Способ выщелачивания пиритсодержащего сырья

18-04-2018 дата публикации
Номер:
RU2651017C1
Контакты: 129090, Moskva, ul. Gilyarovskogo, 8, str. 1, kv. 28, Grigorovich M.M.
Номер заявки: 28-13-201756
Дата заявки: 20-09-2017

[1]

Изобретение относится к области химии и может быть применено для комплексной переработки пиритсодержащего сырья, под которым подразумевается пиритный концентрат, железные сульфидные или колчедановые руды или отходы переработки сульфидных руд цветных металлов.

[2]

Использование предлагаемого способа позволяет существенно сократить время проведения процесса и достигнуть высоких степеней извлечения целевых компонентов - железа, цветных и драгоценных металлов.

[3]

Процесс проходит с использованием замкнутых систем материальных потоков, а также использования тепла, выделяющегося на различных стадиях процесса. Это позволяет отнести предлагаемый способ к энергоэффективным и экологически безопасным технологиям.

[4]

Изобретение относится к технике переработки пиритсодержащих кондиционных руд различной упорности и промышленных отходов, таких как некондиционные руды, шламы, хвосты обогащения, хвосты флотации. Техническим результатом, достигаемым предлагаемым изобретением, является комплексная малоотходная переработка такого сырья с понижением экологической нагрузки на окружающую среду и получением ликвидных кондиционных товарных продуктов, а именно:

[5]

оксида железа в виде гематита, имеющего состав, удовлетворяющий требованиям пигментной и металлургической промышленности;

[6]

кусковой или гранулированной серы,

[7]

концентратов меди, цинка и свинца в виде солей или металлов;

[8]

концентратов серебра и золота в виде солей или металлов;

[9]

смеси силикатной, содержащей алюминаты и гипс, соответствующей требованиям к компонентам для производства цемента.

[10]

Работы по комплексной переработке пиритсодержащего сырья, имеющего различное происхождение, в основном направлены на извлечение золота, с попутным частичным извлечением в выщелачивающий раствор серебра и цветных металлов с дальнейшей их сорбцией на уголь или ионно-обменные смолы. Экономическая целесообразность применения таких технических решений часто зависит от содержания золота в руде и не позволяет перерабатывать бедные руды и отходы с концентрациями золота около 1 г/т. Технических решений, позволяющих осуществлять комплексную экономически целесообразную и экологически безопасную переработку пиритсодержащих продуктов с содержанием золота около 1 г/т, практически не существует. В России, преимущественно на Среднем и Южном Урале, имеется большое количество таких источников пиритсодержащего сырья, как природного, так и техногенного происхождения. Их составы хорошо изучены [Золото: химия, минералогия, металлургия М.А. Меретуков. Издатель: ИД "Руда и Металлы", 2008 г.], установлены формы нахождения золота в пирите, подтверждены и оценены запасы драгоценных металлов - золота и серебра практически во всех техногенных месторождениях. [Геологический отчет, ТЭД, ТЭО, ТЭС, выполненный ГУП УКГЭ "Уралзолоторазведка", 2002 год, отв. испол. И.Р. Фаткулин. Место хранения Минэкологии РБ (Уфа). Отчет по теме 93-10: "Оценка техногенных ресурсов предприятий Республики Башкортостан", 739 л, 79 р, 4 кр, 2 п, 4 т. Подсчет запасов. Золото. Южный Урал. РБ.].

[11]

Накопленное пиритсодержащее сырье различных видов содержит в среднем 20÷45% железа, 20÷45% серы, 0,3÷5,0% меди, 0,6÷5,0% цинка, 5÷1000 г/т серебра и 0,5÷50 г/т золота, остальное - инертные составляющие (кварц, силикаты, алюмосиликаты, сульфаты кальция и бария). Объемы накопления около 1 миллиарда тонн.

[12]

Заявляемый способ комплексной переработки пиритсодержащего сырья может быть реализован в промышленных масштабах на горнодобывающих предприятиях Среднего и Южного Урала, перерабатывающих сульфидные руды и производящих медные и цинковые концентраты. В результате реализации предлагаемого способа может быть приостановлено накопление отходов, снижено воздействие на окружающую среду, при этом дополнительно могут быть получены концентраты золота, серебра, меди, цинка и свинца, гематит высокого качества, отвечающий требованиям как пигментной промышленности, так и металлургической, элементная сера, удовлетворяющая требованиям производителей серной кислоты и инертный силикатный продукт, являющийся сырьем для цементных заводов.

[13]

В RU 2608481 С2, опубл. 18.01.2017, описано изобретение, предназначенное для кучного выщелачивания золота из минерального сырья. Фотоэлектроактивированный пероксидно-карбонатный и/или пероксидно-гидроксидный раствор используют для окомкования исходного сырья. Затем минеральную массу укладывают в штабели, выдерживают паузу и орошают до ее полного смачивания двумя видами активных растворов - с окислителями и комплексообразователем для золота, выдерживают вторую паузу. По завершении диффузионного выщелачивания золота орошают штабель раствором комплексообразователя, подготовленным на основе активированной воды и/или обеззолоченного маточного раствора, прошедших электрохимическую и/или фотоэлектрохимическую обработку, который непосредственно перед подачей на орошение штабелей смешивают с высококонцентрированным пероксидно-карбонатным и/или пероксидно-гидроксидным раствором. Техническим результатом является повышение эффективности способа переработки техногенного минерального сырья за счет более полного вскрытия минеральных матриц.

