SEMICONDUCTOR DEVICE
This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2019-038547, filed on Mar. 4, 2019, and Japanese Patent Application No. 2019-181565, filed on Oct. 1, 2019; the entire contents of all of which are incorporated herein by reference. Embodiments described herein relate generally to a semiconductor device. A PGA (Pin Grid Array), a BGA (Ball Grid Array), a LGA (Land Grid Array), etc., are used as packages of semiconductor integrated circuits such as LSI, etc.; and among these, the PGA and the LGA are board-mountable by using a socket or the like without using fixation by solder fusion, and are used as repairable packages that are detachable and re-attachable as necessary. As the integration density of LSI has been increased, the size of the package has been enlarged and the terminal pitch of the package has been reduced due to the increase of the number of necessary terminals on the package, However, while solder ball mounting having a terminal pitch of about 0.3 mm has been realized for the BGA, the terminal pitch for the PGA and the LGA has remained at about 0.5 mm due to the mechanical precision; and it is difficult to realize a narrow terminal pitch of a repairable package that does not use solder fusion. An embodiment of the invention is directed to provide a semiconductor device in which a narrower terminal pitch of 0.3 mm or less is effectively realizable and excellent connection characteristics at extremely high frequencies can be provided even in a repairable package. According to one embodiment, a semiconductor device includes at least a package substrate, an external electrode, a mounting substrate, and a mounting electrode. A semiconductor chip is mountable to the package substrate. The external electrode is provided at an external electrode formation surface of the package substrate. The external electrode has an electrical contact surface. The electrical contact surface at the external electrode formation surface is longer in a signal transmission direction than in a direction orthogonal to the signal transmission direction. The package substrate is mounted on the mounting substrate. The mounting electrode is provided at a position of the mounting substrate opposing the external electrode. The mounting electrode has an electrical contact surface. The electrical contact surface of the mounting electrode is longer in a signal transmission direction than in a direction orthogonal to the signal transmission direction. A signal connection point of the external electrode is provided at an end portion in a longitudinal direction of the external electrode. A signal connection point of the mounting electrode is provided at an end portion of the mounting electrode. The end portion of the mounting electrode is opposite to the signal connection point of the external electrode facing to the mounting electrode in the longitudinal direction. Embodiments will now be described with reference to the drawings as appropriate. For convenience of description, the scale in each drawing is not always accurate; and relative positional relationships, etc., may be used. Also, the same or similar components are marked with the same reference numerals. A semiconductor integrated circuit such as LSI or the like is a device used as the core of an information communication device; and the necessary number of terminals on the package is increasing as the integration density necessary for the performance improvement of the semiconductor integrated circuit increases. To this end, the size of the package has been enlarged and the terminal pitch of the package has been reduced; but as described above, while a terminal pitch of 0.3 mm has been realized for the BGA using micromounting technology using fusion of micro solder balls, for the PGA and the LGA which require a mechanical-electrical contact mechanism, the realizable terminal pitch due to the scaling limit of the mechanical-electrical contact mechanism is about 0.5 mm. As the electrical contact mechanism described above, a pin socket array is generally used for the PGA; and a spring terminal array of C-shaped springs or cantilever springs is generally used for the LGA. Both arrays have independent spring mechanisms for each terminal and maintain the terminal contact by pressing by the spring elasticity. Accordingly, in these repairable packages in which LSI is interchangeable without operations such as solder reflow or the like that cause member degradation, the downscaling of the spring mechanism determines the terminal pitch; and the limit of narrowing the terminal pitch is caused by the mechanical configuration, On the other hand, a repairable package that has a relatively fine terminal pitch can be configured using a LGA package and an anisotropic conductive contactor such as those shown in Japanese Patent Application Publication No. Sho 61-133586, Japanese Patent Application Publication No. Hei 9-283252, and Japanese Patent Application Publication No. 2001-281300. In such a case, the conductive core wire pitch of the anisotropic conductive contactor determines the LGA package terminal pitch; for example, in the case of an anisotropic conductive contactor having a conductive