forms. The compounds of the formula (I) can also be used in a mixture with one or more suitable fungicides, bactericides, acaricides, molluscicides, nematicides, insecticides, microbiological agents, beneficial organisms, herbicides, fertilizers, bird repellents, phytotonics, sterilants, safeners, semiochemicals and/or plant growth regulators, in order thus, for example, to broaden the spectrum of action, prolong the period of action, enhance the rate of action, prevent repellency or prevent evolution of resistance. In addition, active ingredient combinations of this kind can improve plant growth and/or tolerance to abiotic factors, for example high or low temperatures, to drought or to elevated water content or soil salinity. It is also possible to improve flowering and fruiting performance, optimize germination capacity and root development, facilitate harvesting and improve yields, influence maturation, improve the quality and/or the nutritional value of the harvested products, prolong storage life and/or improve the processability of the harvested products. In addition, the compounds of the formula (I) may be present in a mixture with other active compounds or semiochemicals such as attractants and/or bird repellents and/or plant activators and/or growth regulators and/or fertilizers. Likewise, the compounds of the formula (I) can be used to improve plant properties, for example growth, yield and quality of the harvested material. In a particular embodiment according to the invention, the compounds of the formula (I) are present in formulations or in the use forms prepared from these formulations in a mixture with further compounds, preferably those as described below. If one of the compounds mentioned below can occur in different tautomeric forms, these forms are also included even if not explicitly mentioned in each case. All the mixing components mentioned, as the case may be, may also form salts with suitable bases or acids if they are capable of doing so on the basis of their functional groups. The active ingredients specified here with their common names are known and are described for example in “The Pesticide Manual”, 16th ed., British Crop Protection Council 2012, or can be searched for on the Internet (e.g. http://www.alanwood.net/pesticides). The classification is based on the IRAC Mode of Action Classification Scheme applicable at the time of filing of this patent application. (1) Acetylcholinesterase (AChE) inhibitors, for example carbamates, e.g. alanycarb, aldicarb, bendiocarb, benfuracarb, butocarboxim, butoxycarboxim, carbaryl, carbofuran, carbosulfan, ethiofencarb, fenobucarb, formetanate, furathiocarb, isoprocarb, methiocarb, methomyl, metolcarb, oxamyl, pirimicarb, propoxur, thiodicarb, thiofanox, triazamate, trimethacarb, XMC and xylylcarb; or organophosphates, e.g. acephate, azamethiphos, azinphos-ethyl, azinphos-methyl, cadusafos, chlorethoxyfos, chlorfenvinphos, chlormephos, chlorpyrifos-methyl, coumaphos, cyanophos, demeton-S-methyl, diazinon, dichlorvos/DDVP, dicrotophos, dimethoate, dimethylvinphos, disulfoton, EPN, ethion, ethoprophos, famphur, fenamiphos, fenitrothion, fenthion, fosthiazate, heptenophos, imicyafos, isofenphos, isopropyl O-(methoxyaminothiophosphoryl) salicylate, isoxathion, malathion, mecarbam, methamidophos, methidathion, mevinphos, monocrotophos, naled, omethoate, oxydemeton-methyl, parathion-methyl, phenthoate, phorate, phosalone, phosmet, phosphamidon, phoxim, pirimiphos-methyl, profenofos, propetamphos, prothiofos, pyraclofos, pyridaphenthion, quinalphos, sulfotep, tebupirimfos, temephos, terbufos, tetrachlorvinphos, thiometon, triazophos, triclorfon and vamidothion. (2) GABA-gated chloride channel blockers, for example cyclodiene-organochlorines, e.g. chlordane and endosulfan or phenylpyrazoles (fiproles), e.g. ethiprole and fipronil. (3) Sodium channel modulators, for example pyrethroids, e.g. acrinathrin, allethrin, d-cis-trans allethrin, d-trans allethrin, bifenthrin, bioallethrin, bioallethrin S-cyclopentenyl isomer, bioresmethrin, cycloprothrin, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, gamma-cyhalothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, theta-cypermethrin, zeta-cypermethrin, cyphenothrin [(1R)-trans isomer], deltamethrin, empenthrin [(EZ)-(1R) isomer], esfenvalerate, etofenprox, fenpropathrin, fenvalerate, flucythrinate, flumethrin, tau-fluvalinate, halfenprox, imiprothrin, kadethrin, momfluorothrin, permethrin, phenothrin [(1R)-trans isomer], prallethrin, pyrethrins (pyrethrum), resmethrin, silafluofen, tefluthrin, tetramethrin, tetramethrin [(1R) isomer], tralomethrin and transfluthrin or DDT or methoxychlor. (4) Nicotinic acetylcholine receptor (nAChR) competitive modulators, for example neonicotinoids, e.g. acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam or nicotine or sulfoxaflor or flupyradifurone. (5) Nicotinic acetylcholine receptor (nAChR) allosteric modulators, for example spinosyns, e.g. spinetoram and spinosad. (6) Glutamate-gated chloride channel (GluCl) allosteric modulators, for example avermectins/milbemycins, e.g. abamectin, emamectin benzoate, lepimectin and milbemectin. (7) Juvenile hormone mimetics, for example juvenile hormone analogs, e.g. hydroprene, kinoprene and methoprene or fenoxycarb or pyriproxyfen. (8) Miscellaneous non-specific (multisite) inhibitors, for example alkyl halides, e.g. methyl bromide and other alkyl halides; or chloropicrin or sulfuryl fluoride or borax or tartar emetic or methyl isocyanate generator, e.g. diazomet and metam. (9) Chordotonal organ modulators, e.g. pymetrozine or flonicamide. (10) Mite growth inhibitors, for example clofentezine, hexythiazox and diflovidazin or etoxazole. (11) Microbial disruptors of the insect midgut membrane, for example (12) Inhibitors of mitochondrial ATP synthase, such as ATP disruptors, for example diafenthiuron or organotin compounds, e.g. azocyclotin, cyhexatin and fenbutatin oxide or propargite or tetradifon. (13) Uncouplers of oxidative phosphorylation via disruption of the proton gradient, for example chlorfenapyr, DNOC and sulfluramid. (14) Nicotinic acetylcholine receptor channel blockers, for example bensultap, cartap hydrochloride, thiocyclam, and thiosultap-sodium. (15) Inhibitors of chitin biosynthesis, type 0, for example bistrifluron, chlorfluazuron, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron and triflumuron. (16) Inhibitors of chitin biosynthesis, type 1, for example buprofezin. (17) Molting disruptors (especially in the case of Diptera), for example cyromazine. (18) Ecdysone receptor agonists such as, for example, chromafenozide, halofenozide, methoxyfenozide and tebufenozide. (19) Octopamine receptor agonists, for example amitraz. (20) Mitochondrial complex III electron transport inhibitors, for example hydramethylnon or acequinocyl or fluacrypyrim. (21) Mitochondrial complex I electron transport inhibitors, for example METI acaricides, e.g. fenazaquin, fenpyroximate, pyrimidifen, pyridaben, tebufenpyrad and tolfenpyrad or rotenone (Derris). (22) Voltage-dependent sodium channel blockers, for example indoxacarb or metaflumizone. (23) Inhibitors of acetyl CoA carboxylase, for example tetronic and tetramic acid derivatives, e.g. spirodiclofen, spiromesifen and spirotetramat. (24) Mitochondrial complex IV electron transport inhibitors, for example phosphines, e.g. aluminum phosphide, calcium phosphide, phosphine and zinc phosphide, or cyanides, calcium cyanide, potassium cyanide and sodium cyanide. (25) Mitochondrial complex II electron transport inhibitors, for example beta-keto nitrile derivatives, e.g. cyenopyrafen and cyflumetofen and carboxanilides, for example pyflubumide. (28) Ryanodine receptor modulators, for example diamides, e.g. chlorantraniliprole, cyantraniliprole and flubendiamide, further active compounds, for example afidopyropen, afoxolaner, azadirachtin, benclothiaz, benzoximate, bifenazate, broflanilide, bromopropylate, chinomethionat, chloroprallethrin, cryolite, cyclaniliprole, cycloxaprid, cyhalodiamide, dicloromezotiaz, dicofol, epsilon metofluthrin, epsilon momfluthrin, flometoquin, fluazaindolizine, fluensulfone, flufenerim, flufenoxystrobin, flufiprole, fluhexafon, fluopyram, fluralaner, fluxametamide, fufenozide, guadipyr, heptafluthrin, imidaclothiz, iprodione, kappa bifenthrin, kappa tefluthrin, lotilaner, meperfluthrin, paichongding, pyridalyl, pyrifluquinazon, pyriminostrobin, spirobudiclofen, tetramethylfluthrin, tetraniliprole, tetrachlorantraniliprole, tigolaner, tioxazafen, thiofluoximate, triflumezopyrim and iodomethane; additionally preparations based on The active ingredients specified herein by their common name are known and described, for example, in “Pesticide Manual” (16th Ed. British Crop Protection Council) or searchable on the Internet (for example: http://www.alanwood.net/pesticides). All the mixing partners mentioned in classes (1) to (15), as the case may be, may form salts with suitable bases or acids if they are capable of doing so on the basis of their functional groups. All the fungicidal mixing partners mentioned in classes (1) to (15), as the case may be, may include tautomeric forms. 1) Inhibitors of ergosterol biosynthesis, for example (1.001) cyproconazole, (1.002) difenoconazole, (1.003) epoxiconazole, (1.004) fenhexamid, (1.005) fenpropidine, (1.006) fenpropimorph, (1.007) fenpyrazamine, (1.008) fluquinconazole, (1.009) flutriafol, (1.010) imazalil, (1.011) imazalil sulfate, (1.012) ipconazole, (1.013) metconazole, (1.014) myclobutanil, (1.015) paclobutrazole, (1.016) prochloraz, (1.017) propiconazole, (1.018) prothioconazole, (1.019) pyrisoxazole, (1.020) spiroxamine, (1.021) tebuconazole, (1.022) tetraconazole, (1.023) triadimenol, (1.024) tridemorph, (1.025) triticonazole, (1.026) (1R,2S,5S)-5-(4-chlorobenzyl)-2-(chloromethyl)-2-methyl-1-(1H-1,2,4-triazol-1-ylmethyl)cyclopentanol, (1.027) (1 S,2R,5R)-5-(4-chlorobenzyl)-2-(chloromethyl)-2-methyl-1-(1H-1,2,4-triazol-1-ylmethyl)cyclopentanol, (1.028) (2R)-2-(1-chlorocyclopropyl)-4-[(1R)-2,2-dichlorocyclopropyl]-1-(1H-1,2,4-triazol-1-yl)butan-2-ol, (1.029) (2R)-2-(1-chlorocyclopropyl)-4-[(1 S)-2,2-dichlorocyclopropyl]-1-(1H-1,2,4-triazol-1-yl)butan-2-ol, (1.030) (2R)-2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1H-1,2,4-triazol-1-yl)propan-2-ol, (1.031) (2S)-2-(1-chlorocyclopropyl)-4-[(1R)-2,2-dichlorocyclopropyl]-1-(1H-1,2,4-triazol-1-yl)butan-2-ol, (1.032) (2S)-2-(1-chlorocyclopropyl)-4-[(1S)-2,2-dichlorocyclopropyl]-1-(1H-1,2,4-triazol-1-yl)butan-2-ol, (1.033) (2S)-2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1H-1,2,4-triazol-1-yl)propan-2-ol, (1.034) (R)-[3-(4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-1,2-oxazol-4-yl](pyridin-3-yl)methanol, (1.035) (S)-[3-(4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-1,2-oxazol-4-yl](pyridin-3-yl)methanol, (1.036) [3-(4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-1,2-oxazol-4-yl](pyridin-3-yl)methanol, (1.037) 1-({(2R,4S)-2-[2-chloro-4-(4-chlorophenoxy)phenyl]-4-methyl-1,3-dioxolan-2-yl}methyl)-1H-1,2,4-triazole, (1.038) 1-({(2S,4S)-2-[2-chloro-4-(4-chlorophenoxy)phenyl]-4-methyl-1,3-dioxolan-2-yl}methyl)-1H-1,2,4-triazole, (1.039) 1-{[3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-1H-1,2,4-triazol-5-yl thiocyanate, (1.040) 1-{[rel(2R,3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-1H-1,2,4-triazol-5-yl thiocyanate, (1.041) 1-{[rel(2R,3S)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-1H-1,2,4-triazol-5-yl thiocyanate, (1.042) 2-[(2R,4R,5R)-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione, (1.043) 2-[(2R,4R,5S)-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione, (1.044) 2-[(2R,4S,5R)-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione, (1.045) 2-[(2R,4S,5S)-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione, (1.046) 2-[(2S,4R,5R)-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione, (1.047) 2-[(2S,4R,5S)-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione, (1.048) 2-[(2S,4S,5R)-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione, (1.049) 2-[(2S,4S,5S)-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione, (1.050) 2-[1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione, (1.051) 2-[2-chloro-4-(2,4-dichlorophenoxy)phenyl]-1-(1H-1,2,4-triazol-1-yl)propan-2-ol, (1.052) 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-1-(1H-1,2,4-triazol-1-yl)butan-2-ol, (1.053) 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1H-1,2,4-triazol-1-yl)butan-2-ol, (1.054) 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1H-1,2,4-triazol-1-yl)pentan-2-ol, (1.055) mefentrifluconazole, (1.056) 2-{[3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-2,4-dihydro-3H-1,2,4-triazole-3-thione, (1.057) 2-{[rel(2R,3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenypoxiran-2-yl]methyl}-2,4-dihydro-3H-1,2,4-triazole-3-thione, (1.058) 2-{[rel(2R,3 S)-3-(2-chlorophenyl)-2-(2,4-difluorophenypoxiran-2-yl]methyl}-2,4-dihydro-3H-1,2,4-triazole-3-thione, (1.059) 5-(4-chlorobenzyl)-2-(chloromethyl)-2-methyl-1-(1H-1,2,4-triazol-1-ylmethyl)cyclopentanol, (1.060) 5-(allylsulfanyl)-1-{[3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-1H-1,2,4-triazole, (1.061) 5-(allylsulfanyl)-1-{[rel(2R,3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-1H-1,2,4-triazole, (1.062) 5-(allylsulfanyl)-1-{[rel(2R,3 S)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-1H-1,2,4-triazole, (1.063) N′-(2,5-dimethyl-4-{[3-(1,1,2,2-tetrafluoroethoxy)phenyl]sulfanyl}phenyl)-N-ethyl-N-methylimidoformamide, (1.064) N′-(2,5-dimethyl-4-{[3-(2,2,2-trifluoroethoxy)phenyl]sulfanyl}phenyl)-N-ethyl-N-methylimidoformamide, (1.065) N′-(2,5-dimethyl-4-{[3-(2,2,3,3-tetrafluoropropoxy)phenyl]sulfanyl}phenyl)-N-ethyl-N-methylimidoformamide, (1.066) N′-(2,5-dimethyl-4-{[3-(pentafluoroethoxy)phenyl]sulfanyl}phenyl)-N-ethyl-N-methylimidoformamide, (1.067) N′-(2,5-dimethyl-4-{3-[(1,1,2,2-tetrafluoroethyl)sulfanyl]phenoxy}phenyl)-N-ethyl-N-methylimidoformamide, (1.068) N′-(2,5-dimethyl-4-{3-[(2,2,2-trifluoroethyl)sulfanyl]phenoxy}phenyl)-N-ethyl-N-methylimidoformamide, (1.069) N′-(2,5-dimethyl-4-{3-[(2,2,3,3-tetrafluoropropyl)sulfanyl]phenoxy}phenyl)-N-ethyl-N-methylimidoformamide, (1.070) N′-(2,5-dimethyl-4-{3-[(pentafluoroethyl)sulfanyl]phenoxy}phenyl)-N-ethyl-N-methylimidoformamide, (1.071) N′-(2,5-dimethyl-4-phenoxyphenyl)-N-ethyl-N-methylimidoformamide, (1.072) N′-(4-{[3-(difluoromethoxy)phenyl]sulfanyl}-2,5-dimethylphenyl)-N-ethyl-N-methylimidoformamide, (1.073) N′-(4-{3-[(difluoromethyl) sulfanyl]phenoxy}-2,5-dimethylphenyl)-N-ethyl-N-methylimidoformamide, (1.074) N′-[5-bromo-6-(2,3-dihydro-1H-inden-2-yloxy)-2-methylpyridin-3-yl]-N-ethyl-N-methylimidoformamide, (1.075) N′-{4-[(4,5-dichloro-1,3-thiazol-2-yl)oxy]-2,5-dimethylphenyl}-N-ethyl-N-methylimidoformamide, (1.076) N′-{5-bromo-6-[(1R)-1-(3,5-difluorophenyl)ethoxy]-2-methylpyridin-3-yl}-N-ethyl-N-methylimidoformamide, (1.077) N′-{5-bromo-6-[(1S)-1-(3,5-difluorophenyl)ethoxy]-2-methylpyridin-3-yl}-N-ethyl-N-methylimidoformamide, (1.078) N′-{5-bromo-6-[(cis-4-isopropylcyclohexyl)oxy]-2-methylpyridin-3-yl}-N-ethyl-N-methylimidoformamide, (1.079) N′-{5-bromo-6-[(trans-4-isopropylcyclohexyl)oxy]-2-methylpyridin-3-yl}-N-ethyl-N-methylimidoformamide, (1.080) N′-{5-bromo-6-[1-(3,5-difluorophenyl)ethoxy]-2-methylpyridin-3-yl}-N-ethyl-N-methylimidoformamide, (1.081) mefentrifluconazole, (1.082) ipfentrifluconazole. 