[14]

В ЕА 17438 В1, опубл. 28.12.2012, описана гидрометаллургическая переработка сырья, содержащего благородные металлы и сульфиды. Способ переработки сырья, содержащего благородные металлы и сульфиды, включает смешивание сырья с водой или раствором серной кислоты и галогенид-ионом и обработку смеси в автоклаве с подачей кислорода. Новым является то, что в состав смеси, направляемой на автоклавную обработку сырья, дополнительно вводят сорбент на основе углерода и отделяют сорбент, насыщенный благородными металлами, от пульпы автоклавной обработки сырья.

[15]

В RU 2398903 С1, опубл. 10.09.2010, описан способ переработки упорных урановых, содержащих пирит и благородные металлы, материалов для извлечения урана и получения концентрата благородных металлов. Сернокислотному выщелачиванию подвергают исходный материал крупностью минус 0,1÷0,3 мм и ведут его в автоклаве до перевода более 95% урана в раствор и степени окисления пирита не менее 50%. После отделения урансодержащего раствора от твердой фазы в виде кека проводят кондиционирование кека путем флотации благородных металлов с сульфгидрильным собирателем и оксиэтилированным соединением при рН 2,5÷7,0 с получением концентрата благородных металлов. Техническим результатом является высокая степень разложения упорных минералов урана и окисления пирита, ассоциирующего золото и серебро, и эффективное извлечение урана в водную фазу и благородных металлов во флотоконцентрат.

[16]

В RU 2352650 С2, опубл. 20.04.2009, описан способ извлечения цветных (Сu, Zn, Со, Ni и др.), редких (U, редких земель, Y, Re, Tl, In и др.) и драгоценных (Au, Ag, Pt, Pd и др.) металлов из руд и материалов. Способ включает выщелачивание руд в две стадии. На первой стадии обработку руд и материалов ведут первым оборотным выщелачивающим раствором с введением серной кислоты и солей трехвалентного железа в количестве, обеспечивающем в конце выщелачивания в продуктивном растворе мольное соотношение концентраций ионов трехвалентного и двухвалентного железа не ниже 1:1. На второй стадии обработку руд и материалов проводят вторым оборотным выщелачивающим раствором с введением серной кислоты, солей роданидов и трехвалентного железа в количестве, обеспечивающем в продуктивном растворе мольное соотношение концентраций ионов роданида и трехвалентного железа не выше 2:1 и не ниже 0,5:1, а соотношение концентраций ионов трехвалентного и двухвалентного железа также не ниже 1:1. Затем проводят отдельную переработку продуктивных растворов каждой стадии химическим осаждением, сорбцией и/или электролизом и возврат оборотных растворов на соответствующую стадию. Техническим результатом является повышение степени извлечения цветных, редких и драгоценных металлов.

[17]

В ЕА 10792 В1, опубл. 30.12.2008, описан способ выщелачивания ценного металла из сульфидной руды цветных металлов, включающий стадию выщелачивания руды выщелачивателем, включающим хлорид, окислитель и хлористоводородную кислоту. Выщелачивание регулируют путем использования низких концентраций хлористоводородной кислоты и окислительно-восстановительного потенциала (ОВП) для осуществления образования сероводорода из сульфидной руды цветного металла. Сероводород отгоняют от раствора для выщелачивания, тем самым снижая количество сульфата, образовавшегося в процессе выщелачивания, до очень низкого уровня. Выщелачивание может быть также осуществлено с целью ограничения совместного растворения металлов платиновой группы и золота с ценными цветными металлами. Выщелачивание приводит к получению ценного, богатого металлом продукта выщелачивания и остатка твердых веществ. Остаток твердых веществ может быть затем подвергнут выщелачиванию с целью извлечения металлов платиновой группы и золота. Ценный, богатый металлом продукт выщелачивания может быть подвергнут окислению и нейтрализации с целью извлечения ценных цветных металлов. Согласно одному из вариантов осуществления данного изобретения хлорид представляет собой хлорид магния, а раствор выщелачивателя подвергают регенерации.

[18]

Современные требования к уровню техники переработки кондиционных и некондиционных пиритсодержащих руд, шламов, хвостов обогащения, хвостов флотации предусматривают безотходное или малоотходное использование всех вовлекаемых в процесс переработки компонентов с извлечением целевых компонентов рациональным и экономически обоснованным сочетанием технологических процессов.

[19]

В WO 2014132419 A1 (JX NIPPON MINING & METALS CORPORATION), опубл. 04 сентября 2014, описано техническое решение переработки золотосодержащего пирита или сульфидных руд с целью извлечения золота и/или серебра.

