УСКОРИТЕЛЬ ОТВЕРЖДЕНИЯ СМОЛ

10-10-2016 дата публикации
Номер:
RU2599287C2
Контакты: 129090, Moskva, ul. B. Spasskaja, 25, stroenie 3, OOO "JUridicheskaja firma Gorodisskij i Partnery"
Номер заявки: 63-14-201326/05
Дата заявки: 21-03-2012

[1]

Настоящее изобретение относится к раствору ускорителя, подходящему для использования при получении окислительно-восстановительной системы совместно с пероксидами, композиции смолы, предварительно подвергнутой воздействию ускорителя, содержащей смолу ненасыщенного сложного полиэфира или смолу винилового сложного эфира, и двухкомпонентной композиции, содержащей упомянутую композицию смолы, предварительно подвергнутой воздействию ускорителя.

[2]

Для отверждения смолы могут быть использованы окислительно-восстановительные системы. Обычные окислительно-восстановительные системы содержат окислитель (например, пероксид) и растворимый ион переходного металла в качестве ускорителя. Ускоритель исполняет функцию увеличения активности окислителя при более низких температурах и, следовательно, ускорения скорости отверждения.

[3]

Системы ускорителей могут быть добавлены к отверждаемой смоле согласно различным способам. Один способ включает добавление индивидуальных ингредиентов ускорителя в смолу до добавления пероксида. Это может быть осуществлено непосредственно перед добавлением пероксида или за несколько дней или недель до этого. В последнем случае заявители рассматривают композицию смолы, предварительно подвергнутой воздействию ускорителя, которая содержит смолу и ингредиенты ускорителя и может храниться вплоть до дальнейшего использования и отверждения при использовании пероксидов. Еще один способ включает предварительное получение раствора ускорителя, содержащего ингредиенты ускорителя, где данный раствор может храниться вплоть до дальнейшего использования и добавления к смоле. Смола, предварительно подвергнутая воздействию ускорителя, может быть получена в результате либо добавления индивидуальных ингредиентов системы ускорителя к смоле, либо в результате добавления данных ингредиентов в смеси в форме раствора ускорителя.

[4]

Типичные системы ускорителей содержат соль или комплекс переходного металла. Наиболее часто использующийся переходный метал для данной цели представляет собой кобальт. Однако законодательные нормы требуют уменьшения количества кобальта из-за его токсичности.

[5]

Множество недавних патентных публикаций относится к свободным от Со системам ускорителей. Одна такая система может быть найдена в публикации WO 2008/119783, в которой описывается система на основе Cu, включающая Cu(I) и Cu(II).

[6]

Как в настоящее время было установлено, реакционная способность таких систем на основе Cu может быть улучшена в результате объединенного использования Cu(I), переходного металла, выбираемого из кобальта и титана, и фосфорсодержащего соединения. Кроме того, как было установлено, данная комбинация делает возможным получение смол, предварительно подвергнутых воздействию ускорителя и характеризующихся малым дрейфом времени гелеобразования. Дрейф времени гелеобразования отражает устойчивость при хранении для смолы, предварительно подвергнутой воздействию ускорителя. Дрейф времени гелеобразования определяют как изменение измеренного времени гелеобразования смолы в сопоставлении с первоначальным временем гелеобразования, измеренным во время ее изготовления. Дрейф времени гелеобразования обычно ассоциируется с последовательным увеличением времени гелеобразования смолы и приписывается утрате активности ускорителя с течением времени.

[7]

Поэтому изобретение относится к раствору ускорителя, подходящему для использования при получении окислительно-восстановительной системы совместно с пероксидами, содержащему соединение Cu(I), переходный металл, выбираемый из кобальта и титана, фосфорсодержащее соединение, азотсодержащее основание и гидроксифункциональный растворитель.

[8]

Соединения кобальта могут быть использованы в качестве второго переходного металла (усилителя реакционной способности) без получения в результате проблем с точки зрения законодательства и токсичности вследствие небольших количеств, которые могут быть использованы.

[9]

Изобретение также относится к композиции смолы, предварительно подвергнутой воздействию ускорителя, содержащей соединение Cu(I), переходный металл, выбираемый из кобальта и титана, фосфорсодержащее соединение, азотсодержащее основание и гидроксифункциональный растворитель.

