Pyrazolo '4,3-d pyrimidine derivatives
This invention relates to a series of pyrazolo[4,3-d]pyrimidin-7-ones, which inhibit cyclic guanosine 3',5'-monophosphate phosphodiesterases (cGMP PDEs). More notably, the compounds of the invention are potent and selective inhibitors of type 5 cyclic guanosine 3',5'-monophosphate phosphodiesterase (cGMP PDE5) and have utility therefore in a variety of therapeutic areas. The compounds of the invention are of value for the curative or prophylactic treatment of mammalian sexual. disorders. In particular, the compounds are of value in the treatment of mammalian sexual dysfunctions such as male erectile dysfunction (MED), impotence, female sexual dysfunction (FSD), clitoral dysfunction, female hypoactive sexual desire disorder, female sexual arousal disorder, female sexual pain disorder or female sexual orgasmic dysfunction (FSOD) as well as sexual dysfunction due to spinal cord injury or selective serotonin re-uptake inhibitor (SSRI) induced sexual dysfunction but, clearly, will be useful also for treating other medical conditions for which a potent and selective cGMP PDE5 inhibitor is indicated. Such conditions include premature labour, dysmenorrhoea, benign prostatic hyperplasia (BPH), bladder outlet obstruction, incontinence, stable, unstable and variant (Prinzmetal) angina, hypertension, pulmonary hypertension, chronic obstructive pulmonary disease, coronary artery disease, congestive heart failure, atherosclerosis, conditions of reduced blood vessel patency, e.g. post-percutaneous transluminal coronary angioplasty (post-PTCA), peripheral vascular disease, stroke, nitrate induced tolerance, bronchitis, allergic asthma, chronic asthma, allergic rhinitis, diseases and conditions of the eye such as glaucoma, optic neuropathy, macular degeneration, elevated intra-occular pressure, retinal or arterial occulsion and diseases characterised by disorders of gut motility, e.g. irritable bowel syndrome (IBS). Further medical conditions for which a potent and selective cGMP PDE5 inhibitor is indicated, and for which treatment with compounds of the present invention may be useful include pre-eclampsia, Kawasaki's syndrome, nitrate tolerance, multiple sclerosis, diabetic nephropathy, neuropathy including autonomic and peripheral neuropathy and in particular diabetic neuropathy and symptoms thereof e.g. gastroparesis, peripheral diabetic neuropathy, Alzheimer's disease, acute respiratory failure, psoriasis, skin necrosis, cancer, metastasis, baldness, nutcracker oesophagus, anal fissure, haemorrhoids, hypoxic vasoconstriction as well as the stabilisation of blood pressure during haemodialysis. Particularly preferred conditions include MED and FSD. WO 98/49166 and WO 99/54333 relate to pyrazolo[4,3-d]pyrimidin-7-ones, which inhibit cyclic guanosine 3',5'-monophosphate phosphodiesterases (cGMP PDEs). Thus the present invention provides compounds of the formula (I): or a pharmaceutically or veterinarily acceptable salt thereof, or a pharmaceutically or veterinarily acceptable solvate of either entity, wherein R1 is C1 to C6 alkyl or C3 to C6 alkenyl, C3 to C6 cycloalkyl or C4 to C6 cycloalkenyl wherein said alkyl group may be branched or straight chain and wherein when R1 is C1 to C3 alkyl said alkyl group is substituted by; and wherein when R1 is C4 to C6 alkyl, C3 to C6 alkenyl or C3 to C6 cycloalkyl said alkyl, alkenyl or cycloalkyl group is optionally substituted by; one or more substituents selected from: hydroxy; C1 to C4 alkoxy; C3 to C6 cycloalkyl; phenyl substituted with one or more substitutents selected from C1 to C3 alkyl, C1 to C4 alkoxy, C1 to C4 haloalkyl, C1 to C4 haloalkoxy, halo, CN, NO2, NHR11, NHCOR12, NHSO2R12, SO2R12, SO2NHR11, COR11 or CO2R11 wherein said haloalkyl and haloalkoxy groups contain one or more halo atoms; NR7R8, CONR7R8 or NR7COR11 wherein R7 and R8 are each independently selected from H, C1 to C4 alkyl, C3 to C4 alkenyl, CO2R9 or SO2R9 and wherein said alkyl or alkenyl groups are optionally substituted by C1 to C4 haloalkyl or C1 to C4 haloalkoxy; Het1; Het2 or Het3; or R1 is Het4 or phenyl wherein said phenyl group is optionally substituted by one or more substituents selected from C1 to C4 alkyl, C3 to C4 alkenyl, C1 to C4 alkoxy, halo, CN, CF3, OCF3, NO2, NHR11, NHCOR12, NHSO2R12, SO2R12, SO2NHR11, COR11, CO2R11; R2 is C1 to C6 alkyl, C3 to C6 alkenyl or (CH2)n(C3 to C6 cycloalkyl) wherein n is 0, 1 or 2; R13 is OR3 or NR5R6; R3 is C1 to C6 alkyl optionally substituted with one or two substituents selected from C3 to C5 cycloalkyl, hydroxy, C1 to C4 alkoxy, benzyloxy, NR5R6, phenyl, Het1, Het2, Het3 or Het4 wherein the C1 to C6 alkyl and C1 to C4 alkoxy groups may optionally be terminated by a haloalkyl group such as CF3 and wherein the C3-C5 cycloalkyl group may optionally be substituted by C1-C4 alkyl, hydroxy or halo; C3 to C6 cycloalkyl; Het1, Het2, Het3 or Het4; R4 is a piperazin-1-ylsulphonyl group having a substituent R10 at the 4-position of the piperazinyl group wherein said piperazinyl group is optionally substituted with one or two C1 to C4 alkyl groups and is optionally in the form of its 4-N-oxide; R5 and R6 are each independently selected from H and C1 to C4 alkyl optionally substituted with C3 to C5 cycloalkyl or C1 to C4 alkoxy, or, together with the nitrogen atom to which they are attached, form an azetidinyl, pyrrolidinyl, piperidinyl or morpholinyl group; R7 and R8 are each independently selected from H, C1 to C4 alkyl, C3 to C4 alkenyl, CO2R9 or SO2R9; R9 is C1 to C4 alkyl optionally substituted with C1 to C4 haloalkyl, C1 to C4 haloalkoxy or phenyl wherein said phenyl group is optionally substituted by one or more substituents selected from C1 to C4 alkyl optionally substituted by C1 to C4 haloalkyl or C1 to C4 haloalkoxy, C1 to C4 alkoxy, halo, CN, NO2, NHR11, NHCOR12, NHSO2R12, SO2R12, SO2NHR11, COR11 or CO2R11; R10 is H; C1 to C4 alkyl optionally substituted with one or two substituents selected from hydroxy, NR5R6, CONR5R6, phenyl optionally substituted with C1 to C4 alkyl or C1 to C4 alkoxy; C3 to C6 alkenyl or Het4; R11 is H, C1 to C4 alkyl, C3 to C4 alkenyl, CO(C1 to C4 alkyl) or C1 to C4 haloalkyl; R12 is C1 to C4 alkyl, C3 to C4 alkenyl, C1 to C4 haloalkyl or C1 to C4 haloalkoxy; Het1 is an N-linked 4-, 5- or 6-membered nitrogen-containing heterocyclic group optionally containing one or more further heteroatoms selected from S, N or O; Het2 is a C-linked 5-membered heterocyclic group containing an O, S or N heteroatom optionally containing one or more heteroatoms selected from N, O or S; Het3 is a C-linked 6-membered heterocyclic group containing an O or S heteroatom optionally containing one or more heteroatoms selected from O, S or N or Het3 is a C-linked 6-membered heterocyclic group containing three N heteroatoms; Het4 is a C-linked 4-, 5- or 6-membered heterocyclic group containing one, two or three heteroatoms selected from S, O or N; and wherein any of said heterocyclic groups Het1, Het2, Het3 or Het4 may be saturated, partially unsaturated or aromatic and wherein any of said heterocyclic groups may be optionally substituted with one or more substituents selected from C1 to C4 alkyl, C3 to C4 alkenyl, C1 to C4 alkoxy, halo, CF3, CO2R11, COR11, SO2R12, NHR11 or NHCOR12 and/or wherein any of said heterocyclic groups is benzo-fused; with the provisos that (a) when R1 is C1 to C3 alkyl then Het1 is not morpholinyl or piperidinyl and (b) when R1 is C1 to C3 alkyl substituted by phenyl then said phenyl group is not substituted by C1 to C4 alkoxy, halo, CN, CF3, OCF3 or C1 to C4 alkyl. As will be recognised by the skilled chemist, the general formula (I) can be represented by the regio-isomeric general formulae (IA) and (IB). Thus the present invention provides compounds of formulae (IA) and (IB): wherein R1, R2, R4 and R13 are as defined hereinbefore. In the above definitions, unless otherwise indicated, alkyl, alkoxy and alkenyl groups having three or more carbon atoms, and alkanoyl groups having four or more carbon atoms, may be straight chain or branched chain. For example, a C4 alkyl substituent can be in the form of normal-butyl ( A compound of the formula (I) contains one or more asymmetric carbon atoms and therefore exists in two or more stereoisomeric forms. Where a compound of the formula (I) contains an alkenyl or alkenylene group, cis (E) and trans (Z) isomerism may also occur. The present invention includes the individual stereoisomers of the compounds of the formula (I) and, where appropriate, the individual tautomeric forms thereof, together with mixtures thereof. Separation of diastereoisomers or cis and trans isomers may be achieved by conventional techniques, e.g. by fractional crystallisation, chromatography or H.P.L.C. of a stereoisomeric mixture of a compound of the formula (I) or a suitable salt or derivative thereof. An individual enantiomer of a compound of the formula (I) may also be prepared from a corresponding optically pure intermediate or by resolution, such as by H.P.L.C. of the corresponding racemate using a suitable chiral support or by fractional crystallisation of the diastereoisomeric salts formed by reaction of the corresponding racemate with a suitable optically active acid or base, as appropriate. All stereoisomers are included within the scope of the invention. The compounds of formulae (IA) and (IB) may also exist in tautomeric forms and the invention includes both mixtures thereof and the individual tautomers. Also included in the invention are radiolabelled derivatives of compounds of formulae (I), (IA) and (IB) which are suitable for biological studies. The pharmaceutically or veterinarily acceptable salts of the compounds of the invention which contain a basic centre are, for example, non-toxic acid addition salts formed with inorganic acids such as hydrochloric, hydrobromic, hydroiodic, sulphuric and phosphoric acid, with carboxylic acids or with organo-sulphonic acids. Examples include the HCl, HBr, HI, sulphate or bisulphate, nitrate, phosphate or hydrogen phosphate, acetate, benzoate, succinate, saccarate, fumarate, maleate, lactate, citrate, tartrate, gluconate, camsylate, methanesulphonate, ethanesulphonate, benzenesulphonate, p-toluenesulphonate and pamoate salts. Compounds of the invention can also provide pharmaceutically or veterinarily acceptable metal salts, in particular non-toxic alkali and alkaline earth metal salts, with bases. Examples include the sodium, potassium, aluminium, calcium, magnesium, zinc and diethanolamine salts. For a review on suitable pharmaceutical salts see Berge et al, J. Pharm, Sci., 66, 1-19, 1977. The pharmaceutically acceptable solvates of the compounds of the invention include the hydrates thereof. Also included within the scope of the compound and various salts of the invention are polymorphs thereof. A preferred group of compounds of formulae (I), (IA) and (IB) is that wherein, R1 is C1 to C6 alkyl or C3 to C6 alkenyl wherein said alkyl or alkenyl groups may be branched chain or straight chain or R1 is C3 to C6 cycloalkyl or C4 to C6 cycloalkenyl and wherein when R1 is C1 to C3 alkyl said alkyl group is substituted by; and wherein when R1 is C4 to C6 alkyl, C3 to C6 alkenyl, C3 to C6 cycloalkyl or C4 to C6 cycloalkenyl said alkyl, alkenyl, cycloalkyl or cycloalkenyl group is optionally substituted by; one or more substituents selected from: A further preferred group of compounds of formulae (I), (IA) and (IB) is that wherein, R1 is C1 to C6 alkyl wherein said alkyl may be branched or straight chain or R1 is C3 to C6 cycloalkyl and wherein when R1 is C1 to C3 alkyl said alkyl group is substituted by; and wherein when R1 is C4 to C6 alkyl or C3 to C6 cycloalkyl said alkyl or cycloalkyl group is optionally substituted by; one or more substituents selected from: Preferred compounds of the present invention include: A yet further preferred group of compounds of formulae (I), (IA) or (IB) is that wherein R1 is - (CH2)n(C3 - C6)cycloalkyl wherein n is 0, 1, 2 or 3; or R1 is methyl, ethyl, iso-propyl or n-propyl substituted by one or more C1 to C4 alkoxy substituents wherein said alkoxy substituent may be directly attached to any C-atom within the ethyl, iso-propyl or n-propyl groups other than the C-atom directly linked to the pyrazole ring; or R1 is a C4 alkyl group selected from i-, n-, sec- or t-butyl optionally substituted by one or more substituents selected from C1 to C4 alkoxy or C3 to C4 cycloalkyl; R2 is C1 to C4 alkyl; R13 is OR3 wherein R3 is C1 to C4 alkyl optionally substituted with one or two C1 to C4 alkoxy substituents wherein said C1 to C4 alkyl and C1 to C4 alkoxy groups may optionally be terminated by a haloalkyl group such as CF3 ; R4 is a piperazin-1-ylsulphonyl group having a single substituent, R10 at the 4-position of the piperazinyl group and is optionally in the form of its 4-N-oxide; and R10 is methyl, ethyl, n-propyl or i-propyl. A particularly preferred group of compounds of formulae (I), (IA) or (IB) is that wherein R1 is - (CH2)n(C3 - C4)cycloalkyl wherein n is 1 or 2; or R1 is - (CH2)n(C3 - C6)cycloalkyl wherein n is 0; or R1 is - cyclopentyl methyl; or R1 is methyl, ethyl, i-propyl or n-propyl substituted by methoxy, ethoxy, n-propoxy or i-propoxy wherein said alkoxy substituent may be directly attached to any C-atom within the ethyl, iso-propyl or n-propyl groups other than the C-atom directly linked to the pyrazole ring; or R1 is i-, n-, sec- or t-butyl; R2 is C2 to C4 alkyl; R13 is OR3 wherein the R3 alkyl group is methyl, ethyl, n-propyl, i-propyl, i-butyl, n- butyl, sec-butyl or t-butyl optionally substituted with one or two methoxy, ethoxy, n-propoxy or i-propoxy substituents; and R4 is a 4-methyl, 4-ethyl, 4-n-propyl or 4-i-propylpiperazin-1-ylsulphonyl group. In highly preferred embodiment of the present invention there is provided a compound of the formula (IB) wherein R1 is - (CH2)n(C3 - C4)cycloalkyl wherein n is 1 or 2; or R1 is - (CH2)n(C3 - C5)cycloalkyl wherein n is 0; or R1 is - cyclopentylmethyl; or R1 is methyl, ethyl, i-propyl or n-propyl substituted by methoxy, ethoxy, n-propoxy or i-propoxy wherein said alkoxy substituent may be directly attached to any C-atom within the ethyl, iso-propyl or n-propyl groups other than the C-atom directly linked to the pyrazole ring; or R1 is i-, n-, sec- or t-butyl; R2 is C2 to C4 alkyl; R13 is OR3 wherein the R3 alkyl group is methyl, ethyl, n-propyl, i-propyl, i- butyl, n- butyl, sec-butyl or t-butyl; and R4 is a 4-methyl or 4-ethylpiperazin-1-ylsulphonyl group. Highly preferred compounds according to the present invention include: 1-{6-ethoxy-5-[3-ethyl-6,7-dihydro-2-(2-methoxyethyl)-7-oxo-2H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-pyridylsulfonyl}-4-ethylpiperazine and salts and polymorphs thereof. Preferred salts of 1-{6-ethoxy-5-[3-ethyl-6,7-dihydro-2-(2-methoxyethyl)-7-oxo-2H-pyrazolo[4,3- d]pyrimidin-5-yl]-3-pyridylsulfonyl}-4-ethylpiperazine are sulphonic acid salts, more preferably the p-toluenesulfonate, benzenesulfonate, camphorsulfonate and ethanesulfonate salts respectively, and especially the benzenesulfonate. According to a further aspect of the present invention there are provided compounds of the general formula (I): or a pharmaceutically or veterinarily acceptable salt thereof, or a pharmaceutically or veterinarily acceptable solvate of either entity, wherein R1 is C1 to C6 alkyl or C3 to C6 alkenyl, C3 to C6 cycloalkyl or C3 to C6 cycloalkenyl wherein said alkyl group may be branched or straight chain and wherein when R1 is C1 to C3 alkyl said alkyl group is substituted by; and wherein when R1 is C4 to C6 alkyl, C3 to C6 alkenyl or C3 to C6 cycloalkyl said alkyl, alkenyl or cycloalkyl group is optionally substituted by; one or more substituents selected from: hydroxy; C1 to C4 alkoxy; C3 to C6 cycloalkyl; phenyl substituted with one or more substitutents selected from C1 to C3 alkyl, C1 to C4 alkoxy, C1 to C4 haloalkyl or C1 to C4 haloalkoxy wherein said haloalkyl and haloalkoxy groups contain one or more halo atoms, halo, CN, NO2, NHR11, NHSO2R12, SO2R12, SO2NHR11, COR11, CO2R11 wherein R11 is H, C1 to C4 alkyl, C2 to C4 alkenyl, C1 to C4 alkanoyl, C1 to C4 haloalkyl or C1 to C4 haloalkoxy and wherein R12 is C1 to C4 alkyl, C2 to C4 alkenyl, C1 to C4 alkanoyl, C1 to C4 haloalkyl or C1 to C4 haloalkoxy; NR7R8, CONR7R8 or NR7COR11 wherein R7 and R8 are each independently selected from H, C1 to C4 alkyl, C2 to C4 alkenyl, C1 to C4 alkoxy, CO2R9, SO2R9 wherein said alkyl, alkenyl or alkoxy groups are optionally substituted by C1 to C4 haloalkyl or C1 to C4 haloalkoxy and wherein R9 is C1 to C4 alkyl which is optionally substituted with phenyl wherein said phenyl group is optionally substituted by one or more substituents selected from C1 to C4 alkyl optionally substituted by C1 to C4 haloalkyl or C1 to C4 haloalkoxy, C1 to C4 alkoxy, halo, CN, NO2, NHR11, NHSO2R12, SO2R12, SO2NHR11, COR11 or CO2R11; Het1; Het2 or Het3; or R1 is Het4 or phenyl wherein said phenyl group is optionally substituted by one or more substituents selected from C1 to C4 alkyl, C2 to C4 alkenyl, C1 to C4 alkoxy, halo, CN, CF3, OCF3, NO2, NHR11, NHSO2R12, SO2R12, SO2NHR11, COR11, CO2R11; R2 is C1 to C6 alkyl, C3 to C6 alkenyl or (CH2)n(C3 to C6 cycloalkyl) wherein n is 0, 1 or 2; R13 is OR3 or NR5R6; R3 is C1 to C6 alkyl optionally substituted with one or two substituents selected from C3 to C5 cycloalkyl, hydroxy, C1 to C4 alkoxy, benzyloxy, NR5R6, phenyl, Het1, Het2, Het3 or Het4 wherein the C1 to C6 alkyl and C1 to C4 alkoxy groups may optionally be terminated by a haloalkyl group such as CF3; C3 to C6 cycloalkyl; Het1, Het2, Het3 or Het4; R4 is a piperazin-1-ylsulphonyl group having a substituent, R10 at the 4-position of the piperazinyl group wherein said piperazinyl group is optionally substituted with one or two C1 to C4 alkyl groups and is optionally in the form of its 4-N-oxide; R5 and R6 are each independently selected from H and C1 to C4 alkyl optionally substituted with C3 to C5 cycloalkyl or C1 to C4 alkoxy, or, together with the nitrogen atom to which they are attached, form an azetidinyl, pyrrolidinyl, piperidinyl or morpholinyl group; R10 is H; C1 to C4 alkyl optionally substituted with one or two substituents selected from hydroxy, NR5R6, CONR5R6, phenyl optionally substituted with C1 to C4 alkyl or C1 to C4 alkoxy; C2 to C6 alkenyl or Het4; Het1 is an N-linked 4-, 5- or 6-membered nitrogen-containing heterocyclic group optionally containing one or more further heteroatoms selected from S, N or O; Het2 is a C-linked 5-membered heterocyclic group containing an O, S or N heteroatom optionally containing one or more heteroatoms selected from O or S; Het3 is a C-linked 6-membered heterocyclic group containing an O or S heteroatom optionally containing one or more heteroatoms selected from O, S or N or Het3 is a C-linked 6-membered heterocyclic group containing three N heteroatoms; Het4 is a C-linked 4-, 5- or 6-membered heterocyclic group containing one, two or three heteroatoms selected from S, O or N; and wherein any of said heterocyclic groups Het1, Het2, Het3 or Het4 may be saturated, partially unsaturated or aromatic and wherein any of said heterocyclic groups may be optionally substituted with one or more substituents selected from C1 to C4 alkyl, C2 to C4 alkenyl, C1 to C4 alkoxy, halo, CO2R11, COR11, SO2R12 or NHR11 and/or wherein any of said heterocyclic groups is benzo-fused; with the provisos that (a) when R1 is C1 to C3 then Het1 is not morpholinyl or piperidinyl and (b) when R1 is C1 to C3 substituted by phenyl then said phenyl group is not substituted by C1 to C4 alkoxy, halo, CN, CF3, OCF3 or C1 to C4 alkyl. In a further aspect, the present invention provides processes for the preparation of compounds of formulae (I), (IA) and (IB), their pharmaceutically and veterinarily acceptable salts, and pharmaceutically and veterinarily acceptable solvates of either entity, as illustrated below. It will be appreciated by persons skilled in the art that, within certain of the processes described, the order of the synthetic steps employed may be varied and will depend inter alia on factors such as the nature of other functional groups present in a particular substrate, the availability of key intermediates and the protecting group strategy (if any) to be adopted. Clearly, such factors will also influence the choice of reagent for use in the said synthetic steps. Illustrative of a protecting group strategy is the route to the azetidine analogues (Examples 18, 19 and 20), the precursor to which (preparations 63, 66 and 61 respectively) contain t-butoxycarbonyl (Boc) as the nitrogen protecting group. It will also be appreciated that various standard substituent or functional group interconversions and transformations within certain compounds of formulae (I), (IA) or (IB) will provide other compounds of formulae (I), (IA) or (IB). Examples include alkoxide exchange at the 2-position of the 5-(pyridin-3-yl) substituent (see conversions of Example 3 to Examples 27, Example 8 to Example 28 and 29, Example 21 to Example 32 and 33, Example 4 to Examples 41, Example 9 to Example 43, and Example 66 to Example 75), amine exchange at the 2-position of the 5-(pyridin-3-yl) substituent (see conversions of Example 7 to Examples 78), reactions at a nitrogen containing substituent, such as reductive alkylation (Example 18 to Example 21), acetamide formation (Examples 18, and 20 to Examples 22 and 24 respectively) or sulphonamide formation (Preparations 68, 67 to Examples 25 to 62 respectively), and reduction of a nitro functionality to provide an amino group (Example 63 to Example 64). The deprotection and transformations described herein and as illustrated in the Examples and Preparations sections may be effected in a "one-pot" procedure (see for example the conversion of the compound of preparation 65 into the compound of example 26). To effect initial displacement without significant simultaneous cyclisation it is preferred that the displacement with-OR3 (in (iii) or (iv)) is carried out in the range of from about 80°C to about 90°C to provide a compound of the general formula (IXC). Subsequent cyclisation to a compound of general formula (I) is generally carried out at a temperature greater than about 115°C.To effect initial cyclisation without significant simultaneous displacement it is preferred that, for (IXCa) to (XXX) (in (ii)), the reaction is conducted at a temperature greater than about 110°C with -OR3a in R3aOH. Subsequent displacement to a compound of general formula (I) is generally carried out with -OR3 in R3OH in the range of from about 80°C to about 90°C.For conversion of (IXB) to (I) (ie. (i) above), it may be preferred to obtain compounds of general formula (I) directly from compounds of general formula (IXB) since both the cyclisation and displacement components of this reaction can be carried out in a "one-pot" reaction. Such a "one-pot" process can be run at lower pressures (ie. nearer ambient pressure) than say a stepwise cyclisation and displacement process (ie. (ii) above) if the boiling point of R3OH is higher than that of R3aOH and where the ambient boiling point of R3aOH is less than about 115°C (ie. too low to effect cyclisation at ambient pressure). It should be noted that is may still be necessary to operate such processes at higher temperatures than the boiling point of HOR3, i.e. at higher pressure.In the case of compounds of general formula (IXC) as detailed hereinafter wherein X is OR3, compounds of general formula (I) can be obtained by direct cyclisation by reacting in the presence of an auxiliary base, a hydroxide trapping agent and an appropriate solvent R3OH or an inert solvent or a combination thereof.The temperature of the reaction of compounds of the general formula (IXB) to compounds of the general formula (I) (such as the corresponding formation of compounds (IA) and (IB)) is preferably at least about 80°C, more preferably about 80 to about 130° C , more preferably still about 100 to about 130°C and most preferably about 115 to about 125°C. These temperatures are also applicable for the conversion of compounds (XXX) to (I), although the temperature in this case could also probably be lower (e.g. about 60° C) since there is no cyclisation taking place.Preferably compounds of formula (I), or (IA), or (IB) wherein R1 is - (CH2)n(C3 - C4)cycloalkyl wherein n is 1 or 2; or R1 is - (CH2)n(C3 - C6)cycloalkyl wherein n is 0; or R1 is - cyclopentylmethyl; or R1 is methyl, ethyl, i-propyl or n-propyl substituted by methoxy, ethoxy, n-propoxy or i-propoxy wherein said alkoxy substituent may be directly attached to any C-atom within the ethyl, iso-propyl or n-propyl groups other than the C-atom directly linked to the pyrazole ring; or R1 is In a preferred process for the preparation of the compounds according to the present invention compounds of general formula (VIIB) are prepared from compounds of the general formula (XIIIB) according to the process detailed in Preparations 96(a) to (h). These compounds of general formula (VIIB) are coupled with compounds of general formula (XC) according to the process detailed in Preparations 29 and 96(i) to provide a compound of general formula (IXC), wherein said compound of general formula (IXC) is prepared according to the process detailed in Preparation 95. The compound of general formula (IXC) is then preferably cyclised under basic conditions according to the process detailed in Examples 8 and 102 to form compounds of general formula (IB) wherein R13 is OR3. The 4-aminopyrazole-5-carboxamides of general formulae (VII), (VIIA) and (VIIB), the pyrazoles of general formula (XIII), the carboxylic acids of formulae (XA), (XB), (XIIA), (XIIB), (XIIC), (VIIA), (VIIB), (VIIC) and (X), or the compounds of the general formula R1J and R1E when neither commercially available nor subsequently described, can be obtained either by analogy with the processes described in the Preparations section or by conventional synthetic procedures, in accordance with standard textbooks on organic chemistry or literature precedent, from readily accessible starting materials using appropriate reagents and reaction conditions. Moreover, persons skilled in the art will be aware of variations of, and alternatives to, those processes described hereinafter in the Examples and Preparations sections which allow the compounds defined by formulae (I), (IA) or (IB) to be obtained. The pharmaceutically acceptable acid addition salts of the compounds of formulae (I), (IA) or (IB) which contain a basic centre may also be prepared in a conventional manner. By way of illustration, acid addition salts of compounds of formula (I) (more particularly IA and IB) can be formed by reacting a compound of formula (I) with an equimolar or excess amount of the appropriate acid, either neat or in a suitable solvent. The salt may then be precipitated out of solution and isolated by filtration or the reaction solvent can be stripped off by conventional means such as by evaporation under vacuum. Typical salts which can be used in the schemes of 1 to 3 are given in PCT/IB99/00519. Example of salts of compounds IA and IB are the p-toluenesulfonate, benzenesulfonate, camphorsulfonate and ethanesulfonate respectively. Pharmaceutically acceptable base addition salts can be obtained in an analogous manner by treating a soiution of a compound of formula (I), (IA) or (IB) with the appropriate base. Both types of salt may be formed or interconverted using ion-exchange resin techniques. The present invention also includes all suitable isotopic variations of a compound of the formula (I) or a pharmaceutically acceptable salt thereof. An isotopic variation of a compound of the formula (I) or a pharmaceutically acceptable salt thereof is defined as one in which at least one atom is replaced by an atom having the same atomic number but an atomic mass different from the atomic mass usually found in nature. Examples of isotopes that can be incorporated into compounds of the formula (I) and pharmaceutically acceptable salts thereof include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, sulphur, fluorine and chlorine such as2H,3H,13C,14C,15N,17O,18O,31P,32P,35S,18F and36Cl, respectively. Certain isotopic variations of the compounds of the formula (I) and pharmaceutically acceptable salts thereof, for example, those in which a radioactive isotope such as3H or14C is incorporated, are useful in drug and/or substrate tissue distribution studies. Tritiated, i.e.,3H, and carbon-14, i.e.,14C, isotopes are particularly preferred for their ease of preparation and detectability. Further, substitution with isotopes such as deuterium, i.e.,2H, may afford certain therapeutic advantages resulting from greater metabolic stability, for example, increased It will be appreciated by those skilled in the art that certain protected derivatives of compounds of the formulae (I), (IA) or (IB), which may be made prior to a final de-protection stage, may not possess pharmacological activity as such, but may, in certain instances, be administered orally or parenterally and thereafter metabolised in the body to form compounds of the invention which are pharmacologically active. Such derivatives may therefore be described as "pro-drugs". Further, certain compounds of the formulae (I), (IA) or (IB) may act as pro-drugs of other compounds of the formulae (I), (IA) or (IB). All protected derivatives of compounds of general formulae (I), (IA) or (IB) are included within the scope of the invention. Suitable protecting groups for use in accordance with the invention can be found in "Protecting Groups" edited by P.J. Kocienski, Thieme, New York, 1994 - see particularly chapter 4, page 118-154 for carboxy protecting groups; and "Protective Groups in Organic Synthesis" 2nd edition, T.W. Greeene & P.G.M. Wutz, Wiley -Interscience (1991)- see particularly chapter 5 for carboxy protecting groups. Examples of suitable pro-drugs for the compounds of the present invention are described in Drugs of Today, Volume 19, Number 9, 1983, pp 499 - 538 and in Topics in Chemistry, Chapter 31, pp 306 - 316. The biological activities of the compounds of the present invention were determined by the following test methods. The compounds of the present invention are potent and selective cGMP PDE5 inhibitors. Invitro PDE inhibitory activities against cyclic guanosine 3',5'-monophosphate (cGMP) and cyclic adenosine 3',5'-monophosphate (cAMP) phosphodiesterases were determined by measurement of their IC50 values (the concentration of compound required for 50% inhibition of enzyme activity). The required PDE enzymes were isolated from a variety of sources, including human corpus cavernosum, human and rabbit platelets, human cardiac ventricle, human skeletal muscle and bovine retina, essentially by the method of W.J. Thompson and M.M. Appleman (Biochem., 1971, 10, 311). In particular, the cGMP-specific PDE (PDE5) and the cGMP-inhibited cAMP PDE (PDE3) were obtained from human corpus cavernosum tissue, human platelets or rabbit platelets; the cGMP-stimulated PDE (PDE2) was obtained from human corpus cavernosum; the calcium/calmodulin (Ca/CAM)-dependent PDE (PDE1) from human cardiac ventricle; the cAMP-specific PDE (PDE4) from human skeletal muscle; and the photoreceptor PDE (PDE6) from bovine retina. Phosphodiesterases 7-11 were generated from full length human recombinant clones transfected into SF9 cells. Assays were performed either using a modification of the "batch" method of W.J. Thompson et al. (Biochem., 1979, 18, 5228) or using a scintillation proximity assay for the direct detection of AMP/GMP using a modification of the protocol described by Amersham plc under product code TRKQ7090/7100. In summary, the effect of PDE inhibitors was investigated by assaying a fixed amount of enzyme in the presence of varying inhibitor concentrations and low substrate, (cGMP or cAMP in a 3:1 ratio unlabelled to [3H]-labeled at a conc ∼1/3 Preferred compounds of the present invention, such as those of Examples 3 - 12, 14 - 17, 19, 21 - 30, 32, 33, 35 - 46, 48 - 59, 61, 62, 65 - 75, 77, 79 - 102 have IC50 values of less than about 10nM for the PDE5 enzyme. More preferred compounds, such as those of Examples 3 - 12, 14, 15, 17, 23 - 30, 32, 33, 35 - 46, 48, 50 - 59, 61, 62, 65, 69 - 74, 79 - 102 have IC50 values of less than about 5nM for the PDE5 enzyme. Especially preferred compounds, such as those of Examples 4 - 10, 15, 17, 23 - 28, 30, 32, 33, 35 - 42, 44, 45, 46, 50, 52 - 56, 58, 59, 61, 62, 65, 69 - 74, 79 - 93, 96, 98 - 102 have IC50 values of less than about 2nM for the PDE5 enzyme. Especially preferred herein are compounds which have an IC50 value of less than about 10, more preferably less than about 5, and most preferably less than about 2nM for the PDE5 enzyme in combination with selectivity of greater than 10-fold, more preferably greater than 50-fold, more preferably greater than 100-fold and especially greater than 200-fold selectivity for the PDE5 enzyme versus the PDE6 enzyme. This was assessed in vitro by determining the capacity of a compound of the invention to enhance sodium nitroprusside-induced relaxation of pre-contracted rabbit corpus cavernosum tissue strips, as described by S.A. Ballard et al. (Brit. J. Pharmacol., 1996, 118 (suppl.), abstract 153P). Compounds were screened in anaesthetised dogs to determine their capacity, after i.v. administration, to enhance the pressure rises in the corpora cavernosa of the penis induced by intracavernosal injection of sodium nitroprusside, using a method based on that described by Trigo-Rocha et al. (Neurourol. and Urodyn., 1994, 13, 71). The compounds of formulae (I), (IA) or (1B), their pharmaceutically acceptable salts, and pharmaceutically acceptable solvates of either entity can be administered alone but, in human therapy will generally be administered in admixture with a suitable pharmaceutical excipient diluent or carrier selected with regard to the intended route of administration and standard pharmaceutical practice. For example, the compounds of formulae (I), (IA) or (1B) or salts or solvates thereof can be administered orally, buccally or sublingually in the form of tablets, capsules (including soft gel capsules), ovules, elixirs, solutions or suspensions, which may contain flavouring or colouring agents, for immediate-, delayed-, modified-, or controlled-release such as sustained-, dual-, or pulsatile delivery applications. The compounds of the invention may also be administered via intracavernosal injection. The compounds of the invention may also be administered via fast dispersing or fast dissolving dosages forms or in the form of a high energy dispersion or as coated particles. Suitable pharmaceutical formulations of the compounds of the invention may be in coated or un-coated form as desired. Such tablets may contain excipients such as microcrystalline cellulose, lactose, sodium citrate, calcium carbonate, dibasic calcium phosphate, glycine and starch (preferably corn, potato or tapioca starch), disintegrents such as sodium starch glycollate, croscarmellose sodium and certain complex silicates, and granulation binders such as polyvinylpyrrolidone, hydroxypropylmethyl cellulose (HPMC), hydroxypropylcellulose (HPC), sucrose, gelatin and acacia. Additionally, lubricating agents such as magnesium stearate, stearic acid, glyceryl behenate and talc may be included. Solid compositions of a similar type may also be employed as fillers in gelatin capsules. Preferred excipients in this regard include lactose, starch, a cellulose, milk sugar or high molecular weight polyethylene glycols. For aqueous suspensions and/or elixirs, the compounds of the formula (I), (IA) or (IB) may be combined with various sweetening or flavouring agents, colouring matter or dyes, with emulsifying and/or suspending agents and with diluents such as water, ethanol, propylene glycol and glycerin, and combinations thereof. Modified release and pulsatile release dosage forms may contain excipients such as those detailed for immediate release dosage forms together with additional excipients that act as release rate modifiers, these being coated on and/or included in the body of the device. Release rate modifiers include, but are not exclusively limited to, hydroxypropylmethyl cellulose, methyl cellulose, sodium carboxymethylcellulose, ethyl cellulose, cellulose acetate, polyethylene oxide, Xanthan gum, Carbomer, ammonio methacrylate copolymer, hydrogenated castor oil, carnauba wax, paraffin wax, cellulose acetate phthalate, hydroxypropylmethyl cellulose phthalate, methacrylic acid copolymer and mixtures thereof. Modified release and pulsatile release dosage forms may contain one or a combination of release rate modifying excipients. Release rate modifying excipients maybe present both within the dosage form i.e. within the matrix, and/or on the dosage form i.e. upon the surface or coating. Fast dispersing or dissolving dosage formulations (FDDFs) may contain the following ingredients: aspartame, acesulfame potassium, citric acid, croscarmellose sodium, crospovidone, diascorbic acid, ethyl acrylate, ethyl cellulose, gelatin, hydroxypropylmethyl cellulose, magnesium stearate, mannitol, methyl methacrylate, mint flavouring, polyethylene glycol, fumed silica, silicon dioxide, sodium starch glycolate, sodium stearyl fumarate, sorbitol, xylitol. The terms dispersing or dissolving as used herein to describe FDDFs are dependent upon the solubility of the drug substance used i.e. where the drug substance is insoluble a fast dispersing dosage form can be prepared and where the drug substance is soluble a fast dissolving dosage form can be prepared. The compounds of the invention can also be administered parenterally, for example, intracavernosally, intravenously, intra-arterially, intraperitoneally, intrathecally, intraventricularly, intraurethrally intrasternally, intracranially, intramuscularly or subcutaneously, or they may be administered by infusion or needless injection techniques. For such parenteral administration they are best used in the form of a sterile aqueous solution which may contain other substances, for example, enough salts or glucose to make the solution isotonic with blood. The aqueous solutions should be suitably buffered (preferably to a pH of from 3 to 9), if necessary. The preparation of suitable parenteral formulations under sterile conditions is readily accomplished by standard pharmaceutical techniques well-known to those skilled in the art. For oral and parenteral administration to human patients, the daily dosage level of the compounds of formula (I), (IA) or (1B) or salts or solvates thereof will usually be from 10 to 500 mg (in single or divided doses). Thus, for example, tablets or capsules of the compounds of formulae (I), (IA) or (IB) or salts or solvates thereof may contain from 5 mg to 250 mg of active compound for administration singly or two or more at a time, as appropriate. The physician in any event will determine the actual dosage which will be most suitable for any individual patient and it will vary with the age, weight and response of the particular patient. The above dosages are exemplary of the average case. There can, of course, be individual instances where higher or lower dosage ranges are merited and such are within the scope of this invention. The skilled person will also appreciate that, in the treatment of certain conditions (including MED and FSD), compounds of the invention may be taken as a single dose on an "as required" basis (i.e. as needed or desired). Such tablets can be manufactured by standard processes, for example, direct compression or a wet or dry granulation process. The tablet cores may be coated with appropriate overcoats. The compounds of the invention can also be administered intranasally or by inhalation and are conveniently delivered in the form of a dry powder inhaler or an aerosol spray presentation from a pressurised container, pump, spray or nebuliser with the use of a suitable propellant, e.g. dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, a hydrofluoroalkane such as 1,1,1,2-tetrafluoroethane (HFA 134A [trade mark] or 1,1,1,2,3,3,3-heptafluoropropane (HFA 227EA [trade mark]), carbon dioxide or other suitable gas. In the case of a pressurised aerosol, the dosage unit may be determined by providing a valve to deliver a metered amount. The pressurised container, pump, spray or nebuliser may contain a solution or suspension of the active compound, e.g. using a mixture of ethanol and the propellant as the solvent, which may additionally contain a lubricant, e.g. sorbitan trioleate. Capsules and cartridges (made, for example, from gelatin) for use in an inhaler or insufflator may be formulated to contain a powder mix of a compound of the formula (I), (IA) or (IB) and a suitable powder base such as lactose or starch. Aerosol or dry powder formulations are preferably arranged so that each metered dose or "puff" contains from 1 to 50 mg of a compound of the formula (I), (IA) or (IB) for delivery to the patient. The overall daily dose with an aerosol will be in the range of from 1 to 50 mg which may be administered in a single dose or, more usually, in divided doses throughout the day. The compounds of the invention may also be formulated for delivery via an atomiser. Formulations for atomiser devices may contain the following ingredients as solubilisers, emulsifiers or suspending agents: water, ethanol, glycerol, propylene glycol, low molecular weight polyethylene glycols, sodium chloride, fluorocarbons, polyethylene glycol ethers, sorbitan trioleate, oleic acid. Alternatively, the compounds of the formulae (I), (IA) or (IB) or salts or solvates thereof can be administered in the form of a suppository or pessary, or they may be applied topically in the form of a gel, hydrogel, lotion, solution, cream, ointment or dusting powder. The compounds of the formulae (IA) and (IB) or salts or solvates thereof may also be dermally administered. The compounds of the formulae (I), (IA) or (IB) or salts or solvates thereof may also be transdermally administered, for example, by the use of a skin patch. They may also be administered by the ocular, pulmonary or rectal routes. For ophthalmic use, the compounds can be formulated as micronised suspensions in isotonic, pH adjusted, sterile saline, or, preferably, as solutions in isotonic, pH adjusted, sterile saline, optionally in combination with a preservative such as a benzylalkonium chloride. Alternatively, they may be formulated in an ointment such as petrolatum. For application topically to the skin, the compounds of the formulae (I), (IA) or (IB) or salts or solvates thereof can be formulated as a suitable ointment containing the active compound suspended or dissolved in, for example, a mixture with one or more of the following: mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene polyoxypropylene compound, emulsifying wax and water. Alternatively, they can be formulated as a suitable lotion or cream, suspended or dissolved in, for example, a mixture of one or more of the following: mineral oil, sorbitan monostearate, a polyethylene glycol, liquid paraffin, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water. The compounds of the formulae (I), (IA) or (IB) may also be used in combination with a cyclodextrin. Cyclodextrins are known to form inclusion and non-inclusion complexes with drug molecules. Formation of a drug-cyclodextrin complex may modify the solubility, dissolution rate, bioavailability and/or stability property of a drug molecule. Drug-cyclodextrin complexes are generally useful for most dosage forms and administration routes. As an alternative to direct complexation with the drug the cyclodextrin may be used as an auxiliary additive, e.g. as a carrier, diluent or solubiliser. Alpha-, beta-and gamma-cyclodextrins are most commonly used and suitable examples are described in WO-A-91/11172, WO-A-94/02518 and WO-A-98/55148. Generally, in humans, oral administration of the compounds of the invention is the preferred route, being the most convenient and, for example in MED, avoiding the well-known disadvantages associated with intracavernosal (i.c.) administration. A preferred oral dosing regimen in MED for a typical man is from 5 to 250 mg of compound when required. In circumstances where the recipient suffers from a swallowing disorder or from impairment of drug absorption after oral administration, the drug may be administered parenterally, sublingually or buccally. For veterinary use, a compound of formula (I), (IA) or (IB), or a veterinarily acceptable salt thereof, or a veterinarily acceptable solvate thereof, is administered as a suitably acceptable formulation in accordance with normal veterinary practice and the veterinary surgeon will determine the dosing regimen and route of administration which will be most appropriate for a particular animal. It is to be appreciated that all references herein to treatment include curative, palliative and prophylactic treatment. Thus the invention provides a pharmaceutical composition comprising a compound of formula (I), (IA) or (IB), or a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable solvate thereof, together with a pharmaceutically acceptable diluent or carrier. It further provides a veterinary formulation comprising a compound of formula (I), (IA) or (IB), or a veterinarily acceptable salt thereof, or a veterinarily acceptable solvate thereof, together with a veterinarily acceptable diluent or carrier. The invention also provides a compound of formula (I), (IA) or (IB), or a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable solvate thereof, or a pharmaceutical composition containing any of the foregoing, for use as a human medicament. In addition, it provides a compound of formula (I), (IA) or (IB), or a veterinarily acceptable salt thereof, or a veterinarily acceptable solvate or thereof, or a veterinary formulation containing any of the foregoing, for use as an animal medicament. In yet another aspect, the invention provides the use of a compound of formula (I), (IA) or (IB), or a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable solvate thereof, for the manufacture of a human medicament for the curative, palliative or prophylactic treatment of a medical condition for which a cGMP PDE5 inhibitor is indicated. There is further provided the use of a compound of formula (I), (IA) or (IB) or a suitable salt, solvate thereof, in the manufacture of a medicament for the treatment of a medical condition in which inhibition of a cGMP PDE5 is desirable.. It also provides the use of a compound of formula (I), (IA) or (IB), or a veterinarily acceptable salt thereof, or a veterinarily acceptable solvate thereof, for the manufacture of an animal medicament for the curative, palliative or prophylactic treatment of a medical condition for which a cGMP PDE5 inhibitor is indicated. Moreover, the invention provides the use of a compound of formula (I), (IA) or (IB), or a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable solvate thereof, for the manufacture of a human medicament for the curative, palliative or prophylactic treatment of male erectile dysfunction (MED), impotence, female sexual dysfunction (FSD), clitoral dysfunction, female hypoactive sexual desire disorder, female sexual arousal disorder, female sexual pain disorder, female sexual orgasmic dysfunction (FSOD), sexual dysfunction due to spinal cord injury, selective serotonin re-uptake inhibitor (SSRI) induced sexual dysfunction, premature labour, dysmenorrhoea, benign prostatic hyperplasia (BPH), bladder outlet obstruction, incontinence, stable, unstable and variant (Prinzmetal) angina, hypertension, pulmonary hypertension, chronic obstructive pulmonary disease, coronary artery disease, congestive heart failure, atherosclerosis, conditions of reduced blood vessel patency, peripheral vascular disease, stroke, nitrate induced tolerance, bronchitis, allergic asthma, chronic asthma, allergic rhinitis, diseases and conditions of the eye, diseases characterised by disorders of gut motility, pre-eclampsia, Kawasaki's syndrome, nitrate tolerance, multiple sclerosis, diabetic nephropathy, neuropathy including autonomic and peripheral neuropathy and in particular diabetic neuropathy and symptoms thereof e.g. gastroparesis, Alzheimer's disease, acute respiratory failure, psoriasis, skin necrosis, cancer, metastasis, baldness, nutcracker oesophagus, anal fissure, haemorrhoids, hypoxic vasoconstriction or blood pressure stabilisation during haemodialysis. Particularly preferred conditions include MED and FSD. It also provides the use of a compound of formula (I), (IA) or (IB), or a veterinarily acceptable salt thereof, or a veterinarily acceptable solvate thereof, for the manufacture of an animal medicament for the curative, palliatve or prophylactic treatment of male erectile dysfunction (MED), impotence, female sexual dysfunction (FSD), clitoral dysfunction, female hypoactive sexual desire disorder, female sexual arousal disorder, female sexual pain disorder, female sexual orgasmic dysfunction (FSOD), sexual dysfunction due to spinal cord injury, selective serotonin re-uptake inhibitor (SSRI) induced sexual dysfunction, premature labour, dysmenorrhoea, benign prostatic hyperplasia (BPH), bladder outlet obstruction, incontinence, stable, unstable and variant (Prinzmetal) angina, hypertension, pulmonary hypertension, chronic obstructive pulmonary disease, coronary artery disease, congestive heart failure, atherosclerosis, conditions of reduced blood vessel patency, peripheral vascular disease, stroke, nitrate induced tolerance, bronchitis, allergic asthma, chronic asthma, allergic rhinitis, diseases and conditions of the eye, diseases characterised by disorders of gut motility, pre-eclampsia, Kawasaki's syndrome, nitrate tolerance, multiple sclerosis, diabetic nephropathy, neuropathy including autonomic and peripheral neuropathy and in particular diabetic neuropathy and symptoms thereof, Alzheimer's disease, acute respiratory failure, psoriasis, skin necrosis, cancer, metastasis, baldness, nutcracker oesophagus, anal fissure, haemorrhoids, hypoxic vasoconstriction or blood pressure stabilisation during haemodialysis. Particularly preferred conditions include MED and FSD. Additionally, the invention provides a method of treating or preventing a medical condition for which a cGMP PDE5 inhibitor is indicated, in a mammal (including a human being), which comprises administering to said mammal a therapeutically effective amount of a compound of formula (I), (IA) or (IB), or a pharmaceutically or veterinarily acceptable salt thereof, or a pharmaceutically or veterinarily acceptable solvate thereof, or a pharmaceutical veterinary formulation containing any of the foregoing. Still further, the invention provides a method of treating or preventing male erectile dysfunction (MED), impotence, female sexual dysfunction (FSD), clitoral dysfunction, female hypoactive sexual desire disorder, female sexual arousal disorder, female sexual pain disorder, female sexual orgasmic dysfunction (FSOD), sexual dysfunction due to spinal cord injury, selective serotonin re-uptake inhibitor (SSRI) induced sexual dysfunction, premature labour, dysmenorrhoea, benign prostatic hyperplasia (BPH), bladder outlet obstruction, incontinence, stable, unstable and variant (Prinzmetal) angina, hypertension, pulmonary hypertension, chronic obstructive pulmonary disease, coronary artery disease, congestive heart failure, atherosclerosis, conditions of reduced blood vessel patency, peripheral vascular disease, stroke, nitrate induced tolerance, bronchitis, allergic asthma, chronic asthma, allergic rhinitis, diseases and conditions of the eye, diseases characterised by disorders of gut motility, pre-eclampsia, Kawasaki's syndrome, nitrate tolerance, multiple sclerosis, diabetic nephropathy, neuropathy including autonomic and peripheral neuropathy and in particular diabetic neuropathy and symptoms thereof e.g. gastroparesis, peripheral diabetic neuropathy, Alzheimer's disease, acute respiratory failure, psoriasis, skin necrosis, cancer, metastasis, baldness, nutcracker oesophagus, anal fissure, haemorrhoids, hypoxic vasoconstriction or blood pressure stabilisation of during haemodialysis in a mammal (including a human being), which comprises administering to said mammal a therapeutically effective amount of a compound of formula (I), (IA) or (IB), or a pharmaceutically or veterinarily acceptable salt thereof, or a pharmaceutically or veterinarily acceptable solvate thereof, or a pharmaceutical composition or veterinary formulation containing any of the foregoing. In a yet further aspect of the present invention provides a combination of compounds of the general formula (I), (IA) or (IB) with further compounds useful in the inhibition of PDE5 wherein said combination is useful for the treatment or prevention of male erectile dysfunction (MED), impotence, female sexual dysfunction (FSD), clitoral dysfunction, female hypoactive sexual desire disorder, female sexual arousal disorder, female sexual pain disorder, female sexual orgasmic dysfunction (FSOD), sexual dysfunction due to spinal cord injury, selective serotonin re-uptake inhibitor (SSRI) induced sexual dysfunction, premature labour, dysmenorrhoea, benign prostatic hyperplasia (BPH), bladder outlet obstruction, incontinence, stable, unstable and variant (Prinzmetal) angina, hypertension, pulmonary hypertension, chronic obstructive pulmonary disease, coronary artery disease, congestive heart failure, atherosclerosis, conditions of reduced blood vessel patency, peripheral vascular disease, stroke, nitrate induced tolerance, bronchitis, allergic asthma, chronic asthma, allergic rhinitis, diseases and conditions of the eye, diseases characterised by disorders of gut motility, pre-eclampsia, Kawasaki's syndrome, nitrate tolerance, multiple sclerosis, diabetic nephropathy, neuropathy including autonomic and peripheral neuropathy and in particular diabetic neuropathy and symptoms thereof e.g. gastroparesis, peripheral diabetic neuropathy, Alzheimer's disease, acute respiratory failure, psoriasis, skin necrosis, cancer, metastasis, baldness, nutcracker oesophagus, anal fissure, haemorrhoids, hypoxic vasoconstriction or blood pressure stabilisation of during haemodialysis in a mammal (including a human being). The invention also includes any novel intermediates described herein, for example those of formulae (IXA), (IXB), (VIIA), (VIIB), (VIII), (VIIIA) and (X). The present invention additionally comprises the combined administration of a cGMP PDE5 inhibitor of the general formula (I), wherein said combined administration can be in the form of simultaneous, sequential or joint administration with: The syntheses of the compounds of the invention and of the intermediates for use therein are illustrated by the following Examples and Preparations. A number of the compounds included in the Preparations section are compounds of the formula (I), (IA) or (IB) and are thereby examples of compounds according to the present invention. 