[20]

В основе этого технического решения лежит безокислительный обжиг, позволяющий перевести трудно растворимый пирит в пирротин с его дальнейшим выщелачиванием растворами хлоридов железа (+3), меди (+2) и/или соляной кислотой. Выщелачивание проводят в окислительной среде постадийно с рециркуляцией выщелачивающего раствора и выведением железа в виде гидратированного оксида. Дополнительно в раствор вводят бромид-ионы, которые позволяют снизить потенциал, при котором начинается эффективное выщелачивание золота, до 520÷600 мВ. Приведенные в этом патенте технические решения позволяют перерабатывать сульфидные золотосодержащие концентраты с содержанием золота не ниже 2 г/т с высокой степенью извлечения золота и выводом из процесса железа в виде оксидов с регенерацией выщелачивающего раствора хлорида железа (+3). Вместе с тем, метод имеет недостатки:

[21]

обжиг пиритсодержащего сырья в инертной атмосфере в отсутствие газового потока приводит к накоплению сконденсировавшейся элементной серы на пирротине и необходимости ее удаления в дальнейшем;

[22]

выщелачивание осуществляется в две стадии при близких значениях ОВП, что приводит в переходу в раствор одновременно железа и металлов-примесей, содержащихся в обычном пиритсодержащем сырье, таких как цинк, медь, свинец, серебро, что не только затрудняет их выделение в виде товарных продуктов, но и существенно загрязняет выделяемый гидроксид железа;

[23]

степень извлечения железа, как ценного побочного продукта, составляет не более 80%, а время его выщелачивания 8÷10 часов;

[24]

отсутствует выделение в виде концентратов цветных металлов, таких как медь, цинк, свинец и серебро, содержащихся в пирите в виде примесей в количестве 0,2-1,0%, что приводит к их потерям;

[25]

время достижения степени выщелачивания золота 98% составляет не менее 18÷20 часов при температуре 50÷80°С.

[26]

В качестве прототипа выбран патент РФ №2627835, кл. МПК С22В 11/00, С22В 3/10, С22В 1/04, опубл. 10.08.2017, в котором описан способ комплексной переработки пиритсодержащего сырья, позволяющий удалить часть серы в элементом виде на первой стадии за счет инертного газового потока от 1000 до 8000 м3 в час на 1 тонну пиритсодержащего сырья, обработку полученного огарка, представляющего собой преимущественно инертную смесь силикатов и пирротина соляной кислотой с растворением железа, цинка, свинца и меди и последующим выведением железа из раствора пирогидролизом с возвратом регенерированного оборотного раствора соляной кислоты после выделения из него концентратов цинка, меди, свинца и серебра стандартными методами, обработку остатка от растворения железа хлоридным раствором в присутствии сильных окислителей, таких как гипохлорит, хлор, диоксид хлора, азотная кислота, озон, при ОВП (окислительно-восстановительный потенциал) выше +850 мВ при температуре не более 30°С в течение 2÷3 часов с извлечением не менее 98% золота.

[27]

В то же время способ имеет недостатки:

[28]

наличие трех стадий выщелачивания суммарной продолжительностью от 8 до 12 часов;

[29]

высокая гидрофильность осадка, образовавшегося на стадии солянокислотного выщелачивании пирротина, обусловленная образованием гелей кремневой кислоты при высоких рН раствора из-за наличия остаточной соляной кислоты, приводящая к снижению скорости фильтрации;

[30]

необходимость отделения остаточной элементной серы, образующейся в процессе обжига и на стадии выщелачивания для снижения расхода сильных окислителей на стадии выделения золота;

[31]

использование на стадии выщелачивания золота сильных окислителей в количествах, обеспечивающих ОВП не ниже +850 мВ;

[32]

применение очистки от мышьяка на двух стадиях солянокислотного выщелачивания - безокислительного и окислительного;

[33]

применение энергозатратного процесса пирогидролиза для регенерации соляной кислоты и выведения железа из оборотного раствора в виде оксида;

[34]

необходимость применения конструкционных материалов, обладающих высокой коррозионной стойкостью и способного сохранять свои характеристики в атмосфере паров соляной кислоты при температуре не ниже 650°С.

[35]

Технический результат состоит в комплексной малоотходной переработке пиритсодержащих кондиционных руд различной упорности и промышленных отходов, таких как некондиционные руды, шламы, хвосты обогащения, хвосты флотации с понижением экологической нагрузки на окружающую среду и получением ликвидных кондиционных товарных продуктов, а именно:

[36]

оксида железа в виде гематита, имеющего состав, удовлетворяющий требованиям пигментной и металлургической промышленности;

[37]

кусковой или гранулированной серы,

[38]

концентратов меди, цинка и свинца в виде солей или металлов;

[39]

концентратов серебра и золота в виде солей или металлов;

[40]

смеси силикатной, содержащей алюминаты и гипс, соответствующей требованиям к компонентам для производства цемента.

[41]

Заявленный способ выщелачивания пиритсодержащего сырья включает в себя безокислительный пирротинизирующий обжиг сырья, обработку огарка выщелачиванием раствором хлорида меди (+2), содержащим хлориды щелочных, щелочноземельных металлов или хлорида алюминия, хлорида цинка, хлорида железа (+3) или их смеси, обеспечивающие концентрацию хлорид-иона в интервале 150-250 г/л с растворением железа, цветных металлов, серебра с последующим выведением железа в виде хорошо фильтруемого гетита, не содержащего вредных примесей, из раствора окислением кислородом и возвратом регенерированного оборотного хлоридного раствора на выщелачивание, обработку остатка от растворения железа раствором хлорида меди (+2), содержащим хлориды щелочных, щелочноземельных металлов или хлорид алюминия, хлорид цинка, хлорид железа (+3) или их смеси, обеспечивающие концентрацию хлорид-иона в интервале 150÷250 г/л в присутствии окислителей с извлечением мышьяка, остатков цветных металлов, серебра и золота в раствор.

