ORGANIC ELECTROLUMINESCENT MATERIAL AND APPLICATION THEREOF IN PHOTOELECTRIC DEVICE

18-06-2020 дата публикации
Номер:
WO2020119326A1
Контакты:
Номер заявки: CN51-11-201976
Дата заявки: 02-11-2019

一种有机电致发光材料及其在光电器件中的应用

技术领域

[1]

本发明涉及有机电致发光材料领域,具体涉及一种基于咪唑和茚并吡咯构建单元的发光材料及其光电器件。

背景技术

[2]

近年来,有机发光二极管(OLED)作为一种有巨大应用前景的照明、显示技术,受到了学术界与产业界的广泛关注。OLED器件具有自发光、广视角、反应时间短及可制备柔性器件等特性,成为下一代显示、照明技术的有力竞争者。但目前OLED仍然存在效率低、寿命短等问题,有待人们进一步研究。

[3]

自1998年Forrest等人报道电致磷光器件(PHOLED)以来,PHOLED因其可以高效利用三线态和单线态激子发光而备受关注。高效PHOLED器件通常为多层结构,其优点在于可以方便地调节载流子注入、传输及复合等过程。发光层通常采用主客体掺杂技术,,当客体掺杂浓度较高时,会出现浓度淬灭和T1-T1湮灭,导致发光效率降低。为了解决这些问题,通常将客体材料掺杂在主体材料中,从而“稀释”客体材料的浓度。主体中形成的激子通过 和Dexter能量转移的方式传递给客体,受激发的客体辐射发光回到基态。因此,为了获得高效PHOLED器件,开发新型高性能的主体材料尤为重要。

[4]

发光层中的主体材料可以分为空穴型、电子型和双极型三种类型。当单独使用空穴或者电子型主体材料时,一方面容易导致发光层中电荷传输不平衡,降低效率;另一方面,会导致载流子复合区域变窄,窄的复合区域会导致局部激子密度升高而加速T1-T1湮灭,不利于器件性能的提升。而双极型材料则可以有效地解决上述问题,既可以平衡器件中的空穴和电子、拓宽载流子复合区域,同时也简化了器件结构,对有机光电器件性能的优化有重要意义。

[5]

发明内容

[6]

本发明目的在于提供一种基于咪唑和茚并吡咯构建单元的双极型有机电致发光材料,分子的螺环结构,有利于抑制分子间的堆叠,本发明有机电致发光材料具有较好的热稳定性和平衡的载流子传输性能,同时具有较高的发光效率和色纯度。

[7]

有机电致发光材料,为具有式(I)结构的化合物:

[8]

[9]

其中:

[10]

L为单键、被取代或未被取代的亚苯基、被取代或未被取代的亚联苯基、或取代或未被取代的亚吡啶基;

[11]

Ar为下列基团中的一个:

[12]

[13]

B选自O、S、Se;

[14]

X1-X8独立地选自N或CR,且每个六元环至多包含有一个N原子,R独立地选自氢、氘、卤素、烷基、杂烷基、芳基、杂芳基、芳氧基中的一种。

[15]

优选地,L为单键、或被取代或未被取代的亚苯基;

[16]

Ar为下列基团中的一个:

[17]

[18]

B选自O、S;

[19]

X1-X8独立地选自N或CR,且每个六元环至多包含有一个N原子,R独立地选自氢、氘、烷基、芳基中的一种。

[20]

优选地,L为单键或亚苯基;

[21]

Ar为下列基团中的一个:

[22]

[23]

B选自O、S;

[24]

X1-X8中有一个为N,其余为CH。

[25]

更优选地,L为单键;

[26]

Ar为下列基团中的一个:

[27]

[28]

B选自O、S;

[29]

X1-X8中有一个N,其余为CH;

[30]

更优选地,L为单键;

[31]

Ar为下列基团中的一个:

[32]

[33]

B选自O、S;

[34]

X1-X8为CH;

[35]

进一步优选,本发明的式(I)所述的发光材料为如下1-36化合物,但不限于所列举的结构:

[36]

[37]

[38]

[39]

上述化合物的合成方法,包括如下步骤:

[40]

(1)提供化合物a和Y-L-Ar,Y为卤素;

[41]

[42]

(2)在氮气保护下,将化合物a与化合物Y-L-Ar、Pd(OAc)2、PPh3、K2CO3和DMAc加热至150℃,反应得到式(I)所示的化合物。

[43]

