Solid-state imaging element, method for manufacturing solid-state imaging element, and electronic device
The present invention is a Continuation of application Ser. No. 15/878,813, filed Jan. 24, 2018, which is a Continuation of application Ser. No. 14/277,391, filed May 14, 2014, which is a Continuation of application Ser. No. 13/337,961, filed Dec. 27, 2011, now U.S. Pat. No. 8,766,389, Jul. 1, 2014, which claims priority from Japanese Priority Patent Application 2011-012818 filed Jan. 25, 2011, the entire contents of which are incorporated herein by reference. The present disclosure relates to a solid-state imaging element formed by laminating a sensor substrate and a circuit substrate to each other in such a manner as to join the electrodes of the sensor substrate and the circuit substrate to each other, a method for manufacturing the solid-state imaging element, and an electronic device using the solid-state imaging element. A three-dimensional structure in which a photoelectric conversion section and a peripheral circuit section are laminated to each other is proposed as one of structures for achieving further miniaturization of elements and higher density of pixels in a solid-state imaging element included in an electronic device such as a portable telephone, a digital camera, a camcorder, or the like. In manufacturing a solid-state imaging element of such a three-dimensional structure, for example a sensor substrate in which a CIS (complementary metal oxide semiconductor image sensor) having a photoelectric conversion section is formed and a circuit substrate in which a peripheral circuit section is formed are laminated to each other. The lamination of these substrates is performed by arranging electrodes (bonding pads) drawn out to surfaces on one side of each of the substrates such that the electrodes (bonding pads) are opposed to each other, and performing heat treatment in this state. In order to facilitate the joining of the bonding pads to each other by the heat treatment, an insulating film surrounding bonding pads is recessed in advance (see Japanese Patent Laid-Open No. 2006-191081, for example, for the above description). In addition, a constitution in which the sensor substrate and the circuit substrate are laminated to each other so as to cancel the internal stress of both of the substrates is proposed in order to prevent a distortion or a warp in the sensor substrate and the circuit substrate laminated as described above (see Japanese Patent Laid-Open No. 2007-234725, for example, for the above description). However, in the solid-state imaging element of the three-dimensional structure having the constitution described above, when the heat treatment is performed in a state of the electrodes on the sensor substrate and the electrodes on the circuit substrate being opposed to each other, a void tends to occur at the joining surface between the electrodes of the sensor substrate and the electrodes of the circuit substrate, thus reducing a joining area between the electrodes. Such a reduction of the joining area between the electrodes is a factor in causing an increase in contact resistance between the electrodes of the sensor substrate and the electrodes of the circuit substrate and peeling between the substrates due to a decrease in mechanical strength of the joining surfaces. Accordingly, it is desirable to provide a solid-state imaging element of a three-dimensional structure that makes it possible to secure a joining area between electrodes in a constitution formed by laminating a sensor substrate and a circuit substrate to each other in such a manner as to join the electrodes of the sensor substrate and the circuit substrate to each other, and improve reliability. It is also desirable to provide a method for manufacturing such a solid-state imaging element and an electronic device whose reliability is improved by using such a solid-state imaging element. A solid-state imaging element according to an embodiment of the present technology includes: a sensor substrate in which a photoelectric conversion section is arranged and formed; and a circuit substrate in which a circuit for driving the photoelectric conversion section is formed, the circuit substrate being laminated to the sensor substrate. The solid-state imaging element also includes: a sensor side electrode drawn out to a surface of the sensor substrate on a side of the circuit substrate; and a circuit side electrode drawn out to a surface of the circuit substrate on a side of the sensor substrate. In the solid-state imaging element, the sensor side electrode and the circuit side electrode are joined to each other in a state of a projection electrode being fitted in a depression electrode. In the solid-state imaging element of such a constitution, the joining surface between the sensor side electrode and the circuit side electrode of the constitution in which the projection electrode is fitted in the depression electrode has a larger joining area than in a case in which flat electrodes are joined to each other. Thus, even when a void occurs at the joining surface between the sensor side electrode and the circuit side electrode, a substantial joining area can be secured. In addition, a method for manufacturing a solid-state imaging element according to an embodiment of the present technology performs the following steps. First, a sensor side electrode is formed on one main surface side of a sensor substrate in which a photoelectric conversion section is arranged and formed. In addition, a circuit side electrode is formed on one main surface side of a circuit substrate in which a circuit for driving the photoelectric conversion section is formed. Next, the sensor side electrode and the circuit side electrode are joined to each other by arranging the sensor substrate and the circuit substrate such that the sensor substrate and the circuit substrate are opposed to each other and laminating the sensor substrate and the circuit substrate to each other in a state of the sensor side electrode and the circuit side electrode being opposed to each other, and performing heat treatment. In the method performing such steps, the sensor substrate and the circuit substrate are laminated to each other in a state of a projection electrode forming one of the sensor