[42]

Результат достигается тем, что выщелачивание осуществляют в две последовательные стадии при ОВП и интервале рН, не требующих отделения образующийся элементной серы, причем первую стадию выщелачивания проводят регенерированным раствором хлорида меди (+2), содержащим хлориды щелочных, щелочноземельных металлов или хлорид алюминия, хлорид цинка, хлорид железа (+3) или их смеси, обеспечивающие концентрацию хлорид-иона в интервале 150÷250 г/л при ОВП не выше +480 мВ и рН 1,6÷1,9 с извлечением в раствор в течение 90÷120 минут железа (+2), цинка, свинца, меди, серебра, а вторую стадию выщелачивания выполняют очищенным оборотным раствором хлорида меди (+2), содержащим хлориды щелочных, щелочноземельных металлов или хлорид алюминия, хлорид цинка, хлорид железа (+3) или их смеси, обеспечивающие концентрацию хлорид-иона в интервале 150÷250 г/л, с продувкой кислородом при ОВП +620÷630 мВ и рН 0,5÷1,2 в течение 30÷60 минут, затем в присутствии сильного окислителя, например газообразного хлора, озона, диоксида хлора, гипохлорита натрия в количестве, обеспечивающем поддержание ОВП реакционной массы на уровне +680÷700 мВ в течение 120-350 минут и не расходуемом в этих условиях на окисление элементной серы.

[43]

Заявляемый способ комплексной переработки пиритсодержащего сырья включает в себя технологические операции, приведенные на принципиальной блок-схеме (Фигура 1).

[44]

Обжиг пиритсодержащего сырья проводят в условиях, аналогичных примененным в прототипе, при температурах 680÷725°С в токе воздуха, обедненного по содержанию кислорода добавлением азота в объемном соотношении кислород : азот от 1:40 до 1:250, и газовом потоке от 1000 до 8000 м3 на 1 тонну обжигаемого материала в час.

[45]

Полученный в результате обжига продукт (огарок в соответствии с Фигурой 1), содержащий преимущественно соединения железа в виде смеси пирротинов Fe1-xS (где х=0÷0,25) и FeO с примесью сульфата железа (2); инертную часть - в виде смеси силикатов, сульфатов кальция и бария, аморфных алюмосиликатов; цветные металлы - в виде оксидов цинка, меди, смешанных оксидов и, частично, в виде сульфатов; драгоценные металлы - серебро и золото в виде сульфидов или мелковкрапленном элементном виде направляется на выщелачивание 1.

[46]

Элементный состав огарка, масс. %: железо 20÷40; сера 20÷40 (в т.ч. 0,5÷5,0 элементной, химически не связанной); свинец 0,01÷5,0; цинк 0,05÷5,0; медь 0,05÷5,0; алюминий 0,1÷5,0; магний 0,1÷5,0; кальций 0,1÷5,0; барий 0,01÷1,5; мышьяк 0,1÷0,5; серебро 0,0002÷0,1; золото 0,00005÷0,002; кремний, щелочные металлы и кислород - остальное.

[47]

Выщелачивание 1 проводят регенерированным оборотным раствором хлорида меди (+2), выполняя описанные ниже операции.

[48]

В реакционный сосуд заливают регенерированный оборотный раствор хлорида меди (+2), содержащий хлориды щелочных, щелочноземельных металлов или хлорида алюминия, хлорида цинка, хлорида железа (+3) или их смеси, обеспечивающие концентрацию хлорид-иона в интервале 150÷250 г/л.

[49]

Раствор нагревают до 70÷90С и при перемешивании загружают огарок. Массовое соотношение огарок - раствор (Т:Ж) составляет от 1:5 до 1:20.

[50]

В ходе проведения выщелачивания 1 контролируют значения рН и ОВП реакционной массы. Процесс продолжается до снижения и стабилизации ОВП ниже 480 мВ. Время выщелачивания 1 составляет от 90 до 120 минут.

[51]

Образовавшийся в результате выщелачивания 1 раствор направляется на выделение концентрата цинка, свинца и серебра с использованием стандартных известных методов, выбор которых определяется из соотношения извлекаемых элементов. После выделения этих металлов из раствора и получения товарного концентрата освобожденный от этих металлов оборотный выщелачивающий раствор направляется на регенерацию и выделение железа в виде гетита окислением кислородом.

[52]

Образовавшийся в результате выщелачивания 1 огарка кек 1 отделяется фильтрацией или центрифугированием и без промывки направляется на выщелачивание 2, где происходит растворение остаточных количеств железа, меди, цинка, свинца, серебра и всего золота.

[53]

Элементный состав выщелачивающего раствора, подаваемого со стадии регенерации на выщелачивание 1, мг/л: медь 30000÷60000; хлор 150000÷250000; щелочной, щелочноземельный металл, алюминий, цинк 50000÷250000; железо 500÷15000; свинец 1÷60; цинк 1÷150; магний 1÷500; алюминий 1÷500; кальций 40÷100; барий 1÷30; мышьяк 1÷5; серебро 0,5÷2; золото менее 0,01.