所述Y为氯或溴。

[44]

所述化合物a的制备方法如下:

[45]

A)化合物a-1与邻二卤代吡嗪反应得到化合物a-2;

[46]

B)化合物a-2与咪唑反应得到化合物a-3;

[47]

C)化合物a-3关环得到化合物a;

[48]

反应式如下:

[49]

[50]

上述化合物在有机电致发光器件,力致发光器件,有机场效应晶体管,有机太阳能电池和化学传感器中的应用。

[51]

本发明中的有机电致发光器件,包括阴极、阳极和有机层,所述有机层为空穴注入层、空穴传输层、发光层、空穴阻挡层、电子注入层、电子传输层中的一层或多层,这些有机层不必每层都存在。

[52]

所述空穴注入层、空穴传输层、空穴阻挡层、发光层和/或电子传输层中至少有一层含有式(I)所述的化合物。

[53]

优选地,结构式(1)所述的化合物所在层为发光层或电子传输层。

[54]

本发明的器件有机层的总厚度为1-1000nm,优选1-500nm,更优选5-300nm。

[55]

所述有机层可以通过蒸渡或溶液法形成薄膜。

[56]

实验结果表明,同常见易传输空穴的发光材料CBP相比,本发明中的有机发光材料具有较好的热稳定性和平衡的载流子传输性能,同时可以提高发光效率和色纯度等特点,有潜力应用于有机电致发光器件领域。

附图说明

[57]

图1为本发明的有机电致发光器件结构图,

[58]

其中10代表为玻璃基板,20代表为阳极,30代表为空穴注入层,40代表为空穴传输层,50代表发光层,60代表电子传输层,70代表电子注入层,80代表为阴极。

具体实施方式

[59]

为了更详细叙述本发明,特举以下例子,但是不限于此。

[60]

化合物1-1和化合物13-1等未明确提及的为市售化合物。

[61]

实施例1

[62]

化合物1的合成

[63]

[64]

中间体a-2的合成

[65]

氮气保护下,将化合物a-1(6.10g,20.0mmol)(参考文献Org.Lett.,2010,12,296-299合成)、邻二溴苯(9.44g,40.0mmol)、CuI(380mg,2.0mmol)、反式-1,2-环己二胺(456mg,4.0mmol)、K3PO4(12.74g,60.0mmol)和二甲苯(100mL)依次加入Schlenk管中。加热至90℃,反应24小时。冷至室温后,将上述反应液加入水中,经二氯甲烷萃取三次,合并有机相。有机相经无水硫酸钠干燥后,旋除溶剂,剩余物经柱层析分离得灰白色固体(5.1g,产率55%)。

[66]

中间体a-3的合成

[67]

氮气保护下,将化合物a-2(5.0g,10.9mmol)、咪唑(1.36g,20.0mmol)、CuI(380mg,2.0mmol)、K2CO3(8.50g,40.0mmol)和二甲苯(100mL)依次加入Schlenk管中。加热至90℃,反应24小时。冷至室温后,将上述反应液加入水中,经二氯甲烷萃取三次,合并有机相。有机相经无水硫酸钠干燥后,旋除溶剂,剩余物经柱层析分离得浅黄色固体(3.2g,产率66%)。

[68]

中间体a的合成

[69]

氮气保护下,将化合物a-3(3.0g,6.7mmol)溶于四氢呋喃(30mL),冷却至-40℃,逐滴加入仲丁基锂s-BuLi(1.2eq),搅拌30分钟后,加入碘(1.1eq),搅拌30分钟后,升至室温,继续搅拌1小时。将上述反应液加入水中,经二氯甲烷萃取三次,合并有机相。有机相经无水硫酸钠干燥后,旋除溶剂得浅黄色固体。将上述固体溶于四氢呋喃(20mL)中,加入二氯二叔丁基-(4-二甲基氨基苯基)膦钯PdCl2(AMPhos)2(0.05eq)和碳酸钾水溶液(2M,4mL),氮气保护下回流过夜。冷至室温后,将上述反应液加入水中,经二氯甲烷萃取三次,合并有机相。有机相经无水硫酸钠干燥后,旋除溶剂,剩余物经柱层析分离得浅黄色固体(1.6 g,产率53%)。

[70]

化合物1的合成

[71]