side electrode and the circuit side electrode being fitted in a depression electrode forming the other of the electrodes. In the above manufacturing method, the sensor substrate and the circuit substrate are laminated to each other on a self-alignment basis by fitting the projection electrode into the depression electrode, and a solid-state imaging element of the above-described constitution can be obtained. Another embodiment of the present technology is an electronic device having a solid-state imaging element of the above constitution. As described above, according to the present technology, a substantial joining area between the sensor side electrode and the circuit side electrode can be ensured in the constitution in which the sensor substrate and the circuit substrate are laminated to each other in such a manner as to join the electrodes of the sensor substrate and the circuit substrate to each other. Thus, an increase in contact resistance is suppressed, and a joining strength between the electrodes is ensured, so that the reliability of the solid-state imaging element of the three-dimensional structure and the electronic device using the solid-state imaging element can be improved. Preferred embodiments of the present technology will hereinafter be described in the following order with reference to the drawings. 1. Example of Schematic Configuration of Solid-State Imaging Element according to Embodiment 2. Constitution of Solid-State Imaging Element According to First Embodiment 3. Method for Manufacturing Sensor Substrate Used in First Embodiment 4. Method for Manufacturing Circuit Substrate Used in First Embodiment 5. Method for Manufacturing Solid-State Imaging Element according to First Embodiment 6. Constitution of and Method for Manufacture of Solid-State Imaging Element according to Second Embodiment 7. Constitution of and Method for Manufacture of Solid-State Imaging Element according to Third Embodiment 8. Embodiment of Electronic Device Incidentally, common constituent elements in embodiments and examples of modification are identified by same reference numerals, and repeated description thereof will be omitted. «1. Example of Schematic Configuration of Solid-State Imaging Element According to Embodiment» A pixel region 4 in which a plurality of pixels 3 including a photoelectric conversion section are regularly arranged two-dimensionally is provided on one surface side of the sensor substrate 2. In the pixel region 4, a plurality of pixel driving lines 5 are arranged in a row direction, a plurality of vertical signal lines 6 are arranged in a column direction, and one pixel 3 is disposed in a state of being connected to one pixel driving line 5 and one vertical signal line 6. Each of these pixels 3 has a pixel circuit formed by a photoelectric conversion section, a charge accumulating section, a plurality of transistors (so-called MOS transistors), a capacitive element, and the like. Incidentally, a part of the pixel circuit may be shared by a plurality of pixels. In addition, peripheral circuits such as a vertical driving circuit 8, a column signal processing circuit 9, a horizontal driving circuit 10, a system control circuit 11, and the like are provided on one surface side of the circuit substrate 7. The vertical driving circuit 8 is formed by a shift register, for example. The vertical driving circuit 8 selects the pixel driving lines 5 drawn out from the side of the sensor substrate 2 to the side of the circuit substrate 7, supplies a pulse for driving the pixels to the selected pixel driving lines 5, and drives the pixels 3 arranged on the side of the sensor substrate 2 in row units. That is, the vertical driving circuit 8 sequentially selects and scans each of the pixels 3 arranged in the sensor substrate 2 in row units in a vertical direction. Then, a pixel signal based on a signal charge generated according to an amount of light received in each of the pixels 3 is supplied to the column signal processing circuit 9 via the vertical signal lines 6 arranged so as to be perpendicular to the pixel driving lines 5. The column signal processing circuit 9 is arranged for example for each column of the pixels 3 provided in the sensor substrate 2. The column signal processing circuit 9 subjects signals output from pixels 3 of one row via the vertical signal lines 6 to signal processing for noise removal and the like for each pixel column. Specifically, the column signal processing circuit 9 performs signal processing such as correlated double sampling (CDS) for removing fixed pattern noise specific to the pixels, signal amplification, analog/digital conversion (AD), and the like. The horizontal driving circuit 10 is formed by a shift register, for example. The horizontal driving circuit 10 sequentially outputs a horizontal scanning pulse, and selects each of constituent parts of the column signal processing circuit 9 in order, to make each of the constituent parts of the column signal processing circuit 9 output a pixel signal. The system control circuit 11 receives an input clock and data specifying an operation mode and the like, and outputs data such as internal information of the solid-state imaging element 1 and the like. Specifically, the system control circuit 11 generates a clock signal and a control signal serving as a reference for the operation of the vertical driving circuit 8, the column signal processing circuit 9, the horizontal driving circuit 10, and the like on the basis of a vertical synchronizing signal, a horizontal synchronizing signal, and a master clock. The system control circuit 11 then inputs these signals to the vertical driving circuit 8, the column signal processing circuit 9, the horizontal driving circuit 10, and the like. A circuit for driving each pixel is formed by the peripheral circuits 8 to 11 as described above and the pixel circuit of each pixel 3 provided in the sensor substrate 2. «2. Constitution of Solid-State Imaging Element according to First Embodiment» The solid-state imaging element 1 shown in In addition, a protective layer 15, a color filter layer 17, and an on-chip lens 19 are laminated in this order on a surface of the sensor substrate 2 which surface is on an opposite side from the circuit substrate 7. Next, detailed constitutions of the respective layers