CBH1 homologs and varian CBH1 cellulase
01-07-2014 дата публикации
Номер:
US8765440B2
Принадлежит: GOEDEGEBUUR FRITS, GUALFETTI PETER, MITCHINSON COLIN, NEEFE PAULIEN, DANISCO US INC, DANISCO US INC.
Контакты:
Номер заявки: 07-13-20112516
Дата заявки: 25-03-2011
Disclosed are a number of homologs and variants of Hypocrea jecorina Cel7A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.
CPC - классификация
CC1C12C12NC12N9C12N9/C12N9/2C12N9/24C12N9/243C12N9/2437C12YC12Y3C12Y30C12Y302C12Y302/C12Y302/0C12Y302/01C12Y302/010C12Y302/0109C12Y302/01091IPC - классификация
CC0C07C07HC07H2C07H21C07H21/C07H21/0C07H21/04C07KC07K1C07K1/C07K1/0C07K1/00C1C11C11DC11D3C11D3/C11D3/0C11D3/00C11D3/02C11D3/3C11D3/38C12C12NC12N1C12N1/C12N1/0C12N1/00C12N1/2C12N1/20C12N15C12N15/C12N15/0C12N15/00C12N15/8C12N15/80C12N9C12N9/C12N9/2C12N9/24C12N9/243C12N9/2437C12N9/4C12N9/42C12PC12P1C12P19C12P19/C12P19/0C12P19/00C12P19/3C12P19/34C12P2C12P21C12P21/C12P21/0C12P21/06Цитирование НПИ
Aleksenko, A., et al., "The plasma replicator AMA1 in Aspergillus nidulans is an inverted duplication of a low copy number dispersed genomic repeat." Molecular Microbiology 19(3):565-574, 1996.Alexopoulos, C. J., Introductory Mycology, 2d. ed., New York, Wiley, 1962.
Altschul, S.F., et al., "Basic Local Alignment Search Tool." J. Mol. Biol. 215:403-410, 1990.
Altschul, S.F., et al., "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs." Nucl. Acids Res., 25(17): 3389-3402, 1997.
Altschul, Stephen F. et al., "Basic Local Alignment Search Tool," J. Mol. Biol. 215:403-410, 1990.
Altschul, Stephen F. et al., "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs," Nucl. Acids Res., vol. 25, pp. 3389-3402, 1997.
Aro, N., et al., "ACEII, a Novel Transcriptional Activator Involved in Regulation of Cellulase and Xylanase Genes of Trichoderma reesei." J. Biol. Chem., 276(26): 24309-24314, 2001.
Aro, Nina et al., "ACEII, a Novel Transcriptional Activator Involved in Regulation of Cellulase and Xylanase Genes of Trichoderma reesei," J. Biol. Chem., vol. 276, No. 26, pp. 24309-24314, Jun. 29, 2001.
Aubert, J.-P., et al., ed., Biochemistry and genetics of cellulose degradation, Proceedings of a symposium organized by the Federation of the Microbiological Societies and the French Society for Microbiology on Sep. 7-9, 1987, Academic Press, 1988.
Aubert, et al., Ed., p. 11 et seq., Academic Press, 1988.
Ausubel, F. M., et al., (eds.), Current Protocols in Molecular Biology, John Wiley & Sons, New York, NY, 1993.
Ausubel, F.M., et al., (ed.), Current Protocols in Molecular Biology, Greene Publishing and Wiley-Interscience, New York, NY, 1987.
Ausubel, G. M. et al. Current Protocols in Molecular Biology, John Wiley & Sons, New York, NY, 1993.
Bajar, A., et al., "Identification of a fungal cutinase promoter that is inducible by a plant signal via a phosphorylated transacting factor." Proc. Natl. Acad. Sci. USA 88: 8202-8212, 1991.
Baldwin, D., et al., "A comparison of gel-based, nylon filter and microarray techniques to detect differential RNA expression in plants." Curr. Opin. Plant Biol. 2(2):96-103, 1999.
Baldwin, Don et al., Curr. Opin. Plant Biol. 2(2):96-103, 1999.
Barclay, S. L., et al., "Efficient Transformation of Dictyostelium discoideum Amoebae." Molecular and Cellular Biology 3(12): 2117-2130, 1983.
Baulcombe, D., "Viruses and gene silencing in plants," 100 Years of Virology, Calisher and Horzinek eds., Springer-Verlag, New York, NY 15:189-201, 1999.
Baulcombe, D., "Viruses and gene silencing in plants." Arch. Virol., Supp. 15: 189-201, Springer-Verlag, New York, NY, 1999.