[10]

Изобретение, кроме того, относится к двухкомпонентной композиции, содержащей первый компонент и второй компонент, при этом первый компонент содержит определенную выше композицию смолы, предварительно подвергнутой воздействию ускорителя, а второй компонент содержит пероксид.

[11]

Подходящие для использования соединения Cu(I) представляют собой галогениды, нитрат, сульфат, карбоксилаты, фосфат и оксид Cu(I). Наиболее предпочтительное соединение Cu(I) представляет собой хлорид Cu(I).

[12]

Соединение Cu(I) предпочтительно присутствует в растворе ускорителя, в расчете на количество металла, в количестве, составляющем по меньшей мере 50 ммоль/л, более предпочтительно по меньшей мере 100 ммоль/л. Предпочтительно оно присутствует в растворе ускорителя в количестве, меньшем чем 5000 ммоль/л, более предпочтительно меньшем чем 2500 ммоль/л, а наиболее предпочтительно меньшем чем 1000 ммоль/л.

[13]

Соединение Cu(I) предпочтительно присутствует в смоле, предварительно подвергнутой воздействию ускорителя, в расчете на количество металла, в количестве, составляющем по меньшей мере 1 ммоль/кг смолы, более предпочтительно по меньшей мере 2 ммоль/кг смолы. Оно предпочтительно присутствует в количестве не более чем 50 ммоль/кг смолы, еще более предпочтительно не более чем 25 ммоль/кг смолы, а наиболее предпочтительно не более чем 10 ммоль/кг смолы.

[14]

В дополнение к соединению Cu(I) раствор ускорителя или смола, предварительно подвергнутая воздействию ускорителя, содержат другой переходный металл, выбираемый из группы, состоящей из кобальта и титана.

[15]

Кобальт к раствору может быть добавлен в виде нафтената или октаноата (2-этилгексаноата) кобальта.

[16]

Титан к раствору может быть добавлен в виде соли или комплекса титана. Примерами подходящих для использования солей или комплексов являются изопропоксид титана, бис(аммонийлактат)дигидроксид титана, бутоксид титана, трет-бутоксид титана, бутоксид титана, хлорид титана, бромид титана, диизопропоксидбис(ацетилацетонат) титана, диизопропоксидбис(2,2,6,6-тетраметил-3,5-гептандионат) титана, этоксид титана, 2-этилгексоилоксид титана, метоксид титана, оксиацетилацетонат титана, фталоцианиндихлорид титана, пропоксид титана, (тетраэтаноламинато)изопропоксид титана и титанилфталоцианин.

[17]

Может быть использовано соединение титана любой валентности титана (II-IV).

[18]

Кобальт и титан предпочтительно присутствуют в растворе ускорителя, в расчете на металл, в количестве, составляющем по меньшей мере 10 ммоль/л, более предпочтительно по меньшей мере 25 ммоль/л. Они предпочтительно присутствуют в растворе ускорителя в количестве, меньшем чем 1000 ммоль/л, более предпочтительно меньшем чем 500 ммоль/л, а наиболее предпочтительно меньшем чем 250 ммоль/л.

[19]

Кобальт и титан предпочтительно присутствуют в смоле, предварительно подвергнутой воздействию ускорителя, в расчете на количество металла, в количестве, составляющем по меньшей мере 0,02 ммоль/кг смолы, более предпочтительно по меньшей мере 0,10 ммоль/кг смолы, еще более предпочтительно по меньшей мере 0,25 ммоль/кг смолы, а наиболее предпочтительно 0,50 ммоль/кг смолы. Они предпочтительно присутствуют в количестве не более чем 10 ммоль/кг смолы, более предпочтительно не более чем 5 ммоль/кг смолы, а наиболее предпочтительно не более чем 2 ммоль/кг смолы.

[20]

Массовое соотношение (в расчете на массу металла) Cu(I):Ti и массовое соотношение (в расчете на массу металла) Cu(I):Со предпочтительно находятся в диапазоне от 3:1 до 200:1.