2) Respiratory chain inhibitors acting on complex I or II, for example (2.001) benzovindiflupyr, (2.002) bixafen, (2.003) boscalid, (2.004) carboxin, (2.005) fluopyram, (2.006) flutolanil, (2.007) fluxapyroxad, (2.008) furametpyr, (2.009) isofetamid, (2.010) isopyrazam (anti-epimeric enantiomer 1R,4S,9S), (2.011) isopyrazam (anti-epimeric enantiomer 1S,4R,9R), (2.012) isopyrazam (anti-epimeric racemate 1RS,4SR,9SR), (2.013) isopyrazam (mixture of the syn-epimeric racemate 1RS,4SR,9RS and the anti-epimeric racemate 1RS,4SR,9SR), (2.014) isopyrazam (syn-epimeric enantiomer 1R,4S,9R), (2.015) isopyrazam (syn-epimeric enantiomer 1S,4R,9S), (2.016) isopyrazam (syn-epimeric racemate 1RS,4SR,9RS), (2.017) penflufen, (2.018) penthiopyrad, (2.019) pydiflumetofen, (2.020) pyraziflumid, (2.021) sedaxane, (2.022) 1,3-dimethyl-N-(1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl)-1H-pyrazole-4-carboxamide, (2.023) 1,3-dimethyl-N-[(3R)-1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl]-1H-pyrazole-4-carboxamide, (2.024) 1,3-dimethyl-N-[(3S)-1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl]-1H-pyrazole-4-carboxamide, (2.025) 1-methyl-3-(trifluoromethyl)-N-[2′-(trifluoromethyl)biphenyl-2-yl]-1H-pyrazole-4-carboxamide, (2.026) 2-fluoro-6-(trifluoromethyl)-N-(1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl)benzamide, (2.027) 3-(difluoromethyl)-1-methyl-N-(1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl)-1H-pyrazole-4-carboxamide, (2.028) 3-(difluoromethyl)-1-methyl-N-[(3R)-1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl]-1H-pyrazole-4-carboxamide, (2.029) 3-(difluoromethyl)-1-methyl-N-[(3S)-1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl]-1H-pyrazole-4-carboxamide, (2.030) 3-(difluoromethyl)-N-(7-fluoro-1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl)-1-methyl-1H-pyrazole-4-carboxamide, (2.031) 3-(difluoromethyl)-N-[(3R)-7-fluoro-1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl]-1-methyl-1H-pyrazole-4-carboxamide, (2.032) 3-(difluoromethyl)-N-[(3S)-7-fluoro-1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl]-1-methyl-1H-pyrazole-4-carboxamide, (2.033) 5,8-difluoro-N-[2-(2-fluoro-4-{[4-(trifluoromethyl)pyridin-2-yl]oxy}phenyl)ethyl]quinazolin-4-amine, (2.034) N-(2-cyclopentyl-5-fluorobenzyl)-N-cyclopropyl-3-(difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, (2.035) N-(2-tert-butyl-5-methylbenzyl)-N-cyclopropyl-3-(difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, (2.036) N-(2-tert-butylbenzyl)-N-cyclopropyl-3-(difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, (2.037) N-(5-chloro-2-ethylbenzyl)-N-cyclopropyl-3-(difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, (2.038) N-(5-chloro-2-isopropylbenzyl)-N-cyclopropyl-3-(difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, (2.039) N-[(1R,4S)-9-(dichloromethylene)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide, (2.040) N-[(1S,4R)-9-(dichloromethylene)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide, (2.041) N-[1-(2,4-dichlorophenyl)-1-methoxypropan-2-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide, (2.042) N-[2-chloro-6-(trifluoromethyl)benzyl]-N-cyclopropyl-3-(difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, (2.043) N-[3-chloro-2-fluoro-6-(trifluoromethyl)benzyl]-N-cyclopropyl-3-(difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, (2.044) N-[5-chloro-2-(trifluoromethyl)benzyl]-N-cyclopropyl-3-(difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, (2.045) N-cyclopropyl-3-(difluoromethyl)-5-fluoro-1-methyl-N-[5-methyl-2-(trifluoromethyl)benzyl]-1H-pyrazole-4-carboxamide, (2.046) N-cyclopropyl-3-(difluoromethyl)-5-fluoro-N-(2-fluoro-6-isopropylbenzyl)-1-methyl-1H-pyrazole-4-carboxamide, (2.047) N-cyclopropyl-3-(difluoromethyl)-5-fluoro-N-(2-isopropyl-5-methylbenzyl)-1-methyl-1H-pyrazole-4-carboxamide, (2.048) N-cyclopropyl-3-(difluoromethyl)-5-fluoro-N-(2-isopropylbenzyl)-1-methyl-1H-pyrazole-4-carbothioamide, (2.049) N-cyclopropyl-3-(difluoromethyl)-5-fluoro-N-(2-isopropylbenzyl)-1-methyl-1H-pyrazole-4-carboxamide, (2.050) N-cyclopropyl-3-(difluoromethyl)-5-fluoro-N-(5-fluoro-2-isopropylbenzyl)-1-methyl-1H-pyrazole-4-carboxamide, (2.051) N-cyclopropyl-3-(difluoromethyl)-N-(2-ethyl-4,5-dimethylbenzyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, (2.052) N-cyclopropyl-3-(difluoromethyl)-N-(2-ethyl-5-fluorobenzyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, (2.053) N-cyclopropyl-3-(difluoromethyl)-N-(2-ethyl-5-methylbenzyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, (2.054) N-cyclopropyl-N-(2-cyclopropyl-5-fluorobenzyl)-3-(difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, (2.055) N-cyclopropyl-N-(2-cyclopropyl-5-methylbenzyl)-3-(difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, (2.056) N-cyclopropyl-N-(2-cyclopropylbenzyl)-3-(difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide. 3) Respiratory chain inhibitors acting on complex III, for example (3.001) ametoctradin, (3.002) amisulbrom, (3.003) azoxystrobin, (3.004) coumethoxystrobin, (3.005) coumoxystrobin, (3.006) cyazofamid, (3.007) dimoxystrobin, (3.008) enoxastrobin, (3.009) famoxadon, (3.010) fenamidon, (3.011) flufenoxystrobin, (3.012) fluoxastrobin, (3.013) kresoxim-methyl, (3.014) metominostrobin, (3.015) orysastrobin, (3.016) picoxystrobin, (3.017) pyraclostrobin, (3.018) pyrametostrobin, (3.019) pyraoxystrobin, (3.020) trifloxystrobin, (3.021) (2E)-2-{2-[({[(1E)-1-(3-{[(E)-1-fluoro-2-phenylvinyl]oxy}phenyl)ethylidene]amino}oxy)methyl]phenyl}-2-(methoxy imino)-N-methylacetamide, (3.022) (2E,3Z)-5-{[1-(4-chlorophenyl)-1H-pyrazol-3-yl]oxy}-2-(methoxyimino)-N,3-dimethylpent-3-enamide, (3.023) (2R)-2-{2-[(2,5-dimethylphenoxy)methyl]phenyl}-2-methoxy-N-methylacetamide, (3.024) (2S)-2-{2-[(2,5-dimethylphenoxy)methyl]phenyl}-2-methoxy-N-methylacetamide, (3.025) (3 S,6S,7R,8R)-8-benzyl-3-[({3-[(isobutyryloxy)methoxy]-4-methoxypyridin-2-yl}carbonyl)amino]-6-methyl-4,9-dioxo-1,5-dioxonan-7-yl 2-methylpropanoate, (3.026) 2-{2-[(2,5-dimethylphenoxy)methyl]phenyl}-2-methoxy-N-methylacetamide, (3.027) N-(3-ethyl-3,5,5-trimethylcyclohexyl)-3-formamido-2-hydroxybenzamide, (3.028) (2E,3Z)-5-{[1-(4-chloro-2-fluorophenyl)-1H-pyrazol-3-yl]oxy}-2-(methoxyimino)-N,3-dimethylpent-3-enamide, (3.029) methyl {5-[3-(2,4-dimethylphenyl)-1H-pyrazol-1-yl]-2-methylbenzyl}carbamate. 4) Mitosis and cell division inhibitors, for example (4.001) carbendazim, (4.002) diethofencarb, (4.003) ethaboxam, (4.004) fluopicolid, (4.005) pencycuron, (4.006) thiabendazole, (4.007) thiophanate-methyl, (4.008) zoxamide, (4.009) 3-chloro-4-(2,6-difluorophenyl)-6-methyl-5-phenylpyridazine, (4.010) 3-chloro-5-(4-chlorophenyl)-4-(2,6-difluorophenyl)-6-methylpyridazine, (4.011) 3-chloro-5-(6-chloropyridin-3-yl)-6-methyl-4-(2,4,6-trifluorophenyl)pyridazine, (4.012) 4-(2-bromo-4-fluorophenyl)-N-(2,6-difluorophenyl)-1,3-dimethyl-1H-pyrazol-5-amine, (4.013) 4-(2-bromo-4-fluorophenyl)-N-(2-bromo-6-fluorophenyl)-1,3-dimethyl-1H-pyrazol-5-amine, (4.014) 4-(2-bromo-4-fluorophenyl)-N-(2-bromophenyl)-1,3-dimethyl-1H-pyrazol-5-amine, (4.015) 4-(2-bromo-4-fluorophenyl)-N-(2-chloro-6-fluorophenyl)-1,3-dimethyl-1H-pyrazol-5-amine, (4.016) 4-(2-bromo-4-fluorophenyl)-N-(2-chlorophenyl)-1,3-dimethyl-1H-pyrazol-5-amine, (4.017) 4-(2-bromo-4-fluorophenyl)-N-(2-fluorophenyl)-1,3-dimethyl-1H-pyrazol-5-amine, (4.018) 4-(2-chloro-4-fluorophenyl)-N-(2,6-difluorophenyl)-1,3-dimethyl-1H-pyrazol-5-amine, (4.019) 4-(2-chloro-4-fluorophenyl)-N-(2-chloro-6-fluorophenyl)-1,3-dimethyl-1H-pyrazol-5-amine, (4.020) 4-(2-chloro-4-fluorophenyl)-N-(2-chlorophenyl)-1,3-dimethyl-1H-pyrazol-5-amine, (4.021) 4-(2-chloro-4-fluorophenyl)-N-(2-fluorophenyl)-1,3-dimethyl-1H-pyrazol-5-amine, (4.022) 4-(4-chlorophenyl)-5-(2,6-difluorophenyl)-3,6-dimethylpyridazine, (4.023) N-(2-bromo-6-fluorophenyl)-4-(2-chloro-4-fluorophenyl)-1,3-dimethyl-1H-pyrazol-5-amine, (4.024) N-(2-bromophenyl)-4-(2-chloro-4-fluorophenyl)-1,3-dimethyl-1H-pyrazol-5-amine, (4.025) N-(4-chloro-2,6-difluorophenyl)-4-(2-chloro-4-fluorophenyl)-1,3-dimethyl-1H-pyrazol-5-amine 5) Compounds with multisite activity, for example (5.001) Bordeaux mixture, (5.002) captafol, (5.003) captan, (5.004) chlorthalonil, (5.005) copper hydroxide, (5.006) copper naphthenate, (5.007) copper oxide, (5.008) copper oxychloride, (5.009) copper(2+) sulfate, (5.010) dithianon, (5.011) dodine, (5.012) folpet, (5.013) mancozeb, (5.014) maneb, (5.015) metiram, (5.016) zinc metiram, (5.017) copper oxine, (5.018) propineb, (5.019) sulfur and sulfur preparations including calcium poly sulfide, (5.020) thiram, (5.021) zineb, (5.022) ziram, (5.023) 6-ethyl-5,7-dioxo-6,7-dihydro-5H-pyrrolo[3′,4′:5,6][1,4]dithiino[2,3-c][1,2]thiazole-3-carbonitrile 6) Compounds capable of triggering host defense, for example (6.001) acibenzolar-S-methyl, (6.002) isotianil, (6.003) probenazole, (6.004) tiadinil. 7) Amino acid and/or protein biosynthesis inhibitors, for example (7.001) cyprodinil, (7.002) kasugamycin, (7.003) kasugamycin hydrochloride hydrate, (7.004) oxytetracycline, (7.005) pyrimethanil, (7.006) 3-(5-fluoro-3,3,4,4-tetramethyl-3,4-dihydroisoquinolin-1-yl)quinoline. 8) ATP production inhibitors, for example (8.001) silthiofam. 9) Cell wall synthesis inhibitors, for example (9.001) benthiavalicarb, (9.002) dimethomorph, (9.003) flumorph, (9.004) iprovalicarb, (9.005) mandipropamid, (9.006) pyrimorph, (9.007) valifenalate, (9.008) (2E)-3-(4-tert-butylphenyl)-3-(2-chloropyridin-4-yl)-1-(morpholin-4-yl)prop-2-en-1-one, (9.009) (2Z)-3-(4-tert-butylphenyl)-3-(2-chloropyridin-4-yl)-1-(morpholin-4-yl)prop-2-en-1-one. 10) Lipid and membrane synthesis inhibitors, for example (10.001) propamocarb, (10.002) propamocarb hydrochloride, (10.003) tolclofos-methyl. 11) Melanin biosynthesis inhibitors, for example (11.001) tricyclazole, (11.002) 2,2,2-trifluoroethyl {3-methyl-1-[(4-methylbenzoyl)amino]butan-2-yl}carbamate. 12) Nucleic acid synthesis inhibitors, for example (12.001) benalaxyl, (12.002) benalaxyl-M (kiralaxyl), (12.003) metalaxyl, (12.004) metalaxyl-M (mefenoxam). 13) Signal transduction inhibitors, for example (13.001) fludioxonil, (13.002) iprodione, (13.003) procymidone, (13.004) proquinazid, (13.005) quinoxyfen, (13.006) vinclozolin. 14) Compounds that can act as decouplers, for example (14.001) fluazinam, (14.002) meptyldinocap. 