氮气保护下,将化合物a(2.1g,4.7mmol)、化合物1-1(5.8g,23.4mmol)、Pd(OAc)2(105mg,0.47mmol)、PPh3(380mg,1.4mmol)、K2CO3(1.38g,10mmol)和DMAc(20mL)依次加入Schlenk管中。加热至150℃,反应24小时。冷至室温后,将上述反应液加入水中,经二氯甲烷萃取三次,合并有机相。有机相经无水硫酸钠干燥后,旋除溶剂,剩余物经柱层析分离得浅黄色固体(1.5g,产率52%)。ESI-MS(m/z):614.3(M+1)。

[72]

实施例2

[73]

化合物9的合成

[74]

[75]

氮气保护下,将化合物a(1.6g,3.6mmol)、化合物9-1(3.7g,18.0mmol)(参考专利CN102449107合成)、Pd(OAc)2(80mg,0.36mmol)、PPh3(190mg,0.72mmol)、K2CO3(1.38g,10mmol)和DMAc(20mL)依次加入Schlenk管中。加热至150℃,反应24小时。冷至室温后,将上述反应液加入水中,经二氯甲烷萃取三次,合并有机相。有机相经无水硫酸钠干燥后,旋除溶剂,剩余物经柱层析分离得浅黄色固体(700mg,产率32%)。ESI-MS(m/z):615.0(M+1)。

[76]

实施例3

[77]

化合物11的合成

[78]

[79]

用中间体11-1(参考文献Dyes Pigm.,2013,99,390–394合成)替换中间体9-1,参考化合 物9的合成方法制备化合物11,得浅黄色固体(700mg,产率33%)。ESI-MS(m/z):631.3(M+1)。

[80]

实施例4

[81]

化合物13的合成

[82]

[83]

用中间体13-1替换中间体9-1,参考化合物9的合成方法制备化合物13,得浅黄色固体(1.1g,产率50%)。ESI-MS(m/z):630.0(M+1)。

[84]

实施例5

[85]

化合物22的合成

[86]

[87]

用中间体22-1(参考专利CN105585555合成)替换中间体9-1,参考化合物9的合成方法制备化合物22,得浅黄色固体(800mg,产率47%)。ESI-MS(m/z):690.0(M+1)。

[88]

实施例6

[89]

化合物27的合成

[90]

[91]

用中间体27-1(参考专利US2012/256169合成)替换中间体9-1,参考化合物9的合成方法 制备化合物27,得浅黄色固体(600mg,产率50%)。ESI-MS(m/z):706.2(M+1)。

[92]

实施例7

[93]

化合物30的合成

[94]

[95]

用中间体30-1(参考专利CN107686484合成)替换中间体9-1,参考化合物9的合成方法制备化合物30,得浅黄色固体(750mg,产率43%)。ESI-MS(m/z):689.3(M+1)。

[96]

实施例8

[97]

化合物36的合成

[98]

[99]

用中间体36-1(参考文献Chem.Mater.,2013,25,3758-3765合成)替换中间体9-1,参考化合物9的合成方法制备化合物36,得浅黄色固体(660mg,产率52%)。ESI-MS(m/z):765.1(M+1)。

[100]

实施例9-16

[101]

使用本发明的有机发光材料制备电致发光器件,器件结构见图1。

[102]

首先,将透明导电ITO玻璃基板10(上面带有阳极20)依次经:洗涤剂溶液和去离子水,乙醇,丙酮,去离子水洗净,再用氧等离子处理30秒。

[103]

然后,在ITO上蒸渡10nm厚的HATCN作为空穴注入层30。

[104]

然后,蒸渡化合物TAPC,形成40nm厚的空穴传输层40。

[105]

然后,在空穴传输层上蒸渡30nm厚的发光层50,发光层由Ir(PPy)3(10%)与实施例1-8中的化合物产品(90%)混合掺杂组成。

[106]

然后,在发光层上蒸渡50nm厚的TmPyPb作为电子传输层60。

[107]

最后,蒸渡1nm LiF为电子注入层70和100nm Al作为器件阴极80。

[108]

对比例

[109]

使用CBP替换上述本发明中的化合物,依照相同方法制备有机发光器件。

[110]

器件中所述结构式

[111]

[112]

实施例9-17及比较例中有机电致发光器件在10mA/cm2电流密度下的效率如下表:

[113]

9115.6绿光
10914.7绿光
111114.5绿光
121315.2绿光
132216.4绿光
142716.2绿光
153016.8绿光
163617.2绿光
对比例CBP12.7绿光

[114]