[21]

Фосфорсодержащим соединением предпочтительно является органическое фосфорсодержащее соединение. Более предпочтительно органическое фосфорсодержащее соединение является жидким при комнатной температуре. Наиболее предпочтительно им является фосфорсодержащее соединение формул P(R)3 и P(R)3=О, где каждый R независимо выбирают из водорода, алкила, содержащего от 1 до 10 атомов углерода, и алкоксигрупп, содержащих от 1 до 10 атомов углерода. Предпочтительно, по меньшей мере, две группы R выбирают либо из алкильных групп, либо из алкоксигрупп. Конкретными примерами подходящих для использования фосфорсодержащих соединений являются диэтилфосфат, дибутилфосфат, трибутилфосфат, триэтилфосфат (ТЭФ), дибутилфосфит и триэтилфосфат.

[22]

Подходящие для использования азотсодержащие основания, присутствующие в растворе ускорителя и смоле, предварительно подвергнутой воздействию ускорителя, представляют собой третичные амины, такие как триэтиламин, диметиланилин, диэтиланилин или N,N-диметил-п-толуидин (ДМПТ), полиамины, такие как 1,2-(диметиламин)этан, вторичные амины, такие как диэтиламин, этоксилированные амины, такие как триэтаноламин, диметиламиноэтанол, диэтаноламин или моноэтаноламин, и ароматические амины, такие как бипиридин.

[23]

Азотсодержащее основание предпочтительно присутствует в растворе ускорителя в количестве 5-50% (масс.). В смоле, предварительно подвергнутой воздействию ускорителя, оно предпочтительно присутствует в количестве в диапазоне 0,5-10 г/кг смолы.

[24]

Термин «гидроксифункциональный растворитель» включает соединения, описывающиеся формулой HO-(-CH2-C(R1)2-(CH2)m-O-)n-R2, где каждый R1 независимо выбирают из группы, состоящей из водорода, алкильных групп, содержащих 1-10 атомов углерода, и гидроксиалкильных групп, содержащих от 1 до 10 атомов углерода, n=1-10, m=0 или 1, a R2 представляет собой водород или алкильную группу, содержащую 1-10 атомов углерода. Наиболее предпочтительно каждый R1 независимо выбирают из Н, СН3 и СН2ОН. Примерами подходящих для использования гидроксифункциональных растворителей являются гликоли, подобные диэтиленгликольмонобутиловому эфиру, этиленгликолю, диэтиленгликолю, дипропиленгликолю и полиэтиленгликолям, глицерин и пентаэритрит.

[25]

Гидроксифункциональный растворитель в растворе ускорителя предпочтительно присутствует в количестве 1-50% (масс.), предпочтительно 5-30% (масс.). В смоле, предварительно подвергнутой воздействию ускорителя, он предпочтительно присутствует в количестве 0,1-100 г/кг смолы, предпочтительно 0,5-60 г/кг смолы.

[26]

Раствор ускорителя и смола, предварительно подвергнутая воздействию ускорителя, соответствующие настоящему изобретению, необязательно могут содержать один или несколько представителей, выбираемых из промоторов, воды, восстановителей, добавок и/или наполнителей.

[27]

Существуют два важных класса промоторов: металлические соли карбоновых кислот и 1,3-дикетоны.

[28]

Примерами 1,3-дикетонов являются ацетилацетон, бензоилацетон и дибензоилметан и ацетоацетаты, такие как диэтилацетоацетамид, диметилацетоацетамид, дипропилацетоацетамид, дибутилацетоацетамид, метилацетоацетат, этилацетоацетат, пропилацетоацетат и бутилацетоацетат.

[29]

Примерами подходящих для использования металлических солей карбоновых кислот являются 2-этилгексаноаты, октаноаты, нонаноаты, гептаноаты, неодеканоаты и нафтенаты аммония, щелочных металлов и щелочноземельных металлов. Предпочтительный щелочной металл представляет собой К.

[30]

Соли могут быть добавлены к раствору ускорителя или смоле как таковые, или они могут быть получены «по месту». Например, 2-этилгексаноаты щелочных металлов могут быть получены «in situ» в растворе ускорителя, после добавления гидроксида щелочного металла и 2-этилгексановой кислоты к раствору.

[31]

В особенности предпочтительные промоторы представляют собой ацетоацетаты. В особенности предпочтительным является диэтилацетоацетамид.