15) Further compounds, for example (15.001) abscisic acid, (15.002) benthiazole, (15.003) bethoxazin, (15.004) capsimycin, (15.005) carvone, (15.006) chinomethionat, (15.007) cufraneb, (15.008) cyflufenamid, (15.009) cymoxanil, (15.010) cyprosulfamide, (15.011) flutianil, (15.012) fosetyl-aluminium, (15.013) fosetyl-calcium, (15.014) fosetyl-sodium, (15.015) methyl isothiocyanate, (15.016) metrafenon, (15.017) mildiomycin, (15.018) natamycin, (15.019) nickel dimethyldithiocarbamate, (15.020) nitrothal-isopropyl, (15.021) oxamocarb, (15.022) oxathiapiprolin, (15.023) oxyfenthiin, (15.024) pentachlorophenol and salts, (15.025) phosphonic acid and salts thereof, (15.026) propamocarb-fosetylate, (15.027) pyriofenone (chlazafenone), (15.028) tebufloquin, (15.029) tecloftalam, (15.030) tolnifanide, (15.031) 1-(4-{4-[(5R)-5-(2,6-difluorophenyl)-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl}piperidin-1-yl)-2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]ethanone, (15.032) 1-(4-{4-[(5S)-5-(2,6-difluorophenyl)-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl}piperidin-1-yl)-2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]ethanone, (15.033) 2-(6-benzylpyridin-2-yl)quinazoline, (15.034) 2,6-dimethyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c′]dipyrrole-1,3,5,7(2H,6H)-tetrone, (15.035) 2-[3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]-1-[4-(4-{5-[2-(prop-2-yn-1-yloxy)phenyl]-4,5-dihydro-1,2-oxazol-3-yl}-1,3-thiazol-2-yl)piperidin-1-yl]ethanone, (15.036) 2-[3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]-1-[4-(4-{5-[2-chloro-6-(prop-2-yn-1-yloxy)phenyl]-4,5-dihydro-1,2-oxazol-3-yl}-1,3-thiazol-2-yl)piperidin-1-yl]ethanone, (15.037) 2-[3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]-1-[4-(4-{5-[2-fluoro-6-(prop-2-yn-1-yloxy)phenyl]-4,5-dihydro-1,2-oxazol-3-yl}-1,3-thiazol-2-yl)piperidin-1-yl]ethanone, (15.038) 2-[6-(3-fluoro-4-methoxyphenyl)-5-methylpyridin-2-yl]quinazoline, (15.039) 2-{(5R)-3-[2-(1-{[3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]acetyl}piperidin-4-yl)-1,3-thiazol-4-yl]-4,5-dihydro-1,2-oxazol-5-yl}-3-chlorophenyl methanesulfonate, (15.040) 2-{(5 S)-3-[2-(1-{[3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]acetyl}piperidin-4-yl)-1,3-thiazol-4-yl]-4,5-dihydro-1,2-oxazol-5-yl}-3-chlorophenyl methanesulfonate, (15.041) 2-{2-[(7,8-difluoro-2-methylquinolin-3-yl)oxy]-6-fluorophenyl}propan-2-ol, (15.042) 2-{2-fluoro-6-[(8-fluoro-2-methylquinolin-3-yl)oxy]phenyl}propan-2-ol, (15.043) 2-{3-[2-(1-{[3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]acetyl}piperidin-4-yl)-1,3-thiazol-4-yl]-4,5-dihydro-1,2-oxazol-5-yl}-3-chlorophenyl methanesulfonate, (15.044) 2-{3-[2-(1-{[3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]acetyl}piperidin-4-yl)-1,3-thiazol-4-yl]-4,5-dihydro-1,2-oxazol-5-yl}phenyl methanesulfonate, (15.045) 2-phenylphenol and salts thereof, (15.046) 3-(4,4,5-trifluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)quinoline, (15.047) 3-(4,4-difluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)quinoline, (15.048) 4-amino-5-fluoropyrimidin-2-ol (tautomeric form: 4-amino-5-fluoropyrimidin-2(1H)-one), (15.049) 4-oxo-4-[(2-phenylethyl)amino]butyric acid, (15.050) 5-amino-1,3,4-thiadiazole-2-thiol, (15.051) 5-chloro-N′-phenyl-N′-(prop-2-yn-1-yl)thiophene 2-sulfonohydrazide, (15.052) 5-fluoro-2-[(4-fluorobenzyl)oxy]pyrimidin-4-amine, (15.053) 5-fluoro-2-[(4-methylbenzyl)oxy]pyrimidin-4-amine, (15.054) 9-fluoro-2,2-dimethyl-5-(quinolin-3-yl)-2,3-dihydro-1,4-benzoxazepine, (15.055) but-3-yn-1-yl {6-[({[(Z)-(1-methyl-1H-tetrazol-5-yl)(phenyl)methylene]amino}oxy)methyl]pyridin-2-yl}carbamate, (15.056) ethyl (2Z)-3-amino-2-cyano-3-phenylacrylate, (15.057) phenazine-1-carboxylic acid, (15.058) propyl 3,4,5-trihydroxybenzoate, (15.059) quinolin-8-ol, (15.060) quinolin-8-ol sulfate (2:1), (15.061) tert-butyl {6-[({[(1-methyl-1H-tetrazol-5-yl)(phenyl)methylene]amino}oxy)methyl]pyridin-2-yl}carbamate, (15.062) 5-fluoro-4-imino-3-methyl-1-[(4-methylphenyl)sulfonyl]-3,4-dihydropyrimidin-2(1H)-one. The compounds of the formula (I) can be combined with biological pesticides. Biological pesticides especially include bacteria, fungi, yeasts, plant extracts and products formed by microorganisms, including proteins and secondary metabolites. Biological pesticides include bacteria such as spore-forming bacteria, root-colonizing bacteria and bacteria which act as biological insecticides, fungicides or nematicides. Examples of such bacteria which are used or can be used as biological pesticides are: Examples of fungi and yeasts which are used or can be used as biological pesticides are: Examples of viruses which are used or can be used as biological pesticides are: Also included are bacteria and fungi which are added as ‘inoculant’ to plants or plant parts or plant organs and which, by virtue of their particular properties, promote plant growth and plant health. Examples include: Examples of plant extracts and products formed by microorganisms, including proteins and secondary metabolites, which are used or can be used as biological pesticides are: The compounds of the formula (I) can be combined with safeners, for example benoxacor, cloquintocet (-mexyl), cyometrinil, cyprosulfamide, dichlormid, fenchlorazole (-ethyl), fenclorim, flurazole, fluxofenim, furilazole, isoxadifen (-ethyl), mefenpyr (-diethyl), naphthalic anhydride, oxabetrinil, 2-methoxy-N-({4-[(methylcarbamoyl) amino]phenyl}sulfonyl)benzamide (CAS 129531-12-0), 4-(dichloroacetyl)-1-oxa-4-azaspiro [4.5]decane (CAS 71526-07-3), 2,2,5-trimethyl-3-(dichloroacetyl)-1,3-oxazolidine (CAS 52836-31-4). All plants and plant parts can be treated in accordance with the invention. Plants are understood here to mean all plants and populations of plants, such as desirable and undesirable wild plants or crop plants (including naturally occurring crop plants), for example cereals (wheat, rice, triticale, barley, rye, oats), corn, soya beans, potatoes, sugar beet, sugar cane, tomatoes, bell peppers, cucumbers, melons, carrots, water melons, onions, lettuce, spinach, leeks, beans, The treatment according to the invention of the plants and parts of plants with the compounds of the formula (I) is effected directly or by allowing the compounds to act on the surroundings, the habitat or the storage space thereof by the customary treatment methods, for example by dipping, spraying, evaporating, fogging, scattering, painting on, injecting, and, in the case of propagation material, especially in the case of seeds, also by applying one or more coats. As already mentioned above, it is possible to treat all plants and their parts in accordance with the invention. In a preferred embodiment, wild plant species and plant cultivars, or those obtained by conventional biological breeding methods, such as crossing or protoplast fusion, and parts thereof, are treated. In a further preferred embodiment, transgenic plants and plant cultivars obtained by genetic engineering methods, if appropriate in combination with conventional methods (genetically modified organisms), and parts thereof, are treated. The term “parts” or “parts of plants” or “plant parts” has been explained above. Particular preference is given in accordance with the invention to treating plants of the respective commercially customary plant cultivars or those that are in use. Plant cultivars are understood to mean plants having new properties (“traits”) and which have been obtained by conventional breeding, by mutagenesis or by recombinant DNA techniques. They may be cultivars, varieties, biotypes and genotypes. The preferred transgenic plants or plant cultivars (those obtained by genetic engineering) which are to be treated in accordance with the invention include all plants which, through the genetic modification, received genetic material which imparts particular advantageous useful properties (“traits”) to these plants. Examples of such properties are better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to levels of water or soil salinity, enhanced flowering performance, easier harvesting, accelerated ripening, higher harvest yields, higher quality and/or higher nutritional value of the harvested products, better capability for storage and/or processability of the harvested products. Further and particularly emphasized examples of such properties are increased resistance of the plants to animal and microbial pests, such as insects, arachnids, nematodes, mites, slugs and snails, owing, for example, to toxins formed in the plants, in particular those formed in the plants by the genetic material from The plants and plant parts are treated with the compounds of the formula (I) directly or by action on their surroundings, habitat or storage space using customary treatment methods, for example by dipping, spraying, atomizing, irrigating, evaporating, dusting, fogging, broadcasting, foaming, painting, spreading, injecting, watering (drenching), drip irrigating and, in the case of propagation material, in particular in the case of seed, additionally by dry seed treatment, liquid seed treatment, slurry treatment, by incrusting, by coating with one or more coats, etc. It is furthermore possible to apply the compounds of the formula (I) by the ultra-low volume method or to inject the application form or the compound of the formula (I) itself into the soil. A preferred direct treatment of the plants is foliar application, meaning that the compounds of the formula (I) are applied to the foliage, in which case the treatment frequency and the application rate should be adjusted according to the level of infestation with the pest in question. In the case of systemically-active active compounds, the compounds of the formula (I) also access the plants via the root system. The plants are then treated by the action of the compounds of the formula (I) on the habitat of the plant. This can be accomplished, for example, by drenching, or by mixing into the soil or the nutrient solution, meaning that the locus of the plant (e.g. soil or hydroponic systems) is impregnated with a liquid form of the compounds of the formula (I), or by soil application, meaning that the compounds of the formula (I) according to the invention are introduced in solid form (e.g. in the form of granules) into the locus of the plants. In the case of paddy rice crops, this can also be accomplished by metering the compound of the formula (I) in a solid application form (for example as granules) into a flooded paddy field. The control of animal pests by the treatment of the seed of plants has long been known and is the subject of constant improvements. Nevertheless, the treatment of seed entails a series of problems which cannot always be solved in a satisfactory manner Thus, it is desirable to develop methods for protecting the seed and the germinating plant which dispense with, or at least reduce considerably, the additional application of pesticides during storage, after sowing or after emergence of the plants. It is additionally desirable to optimize the amount of active compound used so as to provide optimum protection for the seed and the germinating plant from attack by animal pests, but without damage to the plant itself by the active compound used. In particular, methods for the treatment of seed should also take account of the intrinsic insecticidal or nematicidal properties of pest-resistant or -tolerant transgenic plants in order to achieve optimal protection of the seed and also the germinating plant with a minimum expenditure on pesticides. The present invention therefore in particular also relates to a method for the protection of seed and germinating plants from attack by pests, by treating the seed with one of the compounds of the formula (I). The method according to the invention for protecting seed and germinating plants against attack by pests further comprises a method in which the seed is treated simultaneously in one operation or sequentially with a compound of the formula (I) and a mixing component. It further also comprises a method where the seed is treated at different times with a compound of the formula (I) and a mixing component. The invention likewise relates to the use of the compounds of the formula (I) for the treatment of seed for protecting the seed and the resulting plant from animal pests. The invention further relates to seed which has been treated with a compound of the formula (I) according to the invention for protection from animal pests. The invention also relates to seed which has been treated simultaneously with a compound of the formula (I) and a mixing component. The invention further relates to seed which has been treated at different times with a compound of the formula (I) and a mixing component. In the case of seed which has been treated at different times with a compound of the formula (I) and a mixing component, the individual substances may be present on the seed in different layers. In this case, the layers comprising a compound of the formula (I) and mixing components may optionally be separated by an intermediate layer. The invention also relates to seed in which a compound of the formula (I) and a mixing component have been applied as part of a coating or as a further layer or further layers in addition to a coating. The invention further relates to seed which, after the treatment with a compound of the formula (I), is subjected to a film-coating process to prevent dust abrasion on the seed. One of the advantages that occur when a compound of the formula (I) acts systemically is that the treatment of the seed protects not only the seed itself but also the plants resulting therefrom, after emergence, from animal pests. In this way, the immediate treatment of the crop at the time of sowing or shortly thereafter can be dispensed with. A further advantage is that the treatment of the seed with a compound of the formula (I) can enhance germination and emergence of the treated seed. It is likewise considered to be advantageous that compounds of the formula (I) can especially also be used for transgenic seed. Furthermore, compounds of the formula (I) can be employed in combination with compositions of signaling technology, leading to better colonization by symbionts such as, for example, The compounds of the formula (I) are suitable for the protection of seed of any plant variety which is used in agriculture, in greenhouses, in forests or in horticulture. More particularly, this is the seed of cereals (for example wheat, barley, rye, millet and oats), corn, cotton, soya beans, rice, potatoes, sunflowers, coffee, tobacco, canola, oilseed rape, beets (for example sugar beets and fodder beets), peanuts, vegetables (for example tomatoes, cucumbers, beans, cruciferous vegetables, onions and lettuce), fruit plants, lawns and ornamental plants. Of particular significance is the treatment of the seed of cereals (such as wheat, barley, rye and oats), corn, soya beans, cotton, canola, oilseed rape, vegetables and rice. As already mentioned above, the treatment of transgenic seed with a compound of the formula (I) is also of particular importance. This involves the seed of plants which generally contain at least one heterologous gene which controls the expression of a polypeptide having insecticidal and/or nematicidal properties in particular. The heterologous genes in transgenic seed may originate from microorganisms such as In the context of the present invention, the compound of the formula (I) is applied to the seed. The seed is preferably treated in a state in which it is sufficiently stable for no damage to occur in the course of treatment. In general, the seed can be treated at any time between harvest and sowing. It is customary to use seed which has been separated from the plant and freed from cobs, shells, stalks, coats, hairs or the flesh of the fruits. For example, it is possible