[54]

Контроль за изменением рН и ОПВ от времени приведен на Фиг. 2.

[55]

Элементный состав кека 1 после выщелачивания 1, масс. %: железо 2,0÷6,0; сера 35÷45 (в т.ч. элементной 34÷44); медь 0,05÷0,1; цинк 0,01÷0,5; свинец 0,01÷0,03; алюминий 0,8÷3,0; магний 0,3÷3,0; барий 0,2÷2,0; мышьяк 0,02÷3,0; серебро менее 0,0001; золото 0,000075÷0,0003; кремний, щелочные металлы и кислород - остальное.

[56]

Элементный состав раствора после выщелачивания 1, направляемого на стадию регенерации до извлечения железа, цинка, свинца, серебра по контролируемым элементам, мг/л: медь 30000÷60000; хлор 150000÷250000; железо 15000÷30000; золото менее 0,01.

[57]

Выщелачивание 2 проводят оборотным раствором хлоридов металлов, выполняя описанные ниже операции.

[58]

В реакционный сосуд заливают оборотный раствор хлорида меди (+2), содержащий хлориды щелочных, щелочноземельных металлов или хлориды алюминия, цинка, железа или их смеси, обеспечивающие концентрацию хлорид-иона в интервале 150÷250 г/л.

[59]

Кек 1 при перемешивании загружают в реактор в массовом соотношении Т:Ж=1:5 до 1:10 и по достижении температуры 70÷90С начинают барботаж кислородом. В ходе барботажа производится регулирование значения рН до 0,5÷1,2 введением в реакционную массу раствора соляной кислоты. Процесс продолжают до стабилизации значения ОВП на максимальном уровне в интервале +620÷630 мВ, затем добавляют сильный окислитель, например газообразный хлор, озон, диоксид хлора, гипохлорит натрия. Количество добавляемого сильного окислителя должно обеспечивать поддержание ОВП реакционной массы на уровне +680÷700 мВ, не выше. Последующие порции сильного окислителя добавляются по мере снижения ОВП до значения 645÷650 мВ. Избыточная щелочность при необходимости компенсируется добавлением соляной кислоты до установления значения рН в диапазоне 0,5÷1,2. Выщелачивание 2 выполняется в течение 3÷7 часов.

[60]

Образовавшийся в результате выщелачивания 2 раствор направляется на выделение концентрата цинка, свинца, серебра и золота с использованием стандартных известных методов, выбор которых определяется соотношением извлекаемых элементов. При наличии в растворе мышьяка концентрацией выше 0,5 мг/л раствор очищают от него стандартными методами. После очистки оборотного раствора и получения товарного концентрата оборотный раствор направляется в начало процесса выщелачивания стадии 2.

[61]

Элементный состав кека 2, масс. %: железо 0,5÷3,0; медь0,01÷0,07; цинк 0,01÷0,07; свинец 0,002÷0,001; алюминий 0,8÷2,0; магний 0,5÷1,0; кальций 0,5÷1,5; барий 0,1÷3,0; мышьяк менее 0,01; серебро менее 0,0005; золото менее 0,000001; сера 36÷50 (в т.ч. элементной 35÷48); кремний в виде SiO2, щелочные металлы и кислород - остальное.

[62]

Элементный состав раствора после выщелачивания 2, до извлечения серебра, цинка, свинца и золота, мг/л: медь 50000÷60000; хлор 150000÷250000; щелочной, щелочноземельный металл, алюминий, цинк 50000÷250000; железо 500÷15000; свинец 20÷500; цинк 100÷1500; магний 100÷1500; алюминий 100÷1500; кальций 40÷5000; барий 10÷3000; мышьяк 1÷1000; серебро 0,5÷200; золото 0,05÷5.

[63]

Контроль за изменением рН и ОПВ при выщелачивании 2 от времени приведен на Фиг. 3.

[64]

Образовавшийся в результате выщелачивания 2 кек 2, представляющий собой смесь инертных составляющих пиритсодержащего сырья, преимущественно оксида кремния, силикатов алюминия и магния, шпинелей, шпатов и серы направляется на разделение с использованием стандартных известных методов, например флотации, горячего центрифугирования или фильтрации, выбор которых определяется требованиями к качеству конечной товарной серы и песка.

[65]

Элементный состав оборотного раствора, направляемого на выщелачивание 2 после удаления из него цинка, свинца, серебра и золота, мг/л: медь 50000÷60000; хлор 150000÷250000; щелочной, щелочно-земельный металл, алюминий, цинк 50000÷250000; железо 500÷5000; свинец 1÷60; цинк 1÷150; магний 1÷500; алюминий 1÷500; кальций 40÷100; барий 1÷30; мышьяк 1÷5; серебро 0,5÷2; золото менее 0,01.

[66]

Регенерация раствора от выщелачивания 1 и получение осадка гетита выполняется описанным ниже образом.

[67]

Загруженный в реакционный сосуд раствор от выщелачивания 1 при перемешивании нагревают до температуры 80÷90С, затем начинают барботаж реакционной смеси кислородом. После стабилизации ОВП на уровне около 630 мВ подачу кислорода прекращают, отключают перемешивание и нагрев, затем отстаивают реакционную массу в течение 30 минут. Сформированный осадок, представляющий собой гетит, отделяют, промывают один раз раствором, содержащим хлориды щелочных, щелочноземельных металлов или хлорид алюминия, хлорид цинка, хлорид железа (+3) или их смеси, обеспечивающие концентрацию хлорид-иона в интервале 150÷250 г/л, второй раз - горячей водой, подкисленной соляной кислотой до рН 1,0÷2,0, затем осадок просушивают на воздухе.