forming the sensor substrate 2 and the circuit substrate 7 will be described in order from the side of the sensor substrate 2. [Semiconductor Layer 2 The semiconductor layer 2 The photoelectric conversion section 21 is disposed so as to have an aperture width narrowed from the side of the first surface of the semiconductor layer 2 A floating diffusion FD and source/drain sections 27 of a transistor Tr, the floating diffusion FD and the source/drain sections 27 being formed of an n+ type impurity layer, as well as an impurity layer serving as a lower electrode of a capacitive element not shown in [Wiring Layer 2 The wiring layer 2 In the wiring layer 2 A connecting hole 37 reaching the source/drain section 27 or the transfer gate TG is provided in a part of the interlayer insulating film 35 and the gate insulating film 31. The wiring 43 is connected to the source/drain section 27 or the transfer gate TG via the connecting hole 37. Suppose that a connecting hole not shown in Suppose that the sensor substrate 2 formed as described above has a pixel circuit formed by the floating diffusion FD, the transfer gate TG, the transistor Tr, and the capacitive element not shown in In the present first embodiment, the sensor side electrode 45 is formed as a projection electrode projecting from the surface of the interlayer insulating film 41. The part of the projection electrode formed as the sensor side electrode 45 which part projects from the interlayer insulating film 41 may be a part or the whole of the sensor side electrode 45. Suppose that for example a part of each such projection electrode which part is embedded in the interlayer insulating film 41 has a cylindrical shape, and that the bottom surface side of a cylinder in the part of the projection electrode which part projects from the interlayer insulating film 41 is formed as a convex curved surface in a substantially hemispheric shape. In addition, the whole of the projection electrode having the convex curved surface on the one bottom surface side of such a cylindrical shape may be disposed on the interlayer insulating film 41. Further, each projection electrode may have a shape formed by a wide base part and a convex curved surface in a substantially hemispheric shape provided on an upper part of the base part. In this case, only the part of the convex curved surface in the substantially hemispheric shape may be projected from the interlayer insulating film 41, and the surface of the base part may be at a same height as the surface of the interlayer insulating film 41. [Semiconductor Layer 7 The semiconductor layer 7 [Wiring Layer 7 The wiring layer 7 In the wiring layer 7 A connecting hole 59 reaching the source/drain section 51 or the gate electrode 55 is provided in a part of the interlayer insulating film 57 and the gate insulating film 53. The wiring 63 is connected to the source/drain section 51 or the gate electrode 55 via the connecting hole 59. In addition, when the wiring 63 is in multiple layers, pieces of wiring 63 and 63 in different layers are connected to each other by a connecting hole provided in the interlayer insulating film 61. Further, a connecting hole 67 for connecting the wiring 63 and the circuit side electrode 65 to each other is provided in the interlayer insulating film 61. The circuit side electrode 65 is connected to the transistor Tr provided in the surface of the semiconductor layer 7 Suppose that the circuit substrate 7 formed as described above has a peripheral circuit formed by the transistor Tr, the capacitive element not shown in In the present first, the circuit side electrode 65 is formed as a depression electrode. Suppose that such a circuit side electrode 65 has a concave shape in the central part of a surface of the circuit side electrode 65 which surface faces the side of the sensor substrate 2, and that the inner circumferential wall of the concave shape is formed by a concave curved surface where the electrode surface of the circuit side electrode 65 is exposed. Each projection electrode formed as the sensor side electrode 45 on the side of the sensor substrate 2 described earlier is fitted into each depression electrode formed as the circuit side electrode 65 as described above, and the circuit side electrodes 65 and the sensor side electrodes 45 are joined to each other in a one-to-one correspondence. A joining surface between the circuit side electrodes 65 and the sensor side electrodes 45 is a curved surface. In addition, the peripheries of the projection electrodes (sensor side electrodes 45) projecting from the interlayer insulating film 41 are surrounded by the depression electrodes (circuit side electrodes 65). Suppose that the projection electrodes (sensor side electrodes 45) and the depression electrodes (circuit side electrodes 65) are formed of a material capable of being joined to each other while retaining a good contact property, and that the material is used for the projection electrodes (sensor side electrodes 45) and the depression electrodes (circuit side electrodes 65) with process compatibility taken into consideration. In addition, suppose that in this state, the entire surface of the interlayer insulating film 41 on the side of the sensor substrate 2 and the entire surface of the interlayer insulating film 61 on the side of the circuit substrate 7 are in close contact with each other. In this case, when the interlayer insulating films 41 and 61 are formed of a silicon oxide base material, the interlayer insulating films 41 and 61 are joined to each other by an intermolecular bond between silicon (Si) and oxygen (O). [Protective Film 15] The protective film 15 is formed by a material film having a passivation property. A silicon oxide film, a silicon nitride film, a silicon oxynitride film, or the like is used for the protective film 15. [Color Filter Layer 17] The color filter layer 17 is formed by color filters of respective colors provided in a one-to-one correspondence with respective photoelectric conversion sections 21. The arrangement of the color filters of the respective colors is not limited. [On-Chip Lens 19] On-chip lenses 19 are provided in a one-to-one correspondence with the respective photoelectric conversion sections 21 and the color filters of the respective colors which color filters