to use seed which has been harvested, cleaned and dried down to a moisture content which allows storage. Alternatively, it is also possible to use seed which, after drying, has been treated with, for example, water and then dried again, for example priming. In the case of rice seed, it is also possible to use seed which has been soaked, for example in water, until it reaches a certain stage of the rice embryo (“pigeon breast stage”) which results in stimulation of germination and more uniform emergence. When treating the seed, care must generally be taken that the amount of the compound of the formula (I) applied to the seed and/or the amount of further additives is chosen in such a way that the germination of the seed is not adversely affected, or that the resulting plant is not damaged. This has to be ensured particularly in the case of active ingredients which can exhibit phytotoxic effects at certain application rates. In general, the compounds of the formula (I) are applied to the seed in the form of a suitable formulation. Suitable formulations and processes for seed treatment are known to the person skilled in the art. The compounds of the formula (I) can be converted to the customary seed-dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other coating compositions for seed, and also ULV formulations. These formulations are prepared in a known manner, by mixing the compounds of the formula (I) with customary additives, for example customary extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, antifoams, preservatives, secondary thickeners, adhesives, gibberellins, and also water. Dyes which may be present in the seed-dressing formulations usable in accordance with the invention are all dyes which are customary for such purposes. It is possible to use either pigments, which are sparingly soluble in water, or dyes, which are soluble in water. Examples include the dyes known by the names Rhodamine B, C.I. Pigment Red 112 and C.I. Solvent Red 1. Useful wetting agents which may be present in the seed-dressing formulations usable in accordance with the invention are all substances which promote wetting and which are customary for the formulation of agrochemically active ingredients. Usable with preference are alkyl naphthalenesulfonates, such as diisopropyl or diisobutyl naphthalenesulfonates. Suitable dispersants and/or emulsifiers which may be present in the seed-dressing formulations usable in accordance with the invention are all nonionic, anionic and cationic dispersants customary for the formulation of agrochemically active ingredients. Nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants can be used with preference. Suitable nonionic dispersants especially include ethylene oxide/propylene oxide block polymers, alkylphenol polyglycol ethers and tristyrylphenol polyglycol ethers, and the phosphated or sulfated derivatives thereof. Suitable anionic dispersants are especially lignosulfonates, polyacrylic acid salts and arylsulfonate-formaldehyde condensates. Antifoams which may be present in the seed-dressing formulations usable in accordance with the invention are all foam-inhibiting substances customary for the formulation of agrochemically active ingredients. Silicone antifoams and magnesium stearate can be used with preference. Preservatives which may be present in the seed-dressing formulations usable in accordance with the invention are all substances usable for such purposes in agrochemical compositions. Examples include dichlorophene and benzyl alcohol hemiformal. Secondary thickeners which may be present in the seed-dressing formulations usable in accordance with the invention are all substances which can be used for such purposes in agrochemical compositions. Preferred examples include cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and finely divided silica. Useful stickers which may be present in the seed-dressing formulations usable in accordance with the invention are all customary binders usable in seed-dressing products. Preferred examples include polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and tylose. Gibberellins which may be present in the seed-dressing formulations usable in accordance with the invention are preferably the gibberellins A1, A3 (=gibberellic acid), A4 and A7; particular preference is given to using gibberellic acid. The gibberellins are known (cf. R. Wegler “Chemie der Pflanzenschutz-und Schädlingsbekämpfungsmittel”, vol. 2, Springer Verlag, 1970, pp. 401-412). The seed-dressing formulations usable in accordance with the invention can be used to treat a wide variety of different kinds of seed, either directly or after prior dilution with water. For instance, the concentrates or the preparations obtainable therefrom by dilution with water can be used to dress the seed of cereals, such as wheat, barley, rye, oats and triticale, and also the seed of corn, rice, oilseed rape, peas, beans, cotton, sunflowers, soya beans and beets, or else a wide variety of different vegetable seed. The seed-dressing formulations usable in accordance with the invention, or the dilute use forms thereof, can also be used to dress seeds of transgenic plants. For the treatment of seed with the seed-dressing formulations usable in accordance with the invention, or the use forms prepared therefrom through the addition of water, all mixing units usable customarily for the seed dressing are useful. Specifically, the procedure in seed dressing is to place the seed into a mixer in batchwise or continuous operation, to add the particular desired amount of seed-dressing formulations, either as such or after prior dilution with water, and to mix until the formulation is distributed homogeneously on the seed. If appropriate, this is followed by a drying operation. The application rate of the seed dressing formulations usable in accordance with the invention can be varied within a relatively wide range. It is guided by the particular content of the compounds of the formula (I) in the formulations and by the seed. The application rates of the compound of the formula (I) are generally between 0.001 and 50 g per kilogram of seed, preferably between 0.01 and 15 g per kilogram of seed. In the animal health field, i.e. the field of veterinary medicine, the compounds of the formula (I) are active against animal parasites, in particular ectoparasites or endoparasites. The term “endoparasite” includes especially helminths and protozoa, such as coccidia. Ectoparasites are typically and preferably arthropods, especially insects or acarids. In the field of veterinary medicine, the compounds of the formula (I) having favorable endotherm toxicity are suitable for controlling parasites which occur in animal breeding and animal husbandry in livestock, breeding animals, zoo animals, laboratory animals, experimental animals and domestic animals. They are active against all or specific stages of development of the parasites. Agricultural livestock include, for example, mammals, such as sheep, goats, horses, donkeys, camels, buffalo, rabbits, reindeer, fallow deer and especially cattle and pigs; or poultry such as turkeys, ducks, geese and especially chickens; or fish or crustaceans, for example in aquaculture; or, as the case may be, insects such as bees. Domestic animals include, for example, mammals, such as hamsters, guinea pigs, rats, mice, chinchillas, ferrets, and particularly dogs, cats, caged birds; reptiles, amphibians or aquarium fish. In a specific embodiment, the compounds of the formula (I) are administered to mammals. In another specific embodiment, the compounds of the formula (I) are administered to birds, namely caged birds or particularly poultry. Use of the compounds of the formula (I) for the control of animal parasites is intended to reduce or prevent illness, cases of death and reductions in performance (in the case of meat, milk, wool, hides, eggs, honey and the like), such that more economical and simpler animal husbandry is enabled and better animal well-being is achievable. In relation to the field of animal health, the term “control” or “controlling” in the present context means that the compounds of the formula (I) are effective in reducing the incidence of the particular parasite in an animal infected with such parasites to an innocuous degree. More specifically, “controlling” in the present context means that the compounds of the formula (I) kill the respective parasite, inhibit its growth, or inhibit its proliferation. The arthropods include, for example, but are not limited to, from the order of Anoplurida, for example In addition, in the case of the arthropods, mention should be made by way of example, without limitation, of the following Acari: from the subclass of Acari ( Examples of parasitic protozoa include, but are not limited to: Mastigophora ( The helminths that are pathogenic to humans or animals include, for example, Acanthocephala, nematodes, Pentastoma and Platyhelminths (e.g. Monogenea, cestodes and trematodes). Exemplary helminths include, but are not limited to: Monogenea: for example: From the order of Cyclophyllida, for example: Trematodes: from the class of Digenea, for example: Nematodes: from the order of Trichinellida, for example: From the order of Tylenchida, for example: From the order of Rhabditina, for example: From the order of Spirurida, for example: Acanthocephala: from the order of Oligacanthorhynchida, for example: From the order of Polymorphida, for example: Pentastoma: from the order of Porocephalida, for example In the veterinary field and in animal husbandry, the compounds of the formula (I) are administered by methods generally known in the art, such as via the enteral, parenteral, dermal or nasal route in the form of suitable preparations. Administration may be prophylactic, metaphylactic or therapeutic. Thus, one embodiment of the present invention refers to the compounds of the formula (I) for use as a medicament. A further aspect relates to the compounds of the formula (I) for use as an antiendoparasitic agent. A further specific aspect of the invention relates to the compounds of the formula (I) for use as an antihelminthic agent, especially for use as a nematicide, platyhelminthicide, acanthocephalicide or pentastomicide. A further specific aspect of the invention relates to the compounds of the formula (I) for use as an antiprotozoic agent. A further aspect relates to the compounds of the formula (I) for use as an antiectoparasitic agent, especially an arthropodicide, very particularly an insecticide or an acaricide. Further aspects of the invention are veterinary medicine formulations comprising an effective amount of at least one compound of the formula (I) and at least one of the following: a pharmaceutically acceptable excipient (e.g. solid or liquid diluents), a pharmaceutically acceptable auxiliary (e.g. surfactants), especially a pharmaceutically acceptable excipient used conventionally in veterinary medicine formulations and/or a pharmaceutically acceptable auxiliary conventionally used in veterinary medicine formulations. A related aspect of the invention is a method for production of a veterinary medicine formulation as described here, which comprises the step of mixing at least one compound of the formula (I) with pharmaceutically acceptable excipients and/or auxiliaries, especially with pharmaceutically acceptable excipients used conventionally in veterinary medicine formulations and/or auxiliaries used conventionally in veterinary medicine formulations. Another specific aspect of the invention is veterinary medicine formulations selected from the group of ectoparasiticidal and endoparasiticidal formulations, especially selected from the group of anthelmintic, antiprotozoic and arthropodicidal formulations, very particularly selected from the group of nematicidal, platyhelminthicidal, acanthocephalicidal, pentastomicidal, insecticidal and acaricidal formulations, according to the aspects mentioned, and methods for production thereof. Another aspect relates to a method for treatment of a parasitic infection, especially an infection caused by a parasite selected from the group of the ectoparasites and endoparasites mentioned here, by use of an effective amount of a compound of the formula (I) in an animal, especially a nonhuman animal, having a need therefor. Another aspect relates to a method for treatment of a parasitic infection, especially an infection caused by a parasite selected from the group of the ectoparasites and endoparasites mentioned here, by use of a veterinary medicine formulation as defined here in an animal, especially a nonhuman animal, having a need therefor. Another aspect relates to the use of the compounds of the formula (I) in the treatment of a parasite infection, especially an infection caused by a parasite selected from the group of the ectoparasites and endoparasites mentioned here, in an animal, especially a nonhuman animal In the present context of animal health or veterinary medicine, the term “treatment” includes prophylactic, metaphylactic and therapeutic treatment. In a particular embodiment, in this way, mixtures of at least one compound of the formula (I) with other active compounds, especially with endo- and ectoparasiticides, are provided for the field of veterinary medicine. In the field of animal health, “mixture” means not just that two (or more) different active compounds are formulated in a common formulation and are correspondingly employed together, but also relates to products comprising formulations separated for each active compound. Accordingly, when more than two active compounds are to be employed, all active compounds can be formulated in a common formulation or all active compounds can be formulated in separate formulations; likewise conceivable are mixed forms in which some of the active compounds are