Becker, D., et al., "Engineering of a glycosidase Family 7 cellobiohydrolase to more alkaline pH optimum: The pH behaviour of Trichoderma reesei Cel7A and its E223S/A224H/L225V/T226A/D262G mutant." Biochem. J. 356(1): 19-30, 2001.
Berges, T., et al., "Isolation of uridine auxotrophs from Trichoderma reesei and efficient transformation with the cloned ura3 and ura5 genes." Curr. Genet. 19: 359-365, 1991.
Bhikhabhai, R. et al., "Isolation of Cellulolytic Enzymes from Trichoderma reesei QM 9414," J. Appl. Biochem. 6:336-345, 1984.
Bhikhabhai, R., et al., "Isolation of Cellulolytic Enzymes from Trichoderma reesei QM 9414." J. Appl. Biochem., 6:336-345, 1984.
Boel, E., et al., "Two different types of intervening sequences in the glucoamylase gene from Aspergillus niger." EMBO J. 3(7): 1581-1585, 1984.
Brigidi, P., et al., "Genetic transformation of intact cells of Bacillus subtilis by electroporation." FEMS Microbiol. Lett., 67: 135-138, 1990.
Broun, P., et al. "Catalytic plasticity of fatty acid modification enzymes underlying chemical diversity of plant lipids." Science, 282:1315-1317, 1998.
Brumbauer, A., et al., "Fractionation of cellulase and beta-glucosidase in a Trichoderma reesei culture liquid by use of two-phase partitioning." Bioseparation 7: 287-295, 1999.
Brumbauer, Aniko et al., Fractionation of cellulase and beta-glucosidase in a Trichoderma reesei culture liquid by use of two-phase partitioning, Bioseparation 7:287-295, 1999.
Burley, S.K., et al.."Aromatic-Aromatic Interaction: A Mechanism of Protein Structure Stabilization." Science, 229: 23-29, 1985.
Campbell, E.I., et al., "Improved transformation efficiency of Aspergillus niger using homologous niaD gene for nitrate reductase." Curr. Genet. 16: 53-56; 1989.
Carter, P., et al., "Improved oligonucleotide site-directed mutagenesis using M13 vectors." Nucl. Acids Res. 13(12): 4431-4443, 1985.
Carter, Paul et al., "Improved oligonucleotide site-directed mutagenesis using M13 vectors," Nucleic Acids Research, vol. 13, No. 12, pp. 4431-4443, 1985.
Chen, H., et al., "Purification and characterization of two extracellular beta-glucosidases from Trichoderma reesei." Biochem et Biophysica Acta 1121: 54-60, 1992.
Chen, Huizhong et al., "Purification and characterization of two extracellular beta-glucosidases from Trichoderma reesei" Biochem et Biophysica Acta 1121:54-60 (1992).
Cheng, C., et al., "Nucleotide sequence of the cellobiohydrolase gene from Trichoderma viride." Nucl. Acids Res. 18(18): 5559, 1990.
Coligan, J. E. et al., eds., Current Protocols in Immunology, 1991.
Collen, Anna et al., Journal of Chromatography A 910:275-284, 2001.
Coughlan, Michael et al., "Comparative Biochemistry of Fungal and Bacterial Cellulolytic Enzyme Systems" Biochemistry and Genetics of Cellulose Degradation, pp. 11-30 1988.
Cummings, C. et al., "Secretion of Trichoderma reesei beta-glucosidase by Saccharomyces cerevisiae," Curr. Genet. 29:227-233, 1996.
Dayhoff, M.O. et al., "A Model of Evolutionary Change in Proteins," Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, Washington, D.C., vol. 5, Supplement 3, Chapter 22, pp. 345-352 1978.
Deutscher, Murray P., "Rethinking Your Purification Procedure," Methods in Enzymology, vol. 182, No. 57, pp. 779, 1990.
Doolittle, R. F., Of URFs and ORFs, University Science Books, CA, 1986.
Ellouz, S. et al., "Analytical Separation of Trichoderma reesei Cellulases by Ion-Exchange Fast Protein Liquid Chromatography," J. Chromatography 396:307-317, 1987.
Fields, Stanley et al., "A novel genetic system to detect protein-protein interactions," Nature, 340:245-246, 1989.
Filho, Edivaldo, "Purification and characterization of a beta-glucosidase from solid-state cultures of Humicola grisea var. thermoidea," Can. J. Microbiol. 42:1-5, 1996.
Fliess, A. et al., "Characterization of Cellulases by HPLC Separation," Eur. J. Appl. Microbiol. Biotechnol. 17:314-318, 1983.