1H Nuclear magnetic resonance (NMR) spectra were recorded using either a Varian Unity 300 or a Varian Inova 400 spectrometer and were in all cases consistent with the proposed structures. Characteristic chemical shifts (δ) are given in parts-per-million downfield from tetramethylsilane using conventional abbreviations for designation of major peaks: e.g. s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. Mass spectra (m/z) were recorded using a Fisons Instruments Trio mass spectrometer in the thermospray ionisation mode. Room temperature means 20 to 25°C. A mixture of the title compound from preparation 28 (560mg, 1.04mmol) and potassium A mixture of the title compound from preparation 27 (420mg, 0.80mmol) and potassium bis(trimethylsilyl)amide (240mg, 1.20mmol) in ethanol (40ml) was heated at 100°C for 18 hours in a sealed vessel. The cooled mixture was concentrated under reduced pressure and the residue purified by column chromatography on silica gel using an elution gradient of dichloromethane:methanol (100:0 to 90:10) to give the title compound, 130mg. δ (CDCl3) : 1.40 (3H, t), 1.58 (3H, t), 2.27 (3H, s), 2.50 (4H, m), 3.10 (6H, m), 3.30 (3H, s), 3.92 (2H, t), 4.45 (2H, t), 4.75 (2H, q), 8.62 (1H, d), 9.02 (1 H, d), 10.65 (1H, s). LRMS : m/z 506 (M+1)+ A mixture of the title compound from preparation 30 (740mg, 1.34mmol) and potassium bis(trimethylsilyl)amide (321.5mg, 1.61mmol) in ethanol (40ml) was heated at 100°C for 18 hours in a sealed vessel. Tlc analysis showed starting material remaining, so additional potassium bis(trimethylsilyl)amide (321.5mg, 1.61mmol) was added, and the reaction continued for a further 18 hours. The cooled mixture was concentrated under reduced pressure and the residue partitioned between water and ethyl acetate, and the layers separated. The organic phase was evaporated under reduced pressure and the crude product was purified by column chromatography on silica gel using an elution gradient of dichloromethane:methanol (100:0 to 90:10) to give the title compound, 150mg. δ(CDCl3) : 1.02 (6H, m), 1.58 (3H, t), 1.83 (2H, m), 2.41 (2H, q), 2.56 (4H, m), 3.01 (2H, t), 3.14 (4H, m), 3.29 (3H, s), 3.90 (2H, t), 4.44 (2H, t), 4.75 (2H, q), 8.61 (1 H, s), 9.02 (1 H, s), 10.61 (1 H, s). LRMS : m/z 534 (M+1)+ A mixture of the title compound from preparation 39 (400mg, 0.75mmol), potassium bis(trimethylsilyl)amide (298mg, 1.50mmol) and ethyl acetate (73µl, 0.75mmol) in ethanol (10ml) was heated at 120°C in a sealed vessel for 12 hours. The cooled mixture was partitioned between ethyl acetate and aqueous sodium bicarbonate solution, and the layers separated. The organic phase was dried (MgSO4), and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using dichloromethane:methanol (98:2) as eluant to afford the title compound, 164mg. δ(CDCl3) : 0.79 (3H, t), 1.02 (3H, t), 1.38 (3H, t), 1.56 (6H, m), 1.90 (1 H, m), 2.21 (1H, m), 2.41 (2H, q), 2.57 (4H, m), 2.98-3.18 (6H, m), 4.41 (1 H, m), 4.75 (2H, q), 8.61 (1 H, s), 9.02 (1 H, s), 10.58 (1 H, s). The compounds of the following tabulated examples, of general structure: were prepared from the corresponding carboxamides, following a similar procedure to that described in example 4. A mixture of the title compound from preparation 42 (250mg, 0.44mmol), potassium bis(trimethylsilyl)amide (132mg, 0.66mmol) and ethyl acetate (40µl, 0.41mmol) in 3-methyl-3-pentanol (4ml) was heated at 120°C in a sealed vessel for 18 hours. Tlc analysis showed starting material remaining, so additional potassium bis(trimethylsilyl)amide (132mg, 0.66mmol) was added and the reaction heated under reflux for a further 24 hours. The cooled mixture was evaporated under reduced pressure, and the residue purified by column chromatography on silica gel using an elution gradient of dichloromethane:methanol (100:0 to 95:5) to give the title compound, 60mg. δ(CDCl3) : 1.03 (3H, t), 1.40 (3H, t), 1.58 (3H, t), 1.84 (3H, m), 2.08 (1 H, m), 2.41 (2H, q), 2.56 (4H, m), 3.14 (6H, m), 3.70-3.90 (2H, m), 4.30-4.50 (3H, m), 4.75 (2H, q), 8.62 (1 H, s), 9.02 (1 H, s), 10.62 (1 H, s). LRMS : m/z 546 (M+1)+ A mixture of the title compound from preparation 48 (300mg, 0.52mmol), potassium bis(trimethylsilyl)amide (320mg, 1.57mmol) and ethyl acetate (50µl, 0.52mmol) in ethanol (40ml) was heated at 130°C in a sealed vessel for 18 hours. The cooled mixture was concentrated under reduced pressure and the residue partitioned between water and dichloromethane and the layers separated. The aqueous phase was extracted with dichloromethane, and the combined organic solutions were dried (Na2SO4), and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using an elution gradient of dichloromethane:methanol (100:0 to 90:10), and triturated with ethyl acetate to afford the title compound as a white solid, 80mg. δ (CDCl3) : 1.01 (3H, t), 1.18 (3H, t), 1.57 (3H, t), 2.41 (2H, q), 2.58 (6H, m), 3.14 (4H, m), 4.77 (6H, m), 6.08 (1H, m), 6.96 (1 H, d), 7.57 (1H, d), 8.62 (1H, d), 9.00 (1H, d), 10.67 (1H, s). LRMS : m/z 556 (M+1)+ A mixture of the title compound of preparation 54 (130mg, 0.24mmol) and potassium bis(trimethylsilyl)amide (58mg, 0.29mmol) in ethanol (6ml) was heated at 130°C for 16 hours in a sealed vessel. The cooled mixture was concentrated under reduced pressure, the residue suspended in sodium bicarbonate solution (15ml) and extracted with ethyl acetate (3x15ml). The combined organic extracts were dried (MgSO4) and evaporated under reduced pressure. The residual gum was purified by column chromatography on silica gel twice, using dichloromethane:methanol:0.88 ammonia (89:10:1) as eluant and repeated using ethyl acetate:methanol:diethylamine (78:20:2) as eluant to afford the title compound, 32mg, as a beige foam. δ (CDCl3) : 1.02 (3H, t), 1.41 (3H, t), 1.58 (3H, t), 2.41 (2H, q), 2.56 (7H, m), 3.10 (6H, m), 3.27 (2H, t), 4.47 (2H, t), 4.77 (2H, q), 8.61 (1 H, s), 9.00 (1 H, s), 10.50-10.80 (1 H, br s). LRMS : m/z 519 (M+1)+ The following tabulated examples of the general structure: were prepared from the corresponding carboxamides, following a similar procedure to that described in example 12. A mixture of the title compound from preparation 53 (470mg, 0.86mmol) and potassium bis(trimethylsilyl)amide (600mg, 3.0mmol) in ethanol (45ml) was heated at 130°C for 16 hours. The cooled mixture was concentrated under reduced pressure, the solution diluted with aqueous sodium bicarbonate solution to give pH 8, and extracted with ethyl acetate (3x). The combined organic extracts were dried (MgSO4) and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using dichloromethane:methanol:0.88 ammonia (91.75:7.5:0.75) as eluant to give the title compound, 170mg. δ (CDCl3) : 1.02 (3H, t), 1.38 (3H, t), 1.58 (3H, m), 2.40 (2H, q), 2.50 (3H, s), 2.57 (4H, m), 3.01 (2H, q), 3.16 (4H, m), 3.79 (2H, t), 3.90 (2H, t), 4.78 (2H, q), 5.12 (1 H, m), 8.62 (1 H, d), 9.01 (1H, d), 10.62 (1 H, s). A mixture of the title compound from preparation 55 (150mg, 0.27mmol) and potassium bis(trimethylsilyl)amide (109mg, 0.55mmol) in n-butanol (5ml) was heated at 120°C for 16 hours in a sealed vessel. The cooled reaction mixture was poured into saturated aqueous sodium bicarbonate solution, and extracted with ethyl acetate. The combined organic extracts were dried (MgSO4), and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using dichloromethane:methanol (90:10) as eluant to afford the title compound as a white foam, 27mg. δ (CDCl3) : 1.02 (6H, m), 1.42 (3H, t), 1.57 (2H, m), 1.95 (2H, m), 2.30 (6H, s), 2.41 (2H, q), 2.57 (4H, m), 2.90 (2H, t), 3.05 (2H, q), 3.16 (4H, m), 4.40 (2H, t), 4.66 (2H, t), 8.61 (1 H, d), 9.01 (1 H, t), 10.60 (1 H, s). Trifluoroacetic acid (3ml) was added to a solution of the title compound from preparation 63 (350mg, 0.57mmol) in dichloromethane (3ml), and the reaction stirred at room temperature for 2 ½ hours. The reaction was concentrated under reduced pressure and the residual gum was triturated several times with ether. The resulting suspension was sonicated for a minute, then the solid filtered, washed with ether, and dried to give the title compound as a white powder, 280mg. Found : C, 42.82; H, 4.80; N, 14.92. C23H32N8O4S;2CF3CO2H;H2O requires C, 42.52; H, 4.76; N, 14.69%. δ (DMSOd6) : 1.14 (3H, m), 1.21 (3H, t), 1.34 (3H, t), 2.70-3.44 (12H, m), 4.47 (6H, m), 5.68 (1 H, m), 8.24 (1H, s), 8.74 (1 H, s), 9.14-9.30 (2H, m), 12.02 (1H, s). The title compound was obtained as a belge-coloured powder, (51%), from the title compound of preparation 66, following a similar procedure to that described in example 18. δ(DMSOd6) : 0.86 (3H, t), 1.07-1.46 (12H, m), 2.41-3.50 (12H, m), 4.49 (4H, m), 5.38 (1H, m), 5.68 (1 H, m), 8.26 (1H, s), 8.74 (1H, s), 9.00 (1H, m), 9.26 (1 H, m), 11.96 (1H, s). The title compound was obtained as a white solid, (79%) from the title compound from preparation 61 and trifluoroacetic acid, following the procedure described in example 18. δ(DMSOd6) : 0.94 (3H, t), 1.12 (3H, m), 1.26 (3H, t), 1.73 (2H, m), 2.41 (6H, m), 2.60 (3H, s), 2.68-3.60 (7H, m), 4.39 (2H, t), 4.60 (2H, t), 8.23 (1H, s), 8.57 (2H, m), 8.74 (1 H, s), 11.94 (1 H, s). Sodium triacetoxyborohydride (81 mg, 0.38mmol) was added to a solution of the title compound from example 18 (215mg, 0.28mmol), acetaldehyde (17.3µl, 0.31mmol), acetic acid (16µl, 0.28mmol) and triethylamine (7.9µl, 0.28mmol) in tetrahydrofuran (6ml), and the reaction stirred at room temperature for 16 hours. The reaction mixture was diluted with saturated aqueous sodium bicarbonate solution (30ml), and this mixture extracted with ethyl acetate (2x30ml). The combined organic extracts were dried (MgSO4), and evaporated under reduced pressure. The residual gum was purified by column chromatography on silica gel using dichloromethane:methanol (90:10) as eluant, to give the title compound, 120mg. δ (CDCl3) : 1.04 (6H, m), 1.38 (3H, t), 1.58 (3H, t), 2.41 (2H, q), 2.57 (4H, m), 2.68 (2H, q), 3.01 (2H, q), 3.15 (4H, m), 3.76 (2H, m), 3.95 (2H, m), 4.76 (2H, q), 5.16 (1 H, m), 8.63 (1 H, d), 9.02 (1 H, d), 10.68 (1H, s). Acetyl chloride (6mg, 0.076mmol) was added to a mixture of the title compound from example 18 (43mg, 0.056mmol) and triethylamine (8.5mg, 0.086mmol) in dichloromethane (2ml), and the reaction stirred for 36 hours at room temperature. The mixture was treated with aqueous saturated sodium bicarbonate solution and extracted with ethyl acetate (2x). The combined organic extracts were dried (MgSO4), and evaporated under reduced pressure. The residual gum was purified by column chromatography on silica gel using an elution gradient of dichloromethane:methanol (97:3 to 95:5) to give the title compound, 19mg. δ (CDCl3) : 1.02 (3H, t), 1.38 (3H, t), 1.60 (3H, t), 1.98 (3H, s), 2.42 (2H, q), 2.58 (4H, m), 3.02 (2H, q), 3.16 (4H, m), 4.50 (2H, m), 4.59 (1H, m), 4.78 (2H, q), 5.05 (1 H, m), 5.31 (1 H, m), 8.62 (1H, d), 9.01 (1 H, d), 10.70 (1 H, s). The title compound was obtained (30%) from the compound of preparation 68, and acetyl chloride, following the procedure described in example 22. δ (CDCl3) : 1.02 (3H, t), 1.40 (3H, t), 1.56 (3H, t), 2.00 (2H, m), 2.17 (3H, s), 2.23-2.44 (4H, m), 2.55 (4H, m), 2.78 (1H, m), 3.09 (6H, m), 3.27 (1 H, m), 4.06 (1H, m), 4.50 (1H, m), 4.70-4.90 (3H, m), 8.62 (1 H, d), 9.02 (1H, d), 10.60 (1H, s). The title compound was obtained (74%) from the compound of example 20, and acetyl chloride, following the procedure described in example 22. δ (CDCl3) : 1.02 (3H, t), 1.14 (3H, t), 1.40 (3H, t), 1.99 (2H, m), 2.06 (3H, s), 2.42 (2H, q), 2.57 (4H, m), 2.80 (3H, s), 3.01 (2H, q), 3.16 (4H, m), 3.93 (2H, t), 4.50 (2H, t), 4.62 (2H, t), 8.62 (1 H, d), 9.04 (1 H, d), 10.66 (1H, s). The title compound was obtained (33%) from the title compound from preparation 68 and methanesulphonic anhydride, foiiowing a similar procedure to that described in example 22. δ (CDCl3) : 1.02 (3H, t), 1.40 (3H, t), 1.58 (3H, t), 2.10 (2H, m), 2.40 (2H, q), 2.56 (6H, m), 2.90 (3H, s), 3.00-3.20 (8H, m), 4.01 (2H, m), 4.21 (1 H, m), 4.78 (2H, q), 8.62 (1H, d), 9.01 (1H, s), 10.61 (1H, s). Trifluoroacetic acid (0.5ml) was added to a solution of the title compound from preparation 65 (28mg, 0.043mmol) in dichloromethane (0.5ml), and the solution stirred for 2 ½ hours at room temperature. The mixture was evaporated under reduced pressure and the residue triturated with ether several times. The resulting precipitate was filtered off, washed with ether and dried, to give a beige-coloured solid. Acetyl chloride (16µl, 0.22mmol) was added to a solution of this intermediate in dichloromethane (3ml) and triethylamine (61µl, 0.44mmol), and the reaction stirred at room temperature for 16 hours. Aqueous saturated sodium bicarbonate solution (10ml) was added, and the mixture extracted with ethyl acetate. The combined organic extracts were dried (MgSO4) and evaporated under reduced pressure to give a gum. The crude product was purified by column chromatography on silica gel using an elution gradient of dichloromethane:methanol (98:2 to 95:5) to give the title compound, 7mg. δ(CDCl3) : 1.02 (6H, m), 1.38 (3H, t), 1.57 (2H, m), 1.94 (5H, m), 2.40 (2H, q), 2.47 (4H, m), 3.02 (2H, q), 3.14 (4H, m), 4.50 (2H, m), 4.59 (1 H, m), 4.67 (2H, m), 5.06 (1 H, m), 5.31 (1 H, m), 8.62 (1 H, d), 9.01 (1 H, d), 10.68 (1 H, s). Potassium bis(trimethylsilyl)amide (149.7mg, 0.75mmol) was added to a solution of the title compound of example 3 (80mg, 0.15mmol) in 2-methyl-n-propanol (5ml) and the reaction stirred at 120°C for 18 hours. The cooled mixture was concentrated under reduced pressure and the residue suspended in water (10ml), and extracted with ethyl acetate (3x10ml). The combined organic extracts were dried (MgSO4) and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel, using an elution gradient of dichloromethane:methanol (100:0 to 95:5) to afford the title compound, 67mg, as a solid. Found : C, 54.92; H, 7.08; N, 16.92. C26H39N7O5S ;0.7H2O requires C, 54.38; H, 7.09; N, 17.07% δ(CDCl3) : 1.03 (6H, m), 1.14 (6H, d), 1.83 (2H, m), 2.30 (1 H, m), 2.41 (2H, q), 2.55 (4H, m), 3.01 (2H, t), 3.13 (4H, m), 3.30 (3H, s), 3.90 (2H, t), 4.46 (4H, m), 8.61 (1 H, s), 9.01 (1 H, s), 10.60 (1H, s). LRMS : m/z 562 (M+1)+ The compounds of the following tabulated examples of general formula: were prepared from the appropriate 2-ethoxypyridin-3-ylpyrazolo[4,3-d]pyrimidinone and alcohol, following similar procedures to that described in example 27. wherein for examples 28 and 29 R2 is n-propyl and for examples 30 to 33 R2 is ethyl. Potassium bis(trimethylsilyl)amide (306mg, 1.54mmol) was added to a solution of the title compound of example 2 (155mg, 0.31 mmol) in 2-methyl-n-propanol (10ml) and the reaction stirred under reflux for 24 hours. The cooled mixture was evaporated under reduced pressure and the residue purified by column chromatography on silica gel, using an elution gradient of dichloromethane:methanol (100:0 to 95:5) to afford the title compound, 88mg, as a solid. Found : C, 52.45; H, 6.43; N, 17.33. C24H35N7O5S;1.1H2O requires C, 52.08; H, 6.77; N, 17.71% δ(CDCl3) : 1.14 (6H, d), 1.41 (3H, t), 2.30 (4H, m), 2.52 (4H, m), 3.07 (2H, q), 3.15 (4H, m), 3.30 (3H, s), 3.92 (2H, t), 4.46 (4H, m), 8.62 (1H, s), 9.03 (1H, s). LRMS : m/z 534 (M+1)+ The compounds of the following tabulated examples of the general formula: were prepared from the title compound of example 8 and the appropriate alcohol, following similar procedures to that described in example 34. A solution of the title compound from example 4 (129mg, 0.25mmol) in 2-methoxyethanol (10ml) was heated at 110°C for 15 minutes, then cooled. Potassium bis(trimethylsilyl)amide (249mg, 1.50mmol) was added and the reaction stirred at 130°C for 22 hours. The cooled mixture was partitioned between ethyl acetate and aqueous sodium bicarbonate solution, and the layers separated. The organic phase was dried (MgSO4) and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel using dichloromethane:methanol (98:2) as eluant to afford the title compound as a yellow foam, 59mg. δ (CDCl3) : 0.79 (3H, t), 1.03 (3H, t), 1.39 (3H, t), 1.60 (3H, d), 1.90 (1H, m), 2.22 (1 H, m), 2.41 (2H, q), 2.57 (4H, m), 2.97-3.18 (6H, m), 3.57 (3H, s), 3.85 (2H, m), 4.40 (1 H, m), 4.78 (2H, m), 8.62 (1 H, s), 8.98 (1 H, s), 10.76 (1 H, s). LRMS : m/z 548 (M+1)+ The title compound was obtained as a white solid (64%) from the title compound from example 7 and 2-methoxyethanol, following the procedure described in example 41. δ (CDCl3) : 1.01 (3H, t), 1.40 (3H, t), 1.80-1.98 (5H, m), 2.05 (2H, m), 2.40 (2H, q), 2.54 (4H, m), 3.00 (2H, m), 3.15 (4H, m), 3.55 (3H, s), 3.83 (2H, t), 4.30 (2H, d), 4.76 (2H, t), 8.60 (1 H, s), 8.96 (1 H, d), 10.74 (1 H, br s). The title compound was obtained as a yellow foam (57%) from the title compound from example 9 and 2-methoxyethanol, following the procedure described in example 41. δ(CDCl3) : 1.02 (3H, t), 1.38 (3H, t), 1.59 (3H, d), 2.41 (2H, q), 2.56 (4H, m), 3.05 (6H, m), 3.22 (3H, s), 3.56 (3H, s), 3.72 (1H, m), 3.84 (2H, m), 3.96 (1 H, dd), 4.71 (1H, m), 4.78 (2H, m), 8.61 (1 H, s), 8.97 (1 H, s), 10.78 (1 H, br s). A mixture of the title compound from example 8 (250mg, 0.48mmol) and potassium bis(trimethylsilyl)amide (480mg, 2.41 mmol) in 1-methoxy-2-propanol (20ml) was heated at 120°C for 18 hours. The cooled mixture was evaporated under reduced pressure and the residue purified by column chromatography on silica gel using an elution gradient of dichloromethane:methanol (100:0 to 95:5) to give a white solid. This material was purified by HPLC, using a Chiralpak AD 250 column, with hexane:1% diethylamine in A mixture of the title compound from example 3 (345mg, 0.65mmol) and potassium bis(trimethylsilyl)amide (645mg, 3.24mmol) in 1-methoxy-2-propanol (2.5ml) was heated at 110°C for 16 hours. The cooled mixture was diluted with ethyl acetate, then washed with aqueous ammonium chloride solution, then water, dried (MgSO4), and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel using dichloromethane:methanol (97:3) as eluant to give a yellow gum. This material was purified by HPLC, using a Chiralpak AD 250 column, with hexane:1% diethylamine in Potassium bis(trimethylsilyl)amide (200mg, 1.0mmol) was added to a solution of the title compound from preparation 60 (120mg, 0.2mmol) in 1-methoxy-2-propanol (10ml), and the reaction heated under reflux for 18 hours. The cooled mixture was evaporated under reduced pressure and the residue purified by column chromatography on silica gel using an elution gradient of dichloromethane:methanol (100:0 to 90:10) to give the title compound of example 48, 8mg. δ (CDCl3) : 1.02 (3H, t), 1.40 (3H, t), 1.50 (3H, d), 2.41 (2H, q), 2.58 (4H, m), 3.10 (7H, m), 3.58 (3H, s), 3.70 (2H, m), 4.20 (2H, m), 4.40 (2H, m), 5.59 (1 H, m), 8.61 (1 H, d), 8.88 (1 H, d), 10.90 (1H, s). LRMS : m/z 550 (M+1)+ and the title compound of example 49 as a white solid. δ (CDCl3) : 1.02 (3H, t), 1.40 (3H, t), 1.58 (3H, t), 2.41 (2H, q), 2.56 (4H, m), 2.87 (1H, br s), 3.02-3.19 (6H, m), 4.22 (2H, m), 4.42 (2H, t), 4.77 (2H, q), 8.62 (1 H, s), 9.02 (1 H, s), 10.66 (1 H, s). LRMS : m/z 506 (M+1)+ Potassium bis(trimethylsilyl)amide (359mg, 1.8mmol) was added to a solution of the title compound from preparation 70 (250mg, 0.45mmol) in 2-methoxyethanol (5ml), and the reaction heated under reflux for 6 hours. Tlc analysis showed starting material remaining, so additional potassium bis(trimethylsilyl)amide (90mg, 0.45mmol) was added to the cooled mixture, and the reaction stirred for a further 4 hours under reflux. The cooled mixture was concentrated under reduced pressure and the residue purified by column chromatography on silica gel using dichloromethane:methanol (95:5) as eluant. The product was triturated with ether and pentane to afford the title compound as a crystalline solid, 75mg. Found : C, 52.88; H, 6.59; N, 17.39. C25H37N7O6S requires C, 53.27; H, 6.62; N, 17.39% d (CDCl3) : 1.02 (3H, t), 1.12 (3H, t), 1.40 (3H, t), 2.41 (2H, q), 2.57 (5H, m), 3.06 (2H, q), 3.15 (4H, m), 3.42 (2H, q), 3.57 (3H, s), 3.85 (2H, t), 3.94 (2H, t), 4.44 (2H, t), 4.78 (2H, t), 8.61 (1 H, s), 8.98 (1H, s), 10.78 (1 H, s). Potassium bis(trimethylsilyl)amide (732mg, 3.68mmol) was added to a solution of the title compound from preparation 40 (958mg, 1.84mmol) in 2-methoxyethanol (20ml) and the reaction stirred for 16 hours at 120°C. The cooled mixture was concentrated under reduced pressure, the residue dissolved in water (25ml) and the pH adjusted to 2 using hydrochloric acid (2N). The solution was washed with ethyl acetate, neutralised and the resulting precipitate filtered off. The solid was dissolved in ethyl acetate, evaporated under reduced pressure and the crude product was purified by column chromatography on silica gel using dichloromethane:methanol:0.88 ammonia (95:5:0.5) as eluant to give the title compound, 53mg. δ(CDCl3) : 0.97 (6H, d), 1.40 (3H, t), 2.28 (4H, m), 2.52 (4H, m), 3.02 (2H, q), 3.16 (4H, m), 3.57 (3H, s), 3.86 (2H, t), 4.10 (2H, d), 4.78 (2H, t), 8.61 (1 H, d), 8.98 (1H, d), 10.79 (1 H, s). LRMS : m/z 534 (M+1)+ Potassium bis(trimethylsilyl)amide (1.85g, 9.35mmol) was added to a solution of the title compound from preparation 36 (1.0g, 1.89mmol) in 2-methoxyethanol (8ml) and the reaction stirred for 18 hours at 120°C. The cooled mixture was concentrated under reduced pressure, and the residue partitioned between water (200ml) and dichloromethane (200ml). The resulting precipitate was filtered off, and the layers separated. The aqueous phase was extracted with dichloromethane (2x200ml), and the combined organic solutions evaporated under reduced pressure, to give a cream solid. The isolated solids were combined and purified by column chromatography on silica gel using dichloromethane:methanol (90:10) as eluant to give the title compound as a pale yellow solid, 220mg. δ (CDCl3) : 0.95 (6H, d), 1.05 (3H, t), 1.40 (3H, d), 2.40 (3H, m), 2.55 (4H, m), 3.00 (2H, q), 3.10 (4H, m), 3.55 (3H, s), 3.85 (2H, t), 5.05 (2H, d), 4.80 (2H, t), 8.60 (1 H, s), 8.95 (1 H, s), 10.80 (1 H, s). LRMS : m/z 549 (M+1)+ The title compound was obtained as a beige solid (31%) from the title compound from preparation 41 and 2-methoxyethanol, using a similar procedure to that described 52. δ (CDCl3) : 1.41 (3H, t), 1.88 (4H, m), 2.07 (2H, m), 2.26 (3H, s), 2.52 (4H, m), 3.00 (3H, m), 3.15 (4H, m), 3.57 (3H, s), 3.86 (2H, m), 4.33 (2H, d), 4.79 (2H, t), 8.62 (1 H, s), 8.98 (1 H, s), 10.75 (1 H, s). A mixture of the title compound from preparation 52 (90mg, 0.156mmol), potassium bis(trimethylsilyl)amide (156mg, 0.78mmol) and ethyl acetate (14mg, 0.156mmol) in iso-propanol (12ml) was stirred at 130°C for 6 hours in a sealed vessel. The cooled reaction mixture was poured into saturated aqueous sodium bicarbonate solution (60ml), and extracted with ethyl acetate (60ml). The combined organic extracts were dried (MgSO4), and evaporated under reduced pressure to give a gum. The crude product was purified by column chromatography on silica gel using dichloromethane:methanol:0.88 ammonia (92.6:6.6:0.6) to afford the title compound as a beige foam, 36mg. δ(CDCl3) : 1.01 (3H, t), 1.12 (6H, d), 1.39 (3H, t), 1.94 (2H, m), 2.15 (2H, m), 2.22-2.44 (6H, m), 2.55 (6H, m), 3.02 (4H, m), 3.14 (4H, m), 4.22 (1H, m), 4.43 (2H, d), 8.60 (1 H, d), 9.00 (1 H, d), 10.54 (1 H, s). The compounds of the following tabulated examples of general formula: were prepared from the appropriate carboxamide and alcohol, following similar procedures to that described in example 54. Sodium hydride (13mg, 60% dispersion in mineral oil, 0.33mmol) was added to a solution of the title compound from preparation 59 (145mg, 0.30mmol) in tetrahydrofuran (2ml) and the solution stirred for 30 minutes. 2-Chloro-N,N-dimethylacetamide (40mg, 0.034mmol) was added and the reaction stirred at room temperature for 16 hours, followed by a further 16 hours at 60°C. The cooled mixture was treated with aqueous sodium bicarbonate solution (15ml) and extracted with ethyl acetate (2x15ml). The combined organic extracts were dried (MgSO4) and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using dichloromethane:methanol (96.5:3.5) as eluant, and repeated using ethyl acetate:diethylamine (90:10) as eluant, to afford the title compound of example 59, 20mg, δ(CDCl3) ; 1.03 (6H, t), 1.41 (3H, t), 1.59 (2H, m), 1.95 (2H, m), 2.41 (2H, q), 2.57 (4H, m), 3.00 (5H, m), 3.15 (7H, m), 4.66 (2H, t), 5.44 (2H, s), 8.63 (1 H, d), 9.10 (1H, d), 10.85 (1H, s). and the title compound of example 60, 45mg. δ(CDCl3) : 1.01 (6H, t), 1.42 (3H, t), 1.55 (2H, m), 1.94 (2H, m), 2.40 (2H, q), 2.55 (4H, m), 3.00 (5H, m), 3.14 (7H, m), 4.64 (2H, t), 5.19 (2H, s), 8.61 (1 H, d), 9.01 (1 H, d), 10.58 (1H, s). Trifluoroacetic acid (1ml) was added to a solution of the title compound from preparation 62 (76mg, 0.117mmol) in dichloromethane (1ml), and the solution stirred for 2 ½ hours at room temperature. The mixture was evaporated under reduced pressure, the residue triturated well with ether, and the resulting precipitate, filtered and dried to give a white powder. Methanesulphonyl chloride (20µl, 0.26mmol) was added to a solution of this intermediate in dichloromethane (2ml) and triethylamine (65µl, 0.47mmol), and the reaction stirred at room temperature for 1 ½ hours. The mixture was treated with saturated aqueous sodium bicarbonate solution (10ml), and extracted with ethyl acetate (2x10ml). The combined organic extracts were dried (MgSO4) and evaporated under reduced pressure to give a gum. The crude product was purified by column chromatography on silica gel using dichloromethane:methanol (96:4) as eluant to afford the title compound as a beige foam, 30mg. δ(CDCl3) : 1.02 (6H, t), 1.42 (3H, t), 1.54 (2H, m), 1.94 (2H, m), 2.41 (2H, q), 2.57 (4H, m), 2.65 (3H, s), 2.80 (3H, s), 3.13 (6H, m), 3.76 (2H, t), 4.52 (2H, t), 4.67 (2H, t), 8.62 (1 H, d), 9.04 (1 H, d), 10.68 (1 H, s). The title compound was obtained as a white solid, (34%), from the title compound from preparation 67 and methanesulphonyl chloride, following the procedure described in example 61. δ(CDCl3) : 1.01 (6H, t), 1.40 (3H, t), 1.55 (2H, m), 1.95 (2H, m), 2.08 (2H, m), 2.42 (2H, q), 2.57 (6H, m), 2.90 (3H, s), 3.01-3.18 (8H, m), 4.01 (2H, m), 4.42 (1H, m), 4.66 (2H, t), 8.62 (1 H, d), 9.01 (1 H, d), 10.60 (1 H, s). Potassium bis(trimethylsilyl)amide (134mg, 0.67mmol) was added to a suspension of the title compound from preparation 49 (200mg, 0.33mmol) and ethyl acetate (50µl, 0.51 mmol) in ethanol (5ml) and the reaction mixture heated at 120°C in a sealed vessel for 12 hours. The cooled reaction was concentrated under reduced pressure and the residue partitioned between ethyl acetate and water, and the layers separated. The aqueous phase was extracted with ethyl acetate, the combined organic solutions dried (MgSO4), and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using dichloromethane:methanol (98:2) as eluant to give the title compound as a yellow oil, 10mg. δ (CDCl3) : 1.02 (3H, t), 1.36 (3H, t), 1.60 (3H, t), 2.41 (2H, q), 2.57 (4H, m), 3.17 (6H, m), 4.78 (2H, q), 7.82 (2H, d), 8.42 (2H, d), 8.66 (1 H, d), 9.07 (1 H, d), 10.78 (1 H, br s). LRMS : m/z 583 (M+1)+ A solution of the title compound from example 63 (100mg, 0.17mmol) in methanol (2ml) was added to a suspension of iron powder (29mg, 0.52mmol) in ammonium chloride (45mg, 0.85mmol) in water (2ml), and the reaction heated at 60°C for 1 hour. The cooled mixture was filtered, and the filtrate evaporated under reduced pressure to give the title compound as a pale brown solid, 93mg. δ (CDCl3) : 1.02 (3H, t), 1.26 (3H, t), 1.59 (3H, t), 2.41 (2H, q), 2.57 (4H, m), 3.03 (2H, q), 3.16 (4H, m), 3.94 (2H, s), 4.77 (2H, q), 6.78 (2H, d), 7.27 (2H, d), 8.63 (1 H, d), 9.07 (1H, d), 10.66 (1H, s). LRMS : m/z 553 (M+1)+ Methanesulphonyl chloride (15µl, 0.19mmol) was added to an ice-cooled solution of the title compound from example 64 (93mg, 0.17mmol) in pyridine (2ml), and the reaction allowed to warm to room temperature, and stirred for 90 minutes. Tlc analysis showed starting material remaining, so additional methanesulphonyl chloride (15µl, 0.19mmol) was added, and the reaction stirred for a further hour. The reaction was quenched by the addition of aqueous ammonium chloride solution, and extracted with ethyl acetate. The combined organic extracts were dried (MgSO4) and concentrated under reduced pressure. The residual solid was purified by column chromatography on silica gel using dichloromethane:methanol:0.88 ammonia (90:10:1) as eluant, then repeated using dichloromethane:methanol:0.88 ammonia (95:5:1) to afford the title compound, 36mg. δ (CDCl3) : 1.03 (3H, t), 1.34 (3H, t), 1.59 (3H, t), 2.42 (2H, q), 2.58 (4H, m), 3.14 (9H, m), 4.78 (2H, q), 6.92 (1 H, s), 7.44 (2H, d), 7.58 (2H, d), 8.65 (1H, d), 9.07 (1H, d), 10.75 (1 H, s). LRMS : m/z 631 (M+1)+ Pyridine (0.1ml, 1.08mmol) was added to a mixture of the title compound from preparation 58 (250mg, 0.54mmol), copper (II) acetate monohydrate (145mg, 0.72mmol), benzeneboronic acid (132mg, 1.08mmol) and 4Å molecular sieves (392mg) in dichloromethane (5ml), and the reaction stirred at room temperature for 4 days. The reaction mixture was filtered and the filtrate evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using dichloromethane:methanol:0.88 ammonia (97:3:0.5) as eluant, and triturated with ether:hexane. The resulting solid was filtered and recrystallised from A mixture of the title compound from preparation 58 (100mg, 0.22mmol), copper (II) acetate monohydrate (58mg, 0.29mmol), 4-cyanobenzeneboronic acid (63mg, 0.44mmol) and 4Å molecular sieves (156mg) in pyridine (1ml) and N-methylpyrrolidine (1ml) was irradiated by microwave at full power for 3x10 seconds, followed by 2 x20 seconds. The mixture was evaporated under reduced pressure and the residue purified by column chromatography on silica gel using dichloromethane:methanol:0.88 ammonia (95:5:0.5) as eluant. The product was recrystallised from dichloromethane: Tris(dibenzylideneacetone)dipalladium (0) (8mg, 0.009mmol), R-BINAP (8mg, 0.013mmol), sodium Cesium carbonate (353mg, 1.09mmol) followed by 2-chloropyrazine (100µl, 1.12mmol) were added to a solution of the title compound from preparation 58 (500mg, 1.08mmol) in N,N-dimethylformamide (10ml), and the reaction heated at 120°C for 18 hours. The cooled mixture was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel using dichloromethane:methanol:0.88 ammonia (98:2:1) as eluant. The product was further purified by reverse phase HPLC on silica gel, using an elution gradient of acetonitrile:0.1% aqueous trifluoroacetic acid (5:95 to 50:50) to afford the title compound, 86mg. δ (CDCl3) : 1.38 (6H, 2xt), 1.58 (3H, t), 2.98-3.22 (6H, m), 3.54 (2H, q), 3.76 (2H, m), 4.00 (2H, m), 4.78 (2H, q), 8.57-8.74 (3H, m), 8.98 (1 H, d), 9.57 (1 H, s). LRMS : m/z 540 (M+1)+ The title compound was obtained, (7%) from the title compound from preparation 58 and 2-bromothiazole, following a similar procedure to that described in example 69. δ(CD3OD) : 1.28-1.41 (6H, m), 1.48 (3H, t), 3.20-3.34 (6H, m), 3.34-3.60 (6H, m), 4.65 (2H, q), 7.59 (1 H, d), 7.78 (1 H, d), 8.58 (1 H, d), 8.78 (1 H, d). LRMS: m/z 545 (M+1)+ Sodium hydride (22mg, 60% dispersion in mineral oil, 0.55mmol) was added to an ice-cooled solution of the title compound from preparation 58 (250mg, 0.54mmol) in tetrahydrofuran (5ml), and the solution then allowed to warm to room temperature. 4,6-Dichloropyrimidine (80mg, 0.54mmol) was added, and the reaction stirred at 65°C for 18 hours. The cooled mixture was evaporated under reduced pressure and the residue purified by column chromatography on silica gel using dichloromethane:methanol:0.88 ammonia (95:5:0.5) as eluant. The product was triturated with dichloromethane to afford the title compound as a pale yellow solid, 5mg. δ (CDCl3) : 1.02 (3H, t), 1.40 (3H, t), 1.60 (3H, t), 2.42 (2H, q), 2.58 (4H, m), 3.16 (4H, m), 3.62 (2H, q), 4.78 (2H, q), 8.40 (1 H, s), 8.67 (1 H, d), 8.97 (1H, s), 9.10 (1H, d), 10.79 (1 H, s). LRMS : m/z 574, 576 (M+1)+ The title compound was obtained (8%), from the compound from preparation 58 and 2-chloropyrimidine, following a similar procedure to that described in example 71. Found : C, 53.33; H, 5.36; N, 23.12. C24H29N9O4S requires C, 53.42; H, 5.42; N, 23.36%. δ(CDCl3) : 1.03 (3H, t), 1.37 (3H, t), 1.59 (3H, t), 2.41 (2H, q), 2.58 (4H, m), 3.17 (4H, m), 3.55 (2H, q), 4.78 (2H, q), 7.42 (1 H, m), 8.64 (1 H, d), 8.95 (2H, d), 9.11 (1H, d), 10.73 (1H, s). LRMS : m/z 540 (M+1)+ Sodium hydride (19mg, 60% dispersion in mineral oil, 0.48mmol) was added to an ice-cold solution of the title compound from preparation 69 (200mg, 0.41 mmol) in tetrahydrofuran (4ml), and the solution stirred for 30 minutes. 