[68]

Контроль за изменением рН и ОПВ операции регенерации оборотного раствора от времени приведен на Фиг. 4.

[69]

Состав полученного гетита в масс. % приведен в Таблице 1.

[70]

[71]

Образовавшийся гетит прокаливают в интервале температур 400÷650°С и получают гематит. Состав полученного гематита в масс. % приведен в Таблице 2.

[72]

[73]

Технический результат от применения заявляемого способа комплексной переработки пиритсодержащего сырья достигается за счет выполнения двухстадийного выщелачивания предварительно обожженного в неокислительной атмосфере сырья, представляющего собой пиритсодержащие руды, концентраты либо промышленные пиритсодержащие отходы, и позволяет достигать высоких степеней извлечения таких целевых компонентов, как железо в виде гематита, концентратов цветных металлов, серебра и золота, элементной серы и инертной части, состоящей преимущественно из силиката кремния. При этом не требуется выделение элементной серы как при проведении безокислительного обжига, так и при проведении обеих стадий выщелачивания, что не приводит к дополнительному расходу сильного окислителя на ее окисление.

[74]

Выщелачивание проводится в две последовательные стадии, выполняемые в растворе хлорида меди (+2), содержащем хлориды щелочных, щелочноземельных металлов или хлорид алюминия, хлорид цинка, хлорид железа или их смеси, обеспечивающие концентрацию хлорид-иона в интервале 150÷250 г/л при разных значениях ОВП.

[75]

Первую стадию выщелачивания проводят регенерированным оборотным раствором хлорида меди (+2), содержащим хлориды щелочных, щелочноземельных металлов или хлорид алюминия, хлорид цинка, хлорид железа или их смеси, обеспечивающие концентрацию хлорид-иона в интервале 150÷250 г/л при ОВП не выше +480 мВ и рН 1,6÷1,9. Степени извлечения за 1,5÷2 часа достигают для: железа (2) 93%, цинка 85%о, свинца 97%, серебра 90%, меди 90% от исходного в продукте обжига. Разложение пирротина в этих условиях происходит с образованием железа (+2) и элементной серы.

[76]

На второй стадии выщелачивания, осуществляемой оборотным раствором хлорида меди (+2), содержащим хлориды щелочных, щелочноземельных металлов или хлорид алюминия, хлорид цинка, хлорид железа или их смеси, обеспечивающие концентрацию хлорид-иона в интервале 150÷250 г/ при ОВП +620÷630 мВ за счет продувки кислородом и рН 0,5÷1,2, корректируемым добавлением соляной кислоты, за 1,5÷2,0 часа переходят в раствор 93÷95% от недоизвлеченных на первой стадии выщелачивания меди и серебра, большая часть мышьяка и золото (40-50%). Далее к реакционной массе добавляются незначительные количества сильного окислителя, такого как гипохлорит, хлор-газ, диоксид хлора, азотная кислота, озон для обеспечения потенциала +680÷700 мВ, не выше. При этом степень извлечения мышьяка и золота увеличивается до 93÷98% от содержащегося в осадке после выщелачивания на первой стадии. Время выщелачивания второй стадии 2,5÷5 часов.

[77]

Выбранные состав раствора, ОВП и рН, при которых проводятся первое и второе выщелачивания, позволяют предотвратить окисление элементной серы и не приводят к дополнительному расходу окислителя, а также позволяют извлекать более 90÷98% золота как из сырья с высоким (6-50 г/т) содержанием этого элемента, так и из сырья с низким (0,5-1,0 г/т) его содержанием и достигать его остаточной концентрации в кеках до 0,1-0,05 г/т.

[78]

Использование для выщелачивания первой стадии раствора хлорида меди (+2), содержащего хлориды щелочных, щелочноземельных металлов или хлорид алюминия, хлорид цинка, хлорид железа или их смеси, обеспечивающие концентрацию хлорид-иона в интервале 150÷250 г/л при рН 1,6÷1,9 позволяет избежать гидрофилизации осадка за счет образования гелей кремневой кислоты, получать его хорошо фильтруемым и предотвращает осаждение водорастворимых поликремниевых кислот на гетите в процессе регенерации оборотного раствора.

[79]

Выведение железа из оборотного раствора от первого выщелачивания в виде быстро осаждаемого и хорошо фильтруемого гетита окислением этого раствора кислородом позволяет исключить применение процесса пирогидролиза для регенерации соляной кислоты и выведения железа в виде оксида из оборотного раствора. Замена энергоемкого и сложного в аппаратурном оформлении пирогидролиза, требующего применения дорогих специальных конструкционных материалов, на осаждение из раствора гетита позволяет со значительно меньшими затратами получать гематит удовлетворительного для производителей пигментов, окатышей или брикетов качества.