Freer, Shelby, "Kinetic Characterization of a beta-Glucosidase from a Yeast, Candida wickerhamii," J. Biol. Chem. vol. 268, No. 13, pp. 9337-9342, 1993.
Freshney, R. I., ed., Animal Cell Culture, 1987.
Goyal, Anil et al. "Characteristics oif Funal Cellulases," Bioresource Technol. 36:37-50, 1991.
Halldorsdottir, S et al., "Cloning, sequencing and overexpression of a Rhodothermus marinus gene encoding a thermostable cellulase of glycosyl hydrolase family 12," Appl Microbiol Biotechnol. 49(3):277-84, 1998.
Hemmpel, W.H., "The surface modificaitonof woven and knitted cellulose fibre fabrics by enzymatic degradation," ITB Dyeing/Printing/Finishing 3:5-14, 1991.
Henrissat, Bernard et al., "New families in the classification of glycosyl hydrolases based on amino acid sequence similarities," Biochem. L. 293:781-788, 1993.
Herr, D. et al., "Purification and Properties of an Extracellular beta-Glucosidase from Lenzites trabea," European Appl. Microbiol. Biotechnol. 5:29-36, 1978.
Hu, Qianjin et al., "Antibodies Specific for the Human Retinoblastoma Protein Identify a Family of Related Polypeptides," Mol Cell Biol. vol. 11, No. 11, pp. 5792-5799, 1991.
Jakobovits, Aya, "Production of fully human antibodies by transgenic mice," Curr Opin Biotechnol 6(5):561-6, 1995.
Jakobovits, Aya, et al., Production of Antigen-Specific Human Antibodies from Mice Engineered with Human Heavy and Light Chain YACsa Annals New York Academy of Sciences, 764:525-535, 1995.
Jones, Peter et al., "Replacing the complementarity-determining region sin a human antibody with those from a mouse," Nature 321:522-525, 1986.
Kawaguchi, Takashi et al., "Cloning and sequencing of the cDNA encoding beta-glucosidase 1 from Aspergillus aculeatus," Gene 173(2):287-8, 1996.
Knowles, Jonathan et al., TIBTECH 5, 255-261, 1987.
Krishna, S. Hari et al., "Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast," Bioresource Tech. 77:193-196, 2001.
Kumar, Akhil, et al., "Optimizing the Use of Cellulase Enzymes in Finishing Cellulosic Fabrics," Textile Chemist and Colorist, 29:37-42, 1997.
Lehtio, Janne. et al., FEMS Microbiology Letters 195:197-204, 2001.
Li, Xin-Liang et al. "Expression of Aureobasidium pullulans xynA in, and Secretion of the Xylanase from, Saccharomyces cerevisiae," Appl. Environ. Microbiol. 62, No. 1, pp. 209-213, 1996.
Linder, Marcus et al., "The roles and function of cellulose-binding domains," Journal of Biotechnol. 57:15-28, 1997.
Medve, Jozsef et al., "Ion-exchange chromatographic purification and quantitative analysis of Trichoderma reesei cellulases cellobiohydrolase I, II and endoglucanase II by fast protein liquid chromatography," J. Chromatography A 808:153-165, 1998.
Ohmiya, Kunio et al., "Structure of Cellulases and Their Applications," Biotechnol. Gen. Engineer. Rev. vol. 14, pp. 365-414, 1997.
Ooi, Toshihiko et al., Complete nucleotide sequence of a gene coding for Aspergillus aculeatus cellulase (FI-CMCase), Nucleic Acids Research, vol. 18, No. 19, 1990.
Ortega Natividad et al., "Kinetics of cellulose saccharification by Trichoderma reesei cellulases," International Biodeterioration and Biodegradation 47:7-14, 2001.
Penttila Merja et al., "Efficient secretion of two fungal cellobiohydrolases by Saccharomyces cerevisiae," Gene, 63: 103-112, 1988.
Penttila, Merja et al., "Expression of Two Trichoderma reesei Endoglucanases in the Yeast Saccharomyces cerevisiae," Yeast vol. 3, pp. 175-185, 1987.
Pere, J should be Liukkonen, Pere J., et al., "Use of Purified Enzymes in Mechanical Pulping," 1996 Tappi Pulping Conference, pp. 693-696, Nashville, TN.
Riechmann, Lutz et al., "Reshaping human antibodies for therapy," Nature, vol. 332, pp. 323-327, 1988.
Rothstein, Steven J. et al., "Synthesis and secretion of wheat alpha-amylase in Saccharomyces cerevisiae," Gene 55:353-356, 1987.