form the color filter layer 17, and are formed so as to condense incident light on the respective photoelectric conversion sections 21. [Action and Effect of Solid-State Imaging Element According to First Embodiment] According to the solid-state imaging element 1 formed as described above, the sensor side electrode 45 is formed as a projection electrode, the circuit side electrode 65 is formed as a depression electrode, and the sensor side electrode 45 and the circuit side electrode 65 are joined to each other by fitting the projection electrode into the depression electrode. Thus, a joining area between the sensor side electrode 45 and the circuit side electrode 65 is larger than in a case in which flat electrodes are joined to each other. Thus, even when a void occurs at the joining surface between the sensor side electrode 45 and the circuit side electrode 65 in a joining process, for example, a substantial joining area can be secured. In addition, because of the constitution in which the projection electrode is fitted into the depression electrode in a plane in which the sensor substrate 2 and the circuit substrate 7 are opposed to each other, a strength against stress from a horizontal direction with respect to the laminated state can be obtained. As a result, in the solid-state imaging element 1 of the three-dimensional structure formed by laminating the sensor substrate 2 and the circuit substrate 7 in such a manner as to join the electrodes 45 and 65 to each other, it is possible to prevent an increase in contact resistance between the electrodes 45 and 65 and secure a joining strength, and thus improve reliability. «3. Method for Manufacturing Sensor Substrate Used in First Embodiment» [ First, as shown in The formation of these impurity layers is performed by impurity introduction from the surface side of the semiconductor substrate 20, and is for example performed by ion implantation from above a mask and subsequent activating heat treatment. The ion implantation is performed with implantation energy set appropriately according to the depth of each of the impurity layers. Next, a gate insulating film 31 is formed using a silicon oxide film or a silicon nitride film on the surface of the semiconductor substrate 20 in which surface the charge accumulating section 25 is formed. Further, a transfer gate TG and a gate electrode 33 made of polysilicon are formed on the gate insulating film 31. The transfer gate TG is formed between the floating diffusion FD and the charge transferring section 23. The gate electrode 33 is formed between the source/drain sections 27. In addition, an upper electrode of the capacitive element not shown in The process up to the above is not particularly limited in process procedure, but can be performed by an appropriate procedure. For example, after the transfer gate TG and the gate electrode 33 are formed on the gate insulating film 31, ion implantation for forming the floating diffusion FD and the source/drain sections 27 may be performed with the transfer gate TG and the gate electrode 33 used as a mask. [ Next, as shown in Next, the formation of wiring 43 connected to each of the transfer gate TG and one of the source/drain sections 27 via the connecting holes 37, the formation of an interlayer insulating film 41, the formation of the wiring 43, and the formation of the interlayer insulating film 41 are performed repeatedly. Suppose that the wiring 43 is formed by using a metallic material having excellent conductivity such as aluminum, tungsten, molybdenum, or the like. The interlayer insulating film 41 is formed by using an appropriate material, and may be formed by a laminated structure using different materials. Suppose that the interlayer insulating film 41 in an uppermost layer is formed by a film having an excellent embedding property, and is formed with a flat surface. Incidentally, it suffices to perform the above forming process according to an ordinary semiconductor process, and the process procedure is not limited. For example, a so-called damascene process may be applied to the formation of the wiring 43. In this case, the wiring 43 can be formed by using a metallic material unsuitable for an etching process, such as copper (Cu) or the like. [ Next, as shown in [ First, as shown in [ Next, as shown in [ Next, as shown in In addition, after the sensor side electrode 45 individuated within each depression part 41 By thus adjusting the polishing speed and continuing performing the CMP, the polishing of the interlayer insulating film 41 progresses faster than that of the sensor side electrode 45, thus resulting in a shape such that the sensor side electrode 45 projects from the interlayer insulating film 41. In addition, the projection corner part of the sensor side electrode 45 projecting from the interlayer insulating film 41 is gradually formed into a round shape by the polishing. Thus, the polishing is continued until the part of the sensor side electrode 45 which part projects from the interlayer insulating film 41 as a whole forms a convex curved surface in a substantially hemispheric shape. [ Thereafter, as shown in As a result of the above processes, the sensor side electrode 45 drawn out to the surface on the side of the sensor substrate 2 projects from the interlayer insulating film 41 to the projection height h, and is formed as a projection electrode whose protruding section has a width w1 and whose protruding section is formed in a substantially hemispheric shape. «4. Method for Manufacturing Circuit Substrate Used in First Embodiment» [ First, as shown in The formation of these impurity layers is performed by impurity introduction from the surface side of the semiconductor substrate 70, and is for example performed by ion implantation from above a mask and subsequent activating heat treatment. The ion implantation is performed with implantation energy set appropriately according to the depth of each of the impurity layers. Next, a gate insulating film 53 is formed using a silicon oxide film or a silicon nitride film on the surface of the semiconductor substrate 70 in which surface the source/drain sections 51 are formed. Further, a gate electrode 55 made of polysilicon is formed on the gate insulating film 53. The gate electrode 55 is formed between the source/drain