formulated together and some of the active compounds are formulated separately. Separate formulations allow the separate or successive application of the active compounds in question. The active compounds specified here by their “common names” are known and are described, for example, in the “Pesticide Manual” (see above) or can be searched for on the Internet (e.g.: http://www.alanwood.net/pesticides). Illustrative active compounds from the group of the ectoparasiticides as mixing components, without any intention that this should constitute a restriction, include the insecticides and acaricides listed in detail above. Further usable active compounds are listed below in accordance with the abovementioned classification based on the current IRAC Mode of Action Classification Scheme: (1) acetylcholinesterase (AChE) inhibitors; (2) GABA-gated chloride channel blockers; (3) sodium channel modulators; (4) nicotinic acetylcholine receptor (nAChR) competitive modulators; (5) nicotinic acetylcholine receptor (nAChR) allosteric modulators; (6) glutamate-gated chloride channel (GluCl) allosteric modulators; (7) juvenile hormone mimetics; (8) miscellaneous non-specific (multi-site) inhibitors; (9) chordotonal organ modulators; (10) mite growth inhibitors; (12) inhibitors of mitochondrial ATP synthase, such as ATP disruptors; (13) uncouplers of oxidative phosphorylation via disruption of the proton gradient; (14) nicotinic acetylcholine receptor channel blockers; (15) inhibitors of chitin biosynthesis, type 0; (16) inhibitors of chitin biosynthesis, type 1; (17) molting disruptors (especially in Diptera); (18) ecdysone receptor agonists; (19) octopamine receptor agonists; (21) mitochondrial complex I electron transport inhibitors; (25) mitochondrial complex II electron transport inhibitors; (20) mitochondrial complex III electron transport inhibitors; (22) voltage-dependent sodium channel blockers; (23) inhibitors of acetyl CoA carboxylase; (28) ryanodine receptor modulators; active compounds having unknown or non-specific mechanisms of action, e.g. fentrifanil, fenoxacrim, cycloprene, chlorobenzilate, chlordimeform, flubenzimin, dicyclanil, amidoflumet, quinomethionat, triarathene, clothiazoben, tetrasul, potassium oleate, petroleum, metoxadiazone, gossyplur, flutenzine, brompropylate, cryolite;
Illustrative active compounds from the group of the endoparasiticides, as mixing components, include, but are not limited to, active anthelmintic ingredients and active antiprotozoic ingredients. The anthelmintic active compounds include but are not limited to the following nematicidally, trematicidally and/or cestocidally active compounds: from the class of the macrocyclic lactones, for example; eprinomectin, abamectin, nemadectin, moxidectin, doramectin, selamectin, lepimectin, latidectin, milbemectin, ivermectin, emamectin, milbemycin;
Active antiprotozoic compounds include, but are not limited to, the following active compounds: from the class of the triazines, for example: diclazuril, ponazuril, letrazuril, toltrazuril;
All the mixing components mentioned, as the case may be, may also form salts with suitable bases or acids if they are capable of doing so on the basis of their functional groups. The compounds of the formula (I) can also be used in vector control. In the context of the present invention, a vector is an arthropod, especially an insect or arachnid, capable of transmitting pathogens, for example viruses, worms, single-cell organisms and bacteria, from a reservoir (plant, animal, human, etc.) to a host. The pathogens can be transmitted either mechanically (for example trachoma by non-stinging flies) onto a host or after injection into a host (for example malaria parasites by mosquitoes). Examples of vectors and the diseases or pathogens they transmit are: Examples of vectors in the context of the present invention are insects, for example aphids, flies, leafhoppers or thrips, which can transmit plant viruses to plants. Other vectors capable of transmitting plant viruses are spider mites, lice, beetles and nematodes. Further examples of vectors in the context of the present invention are insects and arachnids such as mosquitoes, especially of the genera Vector control is also possible if the compounds of the formula (I) are resistance-breaking. Compounds of the formula (I) are suitable for use in the prevention of diseases and/or pathogens transmitted by vectors. Thus, a further aspect of the present invention is the use of compounds of the formula (I) for vector control, for example in agriculture, in horticulture, in forests, in gardens and in leisure facilities, and also in the protection of materials and stored products. The compounds of the formula (I) are suitable for protecting industrial materials against attack or destruction by insects, for example from the orders of Coleoptera, Hymenoptera, Isoptera, Lepidoptera, Psocoptera and Zygentoma. Industrial materials in the present context are understood to mean inanimate materials, such as preferably plastics, adhesives, sizes, papers and cards, leather, wood, processed wood products and coating compositions. The use of the invention for protection of wood is particularly preferred. In a further embodiment, the compounds of the formula (I) are used together with at least one further insecticide and/or at least one fungicide. In a further embodiment, the compounds of the formula (I) take the form of a ready-to-use pesticide, meaning that they can be applied to the material in question without further modifications. Useful further insecticides or fungicides especially include those mentioned above. Surprisingly, it has also been found that the compounds of the formula (I) can be employed for protecting objects which come into contact with saltwater or brackish water, in particular hulls, screens, nets, buildings, moorings and signaling systems, against fouling. It is equally possible to use the compounds of the formula (I), alone or in combinations with other active compounds, as antifouling agents. The compounds of the formula (I) are suitable for controlling animal pests in the hygiene sector. More particularly, the invention can be used in the domestic protection sector, in the hygiene protection sector and in the protection of stored products, particularly for control of insects, arachnids, ticks and mites encountered in enclosed spaces, for example dwellings, factory halls, offices, vehicle cabins and animal breeding facilities. For controlling animal pests, the compounds of the formula (I) are used alone or in combination with other active compounds and/or auxiliaries. They are preferably used in domestic insecticide products. The compounds of the formula (I) are effective against sensitive and resistant species, and against all developmental stages. These pests include, for example, pests from the class Arachnida, from the orders Scorpiones, Araneae and Opiliones, from the classes Chilopoda and Diplopoda, from the class Insecta the order Blattodea, from the orders Coleoptera, Dermaptera, Diptera, Heteroptera, Hymenoptera, Isoptera, Lepidoptera, Phthiraptera, Psocoptera, Saltatoria or Orthoptera, Siphonaptera and Zygentoma and from the class Malacostraca the order Isopoda. Application is effected, for example, in aerosols, unpressurized spray products, for example pump and atomizer sprays, automatic fogging systems, foggers, foams, gels, evaporator products with evaporator tablets made of cellulose or plastic, liquid evaporators, gel and membrane evaporators, propeller-driven evaporators, energy-free, or passive, evaporation systems, moth papers, moth bags and moth gels, as granules or dusts, in baits for spreading or bait stations. The analytical determination methods described below apply to all statements in the entire document unless the respective analytical determination method is specially described in the relevant text passage. The determination of [M+H]+ or M−by LC-MS under acidic chromatographic conditions was carried out using 1 ml of formic acid per liter of acetonitrile and 0.9 ml of formic acid per liter of Millipore water as mobile phases. The Zorbax Eclipse Plus C18 50 mm*2.1 mm, 1.8 μm column was used at a column oven temperature of 55° C. LC-MS3: Waters UPLC with SQD2 mass spectrometer and SampleManager sample changer. Linear gradient from 0.0 to 1.70 minutes from 10% acetonitrile to 95% acetonitrile, from 1.70 to 2.40 minutes constant 95% acetonitrile, flow rate 0.85 ml/min. LC-MS6 and LC-MS7: Agilent 1290 LC, Agilent MSD mass spectrometer, HTS PAL sample changer. Linear gradient from 0.0 to 1.80 minutes from 10% acetonitrile to 95% acetonitrile, from 1.80 to 2.50 minutes constant 95% acetonitrile, flow rate 1.0 ml/min. The determination of [M+H]+ by LC-MS under neutral chromatographic conditions was carried out using acetonitrile and Millipore water with 79 mg/l ammonium carbonate as mobile phases. LC-MS4: Waters IClass Acquity with QDA mass spectrometer and FTN sample changer (column Waters Acquity 1.7 μm 50 mm*2.1 mm, column oven temperature 45° C.). Linear gradient from 0.0 to 2.10 minutes from 10% acetonitrile to 95% acetonitrile, from 2.10 to 3.00 minutes constant 95% acetonitrile, flow rate 0.7 ml/min. LC-MS5: Agilent 1100 LC system with MSD mass spectrometer and HTS PAL sample changer (column: Zorbax XDB C18 1.8 μm 50 mm*4.6 mm, column oven temperature 55° C.). Linear gradient from 0.0 to 4.25 minutes from 10% acetonitrile to 95% acetonitrile, from 4.25 to 5.80 minutes constant 95% acetonitrile, flow rate 2.0 ml/min. In all cases, the retention time indices were determined from a calibration measurement of a homologous series of straight-chain alkan-2-ones having 3 to 16 carbons, where the index of the first alkanone was set to 300, the index of the last alkanone was set to 1600 and linear interpolation was carried out between the values of successive alkanones. The1H NMR spectra were measured with a Bruker Avance III 400 MHz spectrometer fitted with a 1.7 mm TCI sample head using tetramethylsilane as standard (0.00 ppm), of solutions in the solvents CD3CN, CDCl3or d6-DMSO. Alternatively, a Bruker Avance III 600 MHz spectrometer fitted with a 5 mm CPNMP sample head or a Bruker Avance NEO 600 MHz spectrometer fitted with a 5 mm TCI sample head was employed for the measurements. In general, the measurements were carried out at a sample head temperature of 298 K. If other measurement temperatures were used, this is specifically mentioned. The1H NMR data of selected examples are represented in the form of1H NMR peak lists. For each signal peak, first the 6 value in ppm and then the signal intensity in round brackets are listed. The 6 value/signal intensity number pairs for different signal peaks are listed with separation from one another by semicolons. The peak list for one example therefore has the form: δ1(intensity1); δ2(intensity2); . . . ; δi(intensityi); . . . ; δn(intensityn) The intensity of sharp signals correlates with the height of the signals in a printed representation of a1H NMR spectrum in cm and shows the true ratios of the signal intensities. In the case of broad signals, several peaks or the middle of the signal and the relative intensity thereof may be shown in comparison to the most intense signal in the spectrum. Calibration of the chemical shift of1H NMR spectra is accomplished using tetramethylsilane or the chemical shift of the solvent if the sample does not contain any tetramethylsilane. Accordingly, in certain cases the1H NMR peak lists may comprise the tetramethylsilane peak. The1H NMR peak lists are equivalent to conventional1H NMR representations and thus usually contain all peaks listed in a conventional1H NMR interpretation. In addition, like conventional1H NMR representations, they may show solvent signals, signals of stereoisomers of the compounds according to the invention which are optionally provided by the invention, and/or peaks of impurities. NMR solvent signals, the tetramethylsilane peak and the water signal in the solvent in question are excluded from the calibration of the relative intensity since their stated intensity values can be very high. The peaks of (stereo)isomers of the compounds of the invention and/or peaks of impurities usually have a lower intensity on average than the peaks of the compounds of the invention (for example at a purity of >90%). Such stereoisomers and/or impurities may be typical of the particular preparation process. Their peaks can thus help in this case to identify reproduction of a preparation process with reference to “by-product fingerprints”. An expert calculating the peaks of the compounds according to the invention by known methods (MestreC, ACD simulation, but also with empirically evaluated expected values) can, if required, identify the peaks of the compounds of the invention, optionally using additional intensity filters. This identification is equivalent to the relevant peak listing in conventional 1H NMR interpretation. In the JCAMP file, the solvent employed, the measuring frequency of the spectrometer and the spectrometer model can be found using the parameter “solvent”, “observe frequency” and “spectrometer/data system”, respectively. 13C NMR data are stated analogously to the NMR data as peak lists using broadband-decoupled13C NMR spectra. Here, too, NMR solvent signals and tetramethylsilane are excluded from the calibration of the relative intensity since these signals may have very high intensity values. Further details on NMR peak lists can be found in: “Citation of NMR Peaklist Data within Patent Applications” in Research Disclosure Database Number 564025. The log P values were determined according to EEC Directive 79/831 Annex V.A8 by HPLC (high-performance liquid chromatography) on a reversed-phase column (C18) using the following methods: [a] The log P value is determined by LC-UV measurement in the acidic range using 0.9 ml/1 formic acid in water and 1.0 ml/1 formic acid in acetonitrile as mobile phases (linear gradient from 10% acetonitrile to 95% acetonitrile). [b] The log P value is determined by LC-UV measurement in the neutral range using 79 mg/l ammonium carbonate in water and acetonitrile as mobile phases (linear gradient from 10% acetonitrile to 95% acetonitrile). Calibration was carried out using a homologous series of straight-chain alkan-2-ones (having 3 to 16 carbon atoms) with known log P values. The values between successive alkanones are determined by linear regression. 