[32]

В случае присутствия в растворе ускорителя одного или нескольких промоторов их количество предпочтительно составит по меньшей мере 0,01% (масс.), более предпочтительно по меньшей мере 0,1% (масс.), еще более предпочтительно по меньшей мере 1% (масс.), более предпочтительно по меньшей мере 10% (масс.), а наиболее предпочтительно по меньшей мере 20% (масс.); предпочтительно не более чем 90% (масс.), более предпочтительно не более чем 80% (масс.), а наиболее предпочтительно не более чем 70% (масс.), во всех случаях при расчете на совокупную массу раствора ускорителя.

[33]

Раствор ускорителя, соответствующий настоящему изобретению, может дополнительно содержать органические соединения, такие как алифатические углеводородные растворители, ароматические углеводородные растворители и растворители, которые содержат группу альдегида, кетона, простого эфира, сложного эфира, спирта, фосфата или карбоновой кислоты. Примерами подходящих для использования растворителей являются алифатические углеводородные растворители, такие как уайт-спирит и не имеющий запаха растворитель для лаков (OMS), ароматические углеводородные растворители, такие как нафтены и смеси из нафтенов и парафинов, изобутанол; пентанол; 1,2-диоксимы, N-метилпирролидинон, N-этилпирролидинон; диметилформамид (ДМФА); диметилсульфоксид (ДМСО); 2,2,4-триметилпентандиолдиизобутират (TxIB); сложные эфиры, такие как дибутилмалеинат, дибутилсукцинат, этилацетат, бутилацетат, сложные моно- и диэфиры кетоглутаровой кислоты, пируваты и сложные эфиры аскорбиновой кислоты, такие как аскорбиновый пальмитат; альдегиды; сложные моно- и диэфиры, в частности, в большой мере диэтилмалонат и -сукцинаты; 1,2-дикетоны, в частности, диацетил и глиоксаль; бензиловый спирт и жирные спирты.

[34]

Раствор ускорителя и смола, предварительно подвергнутая воздействию ускорителя, могут дополнительно содержать восстановитель. Примерами восстановителей являются аскорбиновая кислота, формальдегидсульфоксилат натрия (ФСН), восстановители, подобные глюкозе и фруктозе, щавелевая кислота, фосфины, фосфиты, органические или неорганические нитриты, органические или неорганические сульфиты, органические или неорганические сульфиды, меркаптаны и альдегиды, и их смеси. Предпочтительным восстановителем является аскорбиновая кислота, где в данном описании изобретения данный термин «аскорбиновая кислота» включает L-аскорбиновую кислоту и D-изоаскорбиновую кислоту.

[35]

В случае присутствия восстановителя в растворе ускорителя он предпочтительно будет присутствовать в количестве, большем чем 0,1% (масс.), предпочтительно составляющем по меньшей мере 1% (масс.), а наиболее предпочтительно по меньшей мере 5% (масс.). Он предпочтительно присутствует в количестве, меньшем чем 30% (масс.), более предпочтительно меньшем чем 20% (масс.), во всех случаях при расчете на совокупную массу раствора ускорителя.

[36]

Раствор ускорителя может необязательно содержать воду. При наличии воды, ее количество в растворе предпочтительно составляет по меньшей мере 0,01% (масс.), а более предпочтительно по меньшей мере 0,1% (масс.). Количество воды предпочтительно составляет не более 50% (масс.), более предпочтительно не более 40% (масс.), более предпочтительно не более 20% (масс.), еще более предпочтительно не более 10% (масс.), а наиболее предпочтительно не более 5% (масс.), во всех случаях при расчете на совокупную массу раствора ускорителя.

[37]

Раствор ускорителя может быть получен в результате простого перемешивания ингредиентов, необязательно при наличии промежуточных стадий нагревания и/или перемешивания.

[38]

Смола, предварительно подвергнутая воздействию ускорителя, может быть получена по различным способам: в результате перемешивания индивидуальных ингредиентов со смолой или в результате перемешивания смолы, включающей необязательный мономер, с раствором ускорителя, соответствующим настоящему изобретению. Последний способ является предпочтительным.