core wire pitch of 50 μm, a LGA package that has a terminal pitch of about 0.3 mm is realizable. However, it is necessary to reduce the contact resistance by ensuring the electrode pad surface areas of the LGA package and the mounting substrate, i.e., the number of conductive core wires of the anisotropic conductive contactor contacting the electrode pads; and even in such a case, a narrow terminal pitch of 0.3 mm or less is substantially difficult. Multiple external electrodes (hereinbelow, also called package terminals; and the electrical contact surfaces also are called electrode pads) 2 are provided at the external electrode formation surface 1 The external electrode 2 has an electrical contact surface 2 Generally, the portion of the semiconductor package that needs a narrower terminal pitch is the signal transmission terminals; and fine terminals are not really necessary for power supply terminals and control terminals. Therefore, for example, by forming the signal transmission terminals at a narrower pitch and the power supply terminals and/or the control terminals at a relatively wide terminal pitch, an effectively narrower terminal pitch is possible, However, asymmetric package terminal configurations often are prohibited for solder fusion-type packages (BGA, etc.) and terminal-fixed packages (PGA, etc.) due to problems such as terminal damage caused by thermal stress concentration, etc. In particular, the terminal connection of a solder fusion-type package such as the BGA or the like is made uniform by utilizing the surface tension of the melted solder; therefore, it is difficult to apply an asymmetric terminal configuration such as that shown in On the other hand, in a LGA package that is electrically connected only by mechanical contact, problems do not occur easily even for electrode pads such as those of In In such a case, the electrode surface area is πr2for the circular pad 200 and 4r2+rs for the electrode pad 201; and the electrode pad 201 has a wider surface area by the amount of (4−π)r2+rs. In other words, it can be seen that for the same dedicated surface area, the terminal pitch can be ½ albeit in only a designated direction; the electrode surface area can be even wider; and the contact resistance can be equal or less, This is useful when performing high density wiring of high-speed signal terminals, etc., and means that, for example, the pitch of drawing out the high-speed wiring of the package in the right direction in In particular, when performing differential wiring, the package terminals and the mounting substrate terminals can be arranged to be parallel in a symmetric configuration; therefore, the electromagnetic field symmetry of the differential signal can be maintained easily; the impedance mismatch of the electrode pads can be suppressed easily; and for the wave motion, reflections can be minimized. In other words, the wiring band density can be increased to 2 times; and the quality of the high frequency signal transmission can be improved. It is possible to realize such a terminal pitch using the circular pad 200 by setting the total dedicated surface area of the electrode pad to be the same using two columns of the circular pads 200; but it is necessary to use an arrangement in which, for example, if the high-speed wiring is drawn out in the right direction of For the surface area of the electrode pad, if applications to BGA packages are ignored, it is possible to increase the electrode surface area by using a square pad having sides of 2r instead of the circular pad 200. Even in such a case, the dedicated surface area per pitch can be the same as the circular pad 200; and the surface area of the electrode pad can be widened to 4r2. However, in such a case as well, the surface area of the electrode pad 201 is wider by the amount of rs; and the dominance is not changed for the contact resistance, the high-speed transmission quality, the transmission band density, etc. Although the space in the lateral direction of Multiple mounting electrodes (mounting substrate terminals) 5 are provided at positions of the mounting substrate 4 opposing the external electrodes (the package terminals) 2 of the LGA package. The mounting electrode 5 has an electrical contact surface 5 The anisotropic conductive contactor 6 is inserted between the electrical contact surface 2 As described in Patent Literature 2, etc,, the electrical connectability is maintained and the elastic deformation due to pressing by the terminals (the package terminals 2 and the mounting substrate terminals 5) on the anisotropic conductive contactor 6 is permitted by forming the conductive core wires 7 obliquely with respect to the electrical connection direction. A signal is transmitted between the package substrate 1 and the mounting substrate 4 via an electrical contact of an overlapping portion of the external electrode 2 and the mounting electrode 5. A signal is transmitted in the longitudinal direction of the external electrode 2 and the mounting electrode 5. A signal is transmitted to the signal connection point 5 For example, in the case where the signal connection point 2 In other words, the arrangement uniformity of the conductive core