350.0 mg (0.73 mmol) of 1-[3-bromo-2-[3-methyl-6-(trifluoromethoxy)imidazo[4,5-b]pyridin-2-yl]pyrazolo[1,5-a]pyridin-6-yl]cyclopropanecarbonitrile, 851.6 mg (7.33 mmol) of sodium ethanesulfinate and 21.0 mg (0.11 mmol) of copper(I) iodide in 16 ml of N,N-dimethylformamide were stirred in a microwave synthesizer (Anton Paar, Monowave 400) at 120° C. for 12 h. A sodium chloride solution was then added and the reaction mixture was extracted three times with ethyl acetate. The organic phase was dried over sodium sulfate and the solvent was then distilled off under reduced pressure. The residue was purified by column chromatography purification by means of preparative HPLC with a water/acetonitrile gradient as eluent. log P (acidic): 3.18; MH+: 491;1H-NMR (400 MHz, D6-DMSO) δ ppm: 9.12 (s, 1H), 8.64 (s, 1H), 8.44 (s, 1H), 8.18 (d, 1H), 7.86 (d, 1H), 4.00 (s, 3H), 3.81 (q, 2H), 1.81-1.85 (m, 2H), 1.72-1.75 (m, 2H), 1.23 (t, 3H). 200 mg (0.96 mmol) of N2-methyl-5-(trifluoromethoxy)pyridine-2,3-diamine and 369 mg (1.20 mmol) of 3-bromo-6-(1-cyanocyclopropyl)pyrazolo[1,5-a]pyridine-2-carboxylic acid were initially charged in pyridine (5 ml). 185 mg (0.96 mmol) of EDCI were added and the mixture was stirred at room temperature for 16 h. The solvent was distilled off and the residue was diluted with water and extracted with ethyl acetate. The organic phase was dried over sodium sulfate and freed of the solvent under reduced pressure. The residue was stirred in 5 ml of acetic acid at 100° C. for 8 h. The solvent was then distilled off and the residue was diluted with water, filtered off and washed with water. log P (acidic): 3.90; MH+: 477;1H-NMR (400 MHz, D6-DMSO) δ ppm: 8.96 (s, 1H), 8.59 (s, 1H), 8.42 (s, 1H), 7.80 (d, 1H), 7.56 (d, 1H), 4.16 (s, 3H), 1.78-1.82 (m, 2H), 1.69-1.72 (m, 2H). Under argon and at 0° C., 1.00 g (4.40 mmol) of 6-(1-cyanocyclopropyl)pyrazolo[1,5-a]pyridine-2-carboxylic acid and 0.862 g (4.84 mmol) of N-bromosuccinimide were dissolved in 200 ml of chloroform and the solution was stirred at 0° C. for 1 h. Water was then added to the reaction mixture and the organic phase was separated off, dried over sodium sulfate and filtered, and the solvent was removed under reduced pressure. log P (acidic): 1.55; MH+: 306;1H-NMR (400 MHz, DMSO-d6): δ 13.48 (s, 1H), 8.86 (s, 1H), 7.72 (d, 1H), 7.49 (d, 1H), 1.76-1.79 (m, 2H), 1.64-1.67 (m, 2H). 9.00 g (37.3 mmol) of methyl 6-(1-cyanocyclopropyl)pyrazolo[1,5-a]pyridine-2-carboxylate and 1.49 g (35.4 mmol) of lithium hydroxide monohydrate were stirred in a tetrahydrofuran/water mixture (100 ml/150 ml) at room temperature for 16 h. The organic solvent was then distilled off under reduced pressure, and the aqueous phase was washed with 100 ml of ethyl acetate and adjusted to pH=4 with 1N hydrochloric acid. The precipitated solid was filtered off and dried under reduced pressure. 1H-NMR (400 MHz, DMSO-d6): δ 13.00 (br. s, 1H), 8.78 (s, 1H), 7.79 (d, 1H), 7.32 (d, 1H), 7.07 (s, 1H), 1.74 (m, 2H), 1.62 (m, 2H). 30 g (111 mmol) of a 0.4 molar solution of methyl (E)-2-azido-3-[5-(1-cyanocyclopropyl)-2-pyridyl]prop-2-enoate in mesitylene were heated at reflux for 1 h, allowed to cool and then cooled to 0° C. for 1 h. The precipitated crystalline product was filtered off, stirred overnight in an ethyl acetate/hexane mixture (1:20), filtered off and dried under reduced pressure. The product was used for the next step without further purification. A solution of 17.6 g (326 mmol) of sodium methoxide in 200 ml of methanol was slowly added dropwise over 30 min to a solution, cooled to −10 to −15° C., of 50.0 g (290 mmol) of 6-formyl-3-pyridyl)cyclopropanecarbonitrile and 36.8 g (320 mmol) of methyl azidoacetate in 350 ml of methanol, with the reaction temperature being kept at −10° C. After the addition, the temperature was allowed to rise slowly to 0° C. and the reaction mixture was kept at this temperature for a further 2 h. During this time the product began to precipitate as a fine precipitate. A bubble counter was fitted to the reaction flask and the reaction mixture was stirred overnight with ice bath cooling. The resulting suspension was then added to a mixture of 2 kg of ice and 400 g of solid ammonium chloride, stirred until the ice had melted and filtered off. The filter cake was washed with cold water, dried under reduced pressure and dissolved in 600 ml of dichloromethane. The organic phase was dried over magnesium sulfate and filtered through silica gel, and the residue was washed with 200 ml of dichloromethane. The combined organic phases were concentrated and the residue was used in the next stage without further purification. Analogously to Example (I-1) and in accordance with the preparation processes described above, the following compounds of the formula (I) can be prepared: log P (acidic): 3.29; MH+: 490;1H-NMR (400 MHz, D6-DMSO) δ ppm: 9.10 (s, 1H), 8.17 (d, 1H), 7.79 (s, 1H), 7.82-7.86 (m, 2H), 7.42 (d, 1H), 3.97 (s, 3H), 3.81 (q, 2H), 1.81-1.84 (m, 2H), 1.71-1.75 (m, 2H), 1.22 (t, 3H). log P (acidic): 3.76; MH+: 541; 1H-NMR (400 MHz, D6-DMSO) δ ppm: 9.10 (s, 1H), 8.62 (s, 1H), 8.44 (s, 1H), 8.20 (d, 1H), 7.85 (d, 1H), 4.00 (s, 3H), 3.81 (q, 2H), 1.82-1.85 (m, 2H), 1.72-1.75 (m, 2H), 1.23 (t, 3H). 117.7 mg (0.10 mmol) of 1-[3-bromo-2-(2,2-difluoro-7-methyl-[1,3]dioxolo[4,5-f]benzimidazol-6-yl)pyrazolo[1,5-a]pyridin-6-yl]cyclopropanecarbonitrile, 119.5 mg (1.02 mmol) of sodium ethanesulfinate and 2.9 mg (0.01 mmol) of copper(I) iodide in 6 ml of N,N-dimethylformamide were stirred in a microwave synthesizer (Anton Paar, Monowave 400) at 140° C. for 4 h. The reaction mixture was filtered off through silica gel, the filter cake was washed with acetonitrile and the residue was purified by column chromatography via preparative HPLC using a water/acetonitrile gradient as mobile phase. log P (acidic): 3.18; MH+: 486;1H-NMR (400 MHz, D6-DMSO) δ ppm: 9.07 (s, 1H), 8.17 (d, 1H), 7.89 (s, 1H), 7.81-7.84 (m, 2H), 3.95 (s, 3H), 3.80 (q, 2H), 1.81-1.85 (m, 2H), 1.71-1.75 (m, 2H), 1.21 (t, 3H). 35.0 mg (0.02 mmol) of 1-[3-bromo-2-(2,2-difluoro-5H-[1,3]dioxolo[4,5-f]benzimidazol-6-yl)pyrazolo[1,5-a]pyridin-6-yl]cyclopropanecarbonitrile, 3.3 mg (0.02 mmol) of iodomethane and 5.7 mg (0.04 mmol) of potassium carbonate in 5 ml of acetone were stirred at reflux for 6 h. The solvent was distilled off and the residue was taken up in dichloromethane and washed with a saturated sodium chloride solution. The organic phase was separated off and dried over sodium sulfate and the organic solvent was distilled off under reduced pressure. The residue was used in the next stage without further purification. 200 mg (1.06 mmol) of 2,2-difluoro-1,3-benzodioxole-5,6-diamine and 384 mg (1.19 mmol) of 3-bromo-6-(1-cyanocyclopropyl)pyrazolo[1,5-a]pyridine-2-carboxylic acid were initially charged in pyridine (25 ml). 315 mg (1.59 mmol) of EDCI were added and the mixture was stirred at 120° C. for 8 h. The solvent was distilled off and the residue was taken up in dichloromethane and washed with a saturated sodium chloride solution. The organic phase was dried over sodium sulfate, the solvent was distilled off under reduced pressure and the residue was purified by preparative HPLC using a water/acetonitrile gradient as mobile phase. The product was used for the next step without further purification. Analogously to Example (I-3) and in accordance with the preparation processes described above, the following compound of the formula (I) can be prepared: log P (acidic): 3.22; MH+: 487;1H-NMR (400 MHz, D6-DMSO) δ ppm: 9.09 (s, 1H), 8.41 (s, 1H), 8.18 (d, 1H), 7.84 (d, 1H), 3.95 (s, 3H), 3.81 (q, 2H), 1.81-1.85 (m, 2H), 1.71-1.75 (m, 2H), 1.22 (t, 3H). Solvent: dimethyl sulfoxide To produce a suitable active compound formulation, 10 mg of active compound are mixed with 0.5 ml of solvent and the concentrate is diluted to the desired concentration with solvent. 1 μl of the active compound solution is injected into the abdomen of 5 engorged adult female cattle ticks ( Efficacy is assessed after 7 days by laying of fertile eggs. Eggs which are not visibly fertile are stored in a climate-controlled cabinet until the larvae hatch after about 42 days. An efficacy of 100% means that none of the ticks has laid any fertile eggs; 0% means that all the eggs are fertile. In this test, for example, the following compounds from the preparation examples show an efficacy of 80% at an application rate of 20 μg/animal: I-4 Solvent: dimethyl sulfoxide To produce a suitable active compound formulation, 10 mg of active compound are mixed with 0.5 ml of dimethyl sulfoxide. Dilution with citrated cattle blood gives the desired concentration. About 20 unfed adult cat fleas ( After 2 days, the kill in % is determined. 100% means that all of the fleas have been killed; 0% means that none of the fleas have been killed. In this test, for example, the following compounds of the preparation examples show an efficacy of 100% at an application rate of 100 ppm: I-1, I-4 Solvent: 78 parts by weight of acetone
Emulsifier: alkylaryl polyglycol ether To produce a suitable active compound formulation, 1 part by weight of active compound is dissolved using the stated parts by weight of solvent and made up with water containing an emulsifier concentration of 1000 ppm until the desired concentration is attained. To produce further test concentrations, the formulation is diluted with emulsifier-containing water. Pre-swollen wheat grains ( After 7 days, the efficacy in % is determined. 100% means that all wheat plants have grown as in the untreated, uninfected control; 0% means that no wheat plant has grown. In this test, for example, the following compounds from the preparation examples show an efficacy of 100% at an application rate of 500 g/ha (=160 μg/cavity): I-2, I-3, I-5. Solvent: 78.0 parts by weight of acetone
Emulsifier: alkylaryl polyglycol ether To produce a suitable active compound formulation, 1 part by weight of active compound is dissolved using the stated parts by weight of solvent and made up with water containing an emulsifier concentration of 1000 ppm until the desired concentration is attained. To produce further test concentrations, the formulation is diluted with emulsifier-containing water. Leaf disks of corn ( After 7 days, the efficacy in % is determined. 100% means that all the caterpillars have been killed; 0% means that no caterpillar has been killed. In this test, for example, the following compounds from the preparation examples show an efficacy of 100% at an application rate of 100 g/ha: I-1, I-2, I-3, I-4, I-5. Solvent: 78.0 parts by weight of acetone
Emulsifier: alkylaryl polyglycol ether To produce a suitable active compound formulation, 1 part by weight of active compound is dissolved using the stated parts by weight of solvent and made up with water containing an emulsifier concentration of 1000 ppm until the desired concentration is attained. To produce further test concentrations, the formulation is diluted with emulsifier-containing water. Disks of Chinese cabbage leaves ( After 7 days, the efficacy in % is determined. 100% means that all the beetle larvae have been killed; 0% means that no beetle larvae have been killed. In this test, for example, the following compounds from the preparation examples show an efficacy of 100% at an application rate of 100 g/ha: I-1, I-4. Solvent: 100 parts by weight of acetone To produce a suitable active compound formulation, 1 part by weight of active compound is dissolved using the specified parts by weight of solvent and made up with water until the desired concentration is attained. 50 μl of the active compound preparation are transferred into microtitre plates and made up to a final volume of 200 μl with 150 μl of IPL41 insect medium (33%+15% sugar). Subsequently, the plates are sealed with parafilm, which a mixed population of green peach aphids ( After 5 days, the efficacy in % is determined. 100% means that all the aphids have been killed; 0% means that no aphids have been killed. In this test, for example, the following compounds from the preparation examples show an efficacy of 100% at an application rate of 4 ppm: I-1, I-2, I-3, I-4. Solvent: 78 parts by weight of acetone