[39]

Подходящие для использования смолы, отверждаемые при использовании раствора ускорителя, соответствующего изобретению, и присутствующие в композиции смолы, предварительно подвергнутые воздействию ускорителя, включают алкидные смолы, смолы ненасыщенных сложных полиэфиров (НСП), смолы виниловых сложных эфиров, (мет)акрилатные смолы, полиуретаны, эпоксидные смолы и их смеси. Предпочтительными смолами являются (мет)акрилатные смолы, смолы НСП и смолы виниловых сложных эфиров. В контексте настоящей заявки термины «смола ненасыщенного сложного полиэфира» и «смола НСП» относятся к комбинации из смолы ненасыщенного сложного полиэфира и этиленненасыщенного мономерного соединения. Термин «(мет)акрилатная смола» относится к комбинации из акрилатной или метакрилатной смолы и этиленненасыщенного мономерного соединения. Определенные выше смолы НСП и акрилатные смолы относятся к общепринятой практике и являются коммерчески доступными. Отверждение в общем случае начинают в результате либо добавления раствора ускорителя, соответствующего изобретению, и инициатора (пероксида) к смоле, либо в результате добавления пероксида к смоле, предварительно подвергнутой воздействию ускорителя.

[40]

Подходящие для использования смолы НСП, отверждаемые по способу настоящего изобретения, представляют собой орто-смолы, изо-смолы, изо-неопентилгликолевые смолы и дициклопентадиеновые (ДЦПД) смолы. Примерами таких смол являются смолы, относящиеся к малеиновому, фумаровому, аллиловому, виниловому и эпоксидному типам, смолы бисфенола А, терефталевые смолы и гибридные смолы.

[41]

Смолы виниловых сложных эфиров включают акрилатные смолы на основе, например, метакрилата, диакрилата, диметакрилата и их олигомеров.

[42]

Акрилатные смолы включают акрилаты, метакрилаты, диакрилаты и диметакрилаты и их олигомеры.

[43]

Примеры этиленненасыщенных мономерных соединений включают стирол и стирольные производные, подобные α-метилстиролу, винилтолуолу, индену, дивинилбензолу, винилпирролидону, винилсилоксану, винилкапролактаму, стильбену, но также и диаллилфталат, дибензилиденацетон, аллилбензол, метилметакрилат, метилакрилат, (мет)акриловую кислоту, диакрилаты, диметакрилаты, акриламиды; винилацетат, триаллилцианурат, триаллилизоцианурат, аллильные соединения, которые используют для оптической области применения (такие как (ди)этиленгликольдиаллилкарбонат), хлорстирол, трет-бутилстирол, трет-бутилакрилат, бутандиолдиметакрилат и их смеси. Подходящими для использования примерами (мет)акрилатных реакционно-способных разбавителей являются ПЭГ200-ди(мет)акрилат, 1,4-бутандиолди(мет)акрилат, 1,3-бутандиолди(мет)акрилат, 2,3-бутандиолди(мет)акрилат, 1,6-гександиолди(мет)акрилат и его изомеры, диэтиленгликольди(мет)акрилат, триэтиленгликольди(мет)акрилат, глицеринди(мет)акрилат, триметилолпропанди(мет)акрилат, неопентилгликольди(мет)акрилат, дипропиленгликольди(мет)акрилат, трипропиленгликольди(мет)акрилат, ППГ250-ди(мет)акрилат, трициклодекандиметилолди(мет)акрилат, 1,10-декандиолди(мет)акрилат, тетраэтиленгликольди(мет)акрилат, триметилолпропантри(мет)акрилат, глицидил(мет)акрилат, (бис)малеимиды, (бис)цитраконимиды, (бис)итаконимиды и их смеси.

[44]

Количество этиленненасыщенного мономера в смоле, предварительно подвергнутой воздействию ускорителя, составляет предпочтительно по меньшей мере 0,1% (масс.) в расчете на массу смолы, более предпочтительно по меньшей мере 1% (масс.), а наиболее предпочтительно по меньшей мере 5% (масс.). Количество этиленненасыщенного мономера является предпочтительно не большим чем 50% (масс.), более предпочтительно не большим чем 40% (масс.), а наиболее предпочтительно не большим чем 35% (масс.).