Saarilahti, Hannu T. et al., "CelS: a novel endoglycanase identified from Erwinia carotovora subsp. carotovora," Gene 90:9-14, 1990.
Sakamoto, S. et al., "Cloning and sequencing of cellulase cDNA from Aspergillus kawachii and its expression in Saccharomyces cerevisiae," Curr. Genet. 27:435-439, 1995.
Saloheimo M, et al., "EGIII, a new endoglucanase from Trichoderma reesei: the characterization of both gene and enzyme," Gene, 63:11-22, 1988.
Saloheimo, Markku et al. "cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast," Eur. J. Biochem. vol. 249, pp. 584-591, 1997.
Sambrook et al., Molecular Cloning: A Laboratory Manual (Second Edition), Cold Spring Harbor Press, Plainview, N.Y., 1989.
Schulein, Martin, "Cellulases of Trichoderma reesei," Methods Enzymol., 160, 25, pp. 234-243, 1988.
Scopes,Robert et al. "Purification of All Glycolytic Enzymes from One Muscle Extract," Methods Enzymol. 90: 479-91, 1982.
Spilliaert Remi, et al., "Cloning and sequencing of a Rhodothermus marinus gene, bglA, coding for a thermostable beta-glucanase and its expression in Escherichia coli," Eur J Biochem. 224(3):923-30, 1994.
Stahlberg, Jerry et al., "A New Model fro Enzymatic Hydrolysis of Celluloase Based on the Two-Domain Structure of Cellobiohydrolase I," Bio/Technol. 9:286-290, 1991.
Strathern et al., eds. The Molecular Biology of the Yeast Saccharomyces, 1981.
Suurnakki, A. et al., "Trichoderma reesei cellulases and their core domains in the hydrolysis and modification of chemical pulp," Cellulose 7:189-209, 2000.
Te'o, Valentino S. J., et al., "Codon optimization of xylanase gene xynB from the thermophilic bacterium Dictyoglomus thermophilum for expression in the filamentous fungus Trichoderma reesei," FEMS Microbiology Letters, 190:13-19, 2000.
Tilbeurgh, H. et al., FEBS Lett. 16:215, 1984.
Timberlake, William E. et al., "Organization of a Gene Cluster Expressed Specifically in the Asexual Spores of A. nidulans," Cell, vol. 1, pp. 29-37, 1981.
Tomaz, Candida et al., "Studies on the chromatographic fractionation of Trichoderma reesei cellulases by hydrophobic interaction," J. Chromatography A 865:123-128, 1999.
Tomme, Peter et al., "Studies of the cellulolytic system of Trichoderma reesei QM 9414," Eur. J. Biochem. 170:575-581, 1988.
Tormo, Jose et al., "Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose," EMBO J. vol. 15, No. 21, pp. 5739-5751, 1996.
Tyndall, R.M., "Improving the Softness and Surface Appearance of Cotton Fabrics and Garments by Treatment with Cellulase Enzymes," Textile Chemist and Colorist 24:23-26, 1992.
Van Rensburg, Pierre et al., "Engineering Yeast for Efficient Cellulose Degradation," Yeast, vol. 14, pp. 67-76, 1998.
Verhoeyen, Martine et al., "Reshaping Human Antibodies: Grafting an Antilysozyme Activity," Science, vol. 239, pp. 1534-1536, 1988.
Warrington, J.A., et al. "A Radiation Hybrid Map of 18 Growth Factor, Growth Factor Receptor, Hormone Receptor, or Neurotransmitter Receptor Genes on the Distal Region of the Long Arm of Chromosome 5," Genomics, vol. 13, pp. 803-808, 1992.
Wells, J.A. et al., "Importance of hydrogen-bond formation in stabilizing the transition state of subtilisin," Phil. Trans. R. Soc. London A, vol. 317, pp. 415-423, 1986.
Wells, James A. et al., "Cassette mutagenesis: an efficient method for generation of multiple mutations at defined sites," Gene, vol. 34, pp. 315-323, 1985.
Wood, Thomas M. et al., Methods for Measuring Cellulase Activities, Methods in Enzymology, vol. 160, No. 9, pp. 87-116, 1988.
Wood, Thomas M., "Properties of cellulolytic enzyme systems," Biochemical Society Transactions, 611th Meeting, Galway, vol. 13, pp. 407-410, 1985.
Zoller, Mark J. et al., "Oligonucleotide-directed mutagenesis using M13-derived vectors: an efficient and general procedure for the production of point mutations in any fragment of DNA," Nucleic Acids Research, vol. 10m No. 20, pp. 6487-6500, 1982.