Apparatuses including scalable drivers and methods
In semiconductor devices, there is continuous pressure in industry to reduce component dimensions and fit more components in a given amount of chip area. As dimensions shrink, numerous technical hurdles become more significant. In many electronic systems, particularly in mobile systems, there may be competing goals of increasing device speed versus decreasing power consumption. It is desirable to provide reduced power consumption without sacrificing speed. Improved electronic systems are desired to meet these and other challenges with efficient manufacturing processes. In the following detailed description of various embodiments of the invention, reference is made to the accompanying drawings that form a part hereof and in which are shown, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and structural, logical, and electrical changes may be made. Integrated circuits (ICs) may include many devices and circuit members that are formed on a single semiconductor die. The current trends in IC technology are towards faster and more complicated circuits. However, as more complex ICs are manufactured, various speed-related problems become more apparent. This is especially true when ICs having different functions are used to create electronic systems, for example, computing systems including processor and memory ICs, where different ICs are electrically connected by a network of global interconnects. As global interconnects become longer and more numerous in electronic systems, resistive-capacitive (RC) delay and power consumption, as well as system performance, tend to become limiting factors. One proposed solution to these problems is three-dimensional (3-D) integration or packaging technology. 3-D integration refers to the vertical stacking of multiple dice (e.g., chips) including ICs within a package. In some 3-D integration technology, multiple dice are coupled (e.g., electrically connected) using through silicon vias (TSVs) that form vertical connectors or 3-D conductive structures. TSVs extend (at least partially) through a thickness of one or more of the dice and may be aligned when the die are stacked to provide electrical communication among the ICs in the stack. Such TSVs are often formed of a conductive material, such as aluminum or copper. 3-D integration typically results in a reduction of the packaged IC's footprint as well as a reduction in power consumption, and an increase in performance. In many electronic systems, including mobile systems, there may be competing goals of increasing device speed and decreasing power consumption. It is sometimes desirable to provide reduced power consumption without sacrificing speed. In some cases, efficient manufacturing processes may be used to help achieve these goals. Referring to One or more of the first to fourth dice 110 In silicon examples, the via may be termed a TSV. Although the term TSV refers to dice formed from silicon, one of ordinary skill in the art, having the benefit of the present disclosure, will recognize that other semiconductor materials may be used in fabricating dice, and the term TSV applies to other vertical connectors or 3-D conductive structures that pass at least partially through dice of different materials. In one example, as illustrated in The IC array 112 may include one or more integrated circuits, including, but not limited to, one or more memory cells (for example, volatile and/or non-volatile memory cells) and one or more processors. In one example, one or more of the dice 110 In one example, one or more of the dice 110 The first interconnect lines 116 provide data paths between the IC array 112 and the transceiver 114 on a respective one of the dice 110 The vias 120 A number of vias 302 are illustrated. Each via 302 corresponds to a die 307 in a stack of semiconductor dice, similar to the stack of dice 110 The example of In one example, a plurality of pre-drivers 314 are associated with a corresponding plurality of drivers 312, in a one-to-one correspondence. In another example, one pre-driver is associated with a plurality of drivers. For example, Configurations with a plurality of drivers that correspond to a single via provide flexibility in driving signals in stacks of different numbers of dice. For example, in order to drive a signal in an eight die stack, a driver may be configured to provide enough power to drive the signal through at least seven dice to ensure that the largest possible distance is covered. However, if the same driver configuration is used in a four die stack, the additional power capability is wasted. A lower power configuration can thus provide power savings in a four die stack. Configurations such as For example, In one example, the die 406 is substantially identical to die 306 from Returning to In one example, the drivers 312 are substantially equal in size. For example a single driver may be used to drive a signal in a four die stack, and an additional second driver of substantially equal size may be added to the first driver to provide the capability to drive the signal in an eight die stack. In another example, the drivers are not substantially equal in size. For example a single driver may be used to drive a signal in a two die stack, and an additional second driver of greater size may be added to provide the capability to drive the signal in an eight die stack. In one example the plurality of drivers may be in one die within the stack of dice. The die with the plurality of drivers may be a logic die coupled to a plurality of memory dice. In other examples, each die in the stack of dice includes a plurality of drivers as described in embodiments above. One advantage of including a plurality of drivers in each die includes manufacturing efficiency. One physical die configuration can be manufactured, and later electrically configured to use one or more drivers in a plurality of drivers to efficiently power any selected number of dice in a 3-D stacked configuration. The configuration of As used herein, the term “apparatus” is used to refer to a variety of structures and configurations, including, without limitation, systems, devices, circuitry, chip assemblies, etc. An embodiment of an apparatus such as a computer is included in In this example, apparatus 800 comprises a data processing system that includes a system bus 802 to couple the various components of the system. System bus 802 provides communications links among the various components of the information handling system 800 and may be implemented as a single bus, as a combination of busses, or in any other suitable manner. Chip assembly 804 is coupled to the system bus 802. Chip assembly 804 may include any circuit or operably compatible combination of circuits. In one embodiment, chip assembly 804 includes a processor 806 that can be of any type. As used herein, “processor” means any type of computational circuit such as, but not limited to, a microprocessor, a microcontroller, a graphics processor, a digital signal processor (DSP), or any other type of processor or processing circuit. Multiple processors such as “multi-core” devices are also within the scope of embodiments of the invention. In one embodiment, a memory device 807, such as a 3-D semiconductor device described in embodiments above, is included in the chip assembly 804. Those of ordinary skill in the art will recognize that a wide variety of memory device configurations may be used in the chip assembly 804. Acceptable types of memory chips include, but are not limited to, Dynamic Random Access Memory (DRAMs) such as SDRAMs, SLDRAMs, RRAMs and other DRAMs. Memory chip 807 can also include non-volatile memory such as NAND memory or NOR memory. In one embodiment, additional logic chips 808 other than processor chips are included in the chip assembly 804. An example of a logic chip 808 other than a processor includes an analog to digital converter. Other circuits on logic chips 808 such as custom circuits, an application-specific integrated circuit (ASIC), etc. are also included in one embodiment of the invention. Apparatus 800 may also include an external memory 811, which in turn can include one or more memory elements suitable to the particular application, such as one or more hard drives 812, and/or one or more drives that handle removable media 813 such as floppy diskettes, compact disks (CDs), digital video disks (DVDs), and the like. A memory constructed as described in examples above is included in the apparatus 800. Apparatus 800 may also include a display device 809 such as a monitor, additional peripheral components 810, such as speakers, etc. and a keyboard and/or controller 814, which can include a mouse, or any other device that permits a system user to input information into and receive information from the apparatus 800. While a number of embodiments of the invention are described, the above lists are not intended to be exhaustive. Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement that is calculated to achieve the same purpose may be substituted for the specific embodiment shown. This application is intended to cover any adaptations or variations of the present invention. It is to be understood that the above description is intended to be illustrative and not restrictive. Combinations of the above embodiments, and other embodiments, will be apparent to those of skill in the art upon studying the above description. Apparatuses and methods are described that include a plurality of drivers corresponding to a single via. A number of drivers can be selected to operate individually or together to drive a signal through a single via. Additional apparatus and methods are described. 1. An apparatus, comprising a plurality of semiconductor dice, wherein:
at least some of the plurality of semiconductor dice are stacked and coupled by vias; and at least one of the plurality of semiconductor dice includes a plurality of drivers corresponding to a single via of the plurality of vias, wherein one or more of the plurality of drivers are selectable to operate individually or together to drive a signal through the single via; wherein one driver of the plurality of drivers is configured to be always enabled when in operation, and an additional driver of the plurality of drivers is configured to be optionally selected. 2. The apparatus of 3. The apparatus of 4. The apparatus of 5. The apparatus of 6. The apparatus of 7. The apparatus of 8. The apparatus of 9. The apparatus of 10. An apparatus comprising a stack of memory chips coupled by vias, wherein the apparatus comprises:
a plurality of drivers corresponding to a single via of the plurality of vias, wherein one or more drivers in the plurality of drivers are selectable to operate individually or together to drive a signal through the via to one or more of the chips in the stack of memory chips, wherein one driver of the plurality of drivers is configured to be always enabled when in operation, and an additional driver of the plurality of drivers is configured to be optionally selected; and a pre-driver coupled to at least one of the plurality of drivers. 11. The apparatus of 12. The apparatus of 13. The apparatus of 14. The apparatus of 15. The apparatus of 16. The apparatus of 17. A semiconductor chip, comprising:
a plurality of drivers corresponding to a single via of a plurality of vias, wherein the single via is to pass a signal through at least a portion of a thickness of a semiconductor chip, wherein one driver of the plurality of drivers is configured to be always enabled when in operation, and an additional driver of the plurality of drivers is configured to be optionally selected; and a selector to enable one or more of the plurality of drivers to operate individually or together to drive a signal through the single via. 18. The semiconductor chip of 19. The semiconductor chip of 20. The semiconductor chip of 21. The semiconductor chip of 22. The semiconductor chip of 23. A method of operating an apparatus comprising a plurality of semiconductor dice, wherein at least some of the plurality of semiconductor dice are stacked and coupled by vias and at least one of the plurality of semiconductor dice includes a plurality of drivers corresponding to a single via of the plurality of vias, comprising:
selecting one or more of the plurality of drivers to operate individually or together to drive a signal through the single via, wherein selecting one or more of the plurality of drivers to operate individually or together to drive a signal through the single via comprises selecting the one or more of the plurality of drivers at a time of manufacture of the apparatus. 24. The method of 25. The method of 26. The method of 27. The method of 28. A method of operating an apparatus comprising a plurality of semiconductor dice, wherein at least some of the plurality of semiconductor dice are stacked and coupled by vias and at least one of the plurality of semiconductor dice includes a plurality of drivers corresponding to a single via of the plurality of vias, comprising:
selecting one or more of the plurality of drivers to operate individually or together to drive a signal through the single via, wherein selecting one or more of the plurality of drivers to operate individually or together to drive a signal through the single via comprises selecting the one or more of the plurality of drivers at power up of the apparatus. 29. The method of 30. The method of BACKGROUND
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION





CPC - классификация
HH0H01H01LH01L2H01L22H01L222H01L2225H01L2225/H01L2225/0H01L2225/06H01L2225/065H01L2225/0651H01L2225/06513H01L2225/0654H01L2225/06541H01L2225/0656H01L2225/06565H01L23H01L23/H01L23/4H01L23/48H01L23/481H01L23/5H01L23/52H01L23/522H01L23/5226H01L25H01L25/H01L25/0H01L25/06H01L25/065H01L25/0657H01L29H01L292H01L2924H01L2924/H01L2924/0H01L2924/00H01L2924/000H01L2924/0002H03H03KH03K1H03K19H03K19/H03K19/0H03K19/01H03K19/018H03K19/0185H03K19/01850H03K19/018507H03K19/01858H03K19/018585H03K3H03K3/H03K3/0H03K3/01H03K3/012Цитирование НПИ
257/48326/10
361/803
365/189.05
714/708
You, Jhih-Wei, et al., “Performance Characterization of TSV in 3D IC via Sensitivity Analysis”, 2010 19th IEEE Asian Test Symposium, (2010), 389-394.