wires 7 relates to the connection reliability of the anisotropic conductive contactor 6; and basically, it is necessary to arrange the conductive core wires 7 at a prescribed pitch. Here, the arrangement pitch of the conductive core wires 7 is taken as Pc; the arrangement pitch is taken as Ps in the orthogonal direction; and it is taken that the asymmetry of Pc>Ps exists. In In other words, in For the rectangular electrode pad 201 described above, all of the electrode pads 201 are in contact with multiple conductive core wires 7 if the short side of the rectangle is not less than Pc, the long side of the rectangle is substantially uniform in the arrangement direction of the conductive core wires 7, and the dimensional relationship is, for example, such as that shown in To solve the connection nonuniformity, for example, as shown in As a condition of obtaining such an effect of making the connection uniform, it is desirable to set the tilt of the array arrangement of the conductive core wires 7 to be larger than the angle causing the conductive core wires 7 to shift one pitch over the distance of the long side of the electrode pad 201. In other words, when the long-side length of the electrode pad 201 is taken as L and the minimum pitch of the conductive core wires 7 is taken as Ps, it is desirable for θ>tan−1(Ps/L); and considering the tilt of the orthogonal axis as well, it is desirable for the tilt θ to be in a range such that (90−tan−1(Ps/L))>θ>tan−1(Ps/L). As a result, for example, by setting Pc=Ps=50 μm, r=200 μm, and s=100 μm for the dimensional relationship of Thus, in the embodiment, by providing the signal transmission terminals at a narrower pitch, a LGA package having an effectively narrow terminal pitch is realized; narrower-pitch terminals of 0.3 mm or less are realizable in a repairable package; and a semiconductor device having excellent high frequency connection characteristics can be provided. The circular external electrode (the electrode pad) 200 and the rectangular external electrode (the electrode pad) 201 are provided at the external electrode formation surface 1 Here, for example, the output is taken to be a highspeed signal (e.g., a signal speed of 26 Gbps) using differential wiring; and the adjacent electrode pads 201 are used as a pair of terminals of the differential wiring. For example, the circular electrode pad 200 and the rectangular electrode pad 201 are laid out with the dimensional relationship of In such a case, for example, the pitch of the conductive core wires 7 of the anisotropic conductive contactor 6 is set to Pc=Ps=50 μm; and it is sufficient for the arrangement of the conductive core wires 7 to be tilted 4° to 86° with respect to the rectangular electrode pad 201. It is sufficient for the power supply terminals, the control terminals, etc., to be supplied or connected by the circular electrode pads 200; and it is no problem for package terminals corresponding to a 0.5-mm pitch to be used for these terminals to ensure the current amount or to connect for a relatively low-speed signal. It is sufficient to consider these terminals effectively to be four 0.25-mm terminals used collectively; and even if a narrow-terminal-pitch package of 0.25 mm actually is realized, a connection corresponding to four terminals is performed to ensure the current amount and/or ensure the connection reliability. For a BGA package or the like, the package mounting height changes according to the terminal pitch because the size of the solder balls used changes according to the terminal pitch. Therefore, it cannot be said that a 0.25-mm pitch is realized because the package height on the mounting board is different between an actually 0.25-mm pitch BGA and an effectively 0.25-mm pitch BGA. However, the embodiment presupposes the LGA as a repairable package; and the package Mounting height does not change according to the terminal pitch. In other words, for the actually 0.25-mm-pitch package and the effectively 0.25-mm-pitch package of the embodiment, there is no fundamental difference in the performance; and the effects are equivalent. In the embodiment, a so-called staggered arrangement is formed by shifting the arrangement relationship of the rectangular electrode pads 201 of two columns by ½ pitch in a direction orthogonal to the signal transmission direction. As a result, as shown in Thereby, when using electrode parameters similar to those of In such a case, the positional alignment between the external electrodes (the package terminals) 2 of the package substrate 1 and the mounting electrodes 5 of the mounting substrate 4 is simplified; and it is sufficient to drop the package substrate 1 into the recess of the cavity 10 of the mounting substrate 4. Of course, the connection is performed by inserting the anisotropic conductive contactor 6 between the package substrate 1 and the mounting substrate 4 and by mounting a holder (not illustrated) pressing the package substrate 1. In such a case, the exterior form of the anisotropic conductive contactor 6 is cut to match the recess configuration of the cavity 10 of the mounting substrate 4. The recess opening of the cavity 10 is set to be a polygon; and the exterior