[45]

В случае использования раствора ускорителя для отверждения смолы или для получения смолы, предварительно подвергнутой воздействию ускорителя, раствор ускорителя в общем случае будут использовать в количествах, составляющих по меньшей мере 0,01% (масс.), предпочтительно по меньшей мере 0,1% (масс.), а предпочтительно не более чем 5% (масс.), более предпочтительно не более чем 3% (масс.), раствора ускорителя в расчете на массу смолу.

[46]

Пероксиды, подходящие для использования при отверждении смолы и подходящие для использования при наличии во втором компоненте двухкомпонентной композиции, включают неорганические пероксиды и органические пероксиды, такие как обычно использующиеся кетонпероксиды, сложные пероксиэфиры, диарилпероксиды, диалкилпероксиды и пероксидикарбонаты, но также и пероксикарбонаты, пероксикетали, гидропероксиды, диацилпероксиды и перекись водорода. Предпочтительные пероксиды представляют собой гидропероксиды, кетонпероксиды, сложные пероксиэфиры и пероксикарбонаты. Еще более предпочтительными являются гидропероксиды и кетонпероксиды. Предпочтительные гидропероксиды включают кумилгидропероксид, 1,1,3,3-тетраметилбутилгидропероксид, трет-бутилгидропероксид, изопропилкумилгидропероксид, трет-амилгидропероксид, 2,5-диметилгексил-2,5-дигидропероксид, пинангидропероксид и пиненгидропероксид. Предпочтительные кетонпероксиды включают метилэтилкетонпероксид, метилизопропилкетонпероксид, метилизобутилкетонпероксид, циклогексанонпероксид и ацетилацетонпероксид.

[47]

Также могут быть использованы и смеси из двух и более пероксидов; например, комбинация из гидропероксида или кетонпероксида и сложного пероксиэфира.

[48]

Одним в особенности предпочтительным пероксидом является метилэтилкетонпероксид. Специалист в соответствующей области техники должен понимать то, что данные пероксиды смогут быть объединены с обычными добавками, например, наполнителями, пигментами и флегматизаторами. Примерами флегматизаторов являются гидрофильные сложные эфиры и углеводородные растворители. Количество пероксида, использующегося для отверждения смолы, составляет предпочтительно по меньшей мере 0,1 части в расчете на сто частей смолы (ч./100 ч. смолы), более предпочтительно по меньшей мере 0,5 ч./100 ч. смолы, а наиболее предпочтительно по меньшей мере 1 ч./100 ч. смолы. Количество пероксида является предпочтительно не большим чем 8 ч./100 ч. смолы, более предпочтительно не большим чем 5 ч./100 ч. смолы, наиболее предпочтительно не большим чем 2 ч./100 ч. смолы.

[49]

В случае перемешивания пероксида со смолой, предварительно подвергнутой воздействию ускорителя, добавления его к предварительной смеси из смолы и раствора ускорителя или его предварительного перемешивания со смолой, после чего добавляют раствор ускорителя. Получающуюся в результате смесь перемешивают и диспергируют. Способ отверждения может быть реализован при любой температуре в диапазоне от -15°С вплоть до 250°С в зависимости от системы инициатора, системы ускорителя, соединений для адаптирования скорости отверждения и отверждаемой композиции смолы. Предпочтительно его реализуют при температурах окружающей среды, обычно использующихся при нанесениях, таких как ручная укладка, распыление, намотка нити, литьевое прессование полимера, нанесение покрытия (например, нанесение гелевых покрытий и нанесение стандартных покрытий), изготовление таблеток, центробежное литье, изготовление гофрированных листов или плоских панелей, системы футеровки, раковины кухонных моек в результате выливания соединений и тому подобное. Однако также возможным является и использование в методиках листового формовочного материала, композиции для объемного прессования, пултрузии и тому подобного, для чего используют температуры, доходящие вплоть до 180°С, более предпочтительно вплоть до 150°С, наиболее предпочтительно вплоть до 100°С.

[50]

В способе отверждения, соответствующем изобретению, могут быть использованы и другие необязательные добавки, такие как наполнители, стекловолокно, пигменты, ингибиторы и промоторы.