Emulsifier: alkylaryl polyglycol ether To produce a suitable active compound formulation, 1 part by weight of active compound is dissolved using the stated parts by weight of solvent and made up with water containing an emulsifier concentration of 1000 ppm until the desired concentration is attained. To produce further test concentrations, the formulation is diluted with emulsifier-containing water. Disks of Chinese cabbage leaves ( After 5 days, the efficacy in % is determined. 100% means that all the aphids have been killed; 0% means that no aphids have been killed. In this test, for example, the following compounds from the preparation examples show an efficacy of 90% at an application rate of 100 g/ha: 1-4. In this test, for example, the following compounds from the preparation examples show an efficacy of 100% at an application rate of 100 g/ha: I-1. Solvent: 14 parts by weight of dimethylformamide Emulsifier: alkylaryl polyglycol ether To produce a suitable active compound formulation, 1 part by weight of active compound is dissolved using the stated parts by weight of solvent and made up with water containing an emulsifier concentration of 1000 ppm until the desired concentration is attained. To produce further test concentrations, the formulation is diluted with emulsifier-containing water. If the addition of ammonium salts or/and penetrants is required, these are each added in a concentration of 1000 ppm to the formulation solution. Bell pepper plants ( After the desired time, the kill in % is determined. 100% means that all the animals have been killed; 0% means that no animals have been killed. In this test, for example, the following compounds from the preparation examples show superior efficacy to the prior art: see table. Solvent: 7 parts by weight of dimethylformamide Emulsifier: 2 parts by weight of alkylaryl polyglycol ether To produce a suitable active compound preparation, 1 part by weight of active compound is mixed with the specified amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration, it being necessary to include the volume of soil which is drenched in the calculation. It should be ensured that a concentration of 40 ppm of emulsifier in the soil is not exceeded. To produce further test concentrations, water is used for dilution. In each case 5 corn cobs ( After 8 days, the efficacy in % is determined. 100% means that all 5 plants have germinated and grown; 0% means that none of the plants has emerged. In this test, for example, the following compounds of the Preparation Examples show superior efficacy to the prior art: see table The invention relates to novel compounds of the formula (I), in which Q represents a heteroaromatic 9-membered or 12-membered annellated bicyclic or tricyclic ring system from the series Q1 to Q5 and R1, R2, R3, R4, R5, R6and n have the meanings given above. The invention also relates to the use thereof as acaricides and/or insecticides for controlling animal pests. 1. A compound of formula (I) wherein R1represents (C1-C6)-alkyl, (C1-C6)-haloalkyl, (C2-C6)-alkenyl, (C2-C6)-haloalkenyl, (C2-C6)-alkynyl, (C2-C6)-haloalkynyl, (C3-C8)-cycloalkyl, halo-(C3-C8)-cycloalkyl, (C3-C6)-cycloalkyl-(C1-C6)-alkyl, (C3-C6)-cycloalkyl-(C1-C6)-haloalkyl, (C1-C6)-alkyl-(C3-C8)-cycloalkyl, (C1-C6)-haloalkyl-(C3-C8)-cycloalkyl, (C3-C8)-cycloalkyl-(C3-C8)-cycloalkyl, spiro-(C3-C8)-cycloalkyl-(C3-C8)-cycloalkyl, (C4-C12)-bicycloalkyl, (C1-C6)-cyanoalkyl, (C1-C6)-alkoxy-(C1-C6)-alkyl, (C2-C6)-cyanoalkenyl, (C3-C6)-cycloalkyl-(C2-C6)-alkenyl, (C2-C6)-cyanoalkynyl, (C3-C6)-cycloalkyl-(C2-C6)-alkynyl, (C1-C6)-haloalkoxy-(C1-C6)-alkyl, (C2-C6)-alkenyloxy-(C1-C6)-alkyl, (C2-C6)-haloalkenyloxy-(C1-C6)-alkyl, (C2-C6)-alkynyloxy-(C1-C4)-alkyl, (C2-C6)-haloalkynyloxy-(C1-C6)-alkyl, (C1-C6)-alkylthio-(C1-C6)-alkyl, (C1-C6)-alkyl sulfinyl-(C1-C6)-alkyl, (C1-C6)-alkylsulfonyl-(C1-C6)-alkyl, (C1-C6)-haloalkylthio-(C1-C6)-alkyl, (C1-C6)-haloalkylsulfinyl-(C1-C6)-alkyl, (C1-C6)-haloalkylsulfonyl-(C1-C6)-alkyl or tri-(C1-C6)-alkylsilyl, R2, R3independently of one another represent hydrogen, halogen, (C1-C6)-alkyl, (C1-C6)-haloalkyl, (C1-C6)-alkoxy, (C1-C6)-haloalkoxy, (C1-C6)-haloalkylthio, (C1-C6)-haloalkylsulfinyl, (C1-C6)-haloalkylsulfonyl or
represent (C1-C6)-haloalkyl-(C3-C8)-cycloalkyl, (C1-C6)-cyanoalkyl-(C3-C8)-cycloalkyl, (C1-C6)-haloalkyl-(C3-C8)-cyanocycloalkyl, (C1-C6)-haloalkyl-(C3-C8)-halocycloalkyl, cyano-(C3-C6)-cycloalkyl which is optionally mono- or polysubstituted by (C1-C6)-alkyl or halogen, spiro-(C3-C8)-cycloalkyl-(C3-C8)-cycloalkyl which is optionally mono- or polysubstituted by cyano or halogen or (C4-C12)-bicycloalkyl which is optionally mono- or polysubstituted by cyano or halogen, where one of the radicals R2or R3must be selected from (C1-C6)-haloalkyl-(C3-C8)-cycloalkyl, (C1-C6)-cyanoalkyl-(C3-C8)-cycloalkyl, (C1-C6)-haloalkyl-(C3-C8)-cyanocycloalkyl, (C1-C6)-haloalkyl-(C3-C8)-halocycloalkyl, cyano-(C3-C6)-cycloalkyl which is optionally mono- or polysubstituted by (C1-C6)-alkyl or halogen, spiro-(C3-C8)-cycloalkyl-(C3-C8)-cycloalkyl which is optionally mono- or polysubstituted by cyano or halogen or (C4-C12)-bicycloalkyl which is optionally mono- or polysubstituted by cyano or halogen, n represents 0, 1 or 2, Q represents a heteroaromatic 9-membered or 12-membered fused bicyclic or tricyclic ring system from the group consisting of Q1 to Q5, where R4represents (C1-C4)-alkyl, (C1-C4)-haloalkyl, (C1-C4)-cyanoalkyl, (C1-C4)-hydroxyalkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, (C1-C4)-haloalkoxy-(C1-C4)-alkyl, (C2-C4)-alkenyl, (C2-C4)-alkenyloxy-(C1-C4)-alkyl, (C2-C4)-haloalkenyloxy-(C1-C4)-alkyl, (C2-C4)-haloalkenyl, (C2-C4)-cyanoalkenyl, (C2-C4)-alkynyl, (C2-C4)-alkynyloxy-(C1-C4)-alkyl, (C2-C4)-haloalkynyl, (C3-C6)-cycloalkyl, (C3-C6)-cycloalkyl-(C3-C6)-cycloalkyl, (C1-C4)-alkyl-(C3-C6)-cycloalkyl, halo-(C3-C6)-cycloalkyl, (C1-C4)-alkylthio-(C1-C4)-alkyl, (C1-C4)-alkylsulfinyl-(C1-C4)-alkyl, (C1-C4)-alkylsulfonyl-(C1-C4)-alkyl or (C1-C4)-alkylcarbonyl-(C1-C4)-alkyl, R5represents (C1-C6)-alkyl, (C2-C6)-alkenyl, (C2-C6)-alkynyl, (C1-C6)-haloalkyl, (C2-C6)-haloalkenyl, (C2-C6)-haloalkynyl, (C3-C8)-cycloalkyl or halo-(C3-C8)-cycloalkyl, R6represents hydrogen, cyano, halogen, (C1-C4)-alkyl, (C1-C4)-haloalkyl, (C2-C4)-alkenyl, (C2-C4)-haloalkenyl, (C2-C4)-alkynyl, (C2-C4)-haloalkynyl, (C3-C6)-cycloalkyl, (C3-C6)-cycloalkyl-(C3-C6)-cycloalkyl, (C1-C4)-alkyl-(C3-C6)-cycloalkyl, (C1-C4)-alkoxy, (C1-C4)-haloalkoxy, (C1-C4)-alkoxyimino, (C1-C4)-alkylthio, (C1-C4)-haloalkylthio, (C1-C4)-alkyl sulfinyl, (C1-C4)-haloalkyl sulfinyl, (C1-C4)-alkyl sulfonyl, (C1-C4)-haloalkyl sulfonyl, (C1-C4)-alkyl sulfonyloxy, (C1-C4)-alkylcarbonyl, (C1-C4)-haloalkylcarbonyl, aminocarbonyl, (C1-C4)-alkylaminocarbonyl, di-(C1-C4)-alkylaminocarbonyl, (C1-C4)-alkylsulfonylamino, (C1-C4)-alkylamino, di-(C1-C4)-alkylamino, aminosulfonyl, (C1-C4)-alkylaminosulfonyl or di-(C1-C4)-alkylaminosulfonyl and A represents N (nitrogen) or C(H). 2. The compound of formula (I) as claimed in R1represents (C1-C6)-alkyl, (C1-C6)-haloalkyl, (C2-C6)-alkenyl, (C2-C6)-haloalkenyl, (C2-C6)-alkynyl, (C2-C6)-haloalkynyl, (C3-C8)-cycloalkyl, halo-(C3-C8)-cycloalkyl, (C3-C6)-cycloalkyl-(C1-C6)-alkyl, (C3-C6)-cycloalkyl-(C1-C6)-haloalkyl, (C1-C6)-alkyl-(C3-C8)-cycloalkyl, (C1-C6)-haloalkyl-(C3-C8)-cycloalkyl, (C1-C6)-cyanoalkyl, (C1-C6)-hydroxyalkyl, (C1-C6)-alkoxy-(C1-C6)-alkyl, (C1-C6)-haloalkoxy-(C1-C6)-alkyl, (C1-C6)-alkylthio-(C1-C6)-alkyl, (C1-C6)-alkylsulfinyl-(C1-C6)-alkyl or (C1-C6)-alkylsulfonyl-(C1-C6)-alkyl, R2, R3independently of one another represent hydrogen, halogen, (C1-C6)-alkyl, (C1-C6)-haloalkyl, (C1-C6)-alkoxy, (C1-C6)-haloalkoxy, (C1-C6)-haloalkylthio, (C1-C6)-haloalkylsulfinyl, (C1-C6)-haloalkylsulfonyl or
represent (C1-C6)-haloalkyl-(C3-C8)-cycloalkyl, (C1-C6)-cyanoalkyl-(C3-C8)-cycloalkyl, (C1-C6)-haloalkyl-(C3-C8)-cyanocycloalkyl, (C1-C6)-haloalkyl-(C3-C8)-halocycloalkyl, cyano-(C3-C6)-cycloalkyl which is optionally mono- or polysubstituted by (C1-C4)-alkyl or halogen, spiro-(C3-C8)-cycloalkyl-(C3-C8)-cycloalkyl which is optionally mono- or polysubstituted by cyano or halogen or (C4-C12)-bicycloalkyl which is optionally mono- or polysubstituted by cyano or halogen, where one of the radicals R2or R3must be selected from (C1-C6)-haloalkyl-(C3-C8)-cycloalkyl, (C1-C6)-cyanoalkyl-(C3-C8)-cycloalkyl, (C1-C6)-haloalkyl-(C3-C8)-cyanocycloalkyl, (C1-C6)-haloalkyl-(C3-C8)-halocycloalkyl, cyano-(C3-C6)-cycloalkyl which is optionally mono- or polysubstituted by (C1-C4)-alkyl or halogen, spiro-(C3-C8)-cycloalkyl-(C3-C8)-cycloalkyl which is optionally mono- or polysubstituted by cyano or halogen or (C4-C12)-bicycloalkyl which is optionally mono- or polysubstituted by cyano or halogen, n represents 0, 1 or 2, Q represents a heteroaromatic 9-membered or 12-membered fused bicyclic or tricyclic ring system from the group consisting of Q1 to Q5, where R4represents (C1-C4)-alkyl, (C1-C4)-haloalkyl, (C1-C4)-cyanoalkyl, (C1-C4)-hydroxyalkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, (C1-C4)-haloalkoxy-(C1-C4)-alkyl, (C2-C4)-alkenyl, (C2-C4)-alkenyloxy-(C1-C4)-alkyl, (C2-C4)-haloalkenyloxy-(C1-C4)-alkyl, (C2-C4)-haloalkenyl, (C2-C4)-cyanoalkenyl, (C2-C4)-alkynyl, (C2-C4)-alkynyloxy-(C1-C4)-alkyl, (C2-C4)-haloalkynyl, (C3-C6)-cycloalkyl, (C3-C6)-cycloalkyl-(C3-C6)-cycloalkyl, (C1-C4)-alkyl-(C3-C6)-cycloalkyl, halo-(C3-C6)-cycloalkyl, (C1-C4)-alkylthio-(C1-C4)-alkyl, (C1-C4)-alkylsulfinyl-(C1-C4)-alkyl, (C1-C4)-alkylsulfonyl-(C1-C4)-alkyl or (C1-C4)-alkylcarbonyl-(C1-C4)-alkyl, R5represents (C1-C6)-alkyl, (C2-C6)-alkenyl, (C2-C6)-alkynyl, (C1-C6)-haloalkyl, (C2-C6)-haloalkenyl, (C2-C6)-haloalkynyl, (C3-C8)-cycloalkyl or halo-(C3-C8)-cycloalkyl, R6represents hydrogen, cyano, halogen, (C1-C4)-alkyl, (C1-C4)-haloalkyl, (C2-C4)-alkenyl, (C2-C4)-haloalkenyl, (C2-C4)-alkynyl, (C2-C4)-haloalkynyl, (C3-C6)-cycloalkyl, (C3-C6)-cycloalkyl-(C3-C6)-cycloalkyl, (C1-C4)-alkyl-(C3-C6)-cycloalkyl, (C1-C4)-alkoxy, (C1-C4)-haloalkoxy, (C1-C4)-alkoxyimino, (C1-C4)-alkylthio, (C1-C4)-haloalkylthio, (C1-C4)-alkyl sulfinyl, (C1-C4)-haloalkylsulfinyl, (C1-C4)-alkylsulfonyl, (C1-C4)-haloalkylsulfonyl, (C1-C4)-alkylsulfonyloxy, (C1-C4)-alkylcarbonyl, (C1-C4)-haloalkylcarbonyl, aminocarbonyl, (C1-C4)-alkylaminocarbonyl, di-(C1-C4)-alkylaminocarbonyl, (C1-C4)-alkylsulfonylamino, aminosulfonyl, (C1-C4)-alkylaminosulfonyl or di-(C1-C4)-alkylaminosulfonyl and A represents N (nitrogen) or C(H). 3. The compound of formula (I) as claimed in R1represents (C1-C6)-alkyl, (C1-C6)-haloalkyl or (C3-C8)-cycloalkyl, R2represents hydrogen, halogen, (C1-C4)-alkyl, (C1-C4)-haloalkyl, (C1-C4)-alkoxy, (C1-C4)-haloalkoxy, (C1-C4)-haloalkylthio, (C1-C4)-haloalkylsulfinyl or (C1-C4)-haloalkylsulfonyl, R3represents (C1-C4)-haloalkyl-(C3-C8)-cycloalkyl, spiro-(C3-C8)-cycloalkyl-(C3-C8)-cycloalkyl, (C4-C12)-bicycloalkyl or cyano-(C3-C6)-cycloalkyl which is optionally mono- or disubstituted by (C1-C4)-alkyl or halogen, n represents 0, 1 or 2, Q represents a heteroaromatic 9-membered or 12-membered fused bicyclic or tricyclic ring system from the group consisting of Q1 to Q5, where R4represents (C1-C4)-alkyl, (C1-C4)-haloalkyl, (C1-C4)-cyanoalkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, (C1-C4)-haloalkoxy-(C1-C4)-alkyl, (C2-C4)-alkenyl, (C2-C4)-alkenyloxy-(C1-C4)-alkyl, (C2-C4)-alkynyl, (C2-C4)-alkynyloxy-(C1-C4)-alkyl or (C3-C6)-cycloalkyl, R5represents (C1-C6)-haloalkyl, (C2-C6)-haloalkenyl, (C2-C6)-haloalkynyl or halo-(C3-C8)-cycloalkyl, R6represents hydrogen, cyano, halogen, (C1-C4)-alkyl, (C1-C4)-haloalkyl, (C3-C6)-cycloalkyl, (C1-C4)-alkoxy, (C1-C4)-haloalkoxy, (C1-C4)-alkylthio, (C1-C4)-haloalkylthio, (C1-C4)-alkyl sulfinyl, (C1-C4)-haloalkyl sulfinyl, (C1-C4)-alkylsulfonyl or (C1-C4)-haloalkyl sulfonyl and A represents N (nitrogen) or C(H). 4. The compound of formula (I) as claimed in R1represents (C1-C6)-alkyl, (C1-C6)-haloalkyl or (C3-C8)-cycloalkyl, R2represents hydrogen, (C1-C4)-alkyl or halogen, R3represents (C1-C4)-haloalkyl-(C3-C8)-cycloalkyl, spiro-(C3-C8)-cycloalkyl-(C3-C8)-cycloalkyl or cyano-(C3-C6)-cycloalkyl, n represents 0, 1 or 2, Q represents a heteroaromatic 9-membered or 12-membered fused bicyclic or tricyclic ring system from the group consisting of Q1, Q2, Q3 and Q5, where R4represents (C1-C4)-alkyl or (C1-C4)-alkoxy-(C1-C4)-alkyl, R5represents (C1-C6)-haloalkyl, R6represents hydrogen, methyl, ethyl, methoxy, cyano, halogen or (C1-C2)-haloalkyl and A represents N (nitrogen) or C(H). 5. The compound of formula (I) as claimed in R1represents (C1-C4)-alkyl, R2represents hydrogen, R3represents cyanocyclopropyl or cyanocyclobutyl, n represents 2, Q represents a heteroaromatic 9-membered or 12-membered fused bicyclic or tricyclic ring system from the group consisting of Q1, Q2 and Q5, where R4represents (C1-C4)-alkyl, R5represents (C1-C4)-haloalkyl, R6represents hydrogen and A represents N (nitrogen) or C(H). 6. The compound of formula (I) as claimed in R1represents ethyl, R2represents hydrogen, R3represents 1-cyanocyclopropyl, n represents 2, Q represents a heteroaromatic 9-membered or 12-membered fused bicyclic or tricyclic ring system from the group consisting of Q1, Q2 and Q5, where R4represents methyl, R5represents trifluoromethyl or pentafluoroethyl, R6represents hydrogen and A represents N (nitrogen) or C(H). 7. The compound of formula (I) as claimed in 8. The compound of formula (I) as claimed in 9. The compound of formula (I) as claimed in 10. The compound of formula (I) as claimed in R5represents (C1-C6)-haloalkyl. 11. The compound of formula (I′) as claimed in Wherein Q represents a heteroaromatic 9-membered or 12-membered fused bicyclic or tricyclic ring system from the group consisting of Q1 to Q5, where R4represents (C1-C4)-alkyl, (C1-C4)-haloalkyl, (C1-C4)-cyanoalkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, (C1-C4)-haloalkoxy-(C1-C4)-alkyl, (C2-C4)-alkenyl, (C2-C4)-alkenyloxy-(C1-C4)-alkyl, (C2-C4)-alkynyl, (C2-C4)-alkynyloxy-(C1-C4)-alkyl or (C3-C6)-cycloalkyl, R5represents (C1-C6)-haloalkyl, (C2-C6)-haloalkenyl, (C2-C6)-haloalkynyl or halo-(C3-C8)-cycloalkyl, R6represents hydrogen, cyano, halogen, (C1-C4)-alkyl, (C1-C4)-haloalkyl, (C3-C6)-cycloalkyl, (C1-C4)-alkoxy, (C1-C4)-haloalkoxy, (C1-C4)-alkylthio, (C1-C4)-haloalkylthio, (C1-C4)-alkylsulfinyl, (C1-C4)-haloalkylsulfinyl, (C1-C4)-alkylsulfonyl or (C1-C4)-haloalkyl sulfonyl. 12. An agrochemical formulation comprising a compound of the formula (I) as claimed in 13. The agrochemical formulation as claimed in 14. A method of controlling one or more animal pests, comprising allowing a compound of formula (I) as claimed in 15. A product comprising the compound of formula (I) as claimed in Configuration 2
Configuration 3
Configuration 4
Configuration 5
Configuration 6-1
Configuration 6-2
and R2, R3, Q, A, R4, R5, R6and n have the meanings described in configuration (1) or configuration (2) or configuration (5) or configuration (6).