[80]

Выбранные условия первой и второй стадий выщелачивания позволяют предотвратить переход мышьяка на первой стадии выщелачивания в раствор или газовую фазу и сконцентрировать выделение этого элемента на второй стадии выщелачивания при извлечении золота. Это позволяет существенно упростить аппаратурное оформление, достигнуть возможности получения востребованных мышьяковистых концентратов и снизить риски загрязнения окружающей среды.

[81]

Процесс комплексной переработки проходит с использованием оборотных растворов на всех стадиях выщелачивания.

[82]

Регенерацию циркуляционного раствора выщелачивания 1 - раствора хлорида меди (+2), содержащего хлориды щелочных, щелочноземельных металлов или хлорид алюминия, хлорид цинка, хлорид железа или их смеси, обеспечивающие концентрацию хлорид-иона в интервале 150÷250 г/л, осуществляют с применением стандартных методов выделения цинка, свинца, меди и серебра в виде концентрата известными способами с последующим окислением смеси выщелачивающего раствора и раствора хлорида железа (+2) кислородом воздуха. Железо при этом выводится в виде гетита, продукт прокалки которого соответствует качеству товарного гематита.

[83]

Регенерация раствора от выщелачивания 2 проводится применением стандартных методов выделения мышьяка с получением его концентрата, последующим выделением известными способами цинка, свинца, меди и серебра в виде концентрата и последующим выделением золота в виде концентрата.

[84]

Низкие энергетические расходы, отсутствие газовых выбросов и жидких стоков, полная замкнутость технологической схемы позволяют отнести предлагаемый способ к энергоэффективным и экологически безопасным технологиям.

[85]

Пример

[86]

Предварительно просушенный пиритный концентрат был обожжен в инертной среде при температуре 700°С в течение 3 часов, убыль в весе составила 18,4%. Состав полученного в результате безокислительного пирротинизирующего обжига огарка в приведен в Таблице 3.

[87]

[88]

Выщелачивание огарка проводили оборотным раствором, получаемым на стадии регенерации и имеющим состав, приведенный в Таблице 4, описанными ниже операциями.

[89]

[90]

Навеску огарка массой 30,04 г внесли в предварительно нагретый до температуры 90С оборотный раствор объемом 739 мл (700 мл оборотного раствора и 39 мл 6н НСl) и начали выщелачивание, поддерживая рН реакционной массы в диапазоне 1,6÷1,8. Суммарное время пребывания огарка на этой стадии выщелачивания составило 120 минут. После завершения выщелачивания, определяемого по снижению ОВП до +480 мВ, от реакционной массы фильтрацией отделяли раствор, состав которого приведен в Таблице 5.

[91]

[92]

Далее из этого раствора выделяли железо в виде гетита на стадии регенерации оборотного раствора. Операцию проводили описанным ниже образом.

[93]

В реакционный стакан поместили продукционный раствор выщелачивания пирротина объемом 675 мл, в котором произвели корректировку рН до значения 1,4÷1,5 и нагрели раствор до температуры 80÷90°С. После выхода раствора на заданный температурный режим включили барботаж раствора кислородом и вели процесс регенерации до стабилизации ОВП на максимальном уровне, составившем +620 мВ (в другом варианте +630 мВ). В ходе регенерации вели контроль ОВП. В начальный период и в ходе поддержания рН не выше 1,9 было израсходовано 65 мл раствора 6 н. раствора соляной кислоты.

[94]

После увеличения значения ОВП до уровня более +700 мВ подачу кислорода прекратили, а горячую реакционную массу отфильтровали на воронке Бюхнера. Фильтрование прошло быстро и качественно. Полученный фильтрат прозрачный, темно-зеленого цвета. Объем полученного фильтрата составил 630 мл. Результаты анализа фильтрата приведены в Таблице 6.

[95]

[96]

Осадок гетита на фильтре промыли раствором, содержащим 235 г/л CaCl2 (в других вариантах исполнения концентрация раствора, содержащего хлориды металлов, составляла 150, 180 и 250 г/л, при этом раствор содержал хлорид алюминия, хлорид цинка, хлорид железа (+3) или их смеси) и подкисленным соляной кислотой до рН около 1,20) в объеме 200 мл. Промывка прошла быстро и качественно. Далее осадок промыли 200 мл раствора 0,1 н. соляной кислоты, в который добавили 1 мл 1% раствора гипохлорита натрия (в прочих случаях в качестве сильного окислителя успешно применяли газообразный хлор, озон, диоксид хлора, азотную кислоту). Скорость фильтрации высокая, фильтрат прозрачный, осадок черный, плотный.

[97]

После завершения промывки осадок гетита был помещен в тигель и прокален на воздухе при температуре 400°С в течение 1 часа. Общая масса осадка 15, 14 г. От осадка отобрали пробу для определения содержания металлов. Результаты приведены в Таблице 7.

[98]

[99]

С целью определения веса и состава кека выщелачивания пирротина был проведен отдельный эксперимент. Полученный в результате выщелачивания 50 г огарка осадок фильтрации (кек 1) после промывки и сушки в течение двух часов при температуре 110°C имел вес 28,53 г и состав, представленный в Таблице 8.

[100]

[101]

Выщелачивание, стадия 2.