sections 51. In addition, an upper electrode of the capacitive element not shown in The process up to the above is not particularly limited in process procedure, but can be performed by an appropriate procedure. For example, after the gate electrode 55 is formed on the gate insulating film 53, ion implantation for forming the source/drain sections 51 may be performed with the gate electrode 55 used as a mask. [ Next, as shown in Next, the formation of wiring 63 connected to each of the gate electrode 55 and one of the source/drain sections 51 via the connecting holes 59 and the formation of an interlayer insulating film 61 are performed repeatedly as required. Suppose that the wiring 63 is formed by using a metallic material having excellent conductivity such as aluminum, tungsten, molybdenum, or the like. In addition, suppose that the interlayer insulating film 61 in an uppermost layer is formed by a film having an excellent embedding property, and is formed with a flat surface. Incidentally, it suffices to perform the above forming process according to an ordinary semiconductor process, and the process procedure is not limited. For example, a so-called damascene process may be applied to the formation of the wiring 63. In this case, the wiring 63 can be formed by using a metallic material unsuitable for an etching process, such as copper (Cu) or the like. [ Next, as shown in In this case, first, a depression part 61 Next, an embedded wiring material film composed of a barrier metal layer and a copper (Cu) film, for example, is formed on the interlayer insulating film 61. The barrier metal layer is to prevent the diffusion of copper, and is formed of tantalum (Ta), titanium (Ti), or the like. The formation of the copper (Cu) film is performed by the formation of a seed layer on the barrier metal layer and film formation on the seed layer by a plating method. The copper (Cu) film is formed with such a film thickness as to sufficiently fill the depression part 61 Next, an excess copper (Cu) film and an excess barrier metal layer on the interlayer insulating film 61 are removed by a CMP method, for example, to leave the copper (Cu) film and the barrier metal layer only within the depression part 61 [ Thereafter, as shown in [ [ First, as shown in [ Next, as shown in [ Thereafter, as shown in [ The depression part 65 Suppose in this case that the aperture width w3 of the depression part 65 In addition, suppose that the depth d of the depression part 65 The mask pattern 71 is removed after the circuit side electrode 65 drawn out to the surface on the side of the circuit substrate 7 is formed as the depression electrode having the depression part 65 [ [ First, as shown in [ Next, as shown in The mask pattern 73 is removed after the circuit side electrode 65 drawn out to the surface on the side of the circuit substrate 7 is formed as the depression electrode having the depression part 65 «5. Method for Manufacturing Solid-State Imaging Element According to First Embodiment» A method for manufacturing the solid-state imaging element according to the first embodiment using the sensor substrate and the circuit substrate having the projection electrode and the depression electrode formed by the above-described procedures will next be described with reference to [ First, as shown in [ In this case, as shown in [ Next, as shown in For example, when the projection electrode (sensor side electrode 45) and the depression electrode (circuit side electrode 65) are formed of the material having copper (Cu) as a base, heat treatment is performed at 200° C. to 600° C. for about one to five hours. Such heat treatment may be performed under a pressurized atmosphere, or may be performed with the sensor substrate 2 and the circuit substrate 7 pressed from both sides. As an example, Cu—Cu joining is achieved by performing heat treatment at 400° C. for four hours. Such heat treatment causes the projection electrode (sensor side electrode 45) and the depression electrode (circuit side electrode 65) to be gradually joined to each other from an initial abutment part, and causes the inside of the depression part 65 [ After the sensor substrate 2 and the circuit substrate 7 are laminated to each other and the sensor substrate 2 and the circuit substrate 7 are joined to each other in such a manner as to join the electrodes 45 and 65 to each other and in such a manner as to join the interlayer insulating films 41 and 61 to each other as described above, the semiconductor substrate 20 on the side of the sensor substrate 2 is thinned to form a semiconductor layer 2 [ Thereafter, as shown in In the solid-state imaging element 1 obtained in this manner, the electrodes 45 and 65 are joined to each other by performing heat treatment in a state of the projection electrodes as the sensor side electrodes 45 being fitted into the depression electrodes as the circuit side electrodes 65 in a one-to-one correspondence with each other. Thus, the joining surface between the electrodes 45 and 65 has a shape such that the projection electrodes are fitted in the depression electrodes. [Action and Effect of Method for Manufacturing Solid-State Imaging Element According to First Embodiment] According to such a manufacturing method, the sensor substrate 2 and the circuit substrate 7 are laminated to each other such that the projection electrodes formed as the sensor side electrodes 45 are fitted into the depression electrodes formed as the circuit side electrodes 65. Thus, the sensor substrate 2 and the circuit substrate 7 can be aligned to each other with good accuracy on a self-alignment basis. By designing the aperture width w3 of the depression part 65 In addition, the projection electrode (sensor side electrode 45) is formed with a convex curved surface. This prevents damaging the corner part of the projection electrode (sensor side electrode 45) at the time of fitting the projection electrode (sensor side electrode 45) into the depression electrode (circuit side electrode 65). It is thus possible to perform smooth fitting without a hitch, and retain the electrode shapes to ensure reliability. Further, the height h of the projection part of the projection electrode is made larger than the depth d of the depression part 65 Further, the capacity of the depression part 65 