2-Chloropyrimidine (56mg, 0.48mmol) was added, and the reaction heated under reflux for 18 hours. The mixture was evaporated under reduced pressure, the residue diluted with water, and extracted with dichloromethane. The combined organic extracts were dried (MgSO4), and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using an elution gradient of dichloromethane:methanol (100:0 to 95:5) to give the title compound, 31 mg. δ (CDCl3) : 1.02 (3H, t), 1.36 (3H, t), 2.42 (2H, q), 2.58 (4H, m), 3.18 (4H, m), 3.50 (2H, q), 3.58 (3H, s), 3.88 (2H, t), 4.80 (2H, t), 7.42 (1 H, m), 8.64 (1 H, d), 8.95 (2H, d), 9.02 (1H, d), 10.82 (1 H, s). LRMS : m/z 570 (M+1)+ The title compound was obtained (35%), from the title compound from preparation 69 and 2-chlorobenzoxazole, following the procedure described in example 73. δ(CDCl3) : 1.02 (3H, t), 1.50 (3H, t), 2.42 (2H, q), 2.58 (4H, m), 3.18 (4H, m), 3.59 (3H, s), 3.62 (2H, q), 3.87 (2H, t), 4.80 (2H, t), 7.43 (2H, m), 7.64 (1H, m), 7.80 (1H, m), 8.65 (1H, d), 9.02 (1H, d), 10.98 (1H, s). LRMS : m/z 609 (M+1)+ Potassium bis(trimethylsilyl)amide (294mg, 1.47mmol) was added to a solution of the compound from example 66 (200mg, 0.37mmol) in 2-methoxyethanol (10ml), and the reaction heated under reflux for 18 hours. The mixture was evaporated under reduced pressure and the residue purified by column chromatography on silica gel using dichloromethane:methanol:0.88 ammonia (97:3:0.5) as eluant. The product was recrystallised from dichloromethane: A mixture of the title compound of preparation 57 (440mg, 0.82mmol), and potassium bis(trimethylsilyl)amide (196mg, 0.98mmol) in ethanol (15ml) was heated at 100°C for 18 hours, in a sealed vessel. The cooled mixture was concentrated under reduced pressure, the residue partitioned between ethyl acetate (20ml) and brine (10ml), and the layers separated. The organic phase was separated, dried (MgSO4), and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel, using an elution gradient of dichloromethane:methanol (100:0 to 95:5) to afford the title compound, 275mg, as a pale yellow solid. δ (CDCl3) : 1.02 (3H, t), 1.60 (3H, t), 1.86 (2H, m), 2.29 (3H, s), 2.52 (4H, m), 2.95 (2H, t), 3.16 (4H, m), 3.35 (3H, s), 3.87 (2H, t), 4.78 (4H, m), 8.64 (1 H, s), 9.09 (1H, s), 10.81 (1H, s). LRMS : m/z 520 (M+1)+ A mixture of the title compound of preparation 56 (1.02g, 1.9mmol) and potassium A mixture of the title compound from example 7 (200mg, 0.38mmol) and copper sulphate pentahydrate (74mg, 0.30mmol) in pyrrolidine (4ml) was heated under reflux for 18 hours. The cooled mixture was concentrated under reduced pressure and the residue purified by column chromatography on silica gel twice using an elution gradient of dichloromethane:methanol (100:0 to 95:5) to give the title compound as a pale brown solid, 109mg. δ(CDCl3) : 1.04 (3H, m), 1.38 (3H, t), 1.90 (8H, m), 2.10 (2H, m), 2.37-2.68 (5H, m), 3.00 (2H, q), 3.14 (4H, m), 3.42 (4H, m), 4.32 (2H, d), 8.00 (1H, s), 8.58 (1H, s). LRMS : m/z 555 (M+1)+ A mixture of the compound from preparation 83 (440mg, 0.83mmol), potassium bis(trimethylsilyl)amide (500mg, 2.51 mmol) and ethyl acetate (100 µl, 1.0mmol) in ethanol (10ml) was heated at 120°C in a sealed vessel for 18 hours. The cooled mixture was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel using an elution gradient of dichloromethane:methanol (100:0 to 95:5) to afford the title compound, 263mg.1Hnmr (CDCl3, 300MHz) δ: 1.01 (3H, t), 1.35 (3H, t), 1.58 (3H, t), 1.96 (2H, m), 2.38-2.60 (8H, m), 2.98 (4H, m), 3.14 (4H, m), 4.76 (2H, q), 4.96 (1H, m), 8.61 (1 H, d), 9.02 (1 H, d), 10.59 (1 H, s). LRMS : m/z 516 (MH+) Potasssium bis(trimethylsilyl)amide (450mg, 2.25mmol) was added to a suspension of the compound from preparation 84 (243mg, 0.45mmol) in ethanol (5ml), and the mixture heated at 100°C in a Reactivial® for 24 hours. Tlc analysis showed starting material remaining, so additional potassium bis(trimethylsilyl)amide (250mg, 1.25mmol) and ethyl acetate (3 drops) were added, and the reaction heated at 111°C for 18 hours. The cooled mixture was partitioned between ethyl acetate and sodium bicarbonate solution, and the phases separated. The aqueous layer was extracted with ethyl acetate (2x), the combined organic solutions washed with brine, dried (MgSO4), and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using methanol:dichloromethane (2:98) as eluant, and triturated with ether to afford the title compound as a white powder, 55mg.1Hnmr (CDCl3, 400MHz) δ : 1.02 (3H, t), 1.39 (3H, t), 1.55 (3H, t), 1.72 (2H, m), 2.05 (2H, m), 2.17 (2H, m), 2.30 (2H, m), 2.40 (2H, q), 2.56 (4H, m), 3.04 (2H, q), 3.16 (4H, m), 4.76 (2H, q), 4.82 (1H, m), 8.61 (1H, s), 9.02 (1H, s), 10.55 (1 H, s). LRMS : m/z 530.8 (MH+) Anal. Found: C, 57.17; H, 6.65; N, 18.14. C25H35N7O4S requires C, 56.69; H, 6.66; N, 18.51%. The title compound was obtained as a white powder in 41% yield from the compound from preparation 85, following the procedure described in example 80.1Hnmr (CDCl3, 400MHz) δ : 1.01 (3H, t), 1.30 (4H, m), 1.40 (3H, t), 1.54 (5H, m), 1.70 (2H, m), 2.40 (2H, q), 2.56 (4H, m), 2.63 (1H, m), 3.02 (2H, q), 3.12 (4H, m), 4.20 (2H, d), 4.74 (2H, q), 8.61 (1 H, d), 9.03 (1H, d), 10.60 (1H, s). LRMS : m/z 547.7 (MH+) The title compound was obtained as a white solid in 35% yield, from the compound of preparation 86, following a similar procedure to that described in example 80.1Hnmr (CDCl3, 400MHz) δ : 1.02 (3H, t), 1.30-1.50 (6H, m), 1.58 (3H, t), 1.78 (1H, m), 1.98 (4H, m), 2.22 (2H, m), 2.41 (2H, q), 2.55 (4H, m), 3.05 (2H, q), 3.16 (4H, m), 4.23 (1 H, m), 4.75 (2H, q), 8.61 (1H, s), 9.01 (1H, s), 10.54 (1 H, s). LRMS : m/z 548.8 (MH+) Anal. Found: C, 57.23; H, 6.96; N, 17.54. C26H37N7O4S requires C, 57.44; H, 6.86; N, 18.03%. Potassium bis(trimethylsilyl)amide (256mg, 1.28mmol) was added to a solution of the compound from preparation 70 (170mg, 0.30mmol) and ethyl acetate (30mg, 0.33mmol) in ethanol (5ml), and the reaction heated at 130°C for 6 hours. The cooled mixture was evaporated under reduced pressure and the residual yellow solid was purified by column chromatography on silica gel using dichloromethane:methanol (97:3) as eluant. The product was triturated with isopropyl ether then re-purified by column chromatography using an elution gradient of dichloromethane:methanol (100:0 to 90:10) to afford the title compound, 20mg.1Hnmr (CDCl3, 400MHz) δ: 1.00 (3H, t), 1.10 (3H, t), 1.40 (3H, t), 1.54 (3H, t), 2.40 (2H, q), 2.50 (4H, m), 3.05 (2H, q), 3.10 (4H, m), 3.40 (2H, q), 3.90 (2H, t), 4.42 (2H, t), 4.70 (2H, q), 8.60 (1 H, s), 9.00 (1 H, s), 10.60 (1 H, s). LRMS : m/z 535 (MH+) Anal. Found: C, 53.97; H, 6.64; N, 18.14, C24H35N7O5S requires C, 54.02; H, 6.61; N, 18.37%. Potassium bis(trimethylsilyl)amide (2.10g, 10.5mmol) was added to a solution of the compound from preparation 90 (1.20g, 2.17mmol) and ethyl acetate (200µl, 2.02mmol) in ethanol (40ml), and the reaction heated in a sealed vessel at 130°C for 6 hours. The cooled mixture was concentrated under reduced pressure and the residue partitioned between ethyl acetate and water, and neutralised by the addition of solid carbon dioxide. The layers were separated, the aqueous phase extracted with ethyl acetate, and the combined organic solutions dried (Na2SO4) and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using an elution gradient of dichloromethane:methanol (99:1 to 96:4), and the product crystallised from ether/pentane to afford the title compound, 250mg.1Hnmr (CDCl3, 300MHz) δ: 1.02 (3H, t), 1.39 (3H, t), 1.58 (6H, m), 2.41 (2H, q), 2.56 (4H, m), 3.08 (6H, m), 3.22 (3H, s), 3.74 (1H, m), 3.98 (1H, m), 4.74 (3H, m), 8.62 (1 H, d), 9.02 (1 H, d), 10.58 (1 H, s). Anal. Found: C, 53.79; H, 6.61; N, 18.26. C24H35N7O5S requires C, 54.02; H, 6.61; N, 18.38%. The title compound was obtained as a crystalline solid in 17% yield from the compound from preparation 89, following a similar procedure to that described in example 84.1Hnmr (CDCl3, 300MHz) δ: 1.02 (3H, t), 1.39 (3H, t), 1.58 (6H, m), 2.40 (2H, q), 2.55 (4H, m), 3.08 (6H, m), 3.22 (3H, s), 3.70 (1H, m), 3.98 (1 H, m), 4.72 (3H, m), 8.61 (1 H, d), 9.02 (1 H, d), 10.58 (1 H, s). LRMS : m/z 534.4 (MH+) Anal. Found: C, 53.67; H, 6.62; N, 18.27. C24H35N7O5S requires C, 54.02; H, 6.61; N, 18.38%. Potassium bis(trimethylsilyl)amide (145mg, 0.72mmol) was added to a solution of the compound from preparation 88 (200mg, 0.36mmol) in 3-methyl-3-pentanol (4ml), and the reaction heated at 130°C for 10 hours, then cooled. The mixture was evaporated under reduced pressure and the residue purified twice by column chromatography on silica gel using dichloromethane:methanol (97:3) as eluant, to afford the title compound, 40mg.1Hnmr (CDCl3, 400MHz) δ: 1.00 (3H, t), 1.40 (3H, t), 1.57 (3H, t), 2.20 (2H, m), 2.42 (2H, m), 2.60 (4H, m), 3.03 (2H, q), 3.15 (4H, m), 3.30 (3H, s), 3.35 (2H, t), 4.40 (2H, t), 4.72 (2H, q), 8.60 (1 H, s), 9.00 (1H, s), 10.60 (1 H, br s). LRMS : m/z 535 (MH+) A mixture of the compound from preparation 83 (238mg, 0.45mmol) and potassium bis(trimethylsilyl)amide (450mg, 2.25mmol) in 2-methoxyethanol (5ml) was stirred under reflux for 6 hours. The cooled mixture was partitioned between ethyl acetate and sodium bicarbonate solution, and the layers separated. The organic phase was washed with brine, dried (MgSO4) and evaporated under reduced pressure. The residual orange oil was purified by column chromatography on silica gel using dichloromethane:methanol (98:2) as eluant to afford the title compound as an off-white foam, 150mg.1Hnmr (CDCl3, 300 MHz) δ : 1.00 (3H, t), 1.38 (3H, t), 1.85-2.05 (2H, m), 2.40 (2H, q), 2.45 (2H, m), 2.54 (4H, m), 2.90-3.05 (4H, m), 3.15 (4H, m), 3.55 (3H, s), 3.80 (2H, m), 4.74 (2H, m), 4.95 (1H, m), 8.60 (1H, s), 8.98 (1H, s), 10.75 (1H, s). LRMS : m/z 546.4 (MH+) Anal. Found: C, 54.53; H, 6.59; N, 17.77. C25H35N7O5S requires C, 55.03; H, 6.47; N, 17.97%. The compounds of the following general structure: were prepared from the corresponding pyrazole carboxamide and 2-methoxyethanol, following a similar method to that described in example 87. Potassium bis(trimethylsilyl)amide (123mg, 0.62mmol) was added to a solution of the compound from preparation 27 (162mg, 0.31 mmol) in n-butanol, and the reaction mixture heated at 120°C for 18 hours. The cooled mixture was concentrated under reduced pressure and the residual yellow oil purified by column chromatography on silica gel using an elution gradient of dichloromethane:methanol:0.88 ammonia (98:2:0.2 to 95:5:0.5). The product was triturated with ether to give the title compound as a white solid, 78mg.1Hnmr (CDCl3, 300MHz) δ : 1.03 (3H, t), 1.41 (3H, t), 1.54 (2H, m), 1.94 (2H, m), 2.28 (3H, s), 2.51 (4H, m), 3.07 (2H, m), 3.14 (4H, m), 3.30 (3H, s), 3.95 (2H, t), 4.46 (2H, t), 4.67 (2H, t), 8.63 (1 H, m), 9.04 (1 H, m), 10.60 (1 H, m). Anal. Found: C, 53.64; H, 6.64; N, 18.15. C24H35N7O5S requires C, 54.02; H, 6.61; N, 18.37%. Potassium bis(trimethylsilyl)amide (960mg, 4.8mmol) was added to a solution of the compound from preparation 93 (500mg, 0.96mmol) in 2-methoxyethanol (15ml), and the reaction heated at 130°C for 5 hours. The cooled reaction mixture was partitioned between ethyl acetate and water, and the mixture neutralised using solid carbon dioxide. The layers were separated, the organic phase washed with water, dried (MgSO4) and evaporated under reduced pressure.The crude product was purified by column chromatography on silica gel using an elution gradient of dichloromethane:methanol (99:1 to 96:4) to give an oil. This was triturated with ether, to afford the title compound as a white powder, 170mg.1Hnmr (CDCl3, 400MHz) δ : 0.80 (3H, t), 1.40 (3H, t), 1.60 (3H, d), 1.90 (1H, m), 2.20 (1H, m), 2.22 (3H, s), 2.50 (4H, m), 3.00 (2H, m), 3.10 (4H, m), 3.58 (3H, s), 3.80 (2H, m), 4.40 (1H, m), 4.80 (2H, m), 8.60 (1H, s), 9.00 (1H, s), 10.70 (1H, s). LRMS : m/z 534.6 (MH+) Anal. Found: C, 54.20; H, 6.68; N, 18.39. C24H35N7O5S requires C, 54.08; H, 6.71; N, 18.40%.D +26.0° (c = 0.1, methanol). The title compound was obtained as a white powder in 23% yield from the compound from preparation 94 and 2-methoxyethanol, following the procedure described in example 94.1Hnmr (CDCl3, 400MHz) δ : 0.80 (3H, t), 1.40 (3H, t), 1.60 (3H, d), 1.90 (1H, m), 2.20 (1H, m), 2.22 (3H, s), 2.50 (4H, m), 3.00 (2H, m), 3.10 (4H, m), 3.58 (3H, s), 3.80 (2H, m), 4.40 (1H, m), 4.80 (2H, m), 8.60 (1H, s), 9.00 (1H, s), 10.70 (1H, s). LRMS : m/z 534.6 (MH+) The title compound was obtained as a solid in 54% yield from the compound from preparation 91 and 2-methoxyethanol, following a similar procedure to that described in example 95.1Hnmr (CDCl3, 400MHz) δ : 0.95 (3H, t), 1.40 (5H, m), 1.97 (2H, m), 2.35 (3H, s), 2.58 (4H, m), 3.01 (2H, q), 3.18 (4H, m), 3.56 (3H, s), 3.85 (2H, t), 4.28 (2H, t), 4.78 (2H, t), 8.62 (1 H, d), 8.98 (1 H, d), 10.75 (1 H, s). LRMS : m/z 535 (MH+) The title compound was obtained as a solid in 41 % yield from the compound from preparation 92 and 2-methoxyethanol, following a similar procedure to that described in example 95.1Hnmr (CDCl3, 400MHz) δ : 0.46 (2H, m), 0.62 (2H, m), 1.40 (4H, m), 2.27 (3H, s), 2.50 (4H, m), 3.05 (2H, q), 3.16 (4H, m), 3.57 (3H, s), 3.84 (2H, t), 4.20 (2H, d), 4.58 (2H, t), 8.61 (1 H, d), 8.98 (1 H, d), 10.77 (1 H, s). LRMS : m/z 532.2 (MH+) A mixture of the compound from example 7 (200mg, 0.38mmol) and potassium bis(trimethylsilyl)amide (371 mg, 1.86mmol) in tetrahydrofurfuryl alcohol (2.5ml) was heated under reflux for 18 hours. The cooled mixture was concentrated under reduced pressure, and the residue purified by column chromatography on silica gel using an elution gradient of dichloromethane:methanol (100:0 to 90:10). The product was recrystallised from ether to afford the title compound, 20mg.1Hnmr (CDCl3, 300MHz) δ: 1.01 (3H, t), 1.40 (3H, t), 1.75-2.18 (10H, m), 2.40 (2H, q), 2.55 (4H, m), 3.00 (3H, m), 3.15 (4H, m), 3.88 (1H, m), 4.16 (1H, m), 4.30 (2H, d), 4.38 (1 H, m), 4.59 (1 H, m), 4.75 (1H, m), 8.60 (1H, d), 8.98 (1 H, d), 10.73 (1H, s). LRMS : m/z 587 (MH+) The title compound was obtained as a solid, from the compound from example 8 and 2-methoxyethanol, following a similar procedure to that described in example 98.1Hnmr (CDCl3, 300MHz) δ: 1.02 (6H, m), 1.84 (2H, m), 2.42 (2H, q), 2.56 (4H, m), 3.01 (2H, t), 3.15 (4H, m), 3.29 (3H, s), 3.57 (3H, s), 3.88 (2H, m), 4.44 (2H, t), 4.78 (2H, t), 8.61 (1 H, s), 8.98 (1 H, s), 10.76 (1 H, s). LRMS : m/z 564 (MH+) Sodium nitrite (116mg, 1.68mmol) was added to a cooled (-20°C) solution of the amine from preparation 82 (400mg, 1.12mmol) in acetic acid (5ml) and concentrated hydrochloric acid (5ml), and the solution allowed to warm to room temperature over 4 hours. The solution was then re-cooled to -15°C, liquid sulphur dioxide (3ml) added followed by a solution of copper (II) chloride (450mg, 3.34mmol) in water (2ml), and the solution stirred for 2 hours, then allowed to warm to room temperature. The reaction was diluted with water and extracted with dichloromethane (100ml). The combined organic extracts were dried (Na2SO4), concentrated under reduced pressure and the residue azeotroped with toluene. The product was dissolved in ethanol (5ml), N-isopropylpiperazine (500µl, 3.56mmol) added and the reaction stirred at room temperature for 18 hours. The reaction mixture was evaporated under reduced pressure and the crude product purified by column chromatography on silica gel using dichloromethane:methanol:0.88 ammonia (96:4:0.5) as eluant. The resulting pale yellow solid was recrystallised from isopropyl ether:dichloromethane to give the title compound, 211 mg.1Hnmr (CDCl3, 300MHz) δ : 1.00 (6H, 2xs), 1.40 (3H, t), 1.56 (3H, t), 2.60 (4H, m), 2.66 (1H, m), 3.08 (6H, m), 3.27 (3H, s), 3.92 (2H, t), 4.45 (2H, t), 4.75 (2H, q), 8.61 (1 H, d), 9.02 (1 H, d), 10.61 (1 H, s). LRMS : m/z 534.5 (MH+) Anal. Found: C, 54.00; H, 6.69; N, 18.24. C24H35N7O5S requires C, 54.02; H, 6.61; N, 18.37%. The title compound was obtained in 21 % yield from the amine of preparation 82 and n-propyl piperazine (prepared from the hydrobromide salt, in the presence of excess triethylamine), following the procedure described in Example 100.1Hnmr (CDCl3, 300MHz) δ: 0.84 (3H, t), 1.40 (3H, t), 1.55 (5H, m), 2.30 (2H, m), 2.55 (4H, m), 3.08 (6H, m), 3.28 (3H, s), 3.94 (2H, t), 4.44 (2H, t), 4.75 (2H, q), 8.62 (1H, d), 9.03 (1H, d), 10.61 (1H, s). LRMS : m/z 534.4 (MH+) To prepare the compound of Example 8 a mixture of 10g (0.019 mol) of the compound of Example 8 and Example 102, 1-(6-ethoxy-5-[3-ethyl-6,7-dihydro-2-(2-methoxyethyl)-7-oxo-2H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-pyridylsulfonyl}-4-ethylpiperazine ethyl acetate solvate, was charged followed by l2ml/g (120mls) of 16% water in ethyl alcohol. The slurry was heated to reflux to yield a solution and 6ml/g (60mls) distilled off at atmospheric pressure. The solution was then cooled to room temperature with crystallisation occurring at 40°C. The slurry was then cooled to 5-10°C and granulated for 30 minutes following which it was filtered and washed with 2ml/g ethyl alcohol (20 mls). The damp solid was dried in vacuo overnight at 55-60 °C to yield a white crystalline solid. (Yield 7.6g, 76%).Melting Point 162-165°C. δ (CDCl3): 1.05 (3H,t), 1.42 (3H,t), 1.58 (3H,t), 2.43 (2H,q), 2.57 (4H,t), 3.09 (2H, t), 3.15 (4H,t), 3.30 (3H,s), 3.93 (2H,t), 4.48 (2H,t), 4.90 (2H,q), 8.65 (1H,d), 9.05 (1 H,d), 10.65 (1 H,s). In the process of Example 103, water and pharmaceutically acceptable alcohols such as methanol, ethanol, propanol, butanol and mixtures thereof can be used to prepare the compound of Examples 8 and 102. 170g (0.33 mol) of the compound of Example 103, 1-{6-ethoxy-5-[3-ethyl-6,7-dihydro-2-(2-methoxyethyl)-7-oxo-2H-pyrazolo[4,3- d]pyrimidin-5-yl]-3-pyridylsulfonyl}-4-ethylpiperazine, was charged followed by a water/ 2-butanone (4% v/v) at 10 ml/g (1.7 litres) and warmed to reflux. 53g (0.33 mol) of benzene sulfonic acid dissolved in water (23mls, resulting in 70 % w/w solution) was added to the refluxing solution over 30 minutes.5.3ml/g (0.9 litres) of 2-butanone were striped and replaced and the slurry cooled. The slurry was cooled to 5-10°C and granulated for 2 hours after which it was filtered and washed with 2ml/g (0.3 litres) of 2-butanone. The salt was dried overnight in vacuo at 55-60°C to yield a white crystalline solid. Yield 215g, 96.4%. Mpt 242-244°C. δ(DMSO): 1.17 (3H, t), 1.28 (3H, t), 1.35 (3H, t), 2.73 (2H, q), 2.97 (2H, q), 3.2 (3H, s), 3.58 (2H, t), 3.78 (3H, t), 3.81 (2H, t), 4.49 (2H, t) 4.51 (2H, q), 7.29-7.33 (3H, m), 7.57-7.60 (2H, m), 8.28 (1 H, d), 8.73 (1H, d), 9.13 (1 H,s), 11.90(1H,s). The powder X-ray diffraction (PXRD) pattern for this salt, having Mpt 242-244°C, was determined using a Siemens D5000 powder X-ray diffractometer fitted with a theta-theta goniometer, automatic beam divergence slits, a secondary monochromator and a scintillation counter. The specimen was rotated whilst being irradiated with copper K-alpha1 X-rays (Wavelength = 1.5046 Angstroms) filtered with a graphite monochromator (λ = 0.15405nm) with the X-ray tube operated at 40 kV/mA. The main peaks (in degrees θ) of the PXRD pattern are illustrated in Table I. The same besylate salt, as defined by the XRD pattern described in Table 1, when made via alternative routes can have a melting point in the range of from 235-246°C (measured using a Perkin Elmer DSC7 at a heating rate of 20°C/minute). 5g (0.0096 mol) of the compound of Example 103, 1-{6-ethoxy-5-[3-ethyl-6,7-dihydro-2-(2-methoxyethyl)-7-oxo-2H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-pyridylsulfonyl}-4-ethylpiperazine, was charged followed by 10 ml/g (50 mls) of ethyl alcohol and warmed to reflux. 1.86g (0.0097 mol) of p-toluene sulfonic acid dissolved in 10mls ethyl alcohol was added to the refluxing solution over 15 seconds. The solution was allowed cool and allowed granulate for 1hour at < R.T. The slurry was filtered and washed with 3ml/g (15 mls) of ethyl alcohol. The salt was dried overnight in vacuo at 55-60°C to yield a white crystalline solid. Yield 6.12g, 92.3%. Mpt 208°C. δ (DMSO): 1.18 (3H, t), 1.28 (3H, t), 1.36 (3H, t), 2.28 (3H,s), 2.78 (2H, q), 2.99 (2H, q), 3.23 (4H, t) 3.25 (3H, s), 3.55 (2H, t), 3.80 (2H, t), 3.82 (2H, t), 4.51 (2H, t), 4.53 (2H, q), 7.11 (2H,d), 7.47 (2H,d), 8.30 (1H,d), 8,73 (1H,d), 9.2 (1 H,s), 11.90 (1 H,s). 3g (0.006 mol) of the compound of Example 103, 1-{6-ethoxy-5-[3-ethyl-6,7-dihydro-2-(2-methoxyethyl)-7-oxo-2H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-pyridylsulfonyl}-4-ethylpiperazine, was charged followed by a 2-butanone/water (4% v/v) at 10 ml/g (30 mls) and warmed to reflux. 1.48g (0.006 mol) of (+)-camphor sulphonic acid dissolved in 5 mls 2-butanone and 1ml water was added to the refluxing solution in <1 minute. 3.3ml/g (10mls) were azeotroped out and the solution cooled with crystallisation occurring at 45 °C approximately. The slurry was cooled to 5-10°C and granulated for 0.5 hours after which it was filtered and washed with 5ml/g (15 mls) of 2-butanone. The salt was dried overnight in vacuo at 55-60°C to yield a white crystalline solid. (Yield 3.4g, 77%). Mpt 222-225°C. δ (DMSO): 0.75 (3H, s), 1.03 (3H,s), 1.18 (3H, t), 1.28 (3H, t), 1.36 (3H, t), 1.20-1.40 (2H,m), 1.79-198 (3H, m), 2.2-2.3 (1H, m), 2.5-2.62 (2H,m), 2.78 (2H, q), 2.99 (2H, q), 3.02 (1H,d), 3.23 (4H, t) 3.25 (3H, s), 3.55 (2H, t), 3.79 (2H, t), 3.82 (2H, t) , 4.51 (2H, t), 4.50 (2H, q), 8.29 (1 H,d), 8.73 (1 H,d), 9.33 (1H,s), 11.85 (1H,s). 17g (0.033 mol) of the compound of Example 103, 1-{6-ethoxy-5-[3-ethyl-6,7-dihydro-2-(2-methoxyethyl)-7-oxo-2H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-pyridylsulfonyl}-4-ethylpiperazine, was charged followed by ethyl alcohol at 10ml/g (170 mls) and warmed to reflux. 7.75g (0.035 mol) of racemic camphor sulphonic acid dissolved in 30mls ethyl alcohol was added to the refluxing solution instantaneously. The solution was allowed cool and crystallisation occurred at 65-66 °C. The slurry was cooled to 5-10°C and granulated for 1 hours after which it was filtered and washed with 3ml/g (51 mls) of ethyl alcohol. The salt was dried overnight in vacuo at 55-60°C to yield a white crystalline solid. (Yield 22.1 g, 89.8 %). δ (DMSO): 0.75 (3H, s), 1.03 (3H,s), 1.18 (3H, t), 1.28 (3H, t), 1.36 (3H, t), 1.20-1.40 (2H,m), 1.79-198 (3H, m), 2.2-2.3 (1H, m), 2.5-2.62 (2H,m), 2.78 (2H, q), 2.99 (2H, q), 3.02 (1 H,d), 3.23 (4H, t), 3.25 (3H, s), 3.55 (2H, t), 3.79 (2H, t), 3.82 (2H, t) ,4.51 (2H, t), 4.50 (2H, q), 8.29 (1H,d), 8.73 (1H,d), 9.33 (1H,s). 11.85 (1H,s). 5g (9.6 mmol) of the title compound of Example 102, 1-{6-ethoxy-5-[3-ethyl-6,7-dihydro-2-(2-methoxyethyl)-7-oxo-2H-pyrazolo[4,3- d]pyrimidin-5-yl]-3-pyridylsulfonyl}-4-ethylpiperazine, was charged followed by a 10 ml/g (0.05 litres) Ethanol and warmed to reflux. 1.1g (10.5 mmol) of ethane sulfonic acid diluted in 2ml ethanol was added to the refluxing solution. The slurry was cooled with crystallisation occurring at 26-30°C. The slurry was granulated filtered and washed with 2ml/g (0.01 litres) of ethanol. The salt was dried overnight in vacuo at 55-60°C to yield a white crystalline solid. Yield 5.2g, 86.1%. Mpt 205-210°C. δ (CDCl3): 1.16 (3H, t), 1.39 (3H, t), 1.41 (3H, t), 1.52 (3H,t), 2.73 (2H, q), 3.03 (2H, t), 3.09 (2H,q , 3.16 (2H, t), 3.30 (3H, s), 3.35 (2H, t), 3.65 (2H, t), 3.89 (2H, t), 3.90 (2H, q), 4.46 (2H, t), 4.71 (2H, q) , 8.63 (1 H, d), 8.71 (1 H, d), 10.76 (1 H, s), 11.29 (1 H, s). The following Table illustrates both the in vitro activities for a range of the compounds of the invention as inhibitors of cGMP PDE5 as well as their selectivity for cGMP PDE5 versus cGMP PDE6. The IC50 measurements for cGMP PDE5 were based upon data generated on human corpus cavernosum tissue and the IC50 measurements for rod cGMP PDE6 were based upon data generated on bovine retina tissue and wherein the selectivity ratio for cGMP PDE5 to cGMP PDE6 quoted is based upon IC50 PDE5 / IC50 PDE6. A mixture of 3-ethyl-4-nitro-1H-pyrazole-5-carboxamide (WO, 9849166), (1.7g, 8.8mmol), 2-bromoethyl methyl ether (0.85ml, 8.85mmol) and cesium carbonate (2.9g, 9.0mmol) in N,N-dimethylformamide (20ml) was stirred at room temperature for 20 hours. The reaction mixture was concentrated under reduced pressure and the residue was partitioned between ethyl acetate (125ml) and brine (100ml). The phases were separated, and the organic layer was dried (Na2SO4), and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel, using ethyl acetate:methanol (97:3) as eluant to afford the title compound of preparation 1, 831 mg, δ (DMSOd6) : 1.19 (3H, t), 2.82 (2H, q), 3.20 (3H, s), 3.68 (2H, t), 4.22 (2H, t), 8.18 (1H, s), 8.38 (1H, s). LRMS : m/z 260 (M+18)+ and the title compound of preparation 2, 793mg. δ (CDCl3) : 1.18 (3H, t), 2.98 (2H, q), 3.22 (3H, s), 3.70 (2H, t), 4.28 (2H, t), 7.65 (1H, s), 7.94 (1 H, s). LRMS : m/z 243 (M+1)+ A mixture of 4-nitro-3-n-propyl-1H-pyrazole-5-carboxamide (WO, 9849166),(7.3g, 37.0mmol), 2-bromoethyl methyl ether (3.85ml, 41.0mmol) and cesium carbonate (24.0g, 74.0mmol) in N,N-dimethylformamide (300ml) was heated at 70°C for 4 hours. The cooled mixture was concentrated under reduced pressure and the residue partitioned between ethyl acetate (100ml) and brine (100ml) and the phases separated. The aqueous layer was extracted with ethyl acetate (2x100ml), the combined organic solutions dried (Na2SO4) and evaporated under reduced pressure. The residue was triturated with ether and the resulting precipitate filtered and dried, to give some of the N2 isomer. The filtrate was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel, using an elution gradient of ethyl acetate:methanol (100:0 to 99:1). The product of preparation 3 was suspended in ether, the mixture filtered and the filtrate evaporated under reduced pressure to afford the title compound of preparation 3, 1.07g, δ(CDCl3) : 1.00 (3H, t), 1.74 (2H, m), 2.88 (2H, t), 3.35 (3H, s), 3.78 (2H, t), 4.47 (2H, t), 6.06 (1 H, s), 7.24 (1 H, s). LRMS : m/z 257 (M+1)+ More of the N2 isomer (preparation 4) was also obtained to give a total of 3.85g. δ(DMSOd6) : 1.04 (3H, t), 1.68 (2H, m), 2.98 (2H, t), 3.30 (3H, s), 3.79 (2H, t), 4.29 (2H, t), 5.85 (1 H, s), 7.35 (1 H, s). LRMS : m/z 257 (M+1)+ A mixture of 3-ethyl-4-nitro-1H-pyrazole-5-carboxamide (WO, 9849166), (4.9g, 26.6mmol), cesium carbonate (21.0g, 64.5mmol) and (2-bromoethoxy)- A mixture of A mixture of 3-ethyl-4-nitro-1H-pyrazole-5-carboxamide (WO, 9849166), (6.59g, 35.8mmol), cesium carbonate (12.25g, 37.6mmol), and the title compound of preparation 6 (10.3g, 37.6mmol) in N,N-dimethylformamide (60ml) was heated at 60°C for 3 days. The cooled reaction was poured into 2% aqueous sodium bicarbonate solution (250ml), and extracted with ethyl acetate (1x230ml, 1x100ml). The combined organic extracts were dried (MgSO4) and evaporated under reduced pressure. The residual oil was purified by column chromatography on silica gel, using an elution gradient of ethyl acetate:pentane (50:50 to 100:0) to give the N1-isomer (5.0g) and the title compound of preparation 7, 4.1g. δ(CDCl3) : 1.25 (3H, t), 1.46 (9H, s), 2.96 (2H, q), 4.37 (2H, m), 4.44 (2H, m), 5.06 (1 H, m), 5.82 (1H, s), 6.63 (1H, s). Obtained (25%) from 3-ethyl-4-nitro-1H-pyrazole-5-carboxamide (WO, 9849166), and 2-[(benzyloxy)carbonyl](methyl)amino]ethyl methanesulphonate (J.Med.Chem. 37; 23; 1994; 3977) following a similar procedure to that described in preparation 7. δ (CDCl3) : (rotamers in 0.42:0.58 ratio) 1.03 and 1.20 (3H, t), 2.69 and 2.87 (2H, q), 2.80 and 2.92 (3H, s), 3.72 (2H, m), 4.20 and 4.33 (2H, t), 5.02 and 5.14 (2H, s), 5.86 (1 H, m), 7.35 (6H, m). A mixture of the title compound from preparation 2 (500mg, 2.07mmol) and 10% palladium on charcoal (50mg) in ethanol (20ml) was hydrogenated at 50 psi and room temperature for 18 hours. The reaction mixture was filtered through Arbocel®, and the filtrate evaporated under reduced pressure to afford the title compound as a white solid. δ (DMSOd6) : 1.03 (3H, t), 2.57 (2H, q), 3.20 (3H, s), 3.63 (2H, t), 4.09 (2H, t), 4.39 (2H, s), 6.90 (1 H, s), 7.01 (1 H, s). LRMS : m/z 213 (M+1)+ The compounds of the general structure: were prepared from the corresponding nitropyrazole, following a similar procedure to that described in preparation 9. A mixture of the title compound of preparation 8 (1.92g, 5.28mmol), iron powder (3.04g) and water (2.5ml) in acetic acid (50ml) was stirred at room temperature for 25 minutes. The reaction mixture was filtered through Arbocel ®, and the filtrate poured slowly into saturated sodium bicarbonate solution (400ml). The pH of the solution was adjusted to 8 using solid sodium carbonate, and this solution was then extracted with ethyl acetate (2x350ml). The combined organic extracts were dried (MgSO4) and evaporated under reduced pressure to afford the title compound, 1.5g. δ (CDCl3) : (rotamers in a 0.46:0.54 ratio), 1.00 and 1.14 (3H, t), 2.38 and 2.50 (2H, q), 2.68 and 2.80 (3H, s), 3.63 (2H, m), 3.95 (2H, s), 4.04 and 4.17 (2H, t), 5.10 and 5.14 (2H, s), 5.14 (1 H, s), 6.53 (1 H, s), 7.36 (5H, m). Obtained from the title compound of preparation 1 (95%), using a similar procedure to that described in preparation 9, and after purification by column chromatography using dichloromethane:methanol (90:10) as eluant. δ (CDCl3) : 1.26 (3H, t), 2.58 (2H, q), 3.37 (3H, s), 3.60 (2H, s), 3.82 (2H, t), 4.50 (2H, t). LRMS : m/z 213 (M+1)+ Obtained as a solid (99%) from the title compound of preparation 3, using the procedure described in preparation 9. δ (CDCl3) : 0.95 (3H, t), 1.63 (2H, m), 2.48 (2H, t), 3.30 (3H, s), 3.78 (2H, t), 4.46 (2H, t). LRMS : m/z 227 (M+1)+ 2-Aminopyridine (80g, 0.85mol) was added portionwise over 30 minutes to oleum (320g) and the resulting solution heated at 140°C for 4 hours. On cooling, the reaction was poured onto ice (200g) and the mixture stirred in an ice/salt bath for a further 2 hours. The resulting suspension was filtered, the solid washed with ice water (200ml) and cold IMS (200ml) and dried under suction to afford the title compound as a solid, 111.3g. LRMS : m/z 175 (M+1)+ Bromine (99g, 0.62mol) was added dropwise over an hour, to a hot solution of the title compound of preparation 16 (108g, 0.62mol) in water (600ml) so as to maintain a steady reflux. Once the addition was complete the reaction was cooled and the resulting mixture filtered. The solid was washed with water and dried under suction to afford the title compound, 53.4g. δ(DMSOd6, 300MHz) : 8.08 (1H, s), 8.14 (1 H, s). LRMS : m/z 253 (M)+ A solution of sodium nitrite (7.6g, 110.0mmol) in water (30ml) was added dropwise to an ice-cooled solution of the title