LIGHT EMITTING DIODE AND USED CONNECTIONS
This invention relates to a light emitting device, in particular an organic electroluminescent device, and compounds primarily, although not exclusively, for use therein. These devices may be utilised in flat-panel displays. Organic Electroluminescent (EL) displays (or organic light emitting diodes (OLEDs)) have been attracting much attention as a potential alternative to liquid-crystal displays for a number of flat panel display applications. In essence an organic EL device comprises a thin organic layer sandwiched between two electrodes, such that when a current is passed between the electrodes light is emitted from the organic material. The organic material can be macromolecular or a molecular species. In the most efficient devices there are typically a number of organic layers between the electrodes, for example a hole transporting layer, a luminescent layer and an electron transporting layer. Volatile molecular compounds have the advantage that they can be deposited by thermal evaporation. This allows known techniques (e.g. shadow masking) to be used to form pixellated displays. The luminescent layer may be a homogeneous film, or may consist of a host and a dopant. Although OLEDs have been under development since the late 1980s there is still scope for improved emissive and charge transporting materials. To make a full-colour display there is a need for efficient blue, red and green emitters that meet the NIST or PAL colour coordinate standards, and that these materials have a long operating lifetime. The lifetime of current blue emitters is less than is required for many applications. It is known that recrystallization of the organic films is one failure mechanism and hence that a high glass transition temperature (Tg) is a necessary requirement for a long device lifetime. Amongst the best-known blue emitting compounds for organic EL devices are stilbene and triarylethylene derivatives such as 4,4'-bis(2,2'-diphenylvinyl)biphenyl (DPVBi) ( It would be advantageous to enhance the colour purity, efficiency and lifetime, particularly of blue emitting EL devices. The non-planar structure of the compounds of this invention makes the compounds surprisingly volatile for their size which allows larger molecules to be used which have a greater chance of having a high Tg. This allows stable amorphous films to be formed by thermal evaporation. Some of the compounds are optically active, which can have the benefit that a mixture of enantiomers will tend to form a glassy film rather than a polycrystalline film. Alternatively a non-optically active compound may be easier to purify. EL devices have been made with novel molecules that emit deep blue light. The indenes included in the present invention were designed to offer superior advantages over compounds that contain the more standard stilbene group. Many stilbene-containing compounds have been shown to have excellent emission characteristics in electroluminescent devices. There are however two significant disadvantages with the stilbene system. Firstly, although some twisting does occur around the axial bonds, the molecules are comparatively planar. This means that neighbouring molecules can be packed closely together - a process that is well known to allow the introduction of intermolecular electronic orbitals, the broadening of electronic spectra, and the reduction of luminescent efficiency. Close approach of molecules can also enhance intermolecular electrochemical reactions, which are likely to be a significant cause of electroluminescent lifetime loss. The second problem with stilbene systems is associated with the slightly twisted nature of the stilbene. Twisting oscillations (libration) along the axis means that there is a bigger distribution of molecular orbitals, which leads to a broadening of the electronic spectra of the material. The compounds of the present invention were therefore designed to address both these problems, with the aim of preparing a family of molecules that have narrower electronic spectra - particularly in the electroluminescence spectra - and that have better electrochemical stability that could provide longer EL lifetimes. Indenes differ from the stilbenes by including the disubstituted bridging carbon atom. This achieves two purposes. Firstly, because half of the former stilbene is now enclosed in a 5-membered ring, the indene molecule is significantly more rigid which means that there are far fewer degrees of freedom for the molecule, leading to narrower electronic spectra. Secondly, because the two substituting groups overhang the faces of the indenes, the main molecular orbitals of the indene are protected from the approach of other molecules, so that intermolecular effects should be greatly reduced. The idea of using bulky groups in inhibiting molecular packing has been known for a long time. A more relevant case is that of fluorene, where there are also