[51]

Отвержденные смолы находят использование в различных областях применения, в том числе морские области применения, химическая фиксация, нанесение кровельных покрытий, строительство, футеровка, трубы и резервуары, нанесение напольных прикрытий, лопасти ветроэнергетических установок и тому подобное.

[52]

ПРИМЕРЫ

[53]

Пример 1

[54]

Получали два раствора ускорителя, содержащих Cu(I), при этом разница заключается в наличии или отсутствии небольшого количества Со. Со вносили путем добавления 0,045% (масс.) (в расчете на массу раствора ускорителя) коммерчески доступного продукта Accelerator NL-53 (от компании AkzoNobel), содержащего 2-этилгексаноат кобальта (II) в количестве 10% (масс.) Со (при расчете на количество металла).

[55]

Состав растворов раскрыт в таблице 1.

[56]

Данные растворы ускорителей - 0,5 ч./100 ч. смолы (в расчете на сто частей смолы) - использовали для отверждения смолы ненасыщенного сложного полиэфира на основе ортофталевой кислоты (Palatal® P6 от компании DSM resin) при 20°С при использовании 1,5 ч./100 ч. смолы метилэтилкетонпероксида (Butanox® M50, от компании AkzoNobel). Эксплуатационные характеристики отверждения анализировали по методу компании Society of Plastic Institute (SPI method F/77.1; доступно в компании Akzo Nobel Polymer Chemicals). Данный метод включает измерение тепловыделения для пика, времени до достижения пика и времени гелеобразования. В соответствии с данным методом 25 г смеси, содержащей 100 частей смолы, 1,5 части пероксида и 0,5 части раствора ускорителя, выливали в пробирку и через кожух в центре пробирки устанавливали термопару. После этого стеклянную пробирку размещали в помещении с контролируемой атмосферой, выдерживаемой при 20°С, и измеряли кривую время-температура. Исходя из кривой, рассчитывали следующие далее параметры:

[57]

Время гелеобразования (Gt) = время в минутах, прошедшее между началом эксперимента и превышением температуры ванны на 5,6°С.

[58]

Время до достижения пика (ТТР) = время, прошедшее между началом эксперимента и моментом достижения температуры пика.

[59]

Тепловыделение для пика (РЕ) = максимальная температура, которую достигают.

[60]

Результаты продемонстрированы в таблице 1, которая включает эталонный эксперимент при использовании только продукта Accelerator NL-53 (0,045 ч./100 ч. смолы).

[61]

Таблица 1
Сравнительный эксперимент 1 Сравнительный эксперимент 2 Эксперимент 3
Диэтиленгликоль (% (масс.)) -1019,95
Диэтаноламин (% (масс.)) -2525
Диэтилацетоацетамид (% (масс.)) -4040
Дибутилфосфат (% (масс.)) -1010
Хлорид Cu(I) (% (масс.)) -55
Accelerator NL-53 (% (масс.)) 100-0,045
Gt (мин) 18213
ТТР (мин) 32428
РЕ (°С) 152,3153,4151,9

[62]

Пример 2

[63]

100 ч./100 ч. смолы продукта Palatal® P6 предварительно подвергали воздействию ускорителя при использовании 1 ч./100 ч. смолы раствора ускорителя из эксперимента 2, дополнительно содержащего 0,03% (масс.) изопропоксида Ti(IV).

[64]

Время гелеобразования для смолы, предварительно подвергнутой воздействию ускорителя, отслеживали в течение 8 недель в результате проведения измерений от компании SPI - в соответствии с представленными выше разъяснениями - при использовании 10 г смолы и 2 ч./100 ч. смолы метилизопропилкетонпероксида (Butanox® P50, от компании AkzoNobel). Как продемонстрировано в представленной таблице 2, не наблюдали никакого или наблюдали только незначительный дрейф времени гелеобразования.