compound of preparation 17 (25.3g, 100.0mmol) in aqueous hydrochloric acid (115ml, 20%), so as to maintain the temperature below 6°C. The reaction was stirred for 30 minutes at 0°C and for a further hour at room temperature. The reaction mixture was evaporated under reduced pressure and the residue dried under vacuum at 70°C for 72 hours. A mixture of this solid, phosphorus pentachloride (30.0g, 144.0mmol) and phosphorus oxychloride (1ml, 10.8mmol) was heated at 125°C for 3 hours, and then cooled. The reaction mixture was poured onto ice (100g) and the resulting solid filtered, and washed with water. The product was dissolved in dichloromethane, dried (MgSO4), and evaporated under reduced pressure to afford the title compound as a yellow solid, 26.58g. δ(CDCl3, 300MHz) : 8.46 (1 H, s), 8.92 (1 H, s). A solution of 1-ethylpiperazine (11.3ml, 89.0mmol) and triethylamine (12.5ml, 89.0mmol) in dichloromethane (150ml) was added dropwise to an ice-cooled solution of the title compound of preparation 18 (23.0g, 79.0mmol) in dichloromethane (150ml) and the reaction stirred at 0°C for an hour. The reaction mixture was concentrated under reduced pressure and the residual brown oil was purified by column chromatography on silica gel, using an elution gradient of dichloromethane:methanol (99:1 to 97:3) to afford the title compound as an orange solid, 14.5g. δ (CDCl3, 300MHz) : 1.05 (3H, t), 2.42 (2H, q), 2.55 (4H, m), 3.12 (4H, m), 8.24 (1H, s), 8.67 (1 H, s). N-Methylpiperazine (7.65ml, 69.0mmol) was added dropwise to a solution of the title compound of preparation 18 (10.0g, 34.5mmol) in ethanol (200ml), and the reaction stirred at room temperature for 3 hours. The mixture was concentrated under reduced pressure and the residue partitioned between dichloromethane (200ml) and water (100ml) and the layers separated. The organic phase was dried (Na2SO4), and evaporated under reduced pressure to afford the title compound, 10.53g, as a yellow solid. δ(CDCl3) : 2.28 (3H, s), 2.51 (4H, m), 3.14 (4H, m), 8.24 (1 H, s), 8.67 (1 H, s). A mixture of the title compound of preparation 19 (6.60g, 17.9mmol) and sodium ethoxide (6.09g, 89.55mmol) in ethanol (100ml) was heated under reflux for 18 hours, then cooled. The reaction mixture was concentrated under reduced pressure, the residue partitioned between water (100ml) and ethyl acetate (100ml), and the layers separated. The aqueous phase was extracted with ethyl acetate (2x100ml), the combined organic solutions dried (MgSO4) and evaporated under reduced pressure to afford the title compound as a brown solid, 6.41g. Found : C, 41.27; H, 5.33; N, 11.11. C13H20BrN3O3S requires C, 41.35; H, 5.28; N, 10.99%. δ (CDCl3, 300MHz) : 1.06 (3H, t), 1.48 (3H, t), 2.42 (2H, q), 2.56 (4H, m), 3.09 (4H, m), 4.54 (2H, q), 8.10 (1 H, s), 8.46 (1 H, s). LRMS : m/z 378, 380 (M+1)+ A mixture of the title compound of preparation 20 (10.0g, 39.1mmol), potassium bis(trimethylsilyl)amide (5.92g, 29.7mmol) and ethanol (3.5ml) in tetrahydrofuran (150ml) was stirred at room temperature for 24 hours. The reaction mixture was concentrated under reduced pressure and the residue partitioned between ethyl acetate (150ml) and brine (50ml). The layers were separated, and the organic phase dried (Na2SO4), filtered and evaporated under reduced pressure, to afford the title compound, 9.1g. δ (CDCl3) : 1.44 (3H, t), 2.29 (3H, s), 2.51 (4H, m), 3.08 (4H, m), 4.54 (2H, q), 8.10 (1H, s), 8.44 (1H, s). LRMS : m/z 365 (M+1)+ A mixture of the title compound of preparation 21 (6.40g, 16.92mmol), triethylamine (12ml, 86.1mmol), and palladium (0) tris(triphenylphosphine) in ethanol (60ml) was heated at 100°C and 200 psi, under a carbon monoxide atmosphere, for 18 hours, then cooled. The reaction mixture was evaporated under reduced pressure and the residue purified by column chromatography on silica gel, using an elution gradient of dichloromethane:methanol (100:0 to 97:3) to afford the title compound as an orange oil, 6.2g. δ(CDCl3, 300MHz) : 1.02 (3H, t), 1.39 (3H, t), 1.45 (3H, t), 2.40 (2H, q), 2.54 (4H, m), 3.08 (4H, m), 4.38 (2H, q), 4.55 (2H, q), 8.37 (1 H, s), 8.62 (1 H, s). LRMS : m/z 372 (M+1)+ Obtained (85%) as an orange solid, from the title compound of preparation 22 using a similar procedure to that described in preparation 23. δ (CDCl3) : 1.40 (3H, t), 1.46 (3H, t), 2.28 (3H, s), 2.50 (4H, m), 3.09 (4H, m), 4.40 (2H, q), 4.57 (2H, q), 8.40 (1H, s), 8.63 (1 H, s). LRMS : m/z 358 (M+1)+ A mixture of the title compound of preparation 23 (4.96g, 13.35mmol) and aqueous sodium hydroxide solution (25ml, 2N, 50.0mmol) in ethanol (25ml) was stirred at room temperature for 2 hours. The reaction mixture was concentrated under reduced pressure to half it's volume, washed with ether and acidified to pH 5 using 4N hydrochloric acid. The aqueous solution was extracted with dichloromethane (3x30ml), the combined organic extracts dried (MgSO4) and evaporated under reduced pressure to afford the title compound as a tan coloured solid, 4.02g. δ (DMSOd6, 300MHz) : 1.18 (3H, t), 1.37 (3H, t), 3.08 (2H, q), 3.17-3.35 (8H, m), 4.52 (2H, q), 8.30 (1 H, s), 8.70 (1 H, s). Sodium hydroxide solution (21ml, 2M, 42.0mmol) was added to a solution of the title compound of preparation 24 (7.57g, 21.0mmol) in dioxan (150ml) and the reaction stirred at room temperature for 18 hours. The mixture was neutralised using hydrochloric acid, the dioxan removed under reduced pressure and the remaining aqueous solution acidified to pH 2, using hydrochloric acid. The solution was evaporated under reduced pressure, the residue re-suspended in hot ethanol, filtered, and the filtrate re-evaporated to afford the title compound, 5.46g. δ (DMSOd6) : 1.37 (3H, t), 2.50 (4H, m), 2.72 (3H, s), 3.13-3.39 (4H, m), 4.53 (2H, q), 8.30 (1 H, s), 8.75 (1 H, s). LRMS: m/z 330 (M+1)+ Oxalyl chloride (500ml, 5.73mmol) was added dropwise to an ice-cooled solution of the title compound of preparation 26 (522mg, 1.43mmol) and N,N-dimethylformamide (1drop) in dichloromethane (20ml), and the reaction stirred for 2 hours. The mixture was concentrated under reduced pressure and azeotroped several times with dichloromethane to give the intermediate acid chloride. A solution of this product in dichloromethane (20ml) was added to a solution of the title compound of preparation 9 (250mg, 1.18mmol) and triethylamine (500ml, 3.18mmol) in dichloromethane (20ml), and the reaction stirred at room temperature for 18 hours. The mixture was washed with water, dried (Na2SO4) and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel, using an elution gradient of dichloromethane:methanol (100:0 to 95:5) to afford the title compound, 428mg. δ (CDCl3) : 1.20 (3H, t), 1.59 (3H, t), 2.28 (3H, s), 2.50 (4H, m), 2.95 (2H, m), 3.10 (4H, m), 3.36 (3H, s), 3.80 (2H, t), 4.25 (2H, t), 4.78 (2H, q), 5.26 (1 H, s), 6.65 (1 H, s), 8.65 (1 H, s), 8.85 (1 H, s), 10.51 (1 H, s). LRMS : m/z 524 (M+1)+ The title compound was obtained as a white solid (79%), from the title compounds from preparation 10 and 26, following the procedure described in preparation 27. δ (CDCl3) : 0.92 (3H, t), 1.58 (5H, m), 2.24 (3H, s), 2.47 (4H, m), 2.90 (2H, t), 3.10 (4H, m), 3.35 (3H, s), 3.78 (2H, t), 4.23 (2H, t), 4.78 (2H, q), 5.42 (1 H, br s), 6.68 (1 H, br s), 8.62 (1 H, d), 8.82 (1 H, d), 10.48 (1 H, s). LRMS : m/z 538 (M+1)+ 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (5.26g, 27.4mmol) was added to a solution of the title compounds from preparation 25 (7.25g, 21.1mmol), and preparation 9 (4.45g, 20.9mmol), 1-hydroxybenzotriazole hydrate (3.71g, 27.4mmol), and N-diisopropylethylamine (10.96ml, 63.3mmol) in dichloromethane (70ml), and the reaction stirred for 18 hours. The reaction mixture was diluted with dichloromethane (100ml), washed with water (100ml), saturated aqueous sodium bicarbonate solution (100ml), and brine (100ml), dried (MgSO4), and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using an elution gradient of dichloromethane:methanol (100:0 to 95:5) to give the title compound as a foam, 10.05g. δ(CDCl3) : 1.03 (3H, t), 1.20 (3H, t), 1.58 (3H, t), 2.40 (2H, q), 2.54 (4H, m), 2.95 (2H, q), 3.10 (4H, m), 3.37 (3H, s), 3.80 (2H, t), 4.26 (2H, t), 4.78 (2H, q), 5.27 (1 H, s), 6.66 (1 H, s), 8.65 (1 H, s), 8.85 (1 H, s), 10.51 (1 H, s). LRMS : m/z 538 (M+1)+ N-Diisopropylethylamine (0.92ml, 5.3mmol) was added to a solution of the title compounds from preparation 25 (1.0g, 2.65mmol), and preparation 10 (600mg, 2.65mmol), 1-hydroxybenzotriazole hydrate (465mg, 3.45mmol), and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (660mg, 3.45mmol) in dichloromethane (20ml), and the reaction stirred for 18 hours. The reaction mixture was washed with brine, dried (MgSO4), and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using an elution gradient of dichloromethane:methanol (100:0 to 95:5) to afford the title compound, 740mg. δ(CDCl3) : 0.94 (3H, t), 1.03 (3H, t), 1.59 (5H, m), 2.40 (2H, q), 2.54 (4H, m), 2.92 (2H, t), 3.11 (4H, m), 3.37 (3H, s), 3.80 (2H, t), 4.25 (2H, t), 4.78 (2H, q), 5.26 (1 H, s), 6.66 (1 H, s), 8.65 (1 H, s), 8.83 (1 H, s), 10.48 (1 H, s). LRMS : m/z 552 (M+1)+ Obtained as a white solid (67%) from the title compounds of preparations 25 and 11 following a similar procedure to that described in preparation 27. δ (CDCl3) : 0.00 (6H, s), 0.85 (9H, s), 1.04 (3H, t), 1.22 (3H, t), 1.57 (3H, t), 2.40 (2H, q), 2.53 (4H, m), 2.94 (2H, q), 3.10 (4H, m), 4.02 (2H, t), 4.19 (2H, t), 4.78 (2H, q), 5.39 (1H, s), 6.66 (1H, s), 8.64 (1 H, s), 8.83 (1 H, s), 10.49 (1H, s). LRMS : m/z 638 (M+1)+ Triethylamine (1.0ml, 7.2mmol) was added to a solution of the title compounds from preparation 25 (1.5g, 4.5mmol), and preparation 13 (1.7g, 4.95mmol), 1-hydroxybenzotriazole hydrate (833mg, 5.44mmol), and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (1.28g, 6.68mmol) in dichloromethane (50ml), and the reaction stirred for 3 days at room temperature. The reaction mixture was concentrated under reduced pressure and the residue partitioned between saturated aqueous sodium bicarbonate solution and ethyl acetate, and the layers separated. The aqueous phase was extracted with ethyl acetate (2x50ml), and the combined organic solutions, dried (MgSO4), and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using dichloromethane:methanol (95:5) as eluant to afford the title compound, 3.0g. δ(CDCl3) : 1.00-1.20 (6H, m), 1.58 (3H, t), 2.40 (2H, q), 2.54 (4H, m), 2.70-2.91 (5H, m), 3.10 (4H, m), 3.70 (2H, m), 4.16-4.32 (2H, m), 4.79 (2H, q), 5.12 (2H, m), 5.24 (1 H, s), 6.62 (1 H, s), 7.37 (5H, m), 8.64 (1H, s), 8.82 (1H, s), 10.50 (1H, s). The title compound was obtained (72%) from the title compounds from preparation 25 and preparation 12, following a similar procedure to that described in preparation 32. δ(CDCl3) : 1.01 (3H, t), 1.19 (3H, t), 1.47 (9H, s), 1.58 (3H, t), 2.40 (2H, q), 2.54 (4H, m), 2.86 (2H, q), 3.10 (4H, m), 4.38 (2H, m), 4.41 (2H, m), 4.79 (2H, q), 5.10 (1H, m), 5.30 (1H, br s), 6.77 (1H, br s), 8.63 (1H, d), 8.82 (1H, d), 10.57 (1 H, s). A solution of 4-amino-3-ethyl-1H-pyrazole-5-carboxamide (WO, 9849166) (9.2g, 59.8mmol) in N,N-dimethylformamide (60ml) was added to a solution of the title compound from preparation 25 (21.7g, 62.9mmol), 1-hydroxybenzotriazole hydrate (10.1g, 66.0mmol) and triethylamine (13.15ml, 94.3mmol) in dichloromethane (240ml). 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (13.26g, 69.2mmol) was added and the reaction stirred at room temperature for 6 hours. The dichloromethane was removed under reduced pressure, the remaining solution poured into ethyl acetate (400ml), and this mixture washed with aqueous sodium bicarbonate solution (400ml). The resulting crystalline precipitate was filtered, washed with ethyl acetate and dried under vacuum, to afford the title compound, as a white powder, 22g. δ (CDCl3+1 drop DMSOd6) 0.96 (3H, t), 1.18 (3H, t), 1.50 (3H, t), 2.25-2.56 (6H, m), 2.84 (2H, q), 3.00 (4H. m), 4.70 (2H, q), 5.60 (1H, br s), 6.78 (1H, br s), 8.56 (1H, d), 8.76 (1H, d), 10.59 (1 H, s), 12.10-12.30 (1H, s). LRMS: m/z 480 (M+1)+ Oxalyl chloride (9.5ml, 108mmol) was added dropwise to an ice-cold solution of the title compound from preparation 26 (10.0g, 27.0mmol) and N,N-dimethylformamide (160µl) in dichloromethane (150ml), and once addition was complete, the reaction was stirred at room temperature for 5 ½ hours. The mixture was evaporated under reduced pressure and the residue azeotroped with toluene, to give a yellow solid. Triethylamine (11.2ml, 81.0mmol) was added to a solution of the intermediate acid chloride (10.5g, 27.3mmol) and 4-amino-3-ethyl-1H-pyrazole-5-carboxamide (WO, 9849166), (4.2g, 27.3mmol) in dichloromethane (150ml), and the reaction stirred at room temperature for 18 hours. The mixture was diluted with water, and the layers separated. The aqueous phase was extracted with dichloromethane (2x), and the combined organic solutions dried (Na2SO4) and evaporated under reduced pressure. The crude product was triturated with ether, and the resulting solid filtered to give the title compound, 10.1g. δ (CDCl3) : 1.21 (3H, t), 1.59 (3H, t), 2.26 (3H, s), 2.50 (4H, m), 2.94 (2H, q), 3.10 (4H, m), 4.79 (2H, q), 5.50 (1 H, br s), 6.80 (1 H, br s), 8.64 (1 H, d), 8.84 (1H, d), 10.65 (1 H, s). 1-Bromo-2-methylpropane (187µl, 1.72mmol) was added to a solution of the title compound from preparation 34 (750mg, 1.56mmol) and cesium carbonate (1.12g, 3.44mmol) in N,N-dimethylformamide (15ml) and the reaction stirred at 60°C for 18 hours. The cooled mixture was partitioned between water and ethyl acetate, and the layers separated. The organic layer was dried (MgSO4), concentrated under reduced pressure and azeotroped with toluene to give a solid. This product was recrystallised from ether, to afford the title compound as a white solid, 152mg. δ (CDCl3) : 0.96 (6H, d), 1.02 (3H, t), 1.19 (3H, t), 1.58 (3H, t), 2.26 (1 H, m), 2.40 (2H, q), 2.52 (4H, m), 2.94 (2H, q), 3.10 (4H, m), 3.88 (2H, d), 4.78 (2H, q), 5.25 (1 H, s), 6.65 (1 H, s), 8.64 (1 H, d), 8.83 (1 H, d), 10.54 (1 H, s). LRMS : m/z 536 (M+1)+ The following tabulated compounds of the general formula : were prepared from the title compound from preparation 34 and the appropriate bromide, following a similar procedure to that described in preparation 36. Cesium carbonate (1.63g, 5.0mmol) was added to an ice-cold solution of the title compound from preparation 34 (2.0g, 4.18mmol) in N,N-dimethylformamide (40ml), and the solution stirred for 30 minutes. Tetrahydrofuryl bromide (0.6ml, 5.28mmol) was added, and the reaction heated at 60°C for 72 hours. The cooled mixture was evaporated under reduced pressure, and the residue partitioned between water and dichloromethane. The phases were separated, and the organic layer was dried (MgSO4), and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using an elution gradient of dichloromethane:methanol (100:0 to 95:5) to afford the title compound, 1.20g. δ (CDCl3) : 1.01 (3H, t), 1.18 (3H, t), 1.58 (3H, t), 1.70-2.12 (4H, m), 2.40 (2H, q), 2.54 (4H, m), 2.97 (2H, m), 3.10 (4H, m), 3.74-3.94 (2H, m), 4.16 (2H, m), 4.32 (1 H, m), 4.78 (2H, q), 5.32 (1 H, br s), 6.64 (1 H, br s), 8.63 (1 H, s), 8.82 (1 H, s), 10.50 (1H, s). LRMS : m/z 564 (M+1)+ Methanesulphonyl chloride (2.86ml, 36.9mmol) was added dropwise to an ice-cooled solution of 1-methoxy-2-propanol (3ml, 30.7mmol) and triethylamine (10.27ml, 73.7mmol) in dichloromethane (150ml), and the reaction stirred at room temperature for 18 hours. The mixture was washed with water, then 2M hydrochloric acid, dried (MgSO4) and evaporated under reduced pressure to give the title compound as a yellow oil, 5.24g. δ(CDCl3) : 1.39 (3H, d), 3.03 (3H, s), 3.39 (3H, s), 3.46 (2H, m), 4.88 (1 H, m). LRMS : m/z 186 (M+18)+ Methanesulphonyl chloride (2.98ml, 38.6mmol) was added to an ice-cold solution of Sodium hydride (64mg, 60% dispersion in mineral oil, 1.6mmol) was added to a solution of the title compound from preparation 34 (700mg, 1.46mmol) in tetrahydrofuran (10ml), and the solution stirred for 10 minutes. The title compound from preparation 43 (270mg, 1.60mmol) was added and the reaction stirred at 60°C for 3 days. The cooled mixture was partitioned between ethyl acetate and aqueous sodium bicarbonate solution, and the phases separated. The aqueous layer was extracted with ethyl acetate, the combined organic solutions dried (MgSO4) and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel using dichloromethane:methanol (98:2) as eluant to afford the title compound as a white foam, 310mg. δ(CDCl3) : 1.02 (3H, t), 1.22 (3H, m), 1.50 (3H, d), 1.59 (3H, t), 2.40 (2H, q), 2.55 (4H, m), 2.92 (2H, m), 3.10 (4H, m), 3.30 (3H, s), 3.60 (1 H, m), 3.78 (1 H, m), 4.57 (1 H, m), 4.78 (2H, q), 5.25 (1 H, br s), 6.68 (1 H, br s), 8.64 (1H, s), 8.83 (1 H, s), 10.48 (1 H, s). LRMS : m/z 552 (M+1)+ The title compound was obtained (43%), from the title compound from preparation 34 and The title compound was prepared from the title compounds from preparation 34 and 44 following a similar procedure to that described in preparation 45. The crude product was purified by column chromatography on silica gel using ethyl acetate:diethylamine (95:5) as eluant to give the title compound, 30%. δ (CDCl3) : 1.02 (3H, t), 1.20 (3H, t), 1.46 (9H, s), 1.57 (3H, t), 2.40 (2H, q), 2.53 (4H, m), 2.88 (3H, s), 3.10 (4H, m), 3.58 (1 H, m), 3.64 (2H, m), 4.22 (2H, m), 4.30 (1 H, m), 4.79 (2H, q), 5.24 (1 H, s), 6.65 (1 H, s), 8.62 (1 H, d), 8.82 (1 H, d), 10.53 (1H, s). Sodium hydride (88mg, 60% dispersion in mineral oil, 2.19mmol) was added to an ice-cold solution of the title compound from preparation 34 (1.0g, 2.09mmol) in tetrahydrofuran (25ml), and the solution stirred for an hour. 1-(2-Chloroethyl)pyrazole (WO 9849166) (410mg, 3.14mmol) was added and the reaction heated under reflux for 18 hours. The cooled mixture was concentrated under reduced pressure and the residue partitioned between water and ethyl acetate and the layers separated. The aqueous phase was extracted with ethyl acetate, the combined organic solutions dried (MgSO4) and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using an elution gradient of dichloromethane:methanol (100:0 to 90:10) to give the title compound, 300mg. δ(CDCl3) : 1.02 (6H, m), 1.58 (3H, t), 2.40 (2H, q), 2.56 (6H, m), 3.10 (4H, m), 4.50 (2H, t), 4.63 (2H, t), 4.78 (2H, q), 6.20 (1 H, m), 7.06 (1 H, m), 7.58 (1 H, m), 8.63 (1 H, d), 8.80 (1 H, d), 10.46 (1 H, s). Sodium hydride (80mg, 80% dispersion in mineral oil, 2.67mmol) was added to a cooled (-78°C) solution of the title compound from preparation 34 (1.0g, 2.08mmol) in tetrahydrofuran (10ml), and the mixture allowed to warm slowly to room temperature. 4-Fluoronitrobenzene (0.5ml, 4.7mmol) was added, and the reaction heated at 65°C for 72 hours. The cooled mixture was partitioned between aqueous ammonium chloride solution and ethyl-acetate, and the layers separated. The aqueous phase was extracted with ethyl acetate, the combined organic solutions washed with water, then brine, dried (MgSO4) and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using an elution gradient of dichloromethane:methanol (100:0 to 95:5) to afford the title compound, 630mg. δ(CDCl3) : 0.93 (6H, m), 1.52 (3H, t), 2.32 (2H, m), 2.44 (4H, m), 2.98 (6H, m), 4.72 (2H, q), 5.96 (1H, s), 6.76 (1H, s), 7.62 (2H, d), 8.32 (2H, d), 8.58 (1 H, d), 8.75 (1H, d), 10.63 (1H, s). LRMS : m/z 601 (M+1)+ Methanesulphonyl chloride (4.95ml, 64.0mmol) was added to an ice-cold solution of 3-dimethylamino-1-propanol (6g, 58.2mmol) and triethylamine (9.7ml, 69.8mmol) in dichloromethane (200ml), and the reaction stirred at room temperature for 16 hours. The mixture was partitioned between ethyl acetate and aqueous sodium bicarbonate solution, and the phases separated. The aqueous layer was extracted with ethyl acetate, and the combined organic solutions dried (Na2SO4) and evaporated under reduced pressure. The residue was immediately purified by column chromatography on silica gel using dichloromethane:methanol (90:10) as eluant to give an oily solid, 1.5g. This was immediately re-dissolved in dichloromethane (3ml), filtered, and the filtrate diluted with tetrahydrofuran (10ml). Sodium hydride (70mg, 60% dispersion in mineral oil, 1.75mmol) was added portionwise to an ice-cooled solution of the title compound from preparation 34 (760mg, 1.59mmol) in tetrahydrofuran (15ml), and once addition was complete, the solution was stirred at room temperature for an hour. The previously prepared solution of mesylate was then added, and the reaction stirred at 70°C for 16 hours. The cooled mixture was poured into saturated sodium bicarbonate solution (120ml), and extracted with ethyl acetate (2x100ml). The combined organic extracts were dried (Na2SO4) and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using dichloromethane:methanol:0.88 ammonia (89:10:1) as eluant to afford the title compound, 140mg. δ(CDCl3) : 1.02 (3H, t), 1.21 (3H, t); 1.58 (3H, t), 2.32 (6H, s), 2.40 (2H, q), 2.54 (4H, m), 2.78 (2H, t), 2.92 (2H, q), 3.08 (4H, m), 4.18 (2H, t), 4.78 (2H, q), 5.25 (1 H, s), 6.66 (1 H, s), 8.64 (1H, s), 8.83 (1 H, s), 10.54 (1 H, s). Trifluoroacetic acid (3ml) was added to a solution of the title compound from preparation 46 (309mg, 0.47mmol) in dichloromethane (4ml), and the solution stirred for 2 ½ hours. The reaction was evaporated under reduced pressure and the residue triturated well with ether. The resulting solid was sonicated in ether for 1 minute, the resulting precipitate filtered and dried to afford the title compound as a white solid, 278mg. δ (DMSOd6) : 1.15 (6H, m), 1.46 (3H, t), 2.04 (2H, m), 2.20 (2H, m), 2.40-2.84 (6H, m), 3.00-3.22 (6H, m), 3.25-3.60 (4H, m), 3.76 (1H, m), 4.62 (4H, m), 7.27 (1 H, s), 7.40 (1H, s), 8.41 (2H, m), 8.70 (2H, m), 10.24 (1H, s). Trifluoroacetic acid (1.5ml) was added to a solution of the title compound from preparation 46 (320mg, 0.48mmol) in dichloromethane (2ml) and the solution stirred at room temperature for 2 ½ hours. The reaction mixture was evaporated under reduced pressure and the residue triturated well with ether and dried under vacuum, to provide a white solid. Formaldehyde (217µl, 37% aqueous, 2.90mmol) was added to a solution of the intermediate amine in dichloromethane (8ml), and the solution stirred vigorously for 30 minutes. Acetic acid (88µl, 1.69mmol) was added, the solution stirred for a further 30 minutes, then sodium triacetoxyborohydride (169mg, 0.80mmol) was added and the reaction stirred at room temperature for 16 hours. The reaction mixture was poured into aqueous sodium bicarbonate solution, and extracted with ethyl acetate. The combined organic extracts were dried (MgSO4) and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel using dichloromethane:methanol:0.88 ammonia (91.75:7.5:0.75) as eluant to afford the title compound, 70mg. δ (CDCl3) : 1.02 (3H, t), 1.22 (3H, t), 1.58 (3H, t), 1.92 (2H, m), 2.14 (2H, m), 2.25-2.45 (7H, m), 2.54 (4H, m), 2.91 (2H, q), 2.99-3.16 (6H, m), 4.08 (1H, m), 4.78 (2H, q), 5.11 (1H, br s), 6.65 (1 H, br s), 8.63 (1 H, d), 8.83 (1H, d), 10.53 (1H, s). Trifluoroacetic acid (2.5ml) was added to a solution of the title compound from preparation 33 (700mg, 1.1mmol) in dichloromethane (3.5ml) and the solution stirred at room temperature for 2 ½ hours. The reaction mixture was evaporated under reduced pressure and the residue triturated well with ether and dried under vacuum. The solid was suspended in saturated aqueous sodium bicarbonate solution, extracted with ethyl acetate, and the combined organic extracts evaporated under reduced pressure. Formaldehyde (280µl, 37% aqueous, 4.4mmol) was added to a solution of the intermediate amine in dichloromethane (8ml), and the solution stirred vigorously for 30 minutes. Acetic acid (53µl, 1.1mmol) was added, the solution stirred for a further 30 minutes, then sodium triacetoxyborohydride (238mg, 1.12mmol) was added and the reaction stirred at room temperature for 16 hours. The reaction mixture was poured into aqueous sodium bicarbonate solution (30ml), and extracted with ethyl acetate (2x30ml). The combined organic extracts were dried (MgSO4) and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel using dichloromethane:methanol:0.88 ammonia (91.75:7.5:0.75) to afford the title compound, 470mg. δ (CDCl3) : 1.01 (3H, t), 1.18 (3H, t), 1.58 (3H, t), 2.40 (2H, q), 2.48 (3H, s), 2.54 (4H, m), 2.85 (2H, q), 3.10 (4H, m), 3.59 (2H, t), 3.82 (2H, t), 4.79 (2H, q), 4.96 (1 H, m), 5.32 (1 H, br s), 6.79 (1H, br s), 8.64 (1 H, d), 8.82 (1H, d), 10.52 (1H, s). A mixture of the title compound of preparation 32 (250mg, 0.37mmol) and 10% palladium on charcoal (35mg) in methanol (3ml) was hydrogenated at 60psi and room temperature for 16 hours. The reaction mixture was filtered through Arbocel®, the filter pad washed with methanol and the combined filtrates evaporated under reduced pressure. The residue was purified by column chromatography on silica gel, using an elution gradient of dichloromethane:methanol:0.88 ammonia (90:10:0 to 89:10:1) to afford the title compound (135mg, 68%) as a white foam. δ (CDCl3) : 1.02 (3H, t), 1.20 (3H, t), 1.60 (3H, t), 2.40 (2H, q), 2.48 (3H, s), 2.52 (4H, m), 2.94 (2H, q), 3.10 (6H, m), 4.22 (2H, t), 4.79 (2H, q), 5.28 (1 H, s), 6.67 (1H, s), 8.64 (1 H, s), 8.83 (1 H, s), 10.54 (1 H, s). Sodium hydride (88mg, 60% dispersion in mineral oil, 2.2mmol) was added portionwise to an ice-cold solution of the title compound from preparation 34 (1.0g, 2.1mmol) in tetrahydrofuran (25ml), and the solution stirred for 30 minutes. 