[102]

Сгущенную часть реакционной массы от выщелачивания пирротина распульповали порцией исходного оборотного раствора (235 г/л СаСl2, 50 г/л Сu+2) объемом 300 мл, после чего нагрели до 80÷90°С. Затем выполнили коррекцию рН до значения около 0,5 и подали кислород. По прошествии 1,5 (в другом примере 2) часов прекратили подачу кислорода и перешли к хлорному выщелачиванию, добавляя микропорциями 1% раствор гипохлорита натрия. Количество добавляемого хлорирующего агента определяли по значению ОВП, которое составило +680 мВ (в другом варианте +700 мВ). В целом за 5 часов выщелачивания на коррекцию рН и ОВП было израсходовано 83 мл 6 н. соляной кислоты и 2 мл 1% раствора гипохлорита натрия. По окончании эксперимента перемешивание прекратили и реакционную массу отфильтровали. Осадок на фильтре был промыт порцией 0,1 н. раствора НСl объемом 100 мл. Осадок после промывки просушен до постоянной массы при температуре 110°С. Масса осадка выщелачивания (кека 2) составила 24,1 г. Состав осадка (кека 2) приведен в Таблице 9.

[103]



Изобретение относится к металлургии и может быть применено для комплексной переработки пиритсодержащего сырья. Осуществляют безокислительный обжиг, обработку огарка с растворением железа, цветных металлов, серебра и золота и получение их концентратов. Обработку огарка осуществляют в две последовательные стадии. Первую стадию выщелачивания проводят регенерированным раствором хлорида меди (+2), содержащим хлориды щелочных, щелочноземельных металлов или хлорид алюминия, хлорид цинка, хлорид железа (+3) или их смеси, обеспечивающие концентрацию хлорид-иона в интервале 150÷250 г/л при ОВП не выше +480 мВ и рН 1,6÷1,9 с извлечением в раствор в течение 90÷120 минут железа (+2), цинка, свинца, меди, серебра. Вторую стадию выщелачивания выполняют очищенным оборотным раствором хлорида меди (+2), содержащим хлориды щелочных, щелочноземельных металлов или хлорид алюминия, хлорид цинка, хлорид железа (+3) или их смеси, обеспечивающие концентрацию хлорид-иона в интервале 150÷250 г/л с продувкой кислородом при ОВП +620÷630 мВ и рН в интервале 0,5÷1,2 в течение 30÷60 минут. Затем продолжают выщелачивание в присутствии сильного окислителя в количествах, обеспечивающих поддержание ОВП реакционной массы на уровне +680÷700 мВ в течение 120-350 минут. Обеспечивается комплексная малоотходная переработка пиритсодержащего сырья с понижением экологической нагрузки на окружающую среду и получением ликвидных кондиционных товарных продуктов. 1 з.п. ф-лы, 9 табл., 4 ил.



1. Способ выщелачивания пиритсодержащего сырья, включающий безокислительный пирротинизирующий обжиг сырья, обработку огарка с растворением металлов с последующим выведением железа, характеризующийся тем, что обработку огарка проводят выщелачиванием раствором хлорида меди (+2), содержащим хлориды щелочных, щелочноземельных металлов или хлорида алюминия, хлорида цинка, хлорида железа или их смеси, обеспечивающие концентрацию хлорид-иона в интервале 150÷250 г/л, а железо выводят из раствора в виде хорошо фильтруемого гетита, не содержащего вредных примесей, окислением кислородом и возвратом регенерированного оборотного хлоридного раствора на выщелачивание, обработку остатка от растворения железа проводят раствором хлорида меди (+2), содержащим хлориды щелочных, щелочноземельных металлов или хлорид алюминия, хлорид цинка, хлорид железа или их смеси, обеспечивающие концентрацию хлорид-иона в интервале 150÷250 г/л в присутствии сильных окислителей с извлечением мышьяка, остатков цветных металлов, серебра и золота в раствор, при этом выщелачивание огарка, полученного безокислительным пирротинизирующим обжигом, осуществляют в две последовательные стадии при окислительно-восстановительным потенциале (ОВП) и в интервале рН, не требующих отделения образующейся элементной серы, причем первую стадию выщелачивания проводят регенерированным раствором хлорида меди (+2), содержащим хлориды щелочных, щелочноземельных металлов или хлорид алюминия, хлорид цинка, хлорид железа или их смеси, обеспечивающие концентрацию хлорид-иона в интервале 150÷250 г/л при ОВП не выше + 480 мВ и рН 1,6÷1,9 с извлечением в раствор в течение 90÷120 минут железа (+2), цинка, свинца, меди, серебра и получением их концентратов, а вторую стадию выщелачивания с извлечением в раствор золота выполняют очищенным оборотным раствором хлорида меди (+2), содержащим хлориды щелочных, щелочноземельных металлов или хлорид алюминия, хлорид цинка, хлорид железа или их смеси, обеспечивающие концентрацию хлорид-иона в интервале 150÷250 г/л с продувкой кислородом при ОВП + 620÷630 мВ и рН в интервале 0,5÷1,2 в течение 30÷60 минут, далее в присутствии сильного окислителя в количествах, обеспечивающих поддержание ОВП реакционной массы на уровне + 680÷700 мВ в течение 120-350 минут и не расходуемых в этих условиях на окисление элементной серы.

2. Способ по п. 1, отличающийся тем, что в качестве сильного окислителя используют газообразный хлор, озон, диоксид хлора, гипохлорит натрия, азотную кислоту.