overhanging groups that can protect the molecular faces from packing. However, the use of fluorene in place of biphenyl is a very specific process that cannot be used to enhance the performance of stilbene containing molecules, which are an extremely important separate class of materials for use in OLEDs. By allowing the development of enhanced versions of stilbene derivatives, this invention opens up significant and novel possibilities for designing compounds for electroluminescent applications. Spiro compounds for use in OLEDs are also disclosed in Thus, according to the present invention, there is provided a light emitting device comprising at least one compound of formula (I), (II) or (III): wherein R1 and R2, which may be the same or different, are organic substituents not including H, and wherein R3 and R5 are each independently selected from halo and organic substituents not including H, and wherein R4, R6, R7, R8, R9 and R10 are each independently selected from H, halo, and organic substituents,wherein any two or more of R1, R2, R3, R4, R5, R6, R7, R8, R9 and R10 may be fused together to form a ring system, provided that one of R3 and R5 is not part of a fused ring system, and provided that R1 and R2 are not fused to each other to form a ring system, and wherein one but not both of either (a) R3 and R4, or (b) R5 and R6, are fused to each other to form a ring system. Thus, whilst R1, R2, R3, R4, R5, R6, R7, R8, R9 and R10 may be selected as indicated above, when two or more are fused to form a ring system, such a ring system is organic. The presence of R1 and R2 on the tetrahedral carbon atom hinders both faces of the conjugated region, helping to prevent pi-stacking and thereby improving the colour purity of the emission. Furthermore, by excluding spiro compounds, the synthesis of the compounds is simplified and a greater variety of substituents at the tetrahedral carbon position can be obtained which may allow optimisation of the properties. For example, R1 and R2 could be charge-transporting groups. There is only one tetrahedral carbon position in each of the 5, 6 or 7-membered rings, and the double bonds are in conjugation. By way of examples, in formula (II) R4 and R7, or R3 and R4 and R7, or R6 and R8, may be fused to each other to form a ring system, and in formula (III) R9 and R10 may be fused to each other to form a ring system. Preferably, the light emitting device comprises a compound of formula (I). Preferably R3, R4, R5 and R6 are organic substituents. R7, R8, R9 and R10 are preferably independently H or organic substituents. The organic substituents may be any appropriate group, examples being alkyl, aryl and heteroaryl, each of which may be substituted or unsubstituted. For example, when the substituents are aryl or heteroaryl, they may be substituted by any appropriate group, examples being aryl, heteroaryl, diarylamine, alkyl, cycloalkyl, a fused ring system, halo or haloalkyl groups. Throughout this invention the substituents may themselves optionally be substituted. Similar rings may be formed when any of R1, R2, R3, R4, R5, R6, R7, R8, R9 and R10 are fused together to form a ring system, which system is preferably a fused aromatic ring, which may contain a heteroatom. The alkyl substituent is preferably a C1-6 alkyl and may be straight or branched chain, examples being methyl, ethyl, t-butyl or the like. The aryl groups may, for example, be C6-15 aryl groups such as phenyl, 1-naphthyl, 2-naphthyl, fluorene or the like. The other of R3 and R4, or R5 and R6, which do not form the fused ring system, may in one embodiment be (substituted or unsubstituted) aryl, for example phenyl. The fused ring system may comprise a fused aromatic ring, for example a benzene ring. Thus, in a preferred embodiment, the light emitting device comprises at least one of the following compounds: Preferably, the light emitting device comprises a compound of formula (IV): R1, R2, R5 and R6 are defined as above. It may have the preferred features mentioned above. In one embodiment R1, R2, R5 and R6 are independently selected from substituted or unsubstituted aryl, benzyl or alkyl and when they are alkyl, they are preferably C1-6 alkyl. R1 and R2 are preferably each (substituted or unsubstituted) aryl. R5 and R6 are preferably each (substituted or unsubstituted) aryl, for example phenyl. It is preferred that the compound evaporates or sublimes in the temperature range of 200 - 400°C at a reduced pressure, for example 10-6 mbar. Preferably, the glass transition temperature of the compound is greater than 80°C and the melting point is preferably greater than 100°C, for example greater than 130°C. The light emitting device is generally an organic electroluminescent device and further comprises an anode and a cathode, wherein the compound is sandwiched therebetween. According to a further aspect of the present invention, there is provided the use of a compound of formula (I), (II) or (III) as