Incidentally, as shown in «6. Constitution of and Method for Manufacture of Solid-State Imaging Element According to Second Embodiment» [ As shown in In forming such a projection electrode, an embedded electrode in the shape of a circular cylinder or the shape of a prism is first formed on the surface side of the interlayer insulating film 41 by an embedding method (damascene process). Suppose that at this time, the exposed surface of the embedded electrode is a flat surface. Thereafter, only the interlayer insulating film 41 is made to recede by etching, whereby a projection electrode obtained by allowing the embedded electrode to project to a desired height h from the interlayer insulating film 41 is formed. On the other hand, the inner peripheral wall of a depression part 65 Suppose in this case that the aperture width w3 of the depression part 65 In addition, suppose that the depth d of the depression part 65 In forming such a depression electrode, an embedded electrode is first formed on the surface side of an interlayer insulating film 61 by an embedding method (damascene process). Suppose that at this time, the exposed surface of the embedded electrode is a flat surface. Thereafter, a mask pattern having an opening for exposing the central part of the embedded electrode is formed, and the central part of the embedded electrode is subjected to anisotropic etching from above the mask pattern, whereby the depression electrode (circuit side electrode 65′) having the depression part 65 The projection electrode as the sensor side electrode 45′ as described above is fitted into the depression electrode as the circuit side electrode 65′ in a one-to-one correspondence with each other. Thus, the sensor substrate 2 and the circuit substrate 7 are laminated to each other on a self-alignment basis. In this state, the vertex part of the projection electrode (sensor side electrode 45′) is desirably abutted against the bottom part of the depression part 65 [ In this state, as shown in [Action and Effect of Second Embodiment] According to the solid-state imaging element 1′ according to the second embodiment described above, the sensor side electrode 45′ is formed as a projection electrode in the shape of a circular cylinder or the shape of a prism, the circuit side electrode 65′ is formed as a depression electrode corresponding to the projection electrode, and the projection electrode is fitted into and joined to the depression electrode. A joining area between the sensor side electrode 45′ and the circuit side electrode 65′ is larger than in a case where flat electrodes are joined to each other and a case where a projection electrode and a depression electrode formed with a curved surface as described in the first embodiment are joined to each other. Thus, even when a void occurs at the joining surface between the sensor side electrode 45′ and the circuit side electrode 65′ in a joining process, for example, a substantial joining area can be secured. Such an effect is greater than in the first embodiment. As a result, in the solid-state imaging element 1′ of the three-dimensional structure formed by laminating the sensor substrate 2 and the circuit substrate 7 in such a manner as to join the electrodes 45′ and 65′ to each other, it is possible to prevent an increase in contact resistance between the electrodes 45′ and 65′ and secure a joining strength more reliably, and thus improve reliability. In addition, even in the case of the method of fitting a projection electrode in the shape of a circular cylinder or the shape of a prism as described above into a depression electrode of a shape corresponding to the projection electrode, the sensor substrate 2 and the circuit substrate 7 can be aligned to each other with good accuracy on a self-alignment basis, as in the first embodiment. By designing the aperture width w3 of the depression part 65 Further, the height h of the projection part of the projection electrode is made larger than the depth d of the depression part 65 Further, the capacity of the depression part 65 Incidentally, as shown in «7. Constitution of and Method for Manufacture of Solid-State Imaging Element According to Third Embodiment» [ As shown in In forming such a projection electrode, an embedded electrode is first formed on the surface side of the interlayer insulating film 41 by an embedding method (damascene process). Suppose that at this time, the exposed surface of the embedded electrode is a flat surface. Thereafter, a mask pattern covering a plurality of parts of the exposed surface of the embedded electrode is formed, and the embedded electrode and the interlayer insulating film 41 are made to recede by etching from above the mask pattern, so that a plurality of protruding sections are formed on the embedded electrode. Thereafter, the protruding sections are formed into a convex curved surface by performing CMP or isotropic etching. Thus, the projection electrode having electrodes projected to a desired height h from the interlayer insulating film 41 is formed. On the other hand, a circuit side electrode 65″ provided as a depression electrode in a circuit substrate 7 has a plurality of depression parts 65 Suppose in this case that the aperture width w3 of each depression part 65 In addition, suppose that the depth d of the depression parts 65 In forming such a depression electrode, an embedded electrode is first formed on the surface side of an interlayer insulating film 61 by an embedding method (damascene process). Suppose that at this time, the exposed surface of the embedded electrode is a flat surface. Thereafter, a mask pattern having openings for exposing a plurality of parts of the exposed surface of the embedded electrode is formed. Next, the formation and etching of a transformed layer similar to that described with reference to The projection electrode as the sensor side electrode 45″ as described above is fitted into the depression electrode as the circuit side electrode 65″ in a one-to-one correspondence with each other. Thus, the sensor substrate 2 and the circuit substrate 7 are laminated to each other on a self-alignment basis. In this state, the vertex parts of the protruding sections of the projection electrode (sensor side electrode 45″) are desirably abutted against the bottom parts of the