form of the anisotropic conductive contactor 6 matches the configuration of the recess opening of the cavity 10. The exterior form of the anisotropic conductive contactor 6 is cut in a direction causing the arrangement direction of the conductive core wires 7 to be different from the direction of each side of the package terminals 2 and the mounting substrate terminals 5. The protrusion 11 is provided partially at the external electrode formation surface 1 By setting the height of the protrusion 11 to be lower than the thickness of the anisotropic conductive contactor 6, the protrusion 11 can be used as a stopper when pressing the package substrate 1. The protrusion 11 can be a height-regulating jig that prevents pressing in excess of the elastic limit of the anisotropic conductive contactor 6, As shown in A recess 1 While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modification as would fall within the scope and spirit of the inventions. According to one embodiment, a semiconductor device includes at least a package substrate, an external electrode, a mounting substrate, and a mounting electrode. A signal connection point of the external electrode is provided at an end portion in a longitudinal direction of the external electrode. A signal connection point of the mounting electrode is provided at an end portion of the mounting electrode. The end portion of the mounting electrode is opposite to the signal connection point of the external electrode facing to the mounting electrode in the longitudinal direction. 1-12. (canceled) 13. A semiconductor device, comprising at least:
a package substrate, a semiconductor chip being mountable to the package substrate; an external connection electrode provided at an external connection electrode formation surface of the package substrate, the external connection electrode having an electrical contact surface, the electrical contact surface at the external connection electrode formation surface being longer in a signal transmission direction than in a direction orthogonal to the signal transmission direction; a mounting substrate where the package substrate is mounted; a mounting electrode provided at a position of the mounting substrate opposing the external connection electrode, the mounting electrode having an electrical contact surface, the electrical contact surface of the mounting electrode being longer in the signal transmission direction than in the direction orthogonal to the signal transmission direction; and an anisotropic conductive contactor inserted between the external connection electrode and the mounting electrode, the anisotropic conductive contactor electrically connecting the external connection electrode and the mounting electrode, each longitudinal direction of the external connection electrode and the mounting electrode are aligned in the signal transmission direction, the external connection electrode having a first signal connection point of the external connection electrode being provided at a first end portion in the longitudinal direction of the external connection electrode, the mounting electrode having a second signal connection point of the mounting electrode being provided at a second end portion of the mounting electrode, the second end portion of the mounting electrode being opposite, in the longitudinal direction, to the first signal connection point of the external connection electrode facing to the mounting electrode, the anisotropic conductive contactor including a conductive core array electrically connecting the external connection electrode and the mounting electrode, the conductive core array providing a feedthrough connection between upper and lower surfaces of the anisotropic conductive contactor, an arrangement pitch of the conductive core array being narrower than a width of the external connection electrode in the direction orthogonal to the signal transmission direction and a width of the mounting electrode in the direction orthogonal to the signal transmission direction. 14. The device according to 15. The device according to 16. The device according to a first via connected to the first signal connection point of the external connection electrode; and a second via connected to the second signal connection point of the mounting electrode. 17. The device according to a first transmission line provided at the package substrate and connected to the first signal connection point of the external connection electrode, and a second transmission line provided at the mounting substrate opposing the external connection electrode formation surface of the package substrate and connected to the second signal connection point of the mounting electrode. 18. The device according to the mounting substrate has a cavity made of a partial recess, the mounting electrode is formed inside the cavity, and a position of the package substrate on the mounting substrate is determined by the cavity. 19. The device according to a recess opening of the cavity is a polygon, an exterior form of the anisotropic conductive contactor matches a configuration of the recess opening, and an arrangement direction of the conductive core array is in a direction different from the signal transmission direction. 