2-Dimethylaminoethylchloride hydrochloride (451 mg, 3.15mmol) was treated with saturated aqueous sodium bicarbonate solution, and this mixture extracted with dichloromethane (2x15ml). The combined extracts were concentrated under reduced pressure at room temperature to a volume of about 2 ml, and this solution diluted with tetrahydrofuran (10ml). This was then added to the previously prepared solution, and the reaction heated under reflux for 20 hours. The cooled mixture was poured into aqueous saturated sodium bicarbonate solution, and extracted with ethyl acetate (100ml). The organic extract was evaporated under reduced pressure, and the residual foam was purified by column chromatography on silica gel using ethyl acetate:diethylamine (95:5) as eluant to afford the title compound, 300mg. δ(CDCl3) : 1.02 (3H, t), 1.22 (3H, t), 1.59 (9H, m), 2.40 (2H, q), 2.54 (4H, m), 2.78 (2H, t), 2.94 (2H, q), 3.09 (4H, m), 4.19 (2H, t), 4.78 (2H, q), 5.25 (1 H, s), 6.65 (1 H, s), 8.62 (1 H, s), 8.83 (1 H, s), 10.54 (1H, s). The title compound was obtained (70%) from the title compounds of preparations 25 and 14, following a similar procedure to that described in preparation 27. δ(CDCl3) : 1.04 (3H, t), 1.27 (3H, t), 1.59 (3H, t), 2.42 (2H, q), 2.57 (4H, m), 2.72 (2H, q), 3.12 (4H, m), 3.38 (3H, s), 3.85 (2H, t), 4.55 (2H, t), 4.77 (2H, q), 5.57 (1 H, s), 7.92 (1 H, s), 8.68 (1 H, s), 8.86 (1 H, s), 9.82 (1 H, s). LRMS : m/z 538 (M+1)+ A mixture of the title compounds of preparations 26 (585mg, 1.77mmol) and 15 (300mg, 1.32mmol), 1-hydroxybenzotriazole hydrate (189mg, 1.40mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (267mg, 1.40mmol) and N-ethyldiisopropylamine (0.39ml, 2.25mmol) in dichloromethane (20ml) was stirred at room temperature for 18 hours. The mixture was washed with brine (10ml), then water (10ml) and then extracted with hydrochloric acid (1M, 3x20ml). The combined acidic extracts were neutralised using sodium bicarbonate solution, and this aqueous solution extracted with dichloromethane (3x30ml). The combined organic extracts were dried (Na2SO4), and evaporated under reduced pressure to afford the title compound as a white solid, 446mg. δ(CDCl3) : 0.97 (3H, t), 1.67 (5H, m), 2.28 (3H, s), 2.50 (4H, m), 2.65 (2H, t), 3.10 (4H, m), 3.37 (3H, s), 3.82 (2H, t), 4.52 (2H, t), 4.76 (2H, q), 5.57 (1 H, s), 7.87 (1 H, s), 8.67 (1 H, s), 8.85 (1H, s), 9.77 (1 H, s). LRMS : m/z 538 (M+1)+ Potassium bis(trimethylsilyl)amide (8.28g, 41.6mmol) was added to a solution of the title compound from preparation 34 (10.0g, 20.8mmol) and ethyl acetate (2ml, 20mmol) in ethanol (160ml), and the reaction mixture heated at 120°C for 12 hours in a sealed vessel. The cooled mixture was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel using dichloromethane:methanol:0.88 ammonia (95:5:0.5) as eluant, to give the title compound, 3.75g. δ (CDCl3) : 1.03 (3H, t), 1.42 (3H, t), 1.60 (3H, t), 2.42 (2H, q), 2.58 (4H, m), 3.02 (2H, q), 3.16 (4H, m), 4.78 (2H, q), 8.66 (1H, d), 9.08 (1 H, d), 11.00 (1 H, s) 11.05-11.20 (1H, br s). LRMS : m/z 462 (M+1)+ A mixture of the title compound from preparation 34 (500mg, 1.04mmol), and potassium bis(trimethylsilyl)amide (436mg, 2.19mmol) in n-butanol (12ml) was heated at 130°C for 16 hours in a sealed vessel. The cooled mixture was poured into saturated aqueous sodium bicarbonate solution, and extracted with ethyl acetate, and the combined organic extracts dried (MgSO4) and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using dichloromethane:methanol (96:4) as eluant to afford the title compound, 128mg. δ (CDCl3) : 1.04 (6H, m), 1.42 (3H, t), 1.59 (2H, m), 1.96 (2H, m), 2.46 (2H, m), 2.60 (4H, m), 3.01 (2H, q), 3.19 (4H, m), 4.70 (2H, t), 8.64 (1 H, d), 9.03 (1 H, d), 11.09 (1 H, s). LRMS : m/z 490 (M+1)+ A mixture of the title compound of preparation 31 (2.02g, 3.17mmol), and potassium bis(trimethylsilyl)amide (950mg, 4.76mmol) in 3-methyl-3-pentanol (50ml) was stirred under reflux for 8 hours. The cooled mixture was concentrated under reduced pressure, the residue suspended in ethyl acetate (100ml), washed with water (50ml) and brine (50ml), dried (MgSO4) and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel, using an elution gradient of dichloromethane:methanol (100:0 to 90:10) to afford the title compound, 124mg. δ(CDCl3) : -0.08 (6H, s), 0.81 (9H, s), 1.02 (3H, t), 1.40 (3H, t), 1.57 (3H, t) 2.41 (2H, q), 2.56 (4H, m), 3.14 (6H, m), 4.15 (2H, t), 4.40 (2H, t), 4.74 (2H, q), 8.62 (1 H, s), 9.03 (1 H, s), 10.68 (1 H, s). LRMS : m/z 620 (M+1)+ A mixture of the title compound from example 14 (100mg, 0.16mmol) and potassium bis(trimethylsilyl)amide (161mg, 0.81 mmol) in n-propanol (3ml) was heated at 100°C for 16 hours. The cooled reaction mixture was poured into saturated sodium bicarbonate solution (20ml), extracted with ethyl acetate (2x30ml), and the combined organic extracts evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using dichloromethane:methanol (97:3) as eluant to afford the title compound, 71 mg. δ (CDCl3) : 1.03 (3H, t), 1.14 (3H, t), 1.41 (3H, t), 1.45 (9H, s), 2.00 (2H, m), 2.42 (2H, q), 2.58 (7H, m), 3.01 (2H, q), 3.16 (4H, m), 3.78 (2H, t), 4.46 (2H, m), 4.63 (2H, t), 8.63 (1 H, d), 9.04 (1 H, d), 10.66 (1 H, br s). A mixture of the title compound from example 14 (123mg, 0.20mmol), potassium bis(trimethylsilyl)amide (198mg, 1.0mmol) and ethyl acetate (18mg, 0.20mmol) in n-butanol (12ml) was heated at 110°C for 8 hours in a sealed vessel. The cooled mixture was poured into aqueous saturated sodium bicarbonate solution (60ml), and extracted with ethyl acetate (2x60ml). The combined organic extracts were dried (MgSO4), and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using dichloromethane:methanol (97:3) as eluant to give the title compound as a beige foam, 36mg. δ(CDCl3) : 1.02 (6H, t), 1.40 (3H, t), 1.45 (9H, s), 1.55 (2H, m), 1.95 (2H, m), 2.41 (2H, q), 2.58 (7H, m), 3.01 (2H, q), 3.16 (4H, m), 3.78 (2H, t), 4.45 (2H, m), 4.67 (2H, t), 8.63 (1 H, d), 9.03 (1 H, d), 10.64 (1 H, s). A mixture of the title compound of preparation 33 (1.3g, 2.05mmol) and potassium bis(trimethylsilyl)amide (490mg, 2.46mmol) in ethanol (35ml) was heated at 130°C in a sealed vessel for 16 hours. The cooled reaction mixture was concentrated under reduced pressure, the residue dissolved in water (15ml), the solution neutralised using hydrochloric acid (2N), and then saturated sodium bicarbonate added. This aqueous solution was extracted with dichloromethane (5x30ml), the combined organic extracts dried (MgSO4) and evaporated under reduced pressure. The residual gum was purified by column chromatography on silica gel, using ethyl acetate:diethylamine (96:4) as eluant to afford the title compound, 350mg. δ (CDCl3) : 1.02 (3H, t), 1.38 (3H, t), 1.48 (9H, s), 1.58 (3H, t), 2.40 (2H, q), 2.57 (4H, m), 3.02 (2H, q), 3.14 (4H, m), 4.37 (2H, t), 4.42 (2H, m), 4.77 (2H, q), 5.25 (1 H, m), 8.64 (1 H, s), 8.81 (1 H, s), 10.57 (1 H, s). The title compound was prepared from the title compound from preparation 46, following a similar procedure to that described in preparation 63. The crude product was purified by column chromatography on silica gel using dichloromethane:methanol (95:5) as eluant to give the title compound (62%). δ(CDCl3) : 1.03 (3H, t), 1.38-1.60 (15H, m), 1.94 (2H, m), 2.41 (4H, m), 2.57 (4H, m), 2.90 (2H, m), 3.10 (6H, m), 4.26-4.48 (3H, m), 4.77 (2H, q), 8.62 (1 H, d), 9.02 (1 H, d), 10.60 (1H, s). The title compound was obtained (67%) from the title compound from preparation 63 and n-butanol, following a similar procedure to that described in preparation 61. δ(CDCl3) : 1.02 (6H, t), 1.38 (3H, t), 1.48 (9H, s), 1.57 (2H, m), 1.96 (2H, m), 2.41 (2H, q), 2.57 (4H, m), 3.02 (2H, q), 3.15 (4H, m), 4.39 (2H, m), 4.68 (4H, m), 5.26 (1 H, m), 8.62 (1 H, m), 9.02 (1 H, m), 10.67 (1 H, s). A mixture of the title compound from preparation 63 (100mg, 0.16mmol) and potassium bis(trimethylsilyl)amide (157mg, 0.79mmol) in (R )-pentan-2-ol (1ml), and the mixture heated at 120°C for 4 days. The cooled mixture was suspended in aqueous saturated sodium bicarbonate solution (35ml) and extracted with ethyl acetate (2x35ml). The combined organic extracts were dried (MgSO4) and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using dichloromethane:methanol:0.88 ammonia (95:4.7:0.3) as eluant to give the title compound, 14mg. δ (CDCl3) : 1.02 (6H, m), 1.38 (3H, t), 1.48 (12H, m), 1.80 (1H, m), 1.98 (1H, m), 2.42 (2H, q), 2.58 (4H, m), 3.02 (2H, q), 3.16 (4H, m), 4.40 (2H, t), 4.67 (2H, m), 5.25 (1 H, m), 5.62 (1H, m), 8.62 (1 H, s), 9.02 (1 H, s), 10.70 (1 H, s). The title compound was obtained (69%) from the title compound from preparation 46 and n-butanol, following a similar procedure to that described in preparation 62. δ(CDCl3) : 1.01 (6H, t), 1.34-1.60 (14H, m), 1.93 (4H, m), 2.41 (4H, m), 2.57 (4H, m), 2.90 (2H, m), 3.00-3.20 (6H, m), 4.38 (3H, m), 4.66 (2H, t), 8.61 (1H, d), 9.00 (1H, s), 10.58 (1H, s). A solution of the title compound from preparation 64 (48mg, 0.075mmol) in trifluoroacetic acid (0.5ml) and dichloromethane (0.5ml) was stirred at room temperature for 2 ½ hours. The mixture was concentrated under reduced pressure and the residue triturated well with ether. The solid was then sonicated in ether for a minute, and the resulting precipitate filtered and dried to give the title compound, 54mg. δ (DMSOd6) : 1.16 (3H, t), 1.22-1.38 (6H, m), 2.10 (2H, m), 2.38 (2H, m), 3.00 (2H, q), 3.07-3.54 (14H, m), 4.50 (2H, q), 5.85 (1 H, m), 8.24 (1 H, s), 8.44 (1H, br s), 8.74 (2H, m), 11.90 (1 H, s). A mixture of the title compound from preparation 58 (1.0g, 2.2mmol), and potassium bis(trimethylsilyl)amide (2.16g, 10.8mmol) in 2-methoxyethanol (20ml) was heated under reflux for 18 hours. The cooled mixture was evaporated under reduced pressure and the residue purified by column chromatography on silica gel using an elution gradient of dichloromethane:methanol (100:0 to 90:10) to give the title compound, 860mg. δ(CDCl3) : 1.03 (3H, t), 1.42 (3H, t), 2.43 (2H, q), 2.59 (4H, m), 3.02 (2H, q), 3.18 (4H, m), 3.59 (3H, s), 4.80 (2H, t), 8.63 (1 H, d), 9.00 (1 H, d), 11.25 (1 H, br s). LRMS : m/z 492 (M+1)+ 2-Bromoethyl ethyl ether (0.28ml, 2.50mmol) was added to a mixture of the title compound from preparation 34 (1.0g, 2.09mmol) and cesium carbonate (816mg, 2.50mmol) in N,N-dimethylformamide (20ml), and the reaction stirred at 60°C for 12 hours. The mixture was diluted with water (100ml), and extracted with ethyl acetate (2x100ml). The combined organic extracts were dried (MgSO4), evaporated under reduced pressure and the residue azeotroped with toluene. The crude product was triturated with ether, the resulting solid filtered and dried to afford the title compound as a crystalline solid, 550mg. d (DMSOd6) : 0.92 (3H, t), 1.10 (6H, m), 1.44 (3H, t), 2.30 (2H, q), 2.42 (4H, m), 2.80 (2H, q), 2.96 (4H, m), 3.40 (2H, q), 3.78 (2H, t), 4.24 (2H, t), 4.63 (2H, q), 7.29 (1 H, s), 7.40 (1 H, s), 8.40 (1 H, d), 8.66 (1H, d), 10.40 (1 H, s). LRMS : m/z 552 (M+1)+ p-Toluenesulphonyl chloride (2.12g, 11.1mmol) was added to a solution of cyclopentanemethanol (1ml, 9.25mmol) in ether (25ml), and the solution cooled in an ice/salt bath. Freshly powdered potassium hydroxide (4.7g, 83.3mmol) was added and the reaction mixture allowed to warm to room temperature, over 2 hours. The reaction was diluted with water, the phases separated, and the aqueous layer extracted with ether. The combined organic solutions were dried (MgSO4), and evaporated under reduced pressure, to give the title compound as a clear oil, 2.18g.1Hnmr (CDCl3, 400MHz) δ : 1.20 (2H, m), 1.55 (4H, m), 1.74 (2H, m), 2.20 (1 H, m), 2.43 (3H, s), 3.92 (2H, d), 7.36 (2H, d), 7.80 (2H, d). LRMS : m/z 277 (MNa+) Methanesulphonyl chloride (1.82ml, 23.5mmol) was added dropwise over 10 minutes to an ice-cold solution of tetrahydro-2 The title compound was prepared according to the method described in Tetrahedron 41; 17;1985; 3447. A solution of methanesulphonic anhydride (8.33g, 47.8mmol) in dichloromethane (30ml) was added dropwise over 30 minutes to an ice-cooled solution of (R)-2-butanol (4.0ml, 43.5mmol) and triethylamine (6.65ml, 47.8mmol) in dichloromethane (70ml). The reaction was then allowed to warm to room temperature and stirred for 18 hours. The mixture was then washed with water, 2N hydrochloric acid, then dried (Na2SO4) and evaporated under reduced pressure to give the title compound as a pale yellow oil, 7.0g.1Hnmr (CDCl3, 300MHz) δ : 0.98 (3H, t), 1.40 (3H, d), 1.62-1.80 (2H, m), 3.00 (3H, s), 4.76 (1H, m). The title compound was obtained as an oil, in 54% yield from (S)-2-butanol and methanesulphonic anhydride, following the procedure described in preparation 74.1Hnmr (CDCl3, 300MHz) δ : 0.96 (3H, t), 1.38 (3H, d), 1.60-1.76 (2H, m), 2.96 (3H, s), 4.70 (1 H, m). Sodium methoxide (54g, 1.0mol) was added portionwise to ice-cooled methanol (1000ml), and the resulting solution stirred for 20 minutes in an icebath. (R)-Propylene oxide (58g, 1mol) was added dropwise over 30 minutes, and once addition was complete, the reaction was stirred at room temperature for 18 hours. The mixture was concentrated under reduced pressure, and acidified, with ice-cooling, using (1M) ethereal hydrochloric acid, and the resulting mixture stirred for an hour, then filtered. The filtrate was dried (K2CO3), filtered and evaporated under reduced pressure. The residue was heated to 70°C over dried calcium oxide for 30 minutes, then distilled at atmospheric pressure to afford the title compound as an oil, 25.4g. b.p. 118-120°C1Hnmr (CDCl3, 300MHz) δ : 1.16 (3H, d), 2.28 (1 H, d), 3.20 (1H, m), 3.36 (1 H, m), 3.40 (3H, s), 3.97 (1 H, m).D -20.83° (c=1.02, dichloromethane) Triethylamine (8.5ml, 61 mmol) was added to a solution of the alcohol from preparation 76 (5.0g, 55mmol) in dichloromethane (100ml), and the solution cooled in an ice/acetone bath. A solution of methanesulphonic anhydride (10.64g, 61 mmol) in dichloromethane (50ml) was added dropwise over 30 minutes, then the reaction stirred at room temperature for 18 hours. The reaction mixture was washed with water, and 2M hydrochloric acid, then dried (Na2SO4), and evaporated under reduced pressure to give the title compound, 2.77g.1Hnmr (CDCl3, 300MHz) δ: 1.39 (3H, d), 3.03 (3H, s), 3.38 (3H, s), 3.44 (2H, m), 4.87 (1H, m). S(-)-propylene oxide (17.58g, 0.30mol) was added dropwise over 45 minutes, to a freshly prepared solution of sodium (7.0g, 0.30mol) in methanol (100ml), and the mixture stirred at room temperature for 18 hours. The reaction was diluted with pentane (150ml), then acetic acid (17ml, 0.30mol) added slowly. The resulting mixture was filtered through Celite®, and the filtrate concentrated under reduced pressure. The residual oil was distilled at 30 Torr, and fractions boiling at 30°C were collected, to give 3.3g of an oil, containing about 30% methanol. Triethylamine (5.56ml, 0.04mol) was added to a solution of this oil in dichloromethane (60ml), then the solution cooled in ice. A solution of methanesulphonic anhydride (7.03g, 0.04mol) in dichloromethane (30ml) was added dropwise over 30 minutes, then the reaction stirred at room temperature for 18 hours. The mixture was washed with water, and 2M hydrochloric acid, then dried (MgSO4), and evaporated under reduced pressure to give the title compound, 3.3g, which was used without further purification.1Hnmr (CDCl3, 300MHz) δ: 1.39 (3H, d), 3.03 (3H, s), 3.38 (3H, s), 3.44 (2H, m), 4.87 (1H, m). A suspension of 2-ethoxy-3-pyridinecarboxylic acid (16.4g, 98mmol), and cesium carbonate (32g, 98mmol) in N,N-dimethylformamide (240ml) was stirred at room temperature for 2 hours. Ethyl iodide (7.85ml, 98mmol) was added and the reaction stirred for a further 24 hours. The reaction mixture was concentrated under reduced pressure and the residue partitioned between aqueous sodium carbonate solution (100ml) and ethyl acetate (100ml). The phases were separated and the aqueous layer extracted with ethyl acetate (2x100ml) . The combined organic solutions were washed with brine, dried (Na2SO4) and evaporated under reduced pressure to afford the ethyl ester, 18.0g, as a pale yellow oil. Ammonium nitrate (5.36g, 66mmol) was added portionwise to an ice-cooled solution of the oil (4.66g, 22.3mmol) in trifluoroacetic anhydride (50ml) and the reaction stirred for 18 hours at room temperature. The reaction mixture was carefully poured into ice water (200ml) and the resulting suspension stirred for an hour. The precipitate was filtered off, washed with water and dried under suction to afford the nitro ester as a solid, 3.29g. Aqueous sodium hydroxide solution (4ml, 5N, 20mmol) was added dropwise to a solution of the solid (5.1g, 20mmol) in ethanol (100ml) and the reaction stirred at room temperature for 18 hours. The reaction mixture was concentrated under reduced pressure, the residue suspended in water (50ml) and acidified to pH 3 with hydrochloric acid. This aqueous solution was extracted with ethyl acetate (3x100ml), the combined organic layers washed with brine (100ml), dried (Na2SO4) and evaporated under reduced pressure to give a beige solid. The crude product was recrystallised from ethyl acetate/hexane to afford the title compound, 3.32g, as beige crystals.1Hnmr (CDCl3, 300MHz) δ: 1.55 (3H, t), 4.78 (2H, q), 9.17 (1H, s), 9.23 (1H, s). A mixture of the acid from preparation 79 (4.46g, 21.0mmol), the pyrazole from preparation 9 (4.15g, 19.6mmol), 1-hydroxybenzotriazole hydrate (3.51g, 26.0mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (4.98g, 26.0mmol) and N-ethyldiisopropylamine (10.38ml, 60.0mmol) in dichloromethane (110ml) was stirred at room temperature for 18 hours. The reaction was diluted with dichloromethane (100ml), then washed consecutively with water (70ml), 10% aqueous sodium bicarbonate solution (70ml), and brine (70ml), then dried (Na2SO4) and concentrated under reduced pressure. The residual yellow solid was purified by column chromatography on silica gel using dichloromethane:methanol (95:5) as eluant. The product was recrystallised from ethyl acetate to afford the title compound as a pale yellow crystalline solid, 3.96g.1Hnmr (CDCl3, 400MHz) δ : 1.21 (3H, t), 1.59 (3H, t), 2.94 (2H, q), 3.35 (3H, s), 3.80 (2H, t), 4.27 (2H, t), 4.83 (2H, q), 5.29 (1 H, br s), 6.62 (1 H, br s), 9.15 (1H, d), 9.32 (1 H, d), 10.51 (1 H, br s). LRMS : m/z 407.5 (MH+) Anal. Found: C, 50.21; H, 5.39; N, 20.66. C17H22N6O6 requires C, 50.24; H, 5.46; N, 20.68%. A mixture of the nitro compound from preparation 80 (3.86g, 9.50mmol), and 10% palladium on charcoal (200mg) in dichloromethane (75ml) and ethanol (25ml) was hydrogenated at 50psi and room temperature for 2 hours. The mixture was diluted with dichloromethane, then filtered through Solkafloc®, and the filtrate evaporated under reduced pressure to give the title compound, 3.63g.1Hnmr (DMSOd6, 400MHz) δ : 1.06 (3H, t), 1.37 (3H, t), 2.75 (2H, q), 3.23 (3H, s), 3.72 (2H, t), 4.24 (2H, t), 4.39 (2H, q), 5.02 (2H, br s), 7.25 (1 H, br s), 7.37 (1H, br s), 7.70 (2H, m), 10.33 (1 H, s). LRMS : m/z 377.2 (MH+) A mixture of the amine from preparation 81 (2.53g, 6.72mmol), and potassium bis(trimethylsilyl)amide (5.56g, 27.9mmol) in ethanol (50ml) was heated at 120°C in a sealed vessel for 8 hours. The cooled reaction was evaporated under reduced pressure and the residue purified by column chromatography on silica gel using an elution gradient of ethyl acetate:ethanol (100:0 to 96:4) to afford the title compound, 1.96g.1Hnmr (CDCl3, 400MHz) δ : 1.40 (3H, t), 1.51 (3H, t), 3.06 (2H, q), 3.30 (3H, s), 3.57 (2H, br s), 3.90 (2H, t), 4.45 (2H, t), 4.55 (2H, q), 7.77 (1H, d), 8.18 (1H, d), 11.03 (1 H, br s). LRMS : m/z 359.1 (MH+) Cesium carbonate (2.7g, 8.31 mmol) was added to a solution of the compound from preparation 34 (1.8g, 3.76mmol) in N,N-dimethylformamide (40ml), followed by cyclobutyl bromide (388µl, 4.13mmol), and the reaction mixture stirred at 60°C for 3 days. The cooled solution was partitioned between ethyl acetate and sodium bicarbonate solution, and the layers separated. The aqueous phase was extracted with ethyl acetate (3x), the combined organic solutions dried (MgSO4), and evaporated under reduced pressure. The residual yellow solid was triturated with ether to afford the title compound as a pale yellow powder, 762mg.1Hnmr (CDCl3, 400MHz) δ : 1.00 (3H, t), 1.20 (3H, t), 1.57 (3H, t), 1.88 (2H, m), 2.40 (4H, m), 2.52 (4H, m), 2.70 (2H, m), 2.82 (2H, q), 3.08 (4H, m), 4.78 (3H, m), 5.24 (1 H, br s), 6.75 (1H, br s), 8.62 (1H, s), 8.81 (1 H, s), 10.50 (1 H, s). The compounds of the following general structure: were prepared from the compound from preparation 34 and the appropriate alkylating agent, following a similar method to that described in preparation 83. Cesium carbonate (3.00g, 9.20mmol) was added to a solution of the compound from preparation 34 (2.0g, 4.17mmol) in N,N-dimethylformamide (30ml), and the mixture stirred for 30 minutes. The mesylate from preparation 78 (0.77g, 4.58mmol) was added and the reaction stirred at 60°C for 8 hours. The cooled mixture was partitioned between ethyl acetate and water, and the pH adjusted to 8, using solid carbon dioxide. The layers were separated, and the aqueous phase extracted with ethyl acetate (2x). The combined organic extracts were dried (Na2SO4), and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using an elution gradient of methanol:dichloromethane (1:99 to 8:92) to afford the title compound, 300mg.1Hnmr (CDCl3, 300MHz) δ: 1.02 (3H, t), 1.23 (3H, t), 1.48 (3H, d), 1.58 (3H, t), 2.40 (2H, q), 2.52 (4H, m), 2.90 (2H, m), 3.08 (4H, m), 3.30 (3H, s), 3.60 (1 H, m), 3.78 (1 H, m), 4.56 (1 H, m), 4.78 (2H, q), 5.30 (1H, br s), 6.66 (1 H, br s), 8.63 (1H, d), 8.82 (1H, d), 10.48 (1H, s). LRMS : m/z 552.3 (MH+) The title compound was obtained as an oil in 52% yield, from the compound from preparation 34 and the mesylate from preparation 77, following the procedure described in preparation 89.1Hnmr (CDCl3, 300MHz) δ: 1.01 (3H, t), 1.22 (3H, t), 1.48 (3H, d), 1.58 (3H, t), 2.40 (2H, q), 2.54 (4H, m), 2.90 (2H, m), 3.08 (4H, m), 3.30 (3H, s), 3.61 (1 H, m), 3.78 (1 H, m), 4.56 (1H, m), 4.78 (2H, q), 5.25 (1 H, br s), 6.66 (1 H, br s), 8.63 (1 H, d), 8.82 (1 H, d), 10.48 (1 H, s). LRMS : m/z 552.4 (MH+) The compounds of the following general structure: were prepared from the compound from preparation 35 and the appropriate alkylating agent, following a similar method to that described in preparation 83. 2-Hydroxynicotinic acid (27Kg, 194.2mol) was added portionwise to 30% oleum (58.1Kg) at 50°C over 1 hr. This caused an exotherm to 82°C. The reaction mixture was heated further to 140°C. After maintaining this temperature for 12hrs the reactor contents were cooled to 15C and filtered. The filter cake was then re-slurried with acetone (33Kg) at room temperature, filtered and dried to afford the title compound (35.3Kg, 83%) as a white solid. Decomposition pt 273°C. δ (DMSOd6): 7.93 (1H, d), 8.42 (1 H, d). m/z (Found:220 [M+H]+, 100%. C6H6NO6S requires 220.17). 2-Hydroxy-5-sulfonicotinic acid (500g, 2.28mol) was dissolved in ethanol (2.5L) with stirring and heated to 80°C. After 30mins 0.5L of solvent was distilled off, then replaced with fresh ethanol (0.5L) and taken back to 80°C. After a further 60mins 1.0L of solvent was distilled off, then replaced with fresh ethanol (1.0L) and taken back to 80°C. After a further 60mins 1.0L of solvent was distilled off, the reaction cooled to 22°C and stirred for 16hr. The precipitated product was filtered, washed with ethanol (0.5L) and dried at 50°C under vacuum to afford the title compound (416g, 74%) as a white solid. Decomposition pt 237°C. δ (DMSOd6): 1.25 (3H, t), 4.19 (2H,q), 7.66 (1 H, d), 8.13 (1 H, d). m/z (Found:248 [M+H]+, 100%. C8H10NO6S requires 248.22). Ethyl 2-hydroxy-5-sulfonicotioate (24.7g, 0.1mol) was slurried in thionyl chloride (238g, 2.0mol) and dimethylformamide (1.0mL) with stirring. The reaction mixture was then heated to reflux for 2.5hr. The bulk of the thionyl chloride was removed under vacuum with residual thionyl chloride removed with a toluene azeotrope to afford the crude title compound (30.7g, 108%) as a yellow oil. d (CDCl3): 1.46 (3H, t), 4.50 (2H, q), 8.72 (1 H, d), 9.09 (1H, d). This was taken directly onto the next step. Crude ethyl 2-chloro-5-chlorosulfonicotinoate (30.7g, 0.1mol assumed) was dissolved in ethyl acetate (150mL) with stirring then ice cooled. To this was added a solution of N-ethylpiperazine (11.4g, 0.1mol) and triethylamine (22.5g, 0.22mol) in ethyl acetate (50mL), carefully over 30mins, keeping the internal temperature below 10°C. Once the addition was complete the reaction was allowed to warm to 22°C and stir for 1 hr. The solid was filtered off and the remaining filtrate was concentrated under vacuum to afford the crude title compound (37.1g, 103%) as a crude yellow gum. δ (CDCl3): 1.10 (3H, t), 1.42 (3H, m), 2.50 (2H, m), 2.60 (4H, m), 3.19 (4H, m), 4.43 (2H, q), 8.40 (1H, d), 8.80 (1H, d). m/z (Found:362 [M+H]+, 100%. C14H21CIN3O4S requires 362.85). A solution of Ethyl 2-chloro-5-(4-ethyl-1-piperazinylsulfonyl)nicotinoate (36.1g, 0.1mol) in ethanol (180mL) was cooled to 10°C with stirring. Sodium ethoxide (10.2g, 0.15mol) was added portionwise keeping the temperature below 20°C. The reaction mixture was then stirred at ambient temperature for 18 hours. The precipitate was filtered off and water (180mL) added to the filtrate. The filtrate was then heated to 40°C for 1 hour. Ethanol (180mL) was then distilled off at ambient pressure and the remaining aqueous solution allowed to cool to ambient temperature. The precipitated product was then filtered off, washed with water and dried under vacuo at 50°C to afford the title compound (12.6g, 34%) as a light brown solid. M.p. 66-68°C. δ (CDCl3): 1.04 (3H, t), 1.39 (3H, t), 1.45 (3H, t), 2.41 (2H, q), 2.52 (4H, m), 3.08 (4H, m), 4.38 (2H, q), 2.57 (2H, q), 8.38 (1 H, d), 8.61 (1H, d). m/z (Found:372 [M+H]+, 100%. C16H26N3O5S requires 372.46). Ethyl 2-ethoxy-5-(4-ethyl-1-piperazinylsulfonyl)nicotinoate (10.2g, 0.0275mol) was dissolved in toluene (50mL) and a solution of sodium hydroxide (1.1g, 0.0275mol) in water (20mL) added to it. This two phase mixture was then stirred vigorously at ambient temperature overnight. The aqueous phase was separated off and adjusted to pH=5.6 by addition of c. hydrochloric acid. The precipitated product was slurried with ice cooling for 15 minutes, filtered, water washed and dried under vacuo at 50°C to afford the title compound as an off-white solid. Mpt 206-207°C. δ (CDCl3): 1.25 (3H, t), 1.39 (3H, t), 2.82 (2H, q), 3.03 (4H, m), 3.25 (4H, m), 4.50 (2H, q), 8.25 (1 H, d), 8.56 (1 H, d). m/z (Found:344 [M+H]+, 100%. C14H22N3O5S requires 344.38). This step 95(f) is already set out in preparation 23 of PCT/IB99/00519 (herein incorporated by reference) and the yield obtained is 88%. To a stirred solution of 2,2-dimethoxybutane (10 g, 84.7 mMol) in CH2Cl2 (50 mL) under a nitrogen atmosphere at 0°C was added pyridine (13.7 mL, 169.5 mMol). The reaction mixture was maintained at 0°C and a solution of trichloroacetyl chloride (18.9 mL, 169.5 mMol) in CH2CL2 (35 mL) was added over 1 hour with constant stirring. The yellow-orange solution begins to precipitate a white solid as the reaction progresses. The reaction mixture is allowed to warm to room temperature over 20 h. The reaction mixture was diluted with ethanol (150 mL) and re-cooled to 0°C before treatment with hydrazine hydrate (8.2 mL, 169.5 mMol) as a solution in ethanol (35 mL) over 30 min. The reaction was heated to 50°C and solvent was distilled at atmospheric pressure. The temperature was increased until the head temperature reached 78°C. Reflux was maintained for a further 2 h, before cooling to room temperature. The reaction mixture was diluted with water (250 mL) and ethanol was removed by evaporation at reduced pressure. The resultant mixture was extracted with CH2Cl2 (3 x 200 mL). The combined organics were dried (MgSO4), filtered and evaporated at reduced pressure to afford the title compound as a brown oil, 12.05 g, 85%.1H NMR (300 MHz, CDCl3): δ = 1.20 (3H, t), 1.28 (3H, t), 2.67 (2H, q), 4.29 (2H, q), 6.55 (1 H, s), 12.56 (1 H, s). LRMS Aqueous sodium hydroxide solution (10M; 100 ml, 1.0 mol) was added dropwise to a stirred suspension of the title compound of Preparation 96(a) (66.0 g, 0.39 mol) in methanol and the resulting solution heated under reflux for 4 hours. The cool reaction mixture was concentrated under reduced pressure to ca. 200 ml, diluted with water (200 ml) and this mixture washed with toluene (3 x 100 ml). The resulting aqueous phase was acidified with concentrated hydrochloric acid to pH 4 and the white precipitate collected and dried by suction to provide the title compound (34.1 g). δ (DMSOd6): 1.13 (3H,t), 2.56 (2H,q), 6.42 (1 H,s). Fuming sulphuric acid (17.8 ml) was added dropwise to stirred, ice-cooled fuming nitric acid (16.0 ml), the resulting solution heated to 50°C, then 3-n-propyl-1H-pyrazole-5-carboxylic acid (Chem. Pharm. Bull., 1984, 32, 1568; 16.4 g, 0.106 mol) added portionwise over 30 minutes whilst maintaining the reaction temperature below 60°C. The resulting solution was heated for 18 hours at 60°C, allowed to cool, then poured onto ice. The white precipitate was collected, washed with water and dried by suction to yield the title compound (15.4 g), m.p. 170-172°C. Found: C, 42.35; H, 4.56; N, 21.07. C7H9N3O4 requires C, 42.21; H, 4.55; N, 21.10%. δ (DMSOd6): 0.90 (3H,t), 1.64 (2H,m), 2.83 (2H,m), 14.00 (1H,s). Obtained from the title compound of Preparation 96(b), by analogy with the process of Preparation 96(c), as a brown solid (64%). δ (DMSOd6): 1.18 (3H,t), 2.84 (2H,m), 13.72 (1 H,s). A solution of the title compound of Preparation 96(c) (15.4 g, 0.077 mol) in thionyl chloride (75 ml) was heated under reflux for 3 hours and then the cool reaction mixture evaporated under reduced pressure. The residue was azeotroped with tetrahydrofuran (2 x 50 ml) and subsequently suspended in tetrahydrofuran (50 ml), then the stirred suspension ice-cooled and treated with gaseous ammonia for 1 hour. Water (50 ml) was added and the resulting mixture evaporated under reduced pressure to give a solid which, after trituration with water and drying by suction, furnished the title compound (14.3 g), m.p. 197-199°C. Found: C, 42.35; H, 5.07; N, 28.38. C7H10N4O3 requires C, 42.42; H, 5.09; N, 28.27%. δ (DMSOd6): 0.90 (3H,t), 1.68 (2H,m), 2.86 (2H,t), 7.68 (1 H,s), 8.00 (1 H,s). Obtained from the title compound of Preparation 96(d), by analogy with Preparation 96(e), as a white solid (90%). δ (DMSOd6): 1.17 (3H,t), 2.87 (2H,m), 7.40 (1 H,s), 7.60 (1 H,s), 7.90 (1 H,s). LRMS: m/z 185 (M+1)+. A mixture of 3-ethyl-4-nitro- A mixture of 3-ethyl-4-nitro- A mixture of 5-ethyl-1-(2-methoxyethyl)-4-nitro-1 2-ethoxy-5-(4-ethyl-1-piperazinylsulfonyl)nicotinic acid (2.31 kg, 6.73 Mol) was suspended in ethyl acetate (16.2 L) and 1,1-carbonyldimidazole (1.09 kg, 6.73 Mol) was added at room temperature. The reaction mixture was heated at 45°C for 40 minutes and then the reaction was stirred for a further 40 minutes at reflux. After cooling to ambient temperature 4-amino-5-ethyl-1-(2-methoxyethyl)-1 Additionally, in accordance with the invention, the intermediate compounds (XIV) and (XB) (as illustrated in Schemes 2 and 3) can be prepared from commercially available starting materials (2-hydroxy nicotinic acid) in better yield than the corresponding reaction sequence in PCT/IB99/00519. For example, compound (XIV) (wherein Q and Ware OEt) is formed in a yield of 14.5% in preparation 18 of PCT/IB99/00519 ( i.e. from a reaction sequence of prepation 1,3,5,7 and 18) whereas the same compound is prepared in a yield of 23% in accordance with the present invention (see Preparation 95). More preferably the whole or part of the reaction sequence for the formation of compounds (XIV) and (XB) can be telescoped together in accordance with the invention to provide an even better yield. Thus compound (XB) (wherein X is OEt) is prepared in a yield of 35% (see Preparation 95 herein). Furthermore, the reaction scheme of the present invention is safer and cheaper to operate, and in the case of the telescoped process also involves less steps (and processing time). It will be appreciated that formation of compounds of formula (XB) and (XIV) from (XV) respectively is an independent invention and is preferably prepared from 2-hydroxynicotinic acid as outlined herein. Likewise each and every step (and telescoped step) in Schemes 2 and 3 are independent inventions, although in a preferred aspect compounds of formula (I),(IA) and (IB) are prepared from nicotinic acid in accordance with Schemes 2 and 3. Thus in a further aspect of the invention a compound of formula (XVII) is formed by reacting 2-hydroxynicotinic acid or a salt thereof in the presence of SO3 in a solvent. Compounds of the formula (I): wherein R<SUP>1</SUP>, R<SUP>2</SUP>, R<SUP>4 </SUP>and R<SUP>13 </SUP>are as defined or a pharmaceutically or veterinarily acceptable salt or polymorph thereof, or a pharmaceutically or veterinarily acceptable solvate or pro-drug thereof: are potent and selective inhibitors of type 5 cyclic guanosine 3',5'-monophosphate phosphodiesterase (cGMP PDE5) and have utility in the treatment of, inter alia, male erectile dysfunction (MED) and female sexual dysfunction (FSD). A compound of the formula (I): or a pharmaceutically or veterinarily acceptable salt, or a pharmaceutically or veterinarily acceptable solvate thereof, wherein R1 is C1 to C6 alkyl or C3 to C6 alkenyl, C3 to C6 cycloalkyl or C4 to C6 cycloalkenyl wherein said alkyl group may be branched or straight chain and wherein when R1 is C1 