and R2, R3, Q, A, R4, R5, R6and n have the meanings described in configuration (1) or configuration (2) or configuration (3) or configuration (4) or configuration (6).
and R2, R3, Q, A, R4, R5, R6and n have the meanings described in configuration (1) or configuration (2) or configuration (3) or configuration (4) or configuration (5).
and R1, Q, A, R4, R5, R6and n have the meanings described in configuration (1) or configuration (2) or configuration (3) or configuration (5) or configuration (6).
and R1, R3, Q, A, R4, R5, R6and n have the meanings described in configuration (1) or configuration (2) or configuration (3) or configuration (5) or configuration (6).
and R1, R3, Q, A, R4, R5, R6and n have the meanings described in configuration (1) or configuration (2) or configuration (3) or configuration (4).
and R1, R2, Q, A, R4, R5, R6and n have the meanings described in configuration (1) or configuration (2) or configuration (3) or configuration (5) or configuration (6).
and R1, R2, Q, A, R4, R5, R6and n have the meanings described in configuration (1) or configuration (2) or configuration (3) or configuration (4) or configuration (6).
and R1, R2, Q, A, R4, R5, R6and n have the meanings described in configuration (1) or configuration (2) or configuration (3) or configuration (4) or configuration (5).
and Q, R1, R2, R3R4, R6, A and n have the meanings described in configuration (1) or configuration (2) or configuration (4) or configuration (5) or configuration (6).
and Q, R1, R2, R3R4, R6, A and n have the meanings described in configuration (1) or configuration (2) or configuration (3) or configuration (4) or configuration (5) or configuration (6).
R5represents (C1-C6)-haloalkyl,
R6represents hydrogen, methyl, ethyl, methoxy, cyano, halogen or (C1-C2)-haloalkyl and
A represents N (nitrogen) or C(H),
and Q, R1, R2, R3and n have the meanings described in configuration (1) or configuration (2) or configuration (3) or configuration (5) or configuration (6).
R5represents (C1-C4)-haloalkyl,
R6represents hydrogen and
A represents N (nitrogen) or C(H),
and R1, R2, R3and n have the meanings described in configuration (1) or configuration (2) or configuration (3) or configuration (4) or configuration (6).
R4represents (C1-C4)-alkyl or (C1-C4)-alkoxy-(C1-C4)-alkyl,
R5represents (C1-C6)-haloalkyl,
R6represents hydrogen, methyl, ethyl, methoxy, cyano, halogen or (C1-C2)-haloalkyl and
A represents N (nitrogen) or C(H),
and R1, R2, R3and n have the meanings described in configuration (1) or configuration (2) or configuration (3) or configuration (5) or configuration (6).
R4represents (C1-C4)-alkyl,
R5represents (C1-C4)-haloalkyl,
R6represents hydrogen and
A represents N (nitrogen) or C(H),
and R1, R2, R3and n have the meanings described in configuration (1) or configuration (2) or configuration (3) or configuration (4) or configuration (6).
Process A
Step a)
Step b)
Step c)
Step d)
Step e)
Step f)
Process B
Process C
Step a)
Step b)
Process D
Step a)
Steps b) and c)
Step d)
Process E
Step a)
Step b)
Steps c) and d)
Process F
Step a)
Step b)
Step c)
Methods and Uses
from the class of the Chilopoda, for example
from the order or the class of the Collembola, for example
from the class of the Diplopoda, for example
from the class of the Insecta, for example from the order of the Blattodea, for example
from the order of the Coleoptera, for example
from the order of the Dermaptera, for example
from the order of the Diptera, for example
from the order of the Hymenoptera, for example
from the order of the Isopoda, for example
from the order of the Isoptera, for example
from the order of the Lepidoptera, for example
from the order of the Orthoptera or Saltatoria, for example
from the order of the Phthiraptera, for example
from the order of the Psocoptera, for example
from the order of the Siphonaptera, for example
from the order of the Thysanoptera, for example
from the order of the Zygentoma (=
from the class of the Symphyla, for example
pests from the phylum of the Mollusca, for example from the class of the Bivalvia, e.g.
and from the class of the Gastropoda, for example
plant pests from the phylum of the Nematoda, i.e. phytoparasitic nematodes, in particular Formulations
Mixtures
Insecticides/Acaricides/Nematicides
Fungicides
Biological Pesticides as Mixture Components
Safeners as Mixture Components
Plants and Plant Parts
Transgenic Plants, Seed Treatment and Integration Events
Crop Protection—Types of Treatment
Seed Treatment
Animal Health
from the order of Mallophagida and the suborders Amblycerina and Ischnocerina, for example
from the order Diptera and the suborders Nematocerina and Brachycerina, for example
from the order Siphonapterida, for example
from the order of Heteropterida, for example
Metamonada: from the order of Diplomonadida, for example
Parabasala: from the order of Trichomonadida, for example
Euglenozoa: from the order of Trypanosomatida, for example
Sarcomastigophora (Rhizopoda) such as Entamoebidae, for example
Alveolata such as Apicomplexa (Sporozoa): for example
Cestodes: from the order of Pseudophyllidea, for example:
compounds from other classes, for example butacarb, dimetilan, cloethocarb, phosphocarb, pirimiphos(-ethyl), parathion(-ethyl), methacrifos, isopropyl o-salicylate, trichlorfon, tigolaner, sulprofos, propaphos, sebufos, pyridathion, prothoate, dichlofenthion, demeton-S-methyl sulfone, isazofos, cyanofenphos, dialifos, carbophenothion, autathiofos, aromfenvinfos(-methyl), azinphos(-ethyl), chlorpyrifos(-ethyl), fosmethilan, iodofenphos, dioxabenzofos, formothion, fonofos, flupyrazofos, fensulfothion, etrimfos;
organochlorine compounds, for example camphechlor, lindane, heptachlor; or phenylpyrazoles, e.g. acetoprole, pyrafluprole, pyriprole, vaniliprole, sisapronil; or isoxazolines, e.g. sarolaner, afoxolaner, lotilaner, fluralaner;
pyrethroids, e.g. (cis-, trans-)metofluthrin, profluthrin, flufenprox, flubrocythrinate, fubfenprox, fenfluthrin, protrifenbut, pyresmethrin, RU15525, terallethrin, cis-resmethrin, heptafluthrin, bioethanomethrin, biopermethrin, fenpyrithrin, cis-cypermethrin, cis-permethrin, clocythrin, cyhalothrin (lambda-), chlovaporthrin, or halogenated hydrocarbon compounds (HCHs),
neonicotinoids, e.g. nithiazine
dicloromezotiaz, triflumezopyrim
macrocyclic lactones, e.g. nemadectin, ivermectin, latidectin, moxidectin, selamectin, eprinomectin, doramectin, emamectin benzoate; milbemycin oxime
triprene, epofenonane, diofenolan;
biologicals, hormones or pheromones, for example natural products, e.g. thuringiensin, codlemone or neem components
dinitrophenols, e.g. dinocap, dinobuton, binapacryl;
benzoylureas, e.g. fluazuron, penfluron,
amidine derivatives, e.g. chlormebuform, cymiazole, demiditraz
beehive varroa acaricides, for example organic acids, e.g. formic acid, oxalic acid.
from the class of the benzimidazoles and probenzimidazoles, for example; oxibendazole, mebendazole, triclabendazole, thiophanate, parbendazole, oxfendazole, netobimin, fenbendazole, febantel, thiabendazole, cyclobendazole, cambendazole, albendazole sulfoxide, albendazole, flubendazole;
from the class of the depsipeptides, preferably cyclic depsipeptides, especially 24-membered cyclic depsipeptides, for example: emodepside, PF1022A;
from the class of the tetrahydropyrimidines, for example morantel, pyrantel, oxantel;
from the class of the imidazothiazoles, for example: butamisole, levamisole, tetramisole;
from the class of the aminophenylamidines, for example: amidantel, deacylated amidantel (dAMD), tribendimidine;
from the class of the aminoacetonitriles, for example: monepantel;
from the class of the paraherquamides, for example: paraherquamide, derquantel;
from the class of the salicylanilides, for example: tribromsalan, bromoxanide, brotianide, clioxanide, closantel, niclosamide, oxyclozanide, rafoxanide;
from the class of the substituted phenols, for example: nitroxynil, bithionol, disophenol, hexachlorophene, niclofolan, meniclopholan;
from the class of the organophosphates, for example: trichlorfon, naphthalofos, dichlorvos/DDVP, crufomate, coumaphos, haloxon;
from the class of the piperazinones/quinolines, for example praziquantel, epsiprantel;
from the class of the piperazines, for example: piperazine, hydroxyzine;
from the class of the tetracyclines, for example tetracycline, chlorotetracycline, doxycycline, oxytetracycline, rolitetracycline;
from various other classes, for example: bunamidine, niridazole, resorantel, omphalotin, oltipraz, nitroscanate, nitroxynil, oxamniquin, mirasan, miracil, lucanthon, hycanthon, hetolin, emetin, diethylcarbamazine, dichlorophen, diamfenetide, clonazepam, bephenium, amoscanate, clorsulon.
from the class of polyether ionophores, for example: monensin, salinomycin, maduramicin, narasin;
from the class of the macrocyclic lactones, for example: milbemycin, erythromycin;
from the class of the quinolones, for example: enrofloxacin, pradofloxacin;
from the class of the quinines, for example: chloroquine;
from the class of the pyrimidines, for example: pyrimethamine;
from the class of the sulfonamides, for example: sulfaquinoxaline, trimethoprim, sulfaclozin;
from the class of the thiamines, for example amprolium;
from the class of the lincosamides, for example: clindamycin;
from the class of the carbanilides, for example: imidocarb;
from the class of the nitrofurans, for example nifurtimox;
from the class of the quinazolinone alkaloids, for example: halofuginone;
from various other classes, for example: oxamniquine, paromomycin;
from the class of the vaccines or antigens from microorganisms, for example: Vector Control
1) Mosquitoes
2) Lice: skin infections, epidemic typhus;
3) Fleas: plague, endemic typhus, tapeworms;
4) Flies: sleeping sickness (trypanosomiasis); cholera, other bacterial diseases;
5) Mites: acariosis, epidemic typhus, rickettsialpox, tularemia, Saint Louis encephalitis, tick-borne encephalitis (TBE), Crimean-Congo hemorrhagic fever, borreliosis;
6) Ticks: borrelioses such as Protection of Industrial Materials
Control of Animal Pests in the Hygiene Sector
PREPARATION EXAMPLES
Analytical Determinations
Mass Spectrometry
Instruments:
Instruments:
NMR Peak Lists Method
Log P Values
1-[3-Ethylsulfonyl-2-[3-methyl-6-(trifluoromethoxy)imidazo[4,5-b]pyridin-2-yl]pyrazolo[1,5-a]pyridin-6-yl]cyclopropanecarbonitrile (I-1)
1-[3-Bromo-2-[3-methyl-6-(trifluoromethoxy)imidazo[4,5-b]pyridin-2-yl]pyrazolo[1,5-a]pyridin-6-yl]cyclopropanecarbonitrile
3-Bromo-6-(1-cyanocyclopropyl)pyrazolo[1,5-a]pyridine-2-carboxylic Acid
6-(1-Cyanocyclopropyl)pyrazolo[1,5-a]pyridine-2-carboxylic Acid
Methyl 6-(1-cyanocyclopropyl)pyrazolo[1,5-a]pyridine-2-carboxylate
Methyl (E)-2-azido-3-[5-(1-cyanocyclopropyl)-2-pyridyl]prop-2-enoate
1-[3-Ethylsulfonyl-2-[1-methyl-5-(trifluoromethoxy)benzimidazol-2-yl]pyrazolo[1,5-a]pyridin-6-yl]cyclopropanecarbonitrile (I-2)
1-[3-Ethylsulfonyl-2-[3-methyl-6-(1,1,2,2,2-pentafluoroethoxy)imidazo[4,5-b]pyridin-2-yl]pyrazolo[1,5-a]pyridin-6-yl]cyclopropanecarbonitrile (I-5)
1-[2-(2,2-Difluoro-7-methyl-[1,3]dioxolo[4,5-f]benzimidazol-6-yl)-3-ethylsulfonylpyrazolo[1,5-a]pyridin-6-yl]cyclopropanecarbonitrile (I-3)
1-[3-Bromo-2-(2,2-difluoro-7-methyl-[1,3]dioxolo[4,5-f]benzimidazol-6-yl)pyrazolo[1,5-a]pyridin-6-yl]cyclopropanecarbonitrile
1-[3-Bromo-2-(2,2-difluoro-5H-[1,3]dioxolo[4,5-f]benzimidazol-6-yl)pyrazolo[1,5-a]pyridin-6-yl]cyclopropanecarbonitrile
1-[3-Ethylsulfonyl-2-[2,2-difluoro-7-methyl-[1,3]dioxoloimidazo[4,5-b]pyridin-6-yl]pyrazolo[1,5-a]pyridin-6-yl]cyclopropanecarbonitrile (I-4)
USE EXAMPLES
COMPARATIVE EXAMPLES
prior art according to WO2017/155103 MYZUPE DIABBA 0.8 ppm 0.8 ppm 40 50 6 dat 8 dat Example No. I-1 according to the invention MYZUPE DIABBA 0.8 ppm 0.8 ppm 100 80 6 dat 8 dat *dat = days after treatment