a luminescent material in a light emitting device. According to a further aspect of the present invention, there is provided the use of a compound of formula (I), (II) or (III) as an electron transport material in a light emitting device. According to a further aspect of the present invention, there is provided the use of a compound of formula (I), (II) or (III) as a hole transport material in a light emitting device. As an example, there is provided a compound of formula (V): wherein R3 and R4 are fused to each other to form a substituted or unsubstituted fused aromatic ring,and wherein R1, R2, R5 and R6, which may be the same or different, are independently selected from aryl or heteroaryl, each of which is optionally substituted by aryl, heteroaryl, diarylamine, alkyl, cycloalkyl, a fused ring system, halo, haloalkyl, cyano and alkyloxy groups, provided that R1 and R2 are not fused to each other to form a ring system, and provided that R5 and R6 are not fused to each other to form a ring system, and provided that R1, R2, R5 and R6 are not all phenyl. Such compounds are particularly useful when used in a light emitting device, although other uses are not excluded. Each substituent may itself be substituted as necessary. In a preferred embodiment, the aryls are C6-15 aryls, specific examples being phenyl, 1-naphthyl, 2-naphthyl, and fluorene. The heteroaryls are preferably selected from oxadiazole, carbazole, triazole, oxazole, thiazole or benzothiazole and, in general, aryl groups are more preferred than heteroaryl groups. The alkyl substituent is preferably a C1-6 straight or branch chain alkyl group, specific examples being methyl, ethyl, and t-butyl. In a preferred embodiment, the fused ring system substituent is a hydrocarbon ring system. Preferably, at least one ring of the fused ring system substituent is not aromatic, examples being indene, perinaphthene, tetrahydronaphthalene. Diarylamine substituents are preferably selected from diphenylamine, ditolylamine, dinaphthylamine, phenyltolylamine, phenylnaphthylamine, or the like. In a preferred embodiment, R3 and R4 are fused to each other to form a 6-membered aromatic (benzene) ring. The ring may be substituted by any suitable substituent, even including one or more further rings fused to it. The following compound has been found to be particularly useful in the present invention: This compound has two chiral centres and can therefore exist in (S,S), (R,R) and (S,R) stereoisomers. It has been found that two reaction products can be isolated, having crystalline and glassy forms, and it is believed that these correspond to the (S,R) and mixed (S,S) and (R,R) isomers respectively. Both molecules show bright blue fluorescence. The crystalline form has a melting point of 349°C and a Tg of 149°C. An alternative compound which has been found to be useful in the present invention is: The R1 and R2 substituents at the tetrahedral carbon position are 3,5-bis(4- A variety of methods can be used to prepare compounds of the present invention, and the following are examples. In general, an organic electroluminescent device comprises an anode and a cathode separated from each other by an organic layer that comprises at least one luminescent material that emits light when a voltage is applied across the electrodes. The organic layer comprises, in its simplest common form, a hole injecting and transporting zone adjacent to the anode and an electron injecting and transporting zone adjacent to the cathode. More usually, however, the organic layer will comprise several layers or zones, each performing as is well known in the art a different function from its neighbouring zone. As is also well known in the art, the luminescent zone may comprise a homogeneous material or a host material containing a luminescent dopant. In these respects, reference is made to Several general problems have been encountered in many OLED materials, which this invention may go some way towards addressing: [JPB4a = (R,S) isomer; JPB4b = mixed (S,S) and (R,R) isomers] A mixture of bromotriphenylethylene (73.00g, 218mmoles), magnesium turnings (5.292g, 218mmoles) and anhydrous isoamyl ether (∼200cm3) was heated slowly over 90 minutes until almost at reflux, by which time almost all of the magnesium had disappeared. 