respective depression parts 65 [ In this state, as shown in [Action and Effect of Third Embodiment] According to the solid-state imaging element 1″ according to the third embodiment described above, the sensor side electrode 45″ is formed as a projection electrode having a plurality of protruding sections, the circuit side electrode 65″ is formed as a depression electrode having a plurality of depression parts 65 As a result, in the solid-state imaging element 1″ of the three-dimensional structure formed by laminating the sensor substrate 2 and the circuit substrate 7 in such a manner as to join the electrodes 45″ and 65″ to each other, it is possible to prevent an increase in contact resistance between the electrodes 45″ and 65″ and secure a joining strength more reliably, and thus improve reliability. In addition, as in the first embodiment, because of the method of fitting the projection electrode into the depression electrode of a shape corresponding to the projection electrode, the sensor substrate 2 and the circuit substrate 7 can be aligned to each other with good accuracy on a self-alignment basis. In addition, the size and shape of each depression part 65 Incidentally, in each of the foregoing embodiments, the sensor side electrode is a projection electrode, and the circuit side electrode is a depression electrode. However, in the present technology, either of the sensor side electrode and the circuit side electrode may be a projection electrode or a depression electrode as long as the sensor side electrode and the circuit side electrode are jointed to each other in a state of the projection electrode being fitted in the depression electrode. In addition, a projection electrode and a depression electrode may be provided as sensor side electrodes, and a depression electrode and a projection electrode to be fitted into the sensor side electrodes may be provided as circuit side electrodes corresponding to the respective sensor side electrodes. In addition, in each of the above embodiments, description has been made of a case where the depression electrodes and the projection electrodes forming the sensor side electrodes and the circuit side electrodes are formed of copper (Cu). However, the depression electrodes and the projection electrodes are not limited to this. It suffices for the depression electrodes and the projection electrodes to be formed of a material enabling the depression electrodes and the projection electrodes to be joined to each other while retaining a good contact property. For example, aluminum or a metal silicide material such as tungsten silicide or the like can be used for the depression electrodes and the projection electrodes. In cases where these materials are used, for the formation of the projection electrodes, the electrodes can be pattern-formed on an interlayer insulating film by etching a material film with a resist pattern formed by a lithography method used as a mask. In addition, the electrodes can be formed into the shape of a convex curved surface by thereafter performing CMP. On the other hand, for the formation of the depression electrodes, a method similar to that of the foregoing embodiments can be applied with process conditions changed as appropriate. In addition, the electrodes are pattern-formed on an interlayer insulating film by etching a material film with a resist pattern formed by a lithography method used as a mask, and further an interlayer insulating film covering the electrodes is formed. Thereafter, the electrode pattern is exposed by CMP, and then depression parts may be formed in the electrode pattern in a similar manner to that described with reference to In addition, the respective surfaces of the depression electrodes and the projection electrodes may be formed by rough surfaces. Such rough surfaces are formed by a surface roughening process such as a sandblasting process or the like after the formation of the electrodes, for example. Thus making the surfaces of the depression electrodes and the projection electrodes rough surfaces can further increase a joining area, and thus further increase a joining strength. «8. Embodiment of Electronic Device» The solid-state imaging element described in each of the foregoing embodiments of the present technology is for example applicable to electronic devices including camera systems such as digital cameras, video cameras, and the like, portable telephones having an imaging function, or other devices having an imaging function. The solid-state imaging elements (1, 1′, and 1″) of the constitutions described in the foregoing respective embodiments are applied as the solid-state imaging element 1. The optical system (optical lens) 93 forms image light (incident light) from a subject on an imaging surface of the solid-state imaging element 1. Thus, a signal charge is accumulated within the solid-state imaging element 1 in a certain period. The optical system 93 may be an optical lens system composed of a plurality of optical lenses. The shutter device 94 controls a period of irradiation of the solid-state imaging element 1 with light and a period of shielding the solid-state imaging element 1 from light. The driving circuit 95 supplies a driving signal for controlling the transfer operation of the solid-state imaging element 1 and the shutter operation of the shutter device 94. The signal transfer of the solid-state imaging element 1 is performed according to the driving signal (timing signal) supplied from the driving circuit 95. The signal processing circuit 96 performs various signal processing. A video signal resulting from the signal processing is stored on a storage medium such as a memory or the like, or output to a monitor. The electronic device according to the present embodiment described above can be miniaturized and improved in reliability by using the solid-state imaging element 1 of the highly reliable three-dimensional structure in which the sensor substrate and the circuit substrate are laminated to each other. It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and alterations may occur depending on design requirements and other factors insofar as they are within the scope of the appended claims or the equivalents thereof. A solid-state imaging element including: a sensor substrate in which a photoelectric conversion section is arranged and formed; a circuit substrate in which a circuit for driving the photoelectric conversion section is formed, the circuit substrate being laminated to the sensor substrate; a sensor side electrode drawn out to a surface of the sensor substrate on a side of the circuit substrate and formed as one of a projection electrode and a depression electrode; and a circuit side electrode drawn out to a surface of the circuit substrate on a side of the sensor substrate, formed as one of the depression electrode and the projection electrode, and joined to the sensor side electrode in a state of the circuit side electrode and the sensor side electrode being fitted together. 1. A semiconductor device comprising:
a first substrate; a second substrate laminated to the first substrate; a projection electrode extending to a first surface of the first substrate which faces the second substrate, wherein the projection electrode includes a projecting surface that projects from the first surface of the first substrate; and a depression electrode extending to a second surface of the second substrate which faces the first substrate and joined to the projection electrode in a state of the projection electrode and the depression electrode being fitted together such that the projecting surface and a side surface of the projection electrode is in physical and electrical contact with a recessed surface and a side surface of the depression electrode, and the first surface of the first substrate and the second surface of the second substrate being in direct physical contact with one another, wherein the recessed surface of the depression electrode recedes from the second surface of the second substrate, wherein one of the first substrate or the second substrate includes a photoelectric conversion region, and the other of the first substrate or the second substrate includes a circuit, wherein the photoelectric conversion region is overlapped with at least a part of the projection electrode and at least a part of the depression electrode, from a plan view perspective. 2. The semiconductor device according to 3. The semiconductor device according to 4. The semiconductor device according to 5. The semiconductor device according to 6. The semiconductor device according to 7. The semiconductor device according to 8. The semiconductor device according to the first substrate includes a first insulating film surrounding the projection electrode; and the second substrate includes a second insulating film surrounding the depression electrode, wherein the first insulating film and the second insulating film are in close contact with each other. 9. The semiconductor device according to the projecting surface of the projection electrode comprises a plurality of projection parts; and the recessed surface of the depression electrode comprises a plurality of depression parts. 10. The semiconductor device according to 11. A method of manufacturing a semiconductor device, comprising:
providing a first substrate; providing a second substrate; forming a projection electrode in a first surface of the first substrate which faces the second substrate, wherein the projection electrode includes a projecting surface that projects from the first surface of the first substrate; forming a depression electrode in a second surface of the second substrate which faces the first substrate, wherein the depression electrode includes a recessed surface that recedes from the second surface of the second substrate; and joining the depression electrode to the projection electrode in a state of the projection electrode and the depression electrode being fitted together such that the projecting surface and a side surface of the projection electrode is in physical and electrical contact with the recessed surface and a side surface of the depression electrode, and the first surface of the first substrate and the second surface of the second substrate being in direct physical contact with one another, wherein one of the first substrate or the second substrate includes a photoelectric conversion region, and the other of the first substrate or the second substrate includes a circuit, wherein the photoelectric conversion region is overlapped with at least a part of the projection electrode and at least a part of the depression electrode, from a plan view perspective. 12. The method according to 13. The method according to 14. The method according to 15. The method according to 16. The method according to 17. The method according to 18. The method according to the first substrate includes a first insulating film surrounding the projection electrode; and the second substrate includes a second insulating film surrounding the depression electrode, wherein the first insulating film and the second insulating film are in close contact with each other. 19. The method according to the projecting surface of the projection electrode comprises a plurality of projection parts; and the recessed surface of the depression electrode comprises a plurality of depression parts. 20. The method according to CROSS REFERENCE TO RELATED APPLICATIONS
BACKGROUND
SUMMARY
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
CPC - классификация
HH0H01H01LH01L2H01L22H01L222H01L2224H01L2224/H01L2224/0H01L2224/03H01L2224/034H01L2224/0346H01L2224/036H01L2224/0361H01L2224/03616H01L2224/038H01L2224/0383H01L2224/03831H01L2224/05H01L2224/055H01L2224/0554H01L2224/05546H01L2224/05547H01L2224/056H01L2224/0564H01L2224/05647H01L2224/08H01L2224/080H01L2224/0805H01L2224/08059H01L2224/0807H01L2224/081H01L2224/0813H01L2224/08137H01L2224/0814H01L2224/08147H01L2224/8H01L2224/80H01L2224/800H01L2224/8009H01L2224/80097H01L2224/801H01L2224/8014H01L2224/80141H01L2224/802H01L2224/8020H01L2224/80201H01L2224/80203H01L2224/803H01L2224/8034H01L2224/80345H01L2224/808H01L2224/8089H01L2224/80895H01L2224/80896H01L2224/809H01L2224/8098H01L2224/80986H01L24H01L24/H01L24/0H01L24/03H01L24/05H01L24/08H01L24/8H01L24/80H01L27H01L27/H01L27/1H01L27/14H01L27/146H01L27/1461H01L27/1463H01L27/14634H01L27/14636H01L27/1464H01L27/14645H01L27/1469H01L3H01L31H01L31/H01L31/0H01L31/02H01L31/020H01L31/0200H01L31/02005IPC - классификация
HH0H01H01LH01L2H01L27H01L27/H01L27/1H01L27/14H01L27/146H01L3H01L31H01L31/H01L31/0H01L31/02Цитирование НПИ
257/432348/305