相同条件下,应用本发明中的化合物制备的有机电致发光器件的效率均优于比较例,本发明的化合物具有较好的稳定性,使用本发明中的化合物制备的器件具有更好的色纯度和效 率,对有机光电器件性能的优化有重要意义。

[115]

上述多种实施方案仅作为示例,不用于限制本发明范围。在不偏离本发明精神的前提下,本发明中的多种材料和结构可以用其它材料和结构替代。应当理解,本领域的技术人员无需创造性的劳动就可以根据本发明的思路做出许多修改和变化。因此,技术人员在现有技术基础上通过分析、推理或者部分研究可以得到的技术方案,均应在权利要求书所限制的保护范围内。



[1]

Disclosed are an organic electroluminescent material and the application thereof in a photoelectric device. The organic electroluminescent material has a structure of chemical formula (I), and such a compound comprises imidazole and indenopyrrole building units, wherein a spiro ring structure in the molecule facilitates suppressing the intermolecular stack. The compound has a better thermal stability, and has features such as good luminous efficiency and excellent color purity when applied to an electroluminescent device, therefore the compound has potential to be used in the field of organic electroluminescent devices. Further disclosed is a photoelectric device, comprising a cathode, an anode and an organic layer, wherein the organic layer comprises one or more of a hole injection layer, a hole transmission layer, a luminescent layer, a hole blocking layer, an electron transmission layer and an electron injection layer, and the organic layer comprises at least one layer containing a compound represented by structural formula (I).

[2]



有机电致发光材料,为具有式(I)结构的化合物:

其中:

L为单键、被取代或未被取代的亚苯基、被取代或未被取代的亚联苯基、或取代或未被取代的亚吡啶基;

Ar为下列基团中的一个:

B选自O、S、Se;

X1-X8独立地选自N或CR,且每个六元环至多包含有一个N原子,R独立地选自氢、氘、卤素、烷基、杂烷基、芳基、杂芳基、芳氧基中的一种。

根据权利要求1所述的有机电致发光材料,其中L为单键、或被取代或未被取代的亚苯基;

Ar为下列基团中的一个:

B选自O、S;

X1-X8独立地选自N或CR,且每个六元环至多包含有一个N原子,R独立地选自氢、氘、烷基、芳基中的一种。

根据权利要求2所述的有机电致发光材料,其中L为单键或亚苯基;

Ar为下列基团中的一个:

B选自O、S;

X1-X8中有一个为N,其余为CH。

根据权利要求3所述的有机电致发光材料,其中L为单键;

Ar为下列基团中的一个:

B选自O、S;

X1-X8中有一个N,其余为CH;

根据权利要求2所述的有机电致发光材料,其中L为单键;

Ar为下列基团中的一个:

B选自O、S;

X1-X8为CH。

根据权利要求1所述的有机电致发光材料,为下列化合物:

根据权利要求1-6任一所述的有机电致发光材料的合成方法,包括如下步骤:

(1)提供化合物a和Y-L-Ar,Y为卤素;

(2)在氮气保护下,将化合物a与化合物Y-L-Ar、Pd(OAc)2、PPh3、K2CO3和DMAc加热至150℃,反应得到式(I)所示的化合物。

根据权利要求7所述的合成方法,所述Y为氯或溴。

根据权利要求7所述的合成方法,所述化合物a的制备方法如下:

A)化合物a-1与邻二卤代吡嗪反应得到化合物a-2;

B)化合物a-2与咪唑反应得到化合物a-3;

C)化合物a-3关环得到化合物a;

根据权利要求9所述的合成方法,所述邻二卤代吡嗪为邻二溴代吡嗪。

根据权利要求10所述的合成方法,化合物a的制备反应式如下:

权利要求1-6任一所述的有机电致发光材料在有机电致发光器件,力致发光器件,有机场效应晶体管,有机太阳能电池和化学传感器中的应用。

有机电致发光器件,包括阴极、阳极和有机层,所述有机层为空穴注入层、空穴传输层、发光层、空穴阻挡层、电子注入层、电子传输层中的一层或多层,所述有机层中含有权利要求1-6任一所述的有机电致发光材料。

根据权利要求13所述的有机电致发光器件,权利要求1-6任一所述的有机电致发光材料所在层为发光层或电子传输层。

根据权利要求13所述的有机电致发光器件,所述有机层的总厚度为1-1000nm,所述有机层通过蒸渡或溶液法形成薄膜。