1,4-dibenzoylbenzene (21.00g, 73.3mmoles) was then added and the reaction mixture was heated in an oil bath at 165°C for 2 hours. After cooling, aqueous ammonium chloride (1 M, 350cm3) and dichloromethane (350cm3) were added. The aqueous layer was separated and extracted with dichloromethane (5 x 100cm3) and the combined organic layers were washed with aqueous ammonium chloride (2 x 100cm3) and water (3 x 100cm3) and evaporated to give an orange oil. This oil was triturated with diethyl ether (300cm3), left to stand overnight, filtered, rinsed with diethyl ether and dried under suction to give a pale pink powder. The crude product (15.36g) was then recrystallised from dichloromethane/hexane to give a white powder (10.01g) of 1,4-bis(1-hydroxy-1,2,3,3 tetraphenylprop-2-en-1-yl)benzene. This powder was mixed with acetic acid (250cm3) and heated to reflux. Sulphuric acid (concentrated, 5cm3) was then added and the reaction mixture was heated at reflux for a further 80 minutes and then allowed to cool. The white precipitate was filtered from the supernatant liquid which was used subsequently for the preparation of the mixed ( The acetic acid mother liquor from the procedure described above was diluted with water and the precipitate thereby released was filtered, combined with the mother liquors from the recrystallisations in the previous procedure and dried under vacuum. Purification was by a combination of repeated recrystallisations and evaporations in a manner similar to that for the ( Indium tin oxide (ITO) coated glass substrates, which can be purchased from several suppliers, for example Applied Films, USA or Merck Display Technology, Taiwan, are cleaned and patterned using a standard detergent and standard photolithography processes. The substrates used in the following examples measured 4" x 4" and 0.7mm thick, the ITO was 120nm thick, and the ITO is patterned to produce 4 devices on each substrate each with an active light emitting area of 7.4 cm2. After the final stage of the photolithography process, i.e., the removal of the photoresist, the substrates are cleaned in a detergent (3 vol.% Decon 90), thoroughly rinsed in deionised water, dried and baked at 105°C until required. Immediately prior to the formation of the device the treated substrate is oxidised in an oxygen plasma etcher. By way of example an Emitech K1050X plasma etcher operated at 100 Watts for two minutes is adequate. The substrate and shadow mask is then immediately transferred to a vacuum deposition system where the pressure is reduced to below 10-6 mbar. The organic layers are evaporated at rates between 0.5-1.5Å/s. Then the mask is changed to form a cathode with a connection pad and no direct shorting routes. The cathode is deposited by evaporating 1.5nm of LiF at a rate of 0.2Å/s followed by 150nm of aluminium evaporated at a rate of 2Å/s. Some devices were encapsulated at this stage using an epoxy gasket around the edge of the emissive area and a metal lid. This procedure was carried out in dry nitrogen atmosphere. The epoxy was a UV curing epoxy from Nagase, Japan. Current/Voltage, Brightness/Voltage measurements were performed using a Keithley 2400 Source measure unit and a calibrated photodiode through a Keithley multimeter programmed from an IBM compatible PC. The EL emission spectrum was measured using an Oriel ccd camera. Seven devices using JPB4 have been made: Figure 1 shows a EL emission spectra of devices 2, 3 and 5 and the photoluminescence emission spectrum of JPB4a (solid powder). All devices are un-optimised. The following features are to be noted. Comparatively efficient blue emission is exhibited 0.61m/W (or 1.6cd/A). The EL blue emission of JPB4a (devices 3 and 5) is almost identical to PL emission (both solid state). Excellent PAL blue colour is shown, which is similar to PL where the CIE coordinates are (0.16,0.10). A narrow emission spectrum (about 75nm) half-width is shown. Almost no broadening suggests that the 3D structure of JPB4a limits π-stacking and hence excimers. In addition, if excimers are removed, then intermolecular reactions should also be removed, therefore leading to an improved lifetime of the device. When JPB4a or JPB4b is used as a hole transporting layer with Alq as the emissive layer (device 6 and 7 respectively), efficient Alq emission is observed and the device is almost equivalent to those using NPB as a hole transporting layer. A solution of 1,3,5-tribromobenzene (50.0 g, 160 mmol) in dry ether (1000 cm3) was cooled to -90°C under nitrogen in a toluene/liquid nitrogen bath. A mixture of bromotriphenylethylene (14.143 g, 42.19 mmol), magnesium (903 mg, 37.2 mmol) and A mixture of 4- Compound 3 is photoluminescent and the CIE coordinates of the emission are (0.154,0.104) for solution (THF), and (0.16,0.17) for film (spun from chloroform). A light emitting device comprising at least one compound of formula (I), (II) or (III) wherein R1 and R2, which may be the same or different, are organic substituents not including H, and wherein R3 and R5 are each independently selected from halo and organic substituents not including H, and wherein R4, R6, R7, R8, R9, and R10 are each independently selected from H, halo, and organic substituents, wherein any two or more of R1, R2, R3, R4, R5, R6, R7, R8, R9, and R10 may optionally be fused together to form a ring system, provided that one of R3 and R5 is not part of a fused ring system, and provided that R1 and R2 are not fused to each other to form a ring system, and wherein one but not both of either (a) R3 and R4, or (b) R5 and R6, are fused to each other to form a ring system.