to C3 alkyl said alkyl group is substituted by; and wherein when R1 is C4 to C6 alkyl, C3 to C6 alkenyl or C3 to C6 cycloalkyl said alkyl, alkenyl or cycloalkyl group is optionally substituted by; one or more substituents selected from: hydroxy; C1 to C4 alkoxy; C3 to C6 cycloalkyl; phenyl substituted with one or more substitutents selected from C1 to C3 alkyl, C1 to C4 alkoxy, C1 to C4 haloalkyl, C1 to C4 haloalkoxy, halo, CN, NO2, NHR11, NHCOR12, NHSO2R12, SO2R12, SO2NHR11, COR11 or CO2R11 wherein said haloalkyl and haloalkoxy groups contain one or more halo atoms; NR7R8, CONR7R8 or NR7COR11 wherein R7 and R8 are each independently selected from H, C1 to C4 alkyl, C3 to C4 alkenyl, CO2R9 or SO2R9 and wherein said alkyl or alkenyl groups are optionally substituted by C1 to C4 haloalkyl or C1 to C4 haloalkoxy; Het1; Het2 or Het3; or R1 is Het4 or phenyl wherein said phenyl group is optionally substituted by one or more substituents selected from C1 to C4 alkyl, C3 to C4 alkenyl, C1 to C4 alkoxy, halo, CN, CF3, OCF3, NO2, NHR11, NHCOR12, NHSO2R12, SO2R12, SO2NHR11, COR11, CO2R11; R2 is C1 to C6 alkyl, C3 to C6 alkenyl or (CH2)n(C3 to C6 cycloalkyl) wherein n is 0, 1 or 2; R13 is OR3 or NR5R6; R3 is C1 to C6 alkyl optionally substituted with one or two substituents selected from C3 to C5 cycloalkyl, hydroxy, C1 to C4 alkoxy, benzyloxy, NR5R6, phenyl, Het1, Het2, Het3 or Het4 wherein the C1 to C6 alkyl and C1 to C4 alkoxy groups may optionally be terminated by a haloalkyl group such as CF3 and wherein the C3-C5 cycloalkyl group may optionally be substituted by C1-C4 alkyl, hydroxy or halo; C3 to C6 cycloalkyl; Het1, Het2, Het3 or Het4; R4 is a piperazin-1-ylsulphonyl group having a substituent R10 at the 4-position of the piperazinyl group wherein said piperazinyl group is optionally substituted with one or two C1 to C4 alkyl groups and is optionally in the form of its 4-N-oxide; R5 and R6 are each independently selected from H and C1 to C4 alkyl optionally substituted with C3 to C5 cycloalkyl or C1 to C4 alkoxy, or, together with the nitrogen atom to which they are attached, form an azetidinyl, pyrrolidinyl, piperidinyl or morpholinyl group; R7 and R8 are each independently selected from H, C1 to C4 alkyl, C3 to C4 alkenyl, CO2R9 or SO2R9; R9 is C1 to C4 alkyl optionally substituted with C1 to C4 haloalkyl, C1 to C4 haloalkoxy or phenyl wherein said phenyl group is optionally substituted by one or more substituents selected from C1 to C4 alkyl optionally substituted by C1 to C4 haloalkyl or C1 to C4 haloalkoxy, C1 to C4 alkoxy, halo, CN, NO2, NHR11, NHCOR12, NHSO2R12, SO2R12, SO2NHR11, COR11 or CO2R11; R10 is H; C1 to C4 alkyl optionally substituted with one or two substituents selected from hydroxy, NR5R6, CONR5R6, phenyl optionally substituted with C1 to C4 alkyl or C1 to C4 alkoxy: C3 to C6 alkenyl or Het4; R11 is H, C1 to C4 alkyl, C3 to C4 alkenyl, CO(C1 to C4 alkyl) or C1 to C4 haloalkyl; R12 is C1 to C4 alkyl, C3 to C4 alkenyl, C1 to C4 haloalkyl or C1 to C4 haloalkoxy; Het1 is an N-linked 4-, 5- or 6-membered nitrogen-containing heterocyclic group optionally containing one or more further heteroatoms selected from S, N or O; Het2 is a C-linked 5-membered heterocyclic group containing an O, S or N heteroatom optionally containing one or more heteroatoms selected from N, O or S; Het3 is a C-linked 6-membered heterocyclic group containing an O or S heteroatom optionally containing one or more heteroatoms selected from O, S or N or Het3 is a C-linked 6-membered heterocyclic group containing three N heteroatoms; Het4 is a C-linked 4-, 5- or 6-membered heterocyclic group containing one, two or three heteroatoms selected from S, O or N; and wherein any of said heterocyclic groups Het1, Het2, Het3 or Het4 may be saturated, partially unsaturated or aromatic and wherein any of said heterocyclic groups may be optionally substituted with one or more substituents selected from C1 to C4 alkyl, C3 to C4 alkenyl, C1 to C4 alkoxy, halo, CF3, CO2R11, COR11, SO2R12, NHR11 or NHCOR12 and/or wherein, any of said heterocyclic groups is benzo-fused; A compound according to claim 1 wherein R1 is C1 to C6 alkyl or C3 to C6 alkenyl wherein said alkyl or alkenyl groups may be branched chain or straight chain or R1 is C3 to C6 cycloalkyl or C4 to C6 cycloalkenyl and wherein when R1 is C1 to C3 alkyl said alkyl group is substituted by; and wherein when R1 is C4 to C6 alkyl, C3 to C6 alkenyl, C3 to C6 cycloalkyl or C4 to C6 cycloalkenyl said alkyl, alkenyl, cycloalkyl or cycloalkenyl group is optionally substituted by, one or more substituents selected from: hydroxy; C1 to C4 alkoxy; C3 to C4 cycloalkyl; phenyl substituted with one or more substitutents selected from C1 to C3 alkyl, C1 to C4 alkoxy, C1 to C4 haloalkyl or C1 to C4 haloalkoxy, halo, CN, NO2, NHR11, NHCOR12, NHSO2R12, SO2R12, SO2NHR11, COR11, CO2R11 wherein said haloalkyl and haloalkoxy groups contain one or more halo atoms; NR7R8, CONR7R8 or NR7COR11; a Het1 group which is an N-linked 4-membered N-containing heterocyclic group; a Het2 group which is a C-linked 5-membered heterocyclic group containing an O, S or N heteroatom optionally containing one or more heteroatoms selected from N, O or S; a Het3 group which is a C-linked 6-membered heterocyclic group containing an O or S heteroatom optionally containing one or more heteroatoms selected from O, S or N or a Het3 group which is a C-linked 6-membered heterocyclic group containing three N heteroatoms; A compound according to claim 2 wherein R1 is C1 to C6 alkyl wherein said alkyl may be branched or straight chain or R1 is C3 to C6 cycloalkyl and wherein when R1 is C1 to C3 alkyl said alkyl group is substituted by; and wherein when R1 is C4 to C6 alkyl or C3 to C6 cycloalkyl said alkyl or cycloalkyl group is optionally substituted by; one or more substituents selected from: hydroxy; C1 to C2 alkoxy; C3 to C5 cycloalkyl; NR7R8, NR7COR11 or COR11 wherein R7 and R8 are each independently selected from H, C1 to C4 alkyl or CO2R9 wherein R9 and R11 are as previously defined herein; a Het1 group which is an N-linked 4-membered N-containing heterocyclic group; a Het3 group which is a C-linked 6-membered heterocyclic group containing an O or S heteroatom optionally containing one or more heteroatoms selected from O, S or N or a Het3 group which is a C-linked 6-membered heterocyclic group containing three N heteroatoms; or R1 is a Het4 group which is a C-linked 4-membered heterocyclic group containing one heteroatom selected from S, O or N or R1 is a Het4 group which is a C-linked 6-membered heterocyclic group containing one, two or three heteroatoms selected from S or O wherein any of said heterocyclic groups Het1, Het2, Het3 or Het4 is saturated, partially unsaturated or aromatic and is optionally substituted with one or more substituents selected from C1 to C4 alkyl, C1 to C4 alkoxy, -CO2R11, -SO2R12, -COR11 or NHR11 wherein R11 and R12 are as defined hereinbefore and/or wherein any of said heterocyclic groups is benzo-fused; or R1 is phenyl substituted by one or more substituents selected from : CF3, -OCF3, -SO2R12, -COR11, -CO2R11 wherein R11 and R12 are as defined hereinbefore; R2 is C1 to C6 alkyl; R13 is OR3; R3 is methyl, ethyl, n-propyl, i-propyl, n-butyl, sec-butyl, i-butyl or t-butyl alkyl optionally substituted with one or two substituents selected from cyclopropyl, cyclobutyl, hydroxy, methoxy, ethoxy, benzyloxy, phenyl, benzyl, furan-3-yl, tetrahydrofuran-2-ylmethyl, tetrahydrofuran-3-ylmethyl, pyridin-2-yl, pyridin-3-yl or NR5R6 wherein R5 and R6 are each independently selected from H and C1 to C2 alkyl; R4 is a piperazin-1-ylsulphonyl group having a substituent, R10 at the 4-position of the piperazinyl group wherein said piperazinyl group is optionally substituted with one or two C1 to C4 alkyl groups and is optionally in the form of its 4-N-oxide; and R10 is H, C1 to C3 alkyl optionally substituted with one or two substituents selected from hydroxy, NR5R6, CONR5R6 wherein R5 and R6 are each independently selected from H, C1 to C4 alkyl and C3 alkenyl. A compound according to claim 3 wherein R1 is - (CH2)n(C3 - C5)cycloalkyl wherein n is 0, 1, 2 or 3; or R1 is methyl, ethyl, iso-propyl or n-propyl substituted by one or more C1 to C4 alkoxy substituents wherein said alkoxy substituent may be directly attached to any C-atom within the ethyl, iso-propyl or n-propyl groups; or R1 is a C4 alkyl group selected from i-, n-, sec- or t-butyl optionally substituted by one or more substituents selected from C1 to C4 alkoxy or C3 to C4 cycloalkyl; R2 is C1 to C4 alkyl; R13 is OR3 wherein R3 is C1 to C4 alkyl optionally substituted with one or two C1 to C4 alkoxy substituents wherein said C1 to C4 alkyl and C1 to C4 alkoxy groups may optionally be terminated by a haloalkyl group such as CF3 ; R4 is a piperazin-1-ylsulphonyl group having a single substituent, R10 at the 4-position of the piperazinyl group and is optionally in the form of its 4-N-oxide and wherein R10 is methyl or ethyl. A compound according to claim 4 having the general formula (IA) or (IB): wherein R1 is - (CH2)n(C3 - C4)cycloalkyl wherein n is 1 or 2; or R1 is -(CH2)n(C3 - C5)cycloalkyl wherein n is 0; or R1 is - (CH2)n(C5)cycloalkyl wherein n is 1; or R1 is methyl, ethyl, i-propyl or n-propyl substituted by methoxy, ethoxy, n-propoxy or i-propoxy wherein said alkoxy substituent may be directly attached to any C-atom within the ethyl, iso-propyl or n-propyl groups; or R1 is i-, n-, sec- or t-butyl; R2 is C2 to C4 alkyl; R13 is OR3 wherein the R3 alkyl group is methyl, ethyl, n-propyl, i-propyl, i- butyl, n- butyl, see-butyl or t-butyl optionally substituted with one or two methoxy, ethoxy, n-propoxy or i-propoxy substituents; and R4 is a 4-methyl or 4-ethylpiperazin-1-ylsulphonyl group. A compound according to claim 5 having the general formula (IB): wherein R1 is - (CH2)n(C3 - C4)cycloalkyl wherein n is 1 or 2; or R1 is - (CH2)n(C3 - C5)cycloalkyl wherein n is 0: or R1 is - (CH2)n(C5)cycloalkyl wherein n is 1; or R1 is methyl, ethyl, i-propyl or n-propyl substituted by methoxy, ethoxy, n-propoxy or i-propoxy wherein said alkoxy substituent may be directly attached to any C-atom within the ethyl, iso-propyl or n-propyl groups; or R1 is i-, n-, sec- or t-butyl; R2 is C2 to C4 alkyl; R13 is OR3 wherein the R3 alkyl group is methyl, ethyl, n-propyl, i-propyl, i- butyl, n- butyl, sec-butyl or t-butyl optionally substituted with one or two methoxy, ethoxy, n-propoxy or i-propoxy substituents; and R4 is a 4-methyl or 4-ethylpiperazin-1-ylsulphonyl group. A compound according to any of claims 1 to 4 selected from: 5-[2-Ethoxy-5-(4-methylpiperazin-1-ylsulphonyl)pyridin-3-yl]-2-[2-methoxyethyl]-3-n-propyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[2-Ethoxy-5-(4-methylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-[2-methoxyethyl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-2-[2-methoxyethyl]-3-n-propyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 2-(sec-Butyl)-5-[2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 2-(iso-Butyl)-5-[2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 2-(Cyclopropylmethyl)-5-[2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 2-(Cyclobutylmethyl)-5-[2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-[2-methoxyethyl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-[2-methoxy-1-methylethyl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-[2-(methylamino)ethyl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 2-(2-Dimethylaminoethyl)-5-[2-ethoxy-5-(4-ethytpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(1-methylazetidin-3-yl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[2-n-Butoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-2-dimethylaminoethyl-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(1-ethylazetidin-3-yl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 2-{2-[Acetyl(methyl)amino]ethyl}-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-n-propoxypyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 2-(1-Acetylazetidin-3-yl)-5-[2-n-butoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[2-iso-Butoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-2-(2-methoxyethyl)-3-n-propyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[2-n-Butoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(2-methoxyethyl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 3-Ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(2-methoxyethoxy)pyridin-3-yl]-2-(2-methoxyethyl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[2-n-Butoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(1-methylazetidin-3-yl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[2-n-Butoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(1-ethylazetidin-3-yl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[2-Benzyloxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(1-ethylazetidin-3-yl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[2-iso-Butoxy-5-(4-methylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(2-methoxyethanol)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 3-Ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-n-propoxypyridin-3-yl]-2-(2-methoxyethyl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[2-n-Butoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(2-methoxyethanol)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 3-Ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-iso-propoxypyridin-3-yl]-2-(2-methoxyethyl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[(S)-2-sec-Butoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(2-methoxyethanol)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[(R)-2-sec-Butoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(2-methoxyethanol)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 3-Ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-{(pyridin-2-yl)methyl}pyridin-3-yl]-2-(2-methoxyethyl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 2-sec-Butyl-3-ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(2-methoxyethoxy)pyridin-3-yl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 2-Cyclobutylmethyl-3-ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(2-methoxyethoxy)pyridin-3-yl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 3-Ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(S)-(2-methoxy-1-methylethoxy)pyridin-3-yl]-2-(2-methoxyethyl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 3-Ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(R)-(2-methoxy-1-methylethoxy)pyridin-3-yl]-2-(2-methoxyethyl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[5-(4-Ethylpiperazin-1-ylsulphonyl)-2-(S)-(2-methoxy-1-methylethoxy)pyridin-3-yl]-2-(2-methoxyethyl)-3-n-propyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[5-(4-Ethylpiperazin-1-ylsulphonyl)-2-(R)-(2-methoxy-1-methylethoxy)pyridin-3-yl]-2-(2-methoxyethyl)-3-n-propyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(2-hydroxyethyl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 2-(2-Dimethylaminoethyl)-5-[2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 2-iso-Butyl-3-ethyl-5-[2-(2-methoxyethoxy)-5-(4-methylpiperazin-1-ylsulphonyl)pyridin-3-yl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 2-iso-Butyl-3-ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(2-methoxyethoxy)pyridin-3-yl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 2-Cyclobutylmethyl-3-ethyl-5-[2-(2-methoxyethoxy)-5-(4-methylpiperazin-1-ylsulphonyl)pyridin-3-yl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[2-n-Butoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-2-[2-(dimethylamino)-2-oxoethyl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[2-n-Butoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-{2-[methyl(methylsulphonyl)amino]ethyl}-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 2-Cyclobutylpropylmethyl-3-ethyl-5-[2-(2-methoxyethoxy)-5-(4-methylpiperazin-1-ylsulphonyl)pyridin-3-yl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 2-n-Butyl-3-ethyl-5-[2-(2-methoxyethoxy)-5-(4-methylpiperazin-1-ylsulphonyl)pyridin-3-yl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[2-n-Butoxy-5-(4-methylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(2-methoxyethyl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 2-(2-Ethoxyethyl)-3-ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(2-methoxyethoxy)pyridin-3-yl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(3-methoxypropyl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(S)-(2-methoxypropyl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(R)-(2-methoxypropyl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 2-(S)-sec-Butyl-3-ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(2-methoxyethoxy)pyridin-3-yl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, 5-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-1-(2-methoxyethyl)-1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one or 2-(R)-sec-Butyl-3-ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(2-methoxyethoxy)pyridin-3-yl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one and pharmaceutically acceptable salts or polymorphs thereof. A pharmaceutical composition comprising a compound of formula (I), (IA) or (IB) as defined in any of claims 1 to 7, or a pharmaceutically acceptable salt or polymorph thereof, or a pharmaceutically acceptable solvate thereof according to any of the preceding claims, together with a pharmaceutically acceptable diluent or carrier. A veterinary formulation comprising a compound of formula (I), (IA) or (IB) as defined in any of claims 1 to 7, or a veterinarily acceptable salt or polymorph thereof, or a veterinarily acceptable solvate thereof according to any of the preceding claims, together with a veterinarily acceptable diluent or carrier. The use of a compound of formula (I), (IA) or (IB), or a pharmaceutically acceptable salt or polymorph thereof, or a pharmaceutically acceptable solvate thereof according to any of claims 1 to 7, for the manufacture of a human medicament for the curative or prophylactic treatment of a medical condition for which a cGMP PDE5 inhibitor is indicated. The use of a compound of formula (I), (IA) or (IB), or a veterinarily acceptable salt or polymorph thereof, or a veterinarily acceptable solvate thereof according to any of claims 1 to 7, for the manufacture of an animal medicament for the curative, palliative or prophylactic treatment of a medical condition for which a cGMP PDE5 inhibitor is indicated. The use of a compound of formula (I), (IA) or (IB), or a pharmaceutically acceptable salt or polymorph thereof, or a pharmaceutically acceptable solvate thereof according to any of claims 1 to 7, for the manufacture of a human medicament for the curative, palliative or prophylactic treatment of male erectile dysfunction (MED), impotence, female sexual, dysfunction (FSD), clitoral dysfunction, female hypoactive sexual desire disorder, female sexual arousal disorder, female sexual pain disorder or female sexual orgasmic dysfunction (FSOD). The use of a compound of formula (I), (IA) or (IB), or a veterinarily acceptable salt or polymorph thereof, or a veterinarily acceptable solvate thereof according to any of claims 1 to 7, for the manufacture of an animal medicament for the curative, palliative or prophylactic treatment of male erectile dysfunction (MED), impotence, female sexual dysfunction (FSD), clitoral dysfunction, female hypoactive sexual desire disorder, female sexual arousal disorder, female sexual pain disorder or female sexual orgasmic dysfunction (FSOD). A compound of the formula (IX): wherein RP is R13 as defined in claim 1 or RP is X which is a leaving group. A process for the preparation of a compound of formula (I): wherein R1, R2, R13 and R4 are as defined in claim 1, which process comprises cyclisation of a compound of formula (IX): wherein RP is R13 or RP is X which is a leaving group and R1, R2, R4 and R13 are as defined in claim 1 wherein said cydisation reaction is optionally followed by formation of a pharmaceutically or veterinarily acceptable salt of the required product or a pharmaceutically or veterinarily acceptable solvate of the required product. A process according to claim 16, wherein the cyclisation reaction is base-mediated, using an alkali metal salt of a sterically hindered alcohol or amine. A process for the preparation of compounds of the general formula (IX) via a coupling reaction between compounds of the general formula (VII): wherein R1 and R2 are as defined for compounds of the formula (I) in claim 1 and compounds of the formula (X): wherein R13 and R4 are as previously defined for formula (I) in claim 1. A process according to claim 19 wherein the coupling reaction is carried out using conventional amide bond-forming techniques. Compounds of the general formula (VII); wherein R1 and R2 are as defined for compounds of the formula (I) in claim 1. Compounds of the general formula (VIIB) wherein R1 is methoxyethyl and R2 is ethyl. Compounds of the general formula (X): wherein R13 is OR3 and wherein R3 is ethyl and wherein R4 is ethylpiperazin-1-ylsulphonyl. A process for the preparation of a compound of formula (XB) or a salt thereof from a compound of formula (XIV): (a) for a compound formula (XB) wherein X is arylsulfonyloxy, C1-C4 alkylsulfonyloxy, C1-C4 perfluoroalkylsulfonyloxy, aryloxy, C1-C4 perfluoroalkanoyloxy, C1-C4 alkanoyloxy, quarternaryammonium C1-C4 alkylsulfonyloxy or halosulfonyloxy, comprising reacting a compound of formula (XIV) wherein Q and W are OH in the presence of an appropriate sulphonylating, arylating or acylating agent of X; (b) for a compound of formula (XB) wherein X is Cl, comprising reaction of a compound of formula (XIV) wherein Q is Cl and W is P and P is a protecting group, with a deprotecting agent; (c) for a compound of formula (XB) wherein X is diazonium, comprising reacting a compound of formula (XIV) wherein Q is NH2, W is OH with nitrous acid ; (d) for a compound of formula (XB) wherein X is (diarylsulfonyl)amino comprising reacting a compound of formula (XIV) wherein Q=NH2 and W=OH in the presence of an appropriate sulphonylating agent for X; (e) for a compound of formula (XB) wherein X is OR3 wherein OR3 is a C1-C6 alkoxy, group comprising reacting a compound of formula (XVI) A process for the preparation of compounds of formula (XIV) as shown in Claim 22 from compounds of formula (XV): wherein D is Cl or Br and P is a protecting group, (a) wherein for compounds of compound (XIV) wherein Q is OH and W is OH, comprising reacting a compound of formula (XV) with a hydrolising agent and optionally a further deprotecting agent where P is not deprotected by the hydrolysing agent; (b) wherein for compounds of formula (XIV) wherein Q is NH2 and W is OH, comprising reacting a compound of formula (XV) with an ammoniating agent to form an intermediate compound of formula (XIV) wherein Q is NH2 and W is P (a protecting group) and the reacting said intermediate (XIV) with a deprotecting agent; and (c) wherein for compounds of compound (XIV) wherein Q is OR3 which is a C1-6 alkoxy and W is P, comprising reacting a compound of formula (XV) In the presence of OR3; A process for the preparation of a compound of formula (XV) according to Claim 23 comprising reaction of compounds of formula (XVI) in the presence of N-R10 piperazin-1-ylsulphonyl, wherein R10 is as defined in claim 1: wherein D and P are as defined in Claim 23. A process for the preparation of a compound of formula (XVI) according to Claim 24 comprising reacting a compound of formula (XX) with a chlorinating or brominating agent: wherein P is as defined in Claim 24. A process according to Claim 25 for preparation of a compound of formula (XX) comprising reacting a compound of formula (XVII) in the presence of an agent which will form a protecting group (P) on the carboxylic acid: A process according to Claim 26 for the preparation of a compound of formula (XVII) comprising reacting 2-hydroxynicotinic acid or a salt thereof in the presence of SO3 in a solvent A process according to claim 27 wherein the SO3 is in an organic solvent, an aprotic solvent, a mineral acid, or a liquid carboxylic acid. A process according to any one of claims 22 to 28 wherein the compounds of formulae (XB), (XIV) and (XV) are respectively: wherein X is a C1-6 alkoxy group, Q and W are as defined in Claims 22 and 23, and the compounds (XB) and (XIV) are formed according to the processes of Claim 22(e) and Claim 23(c) respectively and compound (XV) is formed according to the process of Claim 24 by reacting compound (XVI) with N-ethyl piperazine or a salt thereof. A process according to Claim 29 wherein X is OEt and the compound (XB) is formed by reaction of compound (XIV) with a deprotecting agent, and compound (XIV) is formed by reaction of compound (XV) in the presence of OEt. A process according to Claims 29 or 30 wherein compound (XX) is formed by reacting compound (XVII) or a salt thereof with ethanol to form a protecting group, OEt. A process for the preparation of a compound of formula (I): wherein R1, R2, and R4 are as defined in claim 1 and R13 is OR3 as defined in claim 1, which process comprises conversion of a compound of formula (XXX): wherein X is a leaving group and R1, R2 and R4 are as defined in claim 1 and wherein said conversion reaction is optionally followed by formation of a pharmaceutically or veterinarily acceptable salt of the required product or a pharmaceutically or veterinarily acceptable solvate of the required product. A compound of the general formula (XXX): wherein R1, R2 and R4 are as defined in Claim 1 and wherein X is a leaving group. A process for the preparation of a compound of the general formula (I) from a compound of general formula (IXB) via: i) cyclisation (IXB to XXX) followed by displacement (XXX to I); ii) cyclisation (IXCa to XXX) followed by displacement (XXX to I); iii) displacement (IXB to IXC) followed by cyclisation (IXC to I); iv) displacement (IXCa to IXC) followed by cyclisation (IXC to I) wherein compounds (XXX) and (IXCa) have the general formulae: wherein R1, R2, R4 and X are as defined herein before and OR3a is an alkoxy group which is different from and displaceable by the desired OR3 group on the final compounds of general formula (I) and wherein R3a is selected from C1 to C6 alkyl optionally substituted; or v) direct cyclisation of (IXB) to (I). A compound according to claim 1 selected from 1-{6-ethoxy-5-[3-ethyl-6,7-dihydro-2-(2-methoxyethyl)-7-oxo-2H-pyrazolo[4,3- d]pyrimidin-5-yl]-3-pyridylsulfonyl}-4-ethylpiperazine and salts thereof. A compound according to claim 35 wherein the salt is a sulphonic acid salt. A compound according to claim 36 wherein the salt is selected from p-toluenesulfonate, benzenesulfonate, camphorsulfonate and ethanesulfonate salts.
wherein R7, R8, R11 and R12 are as previously defined herein or R1 is a Het4 group which is a C-linked 4- or 5-membered heterocyclic group containing one heteroatom selected from S, O or N; a Het4 group which is a C-linked 6-membered heterocyclic group containing one, two or three heteroatoms selected from S or O; a Het4 group which is a C-linked 6-membered heterocyclic group containing three nitrogen heteroatoms; a Het4 group which is a C-linked 6-membered heterocyclic group containing one or two nitrogen heteroatoms which is substituted by one or more substitutents selected from C1 to C4 alkyl, C1 to C4 alkoxy, CO2R11, SO2R12, COR11, NHR11 or NHCOR12 and optionally including a further heteroatom selected from S, O or N wherein any of said heterocyclic groups Het1, Het2, Het3 or Het4 is saturated, partially unsaturated or aromatic as appropriate and wherein any of said heterocyclic groups is optionally substituted with one or more substituents selected from C1 to C4 alkyl, C3 to C4 alkenyl, C1 to C4 alkoxy, halo, CO2R11, SO2R12, COR11 or NHR11 wherein R11 is as defined hereinbefore and/or wherein any of said heterocyclic groups is benzo-fused; or R1 is phenyl substituted by one or more substituents selected from CF3, OCF3, SO2R12 or CO2R12 wherein R12 is C1 to C4 alkyl which is optionally substituted by phenyl, C1 to C4 haloalkyl or C1 to C4 haloalkoxy wherein said haloalkyl and haloalkoxy groups contain one or more halo atoms; R2 is C1 to C6 alkyl; R13 is OR3; R3 is C1 to C6 alkyl optionally substituted with one or two substituents selected from C3 to C5 cycloalkyl, hydroxy, C1 to C4 alkoxy, benzyloxy, NR5R6, phenyl, furanyl, tetrahydrofuranyl or pyridinyl wherein said C1 to C6 alkyl and C1 to C4 alkoxy groups may optionally be terminated by a haloalkyl group such as CF3; or R3 is C3 to C6 cycloalkyl, 1-(C1 to C4 alkyl)piperidinyl, tetrahydrofuranyl or tetrahydropyranyl; R4 is a piperazin-1-ylsulphonyl group having a substituent R10 at the 4-position of the piperazinyl group wherein said piperazinyl group is optionally substituted with one or two C1 to C4 alkyl groups and is optionally in the form of its 4-N-oxide; R5 and R6 are each independently selected from H and C1 to C4 alkyl optionally substituted with C3 to C5 cycloalkyl or C1 to C4 alkoxy, or, together with the nitrogen atom to which they are attached, form an azetidinyl, pyrrolidinyl, piperidinyl or morpholinyl group; and R10 is H; C1 to C4 alkyl optionally substituted with one or two substituents selected from hydroxy, NR5R6, CONR5R6, phenyl optionally substituted with C1 to C4 alkyl or C1 to C4 alkoxy; C3 to C6 alkenyl; Het4; with the proviso that when R1 is C1 to C3 alkyl substituted by phenyl then said phenyl group is not substituted by C1 to C4 alkoxy; CN; halo; CF3; OCF3; or C1 to C4 alkyl.