20. The device according to a protrusion is provided partially at the external connection electrode formation surface of the package substrate, the protrusion being lower than a thickness of the anisotropic conductive contactor, and the anisotropic conductive contactor is held by the protrusion. 21. The device according to a protrusion is provided partially at the external connection electrode formation surface of the package substrate, the protrusion being higher than a thickness of the anisotropic conductive contactor, a recess is provided in the mounting substrate at a position opposing the protrusion, and a position of the package substrate on the mounting substrate is determined by the protrusion and the recess engaging. 22. The device according to 23. The device according to a recess is provided partially in the external connection electrode formation surface of the package substrate, a protrusion is provided at a position of the mounting substrate opposing the recess, the protrusion being higher than a thickness of the anisotropic conductive contactor, and a position of the package substrate on the mounting substrate is determined by the recess and the protrusion engaging. 24. device according to 25. A semiconductor device, comprising at least:
a package substrate, a semiconductor chip being mountable to the package substrate; an external connection electrode provided at an external connection electrode formation surface of the package substrate, the external connection electrode having an electrical contact surface, a length in a first direction of the electrical contact surface being longer than a length in a second direction orthogonal to the first direction of the electrical contact surface; a mounting substrate where the package substrate is mounted; a mounting electrode provided at a position of the mounting substrate opposing the external connection electrode, the mounting electrode having an electrical contact surface, a length in the first direction of the electrical contact surface of the mounting electrode being longer than a length in the second direction of the electrical contact surface of the mounting electrode; and an anisotropic conductive contactor inserted between the external connection electrode and the mounting electrode, the anisotropic conductive contactor electrically connecting the external connection electrode and the mounting electrode, the external connection electrode having a first signal connection point of the external connection electrode being provided at a first end portion in the first direction of the external connection electrode, the mounting electrode having a second signal connection point of the mounting electrode being provided at a second end portion of the mounting electrode, the second end portion of the mounting electrode being opposite, in the first direction, to the first signal connection point of the external connection electrode facing to the mounting electrode, the anisotropic conductive contactor including a conductive core array electrically connecting the external connection electrode and the mounting electrode, the conductive core array providing a feedthrough connection between upper and lower surfaces of the anisotropic conductive contactor, an arrangement pitch of the conductive core array being narrower than the length of the external connection electrode in the second direction and the length of the mounting electrode in the second direction. 26. The device according to 27. The device according to 28. The device according to a first via connected to the first signal connection point of the external connection electrode; and a second via connected to the second signal connection point of the mounting electrode. 29. The device according to a first transmission line provided at the package substrate and connected to the first signal connection point of the external connection electrode, and a second transmission line provided at the mounting substrate opposing the external connection electrode formation surface of the package substrate and connected to the second signal connection point of the mounting electrode. 30. The device according to the mounting substrate has a cavity made of a partial recess, the mounting electrode is formed inside the cavity, and a position of the package substrate on the mounting substrate is determined by the cavity. 31. The device according to a recess opening of the cavity is a polygon, an exterior form of the anisotropic conductive contactor matches a configuration of the recess opening, and an arrangement direction of the conductive core array is in a direction different from the first direction. 32. The device according to a protrusion is provided partially at the external connection electrode formation surface of the package substrate, the protrusion being lower than a thickness of the anisotropic conductive contactor, and the anisotropic conductive contactor is held by the protrusion.CROSS-REFERENCE TO RELATED APPLICATIONS
FIELD
BACKGROUND
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION
First Embodiment
Second Embodiment
Third Embodiment
Fourth Embodiment
Fifth Embodiment
Sixth Embodiment