A light emitting device comprising at least one compound of formula (I), (II) or (III):
wherein R1 and R2, which may be the same or different, are organic substituents not including H,
and wherein R3 and R5 are each independently selected from halo and organic substituents not including H,
and wherein R4, R6, R7, R8, R9 and R10 are each independently selected from H, halo, and organic substituents,
and wherein one but not both of either (a) R3 and R4, or (b) R5 and R6, are fused to each other to form a ring system.
A light emitting device according to claim 1, wherein any two or more of R1, R2, R3, R4, R5, R6, R7, R8, R9 and R10 may be fused together to form a ring system, provided that one of R3 and R5 is not part of a fused ring system and provided that R1 and R2 are not fused to each other to form a ring system.
A light emitting device according to claim 1 or 2, comprising a compound of formula (I) .
A light emitting device according to any preceding claim, wherein R3, R4, R5 and R6 are organic substituents.
A light emitting device according to any preceding claim, wherein R7, R8, R9 and R10 are independently H or organic substituents.
A light emitting device according to any preceding claim, wherein R1, R2, R3, R4, R5, R6, R7, R8, R9 and R10 are independently selected from alkyl, aryl or heteroaryl substituents each of which may be substituted or unsubstituted.
A light emitting device according to claim 6, wherein the alkyl substituent is a C1-6 alkyl.
A light emitting device according to claim 6 or 7, wherein R1 and R2 comprise an aryl group.
A light emitting device according to any preceding claim, wherein the other of either (a) R3 and R4, or (b) R5 and R6, which do not form the fused ring system are each substituted or unsubstituted aryl.
A light emitting device according to claim 9, wherein the other of either (a) R3 and R4, or (b) R5 and R6, which do not form the fused ring system are each phenyl.
A light emitting device according to any preceding claim, wherein the fused ring system comprises a fused aromatic ring.
A light emitting device according to claim 11, wherein the fused aromatic ring is a benzene ring.Example 1
Preparation of (
Example 2
Preparation of (
Example 3
Experimental
Device Fabrication and Testing
Results
1 ITO/JPB4a/Al Blue 2 ITO/JPB4a/Ca/Al Blue-purple 0.19,0.17 3 ITO/NPB/JPB4a/LiF/Al Blue 0.16,0.11 0.2 0.08 4 ITO/NPB/JPB4a/Alq/LiF/Al Blue → green with current 2.8 1.4 5 ITO/NPB/JPB4a/BCP/Alq/LiF/Al Blue 0.16,012 1.6 0.6 6 ITO/JPB4a/Alq/LiF/Al Alq green 0.32,0.56 3.4 1.9 7 ITO/JPB4b/Alq/LiF/Al Alq green 3.5-4.6 1.3-1.9 ITO = indium tin oxide NPB = N,N'-di(1-naphthyl)-N,N'-diphenyl-{1,1'-biphenyl}-4,4'-diamine Alq = tris(8-quinolinato)aluminium Example 4
Preparation of 3,5,3',5'-Tetrabromobenzophenone (1)
Preparation of 2,3-Diphenyl-1,1-bis(3,5-dibromophenyl)-1H-indene (2)
Preparation of 2,3-Diphenyl-1,1-bis[3,5-bis(4-