[65]

Таблица 2
Время (недели) Gt (мин)
0 (начало) 4,9
15,0
25,1
44,8
85,5



Изобретение относится к раствору ускорителя и может использоваться при получении окислительно-восстановительной системы, совместно с пероксидами. Раствор ускорителя содержит соединение Cu(I), соединение переходного металла, фосфорсодержащее соединение формулы P(R)или Р(R)=O, где каждый R независимо выбирают из водорода, алкила, алкоксигрупп, имеющих от 1 до 10 атомов углерода, азотсодержащее основание, выбираемое из третичных аминов, полиаминов, вторичных аминов, этоксилированных аминов и ароматических аминов, и гидроксифункциональный растворитель формулы НО-(-СН-С(R)-(СН)-О-)-R, где каждый Rнезависимо выбран из группы, состоящей из водорода, алкильных групп, имеющих 1-10 атомов углерода, и гидроксиалкильных групп, имеющих от 1 до 10 атомов углерода, n=1-10, m=0 или 1, и Rпредставляет собой водород или алкильную группу, имеющую 1-10 атомов углерода. Изобретение позволяет улучшить реакционную способность систем на основе Cu(I) и уменьшить дрейф времени гелеобразования смол. 3 н. и 5 з.п. ф-лы, 2 табл., 2 пр.



1. Раствор ускорителя, подходящий для использования при получении окислительно-восстановительной системы совместно с пероксидами, содержащий соединение Cu(I), соединение переходного металла, выбираемое из нафтената кобальта, 2-этилгексаноата кобальта и солей титана или комплексов титана, фосфорсодержащее соединение формулы P(R)3 или P(R)3=O, где каждый R независимо выбран из водорода, алкила, имеющего от 1 до 10 атомов углерода, и алкоксигрупп, имеющих от 1 до 10 атомов углерода, азотсодержащее основание, выбираемое из третичных аминов, полиаминов, вторичных аминов, этоксилированных аминов и ароматических аминов, и гидроксифункциональный растворитель формулы НО-(-СН2-С(R1)2-(СН2)m-О-)n-R2, где каждый R1 независимо выбран из группы, состоящей из водорода, алкильных групп, имеющих 1-10 атомов углерода, и гидроксиалкильных групп, имеющих от 1 до 10 атомов углерода, n=1-10, m=0 или 1, и R2 представляет собой водород или алкильную группу, имеющую 1-10 атомов углерода.

2. Раствор ускорителя по п. 1, где фосфорсодержащее соединение представляет собой диалкилфосфат.

3. Раствор ускорителя по любому одному из предшествующих пунктов, дополнительно содержащий соединение щелочного или щелочноземельного металла и/или 1,3-дикетон.

4. Композиция смолы, предварительно подвергнутой воздействию ускорителя, содержащая отверждаемую смолу, соединение Cu(I), соединение переходного металла, выбираемое из нафтената кобальта, 2-этилгексаноата кобальта и солей титана или комплексов титана, фосфорсодержащее соединение формулы P(R)3 или P(R)3=O, где каждый R независимо выбран из водорода, алкила, имеющего от 1 до 10 атомов углерода, и алкоксигрупп, имеющих от 1 до 10 атомов углерода, азотсодержащее основание, выбираемое из третичных аминов, полиаминов, вторичных аминов, этоксилированных аминов и ароматических аминов, и гидроксифункциональный растворитель формулы НО-(-СН2-С(R1)2-(СН2)m-O-)n-R2, где каждый R1 независимо выбран из группы, состоящей из водорода, алкильных групп, имеющих 1-10 атомов углерода, и гидроксиалкильных групп, имеющих от 1 до 10 атомов углерода, n=1-10, m=0 или 1, и R2 представляет собой водород или алкильную группу, имеющую 1-10 атомов углерода.

5. Композиция смолы, предварительно подвергнутой воздействию ускорителя, по п. 4, где фосфорсодержащее соединение представляет собой диалкилфосфат.

6. Композиция смолы, предварительно подвергнутой воздействию ускорителя, по п. 4 или 5, дополнительно содержащая соединение щелочного или щелочноземельного металла и/или 1,3-дикетон.

7. Двухкомпонентная композиция, содержащая первый компонент и второй компонент, при этом первый компонент содержит композицию смолы, предварительно подвергнутой воздействию ускорителя, по любому одному из пп. 4-6, а второй компонент содержит пероксид.

8. Двухкомпонентная композиция по п. 7, где пероксид выбирают из группы, состоящей из органических гидропероксидов, кетонпероксидов, пероксикарбонатов и сложных пероксиэфиров.