or R1 is a Het4 group which is a C-linked 4-membered heterocyclic group containing one heteroatom selected from S, O or N or R1 is a Het4 group which is a C-linked 6-membered heterocyclic group containing one, two or three heteroatoms selected from S or O wherein any of said heterocyclic groups Het1, Het2, Het3 or Het4 is saturated, partially unsaturated or aromatic and is optionally substituted with one or more substituents selected from C1 to C4 alkyl, C1 to C4 alkoxy, -CO2R11, -SO2R12, -COR11 or NHR11 wherein R11 and R12 are as defined hereinbefore and/or wherein any of said heterocyclic groups is benzo-fused; or R1 is phenyl substituted by one or more substituents selected from : CF3, -OCF3, -SO2R12, -COR11, -CO2R11 wherein R11 and R12 are as defined hereinbefore; R2 is C1 to C6 alkyl; R13 is OR3; R3 is methyl, ethyl, n-propyl, i-propyl, n-butyl, sec-butyl, i-butyl or t-butyl alkyl optionally substituted with one or two substituents selected from cyclopropyl, cyclobutyl, hydroxy, methoxy, ethoxy, benzyloxy, phenyl, benzyl, furan-3-yl, tetrahydrofuran-2-ylmethyl, tetrahydrofuran-3-ylmethyl, pyridin-2-yl, pyridin-3-yl or NR5R6 wherein R5 and R6 are each independently selected from H and C1 to C2 alkyl; R4 is a piperazin-1-ylsulphonyl group having a substituent, R10 at the 4-position of the piperazinyl group wherein said piperazinyl group is optionally substituted with one or two C1 to C4 alkyl groups and is optionally in the form of its 4-N-oxide; and R10 is H, C1 to C3 alkyl optionally substituted with one or two substituents selected from hydroxy, NR5R6, CONR5R6 wherein R5 and R6 are each independently selected from H, C1 to C4 alkyl and C3 alkenyl.P
Alternative reaction conditions for the cyclisation reactions of compounds of (IXC) wherein X is OR3 are to conduct the reaction with about 1.2 to 4.5 molecular equivalents of sterically hindered base such as potassium t-butoxide or KHMDS, optionally in a sealed vessel at from about 100°C to about 150°C with, rather than an alcohol of formula R3OH as solvent, a sterically hindered alcohol, e.g. 3-methylpentan-3-ol, as solvent optionally in the presence of about 1 or 2 molar equivalents of ethyl acetate or ethyl pivalate.A compound of formula (IXA) or a compound of general (IXB) wherein X is OR3 (i.e. a compound of general formula (IXC)) may be prepared by a coupling reaction between a compound of formula (VII): wherein R1 and R2 are as previously defined for formulae (IXA), (IXB) or (IXC) with a compound of formula (XA), (XB) or (XC) respectively: wherein R3, R4, R5, R6 and X are also as previously defined for formulae (IXA), (IXB) or (IXC). Where either R5 and/or R6 in the -NR5R6 group of formula (XA) are H, then a suitable N-protecting group strategy may be advantageously employed. Any known suitable protecting group strategy may be used.The coupling reaction may be carried out using conventional amide bond-forming techniques, e.g. via the acyl chloride derivative of (XA) or (XB) in the presence of up to about a five-fold excess of a tertiary amine such as triethylamine or pyridine to act as scavenger for the acid by-product (HY), optionally in the presence of a catalyst such as 4-dimethylaminopyridine, in a suitable solvent such as dichloromethane, at from about 0°C to about room temperature. For convenience pyridine may also be used as the solvent.In particular, any one of a host of amino acid coupling variations may be used. For example, the acid of formula (XA), (XB) or (XC) or a suitable salt (e.g. sodium salt) thereof may be activated using a carbodiimide such as 1,3-dicyclohexylcarbodiimide or 1-ethyl-3-(3-dimethylaminoprop-1-yl)carbodiimide optionally in the presence of 1-hydroxybenzotriazole hydrate and/or a catalyst such as 4-dimethylaminopyridine, or by using a halotrisaminophosphonium salt such as bromotris(pyrrolidino)phosphonium hexafluorophosphate or by using a suitable pyridinium salt such as 2-chloro-1-methylpyridinium iodide. Either type of coupling is conducted in a suitable solvent such as dichloromethane, tetrahydrofuran or N,N-dimethylformamide, optionally in the presence of a tertiary amine such as triethylamine or N-ethyldiisopropylamine (for example when either the compound of formula (VII), or the activating reagent, is presented in the form of an acid addition salt), at from about 0°C to about room temperature. Preferably, from 1 to 2 molecular equivalents of the activating reagent and from 1 to 3 molecular equivalents of any tertiary amine present are employed.In a further variation, the carboxylic acid function of (XA), (XB) or (XC) may first of all be activated using up to about a 5% excess of a reagent such as N,N'-carbonyldiimidazole in a suitable solvent, e.g. ethyl acetate or butan-2-one, at from about room temperature to about 80°C, followed by reaction of the intermediate imidazolide with (VII) at from about 20°C to about 90°C.It will be appreciated that the general formula (VII) can also be represented by the regioisomeric formulae (VIIA) and (VIIB): wherein R1 and R2 are as previously defined herein.The 4-aminopyrazole-5-carboxamide compounds having the general formulae (VII), (VIIA) or (VIIB) may be prepared from pyrazole compounds of the general formula (XIII): wherein Rq is selected from OH, C1-C6 alkoxy or NR5R6 wherein R5 and R6 are as hereinbefore defined, according to the procedures detailed in the preparations section herein and as particularly described in Preparations 96(a) to (h).Compounds having the general formulae (XA) or (XC) may be prepared from the carboxylic acid compounds of the general formulae (VIIIA), (VIIIB) or (VIIIC) respectively: wherein R3, R5 and R6 are as defined for compounds of the general formulae (I), (IA) and (IB) by reaction with a 4-R10-piperizinyl compound, such as for example 4-methylpiperizine. Such reaction can be conducted at from about 0 °C to about room temperature, preferably in the presence of an appropriate solvent such as a C1 to C3 alkanol or dichloromethane optionally in the presence of a suitable base such as triethylamine to scavenge the acid by-product (HY). Where either R5 or R6 is H a suitable amino protecting group strategy may be employed as detailed hereinbefore.Compounds of the general formulae (VIIIA), (VIIIB) or (VIIIC) may be prepared from compounds of the general formulae (XIA), (XIB) or (XIC) respectively: wherein R3, R5, R6 and X are as defined for compounds of the general formulae (I), (IA) and (IB) by the application of known methods for converting amino to an SO2Y group, wherein Y is halo, preferably chloro. For example, when Y is chloro, by the action of about a two-fold excess of sodium nitrite in a mixture of concentrated hydrochloric acid and glacial acetic acid at from about -25°C to about 0°C, followed by treatment with excess liquid sulphur dioxide and a solution of about a three-fold excess of cupric chloride in aqueous acetic acid at from about -15°C to about room temperature. When R13 contains a primary or secondary amino group, protection of the said amino group with an acid stable group such as acetyl or benzyl will generally be advantageous.Compounds of the general formula (XIA), (XIB) and (XIC) may be prepared by reduction of compounds of the general formulae (XIIA), (XIIB) and (XIIC) respectively: wherein R3, R5, R6 and X are as previously defined. Such conversion of compounds of the general formulae (XIIA), (XIIB) and (XIIC) to compounds of the general formulae (XIA), (XIB) and (XIC) can be achieved by conventional catalytic or catalytic transfer hydrogenation procedures. Typically, the hydrogenation is achieved using a Raney (RTM) nickel catalyst or a palladium catalyst such as 10% Pd on charcoal, in a suitable solvent such as ethanol at a hydrogen pressure of from about 345 kPa (50 psi) to about 414 kPa (60 psi) at from about room temperature to about 60°C, preferably from about 40°C to about 50°C.Intermediates of the general formula (IXC) as described in 1.2 and 1.3 hereinbefore can be prepared via a coupling reaction between a compound of the general formula (XB) and a compound of the general formula (VII) wherein said coupling may be achieved by any of the methods described hereinbefore. Compounds of general formula (XB) may be prepared according to the route outlined in Scheme 2.With reference to Scheme 2, the intermediate of formula (XB) is formed from a compound of formula (XIV), the exact process being dependent on leaving group X.For compounds of formula (XB) wherein X = arylsulfonyloxy, C1-C4 alkylsulfonyloxy, C1-C4 perfluoroalkylsulfonyloxy, aryloxy, C1-C4 perfluoroalkanoyloxy, C1-C4 alkanoyloxy, quarternaryammonium C1-C4 alkylsulfonyloxy or halosulfonyloxy, compound (XB) can be formed from compounds (XIV) (wherein Q="OH and" W=OH) and an appropriate derivatising agent, more particularly an appropriate sulphonylating agent such as arylsulfonylhalide, C1-C4 alkylsulfonylhalide, C1-C4 perfluoroalkylsulfonylhalide, arylhalide, C1-C4 perfluoroalkanoylhalide, C1-C4 alkanoylhalide, quarternary ammonium C1-C4 alkylsulfonylhalide or halosulfonylhalide, or an appropriate arylating agent such as arylhalide, or an appropriate acylating agent such as C1-C4 perfluoroalkanoylhalide, or C1-C4 alkanoylhalide), respectively (preferably the halide substituent of the above is chloride), in an appropriate solvent. Compounds of formula (XIV) (wherein Q="OH and" W = OH) can be formed from compounds (XV) (wherein P is hydrolisable group) via use of a hydrolising agent, preferably a hydroxide base (ideally 2 molar equivalents), more preferably a metal hydroxide such as sodium hydroxide, in an appropriate solvent, such as water. The metal of the hydroxide base can be as defined hereinbefore for Z (in ZOR). This will also apply for other reactions of scheme 2 and 3 hereafter where hydroxide base/hydrolising agent is used. Where P is group which is not hydrolisable by hydroxide then a suitable de-protection strategy should be employed according to standard literature practise.Compounds of formula (XB) where X = chloro, can be formed from (XIV) wherein Q="Cl and" W = P (such as OEt) (i.e. formula XV) and a hydroxide base (ideally 1 molar equivalent), such as sodium hydroxide preferably in an appropriate solvent, such as water and a deprotecting agent.Preferably the deprotecting agent as used herein in accordance with the invention is a hydrolysing agent, more preferably a hydroxide nucleophile, advantageoulsly a hydroxide base (ideally 1 molar equivalent), such as sodium hydroxide preferably in an appropriate solvent, such as water.Compounds of formula (XB) wherein X = diazonium, can be formed from (XIV) (wherein Q = NH2 , W = OH) and nitrous acid. Compounds of formula (XIV) (wherein Q = NH2 , W = OH) can be formed from compounds of formula (XIV) (wherein Q = NH2, W = P, e.g. OEt) and a deprotecting agent such as a hydroxide base e.g. sodium hydroxide, in an appropriate solvent, such as water. Intermediate (XIV) (Q = NH2, W = P, e.g. OEt) is formed from (XV) and an ammoniating agent, such as ammonia, in an appropriate solvent, such as water.Compounds of formula (XB) wherein X = diarylsulfonylamino, can be formed from (XIV) (wherein Q = NH2, W = OH) and an appropriate derivatising agent, preferably an appropriate sulphonylating agent such as arylsulphonylhalide, preferably arysulfonylchloride (ideally at least 2 molar equivalents) and preferably in the presence of a base (ideally 2 molar equivalents thereof), such as triethylamine in an appropriate solvent.Compounds of formula (XB) wherein X = C1-C6 (preferably C1-C4) preferably primary or secondary alkoxy, can be formed from (XIV) (wherein Q = C1-C6 (preferably C1-C4) primary or secondary alkoxy and W = P, such as OEt) and a deprotecting agent (for P = OEt), preferably a hydroxide base, such as sodium hydroxide, in an appropriate solvent, such as water. Compounds of formula (XIV) (wherein Q = C1-C6 (preferably C1-C4 ) primary or secondary alkoxy, W = P e.g. OEt) can be formed from (XV) and an appropriate alkoxide, OR- wherein R is C1-C6 alkyl more preferably C1-C4 primary or secondary alkyl, such as sodium ethoxide in an appropriate solvent such as toluene. Most preferably P = X (wherein X is an alkoxy) since this avoids trans-esterification issues.The compounds of formula (XV) can be formed from compounds of formula (XVI) by reaction with a mono-N-substituted piperazine group wherein the mono-substituent R10 as defined herein before, optionally in the presence of a supplementary base (which does not react irreversibly with the sulphonyl chloride moiety) such as triethylamine preferably in an appropriate solvent, such as toluene. "D" in compounds (XV) and (XVI) is Cl or Br. The monosubstituted piperazine group may also be the base where more than one equivalent of monosubstituted piperazine is present. Preferably about 2 equivalents are used.Where a supplementary base is used it either does not react with the sulphonyl chloride moiety (such as a metal oxide, carbonate or bicarbonate) or it reacts with the sulphonyl chloride moiety in such a way as to keep it activated to nucleophilic attack (e.g. a tertiary amine such as triethylamine). The amine NH(R3)(R4) may also act as a base, in which case preferably more than one equivalent is present, more preferably about 2 equivalents (or more).The compounds of formula (XVI) can be formed from compounds of formula (XX) in the presence of a chlorinating or brominating agent such as thionyl chloride or thionyl bromide more preferably in the presence of a halogenation catalyst, more preferably still thionyl chloride or thionyl bromide in the presence of dimethylformamide. The thionyl chloro/bromo can also act as the solvent, but more preferably the reaction takes place or in an appropriate other solvent such as toluene. In such case only stoicheometric amounts of thionyl chloride/bromide would be required, preferably at least 2 molar equivalents, more preferably at least 5 molar equivalents.It is possible to undertake the four step conversion of (XX) to (XB) in a single telescoped step, without intermediate product isolation, using the same solvent throughout (hereinafter the "telescoping solvent"). Thus where X is an alkoxy group (-OR3 group), steps (XX) to (XB) can be telescoped together using a single solvent such as a water immiscible inert organic solvent. More preferably a hydrocarbon solvent (such as toluene, xylene, anisole, chlorobenzene, hexane, heptane, octane, nonane, decane, cyclohexane, methylcyclohexane) or ethers (such as dibutyl ether, diphenyl ether) or ketones (such as methylisobutylketone, methylethylketone) or esters (such as ethyl acetate, butyl acetate) or dimethylformamide. More preferably still a hydrocarbon solvent (such as toluene, xylene, anisole, chlorobenzene, octane, nonane, decane, methylcyclohexane) or ethers (such as dibutyl ether, diphenyl ether) or esters (such as ethyl acetate, butyl acetate). More preferably still the telescoping solvent is toluene.The intermediate of formula (XX) is formed from a compound of formula (XVII) in the presence of an agent which will form a protecting group (P) for the carboxylic acid (i.e. to form the -COP group). Preferably said agent is an esterification agent, to form a carboxylic acid ester (wherein, e.g. P will be alkoxy and the protecting forming agent will be an alcohol) such as a C1-C6 carboxylic acid ester which will be carried through the reaction scheme and hydrolised under basic conditions to the carboxylic acid function of compound (XB). Most preferably the esterification agent is ethanol. An additional solvent such as toluene may be appropriate.The intermediate of formula (XVII) is formed from 2-hydroxynicotinic acid or a salt thereof in the presence of a sulphonylating agent, more preferably an agent comprising SO3 (ideally at least 1 molar equivalent of SO3), for example using SO3 in an organic solvent (e.g. THF, dioxan and heptane) or an aprotic solvent (e.g. nitrobenzene, nitromethane, 1,4-dioxane, dichloromethane) or a mineral acid as solvent (e.g. sulphuric acid) or in a liquid carboxylic acid as solvent (e.g. acetic acid) or THF or heptane. More preferably still, the sulphonylating agent is oleum (SO3 in sulphuric acid) such as about 20% to 30% oleum.Compounds of the general formula (IXB) are formed by the reaction of intermediates of general formula (XB) with compounds of the general formula (VII), as detailed hereinbefore in the presence of a coupling agent, such as N,N'-carbonyldiimidazole and a suitable solvent, such as ethyl acetate.Methods for the preparation of compounds of the general formula (VII) are described hereinafter.In a preferred embodiment of Scheme 2, X is an -OR3 alkoxy group and so Q in compound (XIV) represents OR3. Preferably OR3 is a C1 to C6 alkoxy group, more preferably a C1 to C4 primary or secondary alkoxy group and especially ethoxy. However for other leaving groups the general method for Scheme 2 would apply.This preferred embodiment of Scheme 2 is illustrated in Scheme 3. In Scheme 3 the intermediate of formula (XB) is formed from a compound of formula (XIV) by removal of protecting group P by a deprotecting agent, advantageously by saponification in the presence of a hydroxide base such as sodium hydroxide, preferably in an appropriate solvent such as water and toluene.The intermediate of formula (XIV) is formed from a compound of formula (XV) in the presence of an appropriate C1-C6 alkoxide nucleophile (-OR3), (such as a primary or secondary alkoxide), preferably a metal alkoxide of the formula ZOR3, wherein the metal (Z) is as defined hereinbefore for ZOR, such as sodium ethoxide, preferably in an appropriate solvent such as toluene or R3OH, wherein R3OH is as defined hereinbefore and is preferably ethoxy. D in compounds of formulae (XV) and (XVI) is Cl or Br, more preferably D is Cl.The intermediate of formula (XV) is formed from a compound of formula (XVI) by reaction with N-R10piperazine, preferably in the presence of a base, such as triethylamine or excess N-R10piperazine, preferably in an appropriate solvent such as toluene.The intermediate of formula (XVI) is formed from a compound of formula (XX) in the presence of a chlorinating or brominating agent as defined for the same step in Scheme 2 such as thionyl chloride or bromide, preferably thionyl chloride or bromide / dimethylformamide. The former can also act as the solvent, but more preferably the reaction takes place in an appropriate other solvent, such as toluene. In such a case only stoicheiometric amounts of thionyl chloride/bromide would be required, preferably as at least 2 molar equivalents more preferably at least 5 molar equivalents.The intermediate of formula (XX) is formed from a compound of formula (XVII) in the presence of an agent which will form a protecting group (P) for the carboxylic acid (i.e. to form the -COP group) as defined herein before. Preferably said agent is an esterification agent, to form a carboxylic acid ester such as a C1-C6 carboxylic acid ester which will be carried through the reaction scheme and hydrolysed under basic conditions to the carboxylic acid function of compound (XB). Most preferably the esterification agent is ethanol. An additional solvent such as toluene may be utilised as appropriate.The intermediate of formula (XVII) is formed from 2-hydroxynicotinic acid with a sulphonylating agent such as 30% oleum.Again it is possible to undertake the four step conversion of (XX) to (XB) in a single telescoped step (as set out hereinbefore) in the same pot, without intermediate product isolation, using the same solvent (herein the "telescoping" solvent) throughout. The list of solvents described with respect to Scheme 2 are directly applicable here. Most preferably the solvent is toluene.For example after formation of compound (XVI), the excess chlorinating/brominating agent could be azeotroped off at the azeotrope temperature of the said agent and the telescope solvent. After formation of compound (XV), the HBr/HCl (i.e. HD) salts which are formed could be washed out (in aqueous) or filtered from the reaction vessel and the remainder of the aqueous solvent (where applicable) azeotroped off with some of the telescoping solvent. In the formation of compound (XIV), if the alkoxide used to introduce OR3 is dissolved in solvent (such as ethanol), then this solvent could again be azeotroped off with some of the telescoping solvent. If solid alkoxide is used then this latter azeotroping step is not required. Most preferably the telescoping solvent for any telescoped steps of scheme 3 is toluene.It will be appreciated that salts of the compounds of Schemes 1 to 3 can be formed in accordance with the invention by converting the relevant compound to a salt thereof (either in situ or as a separate step). Also an acid addition salt of the compound of formula (I) can be formed in accordance with the invention.Alternatively, a compound of the general formula (I), (IA) or (IB) may be prepared from a compound of the general formula (IIB): wherein R1, R2, R4 and X are as previously defined herein via reaction with a 4-R10 piperazinyl compound followed by an optional displacement reaction in the presence of a hydroxide trapping agent and -OR3- as detailed hereinbefore for the preparation of compound (I) from compound (IXB) or (XXX).
A compound of the general formula (IVA) or (IVB) or (IVC) may be prepared by cyclisation of a compound of the general formula (VA) or (VB) or (VC) respectively: wherein R1, R2, R3, R5, R6 and X are as previously defined herein and wherein the conditions for cyclisation are analogous to those previously described for cyclisation of the compounds of general formulae (IXA), (IXB) or (IXC).A compound of formula (VA) or (VB) or (VC) may be prepared by reduction of a compound of formula (VIA) or (VIB) or (IVC) respectively: wherein R1, R2, R3, R5, R6 and X are as previously defined for compounds of the general formulae (VA), (VB) and (VC), by conventional catalytic or catalytic transfer hydrogenation procedures as previously detailed for preparation of compounds of the general formulae (XIA) or (XIB) from compounds of the general formulae (XIIA) or (XIIB) respectively.A compound of formula (VIA), (VIB) or (VIC) may be prepared by reaction of a compound of formula (VII) as defined previously herein with a compound of formula (XIIA) or (XIIB) or (XIIC) respectively: wherein R3, R5, R6 and X are as previously defined for compounds of the general formulae (VIA) or (VIB) or (VIC). Again, as previously detailed a conventional amine protecting group strategy is preferred for (XIIA) when NR5R6 is a primary or secondary amino group. The coupling reaction is analogous to the reactions of (VII) with the compounds of general formulae (XA) or (XB) or (XC) already described herein.Compounds of the general formula (XIIC) wherein X is Cl may be prepared from 2-hydroxy nicotinic acid via nitration followed by esterification then chlorination of the suitably protected nicotinic acid and subsequent ester hydrolysis.Compounds of the general formula (XIIIC) (i.e. compounds of general formula (XIIIB wherein X is -OR3) can be prepared by analogy with the methods detailed previously herein.Phosphodiesterase (PDE) inhibitory activity
Functional activity
In vivo activity
Example 10mg Tablet Formulation
Example 15-[2-Ethoxy-5-(4-methylpiperazin-1-ylsulphonyl)pyridin-3-yl]-2-[2-methoxyethyl]-3-n-propyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
Example 25-[2-Ethoxy-5-(4-methylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-[2-methoxyethyl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
Example 35-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-2-[2-methoxyethyl]-3-n-propyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
Example 42-(
Examples 5 to 9
EXAMPLE 105-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(tetrahydrofuran-2-yl)methyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 115-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-[2-(pyrazol-1-yl)ethyl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 125-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-[2-(methylamino)ethyl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
Examples 13 to 15
EXAMPLE 165-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(1-methylazetidin-3-yl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 175-[2-n-Butoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-2-dimethylaminoethyl-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 182-(Azetidin-3-yl)-5-[2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one ditrifluoroacetate
EXAMPLE 192-(Azetidin-3-yl)-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(1-methylbutoxy)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one ditrifluoroacetate
EXAMPLE 205-[5-(4-Ethylpiperazin-1-ylsulphonyl)-2-n-propoxypyridin-3-yl]-3-ethyl-2-[2-(methylamino)ethyl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one ditrifluoroacetate
EXAMPLE 215-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(1-ethylazetidin-3-yl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 222-(1-Acetylazetidin-3-yl)-5-[2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 232-(1-Acetylpiperidin-4-yl)-5-[2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 242-{2-[Acetyl(methyl)amino]ethyl}-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-n-propoxypyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 255-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-[1-(methylsulphonyl)piperidin-4-yl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 262-(1-Acetylazetidin-3-yl)-5-[2-n-butoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 275-[2-
EXAMPLES 28 TO 33
EXAMPLE 345-[2-
EXAMPLES 35 to 40
EXAMPLE 412-(
EXAMPLE 422-Cyclobutylmethyl-3-Ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(2-methoxyethoxy)pyridin-3-yl] -2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 433-Ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(2-methoxyethoxy)pyridin-3-yl]-2-(2-methoxy-1-methylethyl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 443-Ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(2-methoxy-1-methylethoxy)sulphonyl)pyridin-3-yl]-2-(2-methoxyethyl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one andEXAMPLE 453-Ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(2-methoxy-1-methylethoxy)sulphonyl)pyridin-3-yl]-2-(2-methoxyethyl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 465-[5-(4-Ethylpiperazin-1-ylsuphonyl)-2-(2-methoxy-1-methylethoxy)sulphonyl)pyridin-3-yl]-2-(2-methoxyethyl)-3-n-propyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one andEXAMPLE 475-[5-(4-Ethylpiperazin-1-ylsulphonyl)-2-(2-methoxy-1-methylethoxy)sulphonyl)pyridin-3-yl]-2-(2-methoxyethyl)-3-n-propyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 483-Ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(2-methoxy-1-methylethoxy)pyridin-3-yl]-2-(2-hydroxyethyl)-2,6-dihydro-7H-pyrazolo(4,3-d]pyrimidin-7-one andEXAMPLE 495-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(2-hydroxyethyl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 502-(2-Ethoxyethyl)-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(2-methoxyethoxy)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 512-(
EXAMPLE 522-(
EXAMPLE 532-Cyclobutylmethyl-3-ethyl-5-[2-(2-methoxyethoxy)-5-(4-methylpiperazin-1-ylsulphonyl)pyridin-3-yl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 545-[2-
EXAMPLES 55 to 58
EXAMPLE 595-[2-n-Butoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-1-[2-(dimethylamino)-2-oxoethyl]-3-ethyl-1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one andEXAMPLE 605-[2-n-Butoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-2-[2-(dimethylamino)-2-oxoethyl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 615-[2-n-Butoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-{2-[methyl(methylsulphonyl)amino]ethyl}-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 625-[2-n-Butoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-[1-(methylsulphonyl)piperidin-4-yl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 635-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(4-nitrophenyl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 642-(4-Aminophenyl)-5-[2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 655-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-{4-[(methylsulphonyl)amino]phenyl}-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 665-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-phenyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 672-(4-Cyanophenyl)-5-[2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 685-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(pyridin-2-yl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one ditrifluoroacetate
EXAMPLE 695-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(pyrazin-2-yl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one di-trifluoroacetate
EXAMPLE 705-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(thiazol-2-yl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one trifluoroacetate
EXAMPLE 712-(6-Chloropyrimidin-4-yl)-5-[2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 725-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(pyrimidin-2-yl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 735-[5-(4-Ethylpiperazin-1-ylsulphonyl)-2-(2-methoxyethoxy)pyridin-3-yl]-3-ethyl-2-(pyrimidin-2-yl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 742-(1,3-Benzoxazol-2-yl)-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(2-methoxyethoxy)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 753-Ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(2-methoxyethoxy)pyridin-3-yl]-2-phenyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 765-[2-Ethoxy-5-(4-methylpiperazin-1-ylsulphonyl)pyridin-3-yl]-1-(2-methoxyethyl)-3-n-propyl-1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 775-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-1-(2-methoxyethyl)-1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
EXAMPLE 782-Cyclobutylmethyl-3-ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(pyrrolidin-1-yl)pyridin-3-yl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
Example 792-Cyclobutyl-5-[2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
Example 802-Cyclopentyl-5-[2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
Example 812-Cyclopentylmethyl-5-[2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
Example 822-Cyclohexyl-5-[2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
Example 835-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-2-(2-ethoxyethyl)-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
Example 845-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-[(1S)-1-methyl-2-methoxyethyl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
Example 855-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-[(1R)-1-methyl-2-methoxyethyl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
Example 865-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(3-methoxy-n-propyl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
Example 872-Cyclobutyl-3-ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(2-methoxyethoxy)pyridin-3-yl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
Examples 88 to 92
Example 935-[2-n-Butoxy-5-(4-methylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(2-methoxyethyl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidinone
Example 943-Ethyl-5-[2-(2-methoxyethoxy)-5-(4-methylpiperazin-1-ylsulphonyl)pyridin-3-yl]-2-[(1S)-1-methylpropyl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidinone
Example 953-Ethyl-5-[2-(2-methoxyethoxy)-5-(4-methylpiperazin-1-ylsulphonyl)pyridin-3-yl]-2-[(1R)-1-methylpropyl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidinone
Example 962-n-Butyl-3-ethyl-5-[2-(2-methoxyethoxy)-5-(4-methylpiperazin-1-ylsulphonyl)pyridin-3-yl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidinone
Example 972-Cyclopropylmethyl-3-ethyl-5-[2-(2-methoxyethoxy)-5-(4-methylpiperazin-1-ylsulphonyl)pyridin-3-yl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidinone
Example 982-Cyclobutylmethyl-3-ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(tetrahydro-2-furanylmethoxy)pyridin-3-yl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidinone
Example 993-Ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(2-methoxyethoxy)pyridin-3-yl]-2-(2-methoxyethoxy)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidinone
Example 1005-[2-Ethoxy-5-(4-
Example 1015-[2-Ethoxy-5-(4-n-propylpiperazin-1-ylsulphonyl)pyridin-3-yl)-3-ethyl-2-(2-methoxyethyl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidinone
Example 1021-(6-Ethoxy-5-[3-ethyl]-6,7-dihydro-2-(2-methoxyethyl)-7-oxo-2
Example 1031-{6-ethoxy-5-[3-ethyl-6,7-dihydro-2-(2-methoxyethyl)-7-oxo-2H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-pyridylsulfonyl}-4-ethylpiperazine
Example 1041-{6-ethoxy-5-[3-ethyl-6,7-dihydro-2-(2-methoxyethyl)-7-oxo-2H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-pyridylsulfonyl}-4-ethylpiperazine benzene-sulfonate salt.
Example 1051-{6-ethoxy-5-[3-ethyl-6,7-dihydro-2-(2-methoxyethyl)-7-oxo-2H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-pyridylsulfonyl}-4-ethylpiperazine p-toluene sulfonate salt.
Example 1061-{6-ethoxy-5-[3-ethyl-6,7-dihydro-2-(2-methoxyethyl)-7-oxo-2H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-pyridylsulfonyl}-4-ethylpiperazine (+) camphor-sulfonate salt
Example 1071-{6-ethoxy-5-[3-ethyl-6,7-dihydro-2-(2-methoxyethyl)-7-oxo-2H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-pyridylsulfonyl}-4-ethylpiperazine (+/-)-camphor sulfonate salt.
Example 1081-{6-ethoxy-5-[3-ethyl-6,7-dihydro-2-(2-methoxyethyl)-7-oxo-2H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-pyridylsulfonyl}-4-ethylpiperazine ethane-sulfonate salt.
Biological Activity
PREPARATION 13-Ethyl-1-(2-methoxyethyl)-4-nitropyrazole-5-carboxamide andPREPARATION 23-Ethyl-2-(2-methoxyethyl)-4-nitropyrazole-5-carboxamide
PREPARATION 31-(2-Methoxyethyl)-4-nitro-3-n-propylpyrazole-5-carboxamide andPREPARATION 42-(2-Methoxyethyl)-4-nitro-3-n-propylpyrazole-5-carboxamide
PREPARATION 52-(2-{[
PREPARATION 6
PREPARATION 7
PREPARATION 8Benzyl 2-[3-(aminocarbonyl)-5-ethyl-4-nitropyrazol-1-yl]ethyl(methyl)carbamate
PREPARATION 94-Amino-3-ethyl-2-(2-methoxyethyl)pyrazole-5-carboxamide
PREPARATIONS 10 TO 12
PREPARATION 13Benzyl 2-[4-amino-3-(aminocarbonyl)-5-ethylpyrazol-1-yl]ethyl(methyl)carbamate
PREPARATION 144-Amino-3-ethyl-1-(2-methoxyethyl)pyrazole-5-carboxamide
PREPARATION 154-Amino-1-(2-methoxyethyl)-3-n-propylpyrazole-5-carboxamide
PREPARATION 16Pyridine-2-amino-5-sulphonic acid
PREPARATION 17Pyridine-2-amino-3-bromo-5-sulphonic acid
PREPARATION 18Pyridine-3-bromo-2-chloro-5-sulphonyl chloride
PREPARATION 193-Bromo-2-chloro-5-(4-ethylpiperazin-1-ylsulphonyl)pyridine
PREPARATION 203-Bromo-2-chloro-5-(4-methylpiperazin-1-ylsulphonyl)pyridine
PREPARATION 213-Bromo-2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridine
PREPARATION 223-Bromo-2-ethoxy-5-(4-methylpiperazin-1-ylsulphonyl)pyridine
PREPARATION 23Pyridine 2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)-3-carboxylic acid ethyl ester
PREPARATION 24Pyridine 2-ethoxy-5-(4-methylpiperazin-1-ylsulphonyl)-3-carboxylic acid ethyl ester
PREPARATION 25Pyridine 2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)-3-carboxylic acid
PREPARATION 26Pyridine 2-ethoxy-5-(4-methylpiperazin-1-ylsulphonyl)-3-carboxylic acid hydrochloride
PREPARATION 274-[2-Ethoxy-5-(4-methylpiperazin-1-ylsulphonyl)pyridin-3-ylcarboxamido]-3-ethyl-2-(2-methoxyethyl)pyrazole-5-carboxamide
PREPARATION 284-[2-Ethoxy-5-(4-methylpiperazin-1-ylsulphonyl)pyridin-3-ylcarboxamido]2-(2-methoxyethyl)-3-n-propylpyrazole-5-carboxamide
PREPARATION 294-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-ylcarboxamido]-3-ethyl-2-(2-methoxyethyl)pyrazole-5-carboxamide
PREPARATION 304-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-ylcarboxamido]-2-(2-methoxyethyl)-3-n-propylpyrazole-5-carboxamide
PREPARATION 312-(2-{[
PREPARATION 32Benzyl 2-{3-(aminocarbonyl)-4-[({2-ethoxy-5-[(4-ethyl-1-piperazinyl)sulphonyl]-3-pyridinyl}carbonyl)amino]-5-ethylpyrazol-1-yl}ethyl(methyl)carbamate
PREPARATION 332-(1-
PREPARATION 344-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-ylcarboxamido]-1H-3-ethylpyrazole-5-carboxamide
PREPARATION 354-[2-Ethoxy-5-(4-methylpiperazin-1-ylsulphonyl)pyridin-3-ylcarboxamido)-1H-3-ethylpyrazole-5-carboxamide
PREPARATION 362-
PREPARATIONS 37 to 41
PREPARATION 424-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-ylcarboxamido]-3-ethyl-2-(tetrahydrofuran-2-yl)methylpyrazole-5-carboxamide
PREPARATION 432-Methoxy-1-methylethyl methanesulphonate
PREPARATION 442-[(
PREPARATION 454-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-ylcarboxamido]-3-ethyl-2-(1-methyl-2-methoxyethyl)pyrazole-5-carboxamide
PREPARATION 462-(1-
PREPARATION 472-{2-[(
PREPARATION 484-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-ylcarboxamido]-3-ethyl-2-[2-(pyrazol-1-yl)ethyl]pyrazole-5-carboxamide
PREPARATION 494-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-ylcarboxamido]-3-ethyl-2-(4-nitrophenyl)pyrazole-5-carboxamide
PREPARATION 502-[3-Dimethylamino-n-propyl]-4-[2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-ylcarboxamido]-3-ethylpyrazole-5-carboxamide
PREPARATION 514-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-ylcarboxamido]-3-ethyl-2-(piperidin-4-yl)pyrazole-5-carboxamide ditrifluoroacetate
PREPARATION 524-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-ylcarboxamido]-3-ethyl-2-(1-methylpiperidin-4-yl)pyrazole-5-carboxamide
PREPARATION 534-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-ylcarboxamido]-3-ethyl-2-(1-methylazetidin-3-yl)pyrazole-5-carboxamide
PREPARATION 544-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-ylcarboxamido]-3-ethyl-2-[2-(methylamino)ethyl]pyrazole-5-carboxamide
PREPARATION 552-[2-(Dimethylamino)ethyl]-4-[2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-ylcarboxamido]-3-ethylpyrazole-5-carboxamide
PREPARATION 564-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-ylcarboxamido]-3-ethyl-1-(2-methoxyethyl)pyrazole-5-carboxamide
PREPARATION 574-[2-Ethoxy-5-(4-methylpiperazin-1-ylsulphonyl)pyridin-3-ylcarboxamido]-1-(2-methoxyethyl)-3-n-propylpyrazole-5-carboxamide
PREPARATION 585-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
PREPARATION 595-[2-n-Butoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
PREPARATION 602-(2-{[
PREPARATION 612-{2-[(
PREPARATION 625-[2-n-Butoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-2-{2-[(
PREPARATION 632-(1-Butoxycarbonylazetidin-3-yl)-5-[2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
PREPARATION 642-(1-Butoxycarbonylpiperidin-4-yl)-5-[2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
PREPARATION 655-[2-n-Butoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-2-(1-
PREPARATION 662-(1-
PREPARATION 675-[2-n-Butoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-2-(1-
PREPARATION 685-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(piperidin-4-yl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one ditrifluoroacetate
PREPARATION 695-[5-(4-Ethylpiperazin-1-ylsulphonyl)-2-(2-methoxyethoxy)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
PREPARATION 704-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-ylcarboxamido]-2-(2-ethoxyethyl)-3-ethylpyrazole-5-carboxamide
Preparation 71Cyclopentylmethyl 4-methylbenzenesulphonate
Preparation 72Tetrahydro-2
Preparation 73Methanesulphonic acid cyclohexylester
Preparation 74(1
Preparation 75(1
Preparation 76(2
Preparation 77(1
Preparation 78 .(1
Preparation 792-Ethoxy-5-nitro-3-pyridinecarboxylic acid
Preparation 804-(2-Ethoxy-5-nitropyridin-3-ylcarboxamido)-3-ethyl-2-(2-methoxyethyl)pyrazole-5-carboxamide
Preparation 814-(5-Amino-2-ethoxypyridin-3-ylcarboxamido)-3-ethyl-2-(2-methoxyethyl)pyrazole-5-carboxamide
Preparation 825-(5-Amino-2-ethoxypyridin-3-yl)-3-ethyl-2-(2-methoxyethyl)pyrazole-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidinone
Preparation 832-Cyclobutyl-4-[2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-ylcarboxamido]-3-ethylpyrazole-5-carboxamide
Preparations 84 to 88
Preparation 894-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-ylcarboxamido]-3-ethyl-2-[(1R)-1-methyl-2-methoxyethyl]pyrazole-5-carboxamide
Preparation 904-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-ylcarboxamido]-3-ethyl-2-[(1S)-1-methyl-2-methoxyethyl)pyrazole-5-carboxamide
Preparations 91 to 94
Preparation 952-Ethoxy-5-(4-ethyl-1-piperazinylsulfonyl)nicotinic acid(a) 2-Hydroxy-5-sulfonicotinic acid
(b) Ethyl 2-hydroxy-5-sulfonicotinoate
(c) Ethyl 2-chloro-5-chlorosulfonicotinoate
(d) Ethyl 2-chloro-5-(4-ethyl-1-piperazinylsulfonyl)nicotinoate
(e)Ethyl 2-ethoxy-5-(4-ethyl-1-piperazinylsulfonyl)nicotinoate
(f) 2-Ethoxy-5-(4-ethyl-1-piperazinylsulfonyl)nicotinic acid
Preparation 96
(b) Ethyl 3-ethyl-
(c) 4-Nitro-3-n-propyl-1H-pyrazole-5-carboxylic acid
(d) 3-Ethyl-4-nitro-1 H-pyrazole-5-carboxylic acid
(e) 4-Nitro-3-n-propyl-1H-pyrazole-5-carboxamide
(f) 3-Ethyl-4-nitro-1H-pyrazole-5-carboxamide
(g)(i) 5-Ethyl-1-(2-methoxyethyl)-4-nitro-1H-pyrazole-3-carboxamide.
(g)(ii) 5-Ethyl-1-(2-methoxyethyl)-4-nitro-1H-pyrazole-3-carboxamide.
(h) 4-Amino-5-ethyl-1-(2-methoxyethyl)-1
(i)