SEMICONDUCTOR DEVICE MANUFACTURING METHOD

02-04-2015 дата публикации
Номер:
WO2015046073A1
Принадлежит: 日東電工株式会社
Контакты:
Номер заявки: JP48-07-201499
Дата заявки: 19-09-2014

半導体装置の製造方法
[1]

 本発明は、半導体装置の製造方法に関する。

[2]

 電子機器の小型・薄型化による高密度実装の要求が、近年、急激に増加している。このため、半導体パッケージは、従来のピン挿入型に代わり、高密度実装に適した表面実装型が主流になっている。この表面実装型は、リードをプリント基板等に直接はんだ付けする。加熱方法としては、赤外線リフローやベーパーフェーズリフロー、はんだディップなどにより、パッケージ全体を加熱して実装される。

[3]

 表面実装後には、半導体素子表面の保護や半導体素子と基板との間の接続信頼性を確保するために、半導体素子と基板との間の空間に封止樹脂の充填が行われている。半導体素子と基板との間の空間への封止樹脂の充填は、アンダーフィルとも称されている。アンダーフィル用の封止樹脂としては、液状の封止樹脂が広く用いられているものの、液状の封止樹脂では注入位置や注入量の調節が困難である。そこで、シート状樹脂組成物を用いて半導体素子と基板との間の空間を充填する技術が提案されている(例えば、特許文献1参照)。

[4]

 特許文献1には、シート状樹脂組成物にウェハを付着させ、次いで、シート状樹脂組成物の付着したままのウェハをダイシングしてチップを形成し、その後、シート状樹脂組成物の面を基板に実装し、基板とチップとの電気接続を得るとともに、シート状樹脂組成物を熱硬化させて、チップと基板との界面を封止することが開示されている。

[5]

特許第4438973号

[6]

 基板とチップとの電気接続は、例えば、基板に形成された電極とチップに形成されたバンプとを電気的に接続することにより行なわれる。シート状樹脂組成物と基板とを貼り合わせる際には、基板に形成された電極に起因する凹凸部分に気泡(ボイド)が噛み込む場合がある。また、シート状樹脂組成物とウエハとを貼り合わせる際にも、ウエハに形成されたバンプに起因する凹凸部分にボイドが噛み込む場合がある。

[7]

 本発明者らは、上記シート状樹脂組成物を使用した半導体装置の製造方法について鋭意検討した。その結果、上述した従来の半導体装置の製造方法では、一度の加熱で、基板とチップとの電気接続と、シート状樹脂組成物の硬化とを同時に行なっているため、加熱により凹凸部分に噛み込んだボイドが膨張し、その後、この状態でシート状樹脂組成物が硬化することを突き止めた。そのため、大きなボイドが噛み込んだ状態となることを突き止めた。大きなボイドの存在は、信頼性の低下等、種々の不具合の原因となることから、発生が抑制されていることが望まれる。

[8]

 また、電極やバンプに限らず、一般的に凹凸部分には気泡が噛み込み易いことから、種々の被着体にシート状樹脂組成物を貼り合わせる際には、仮に凹凸部分に気泡が噛み込んだとしてもこの気泡を膨張させないことが望まれる。

[9]

 本発明は上述した課題に鑑みてなされたものであり、その目的は、シート状樹脂組成物と被着体との間にボイドが噛み込んだとしても、ボイドの膨張を抑制することが可能な半導体装置の製造方法を提供することにある。

[10]

 本願発明者等は、下記の構成を採用することにより、前記の課題を解決できることを見出して本発明を完成させるに至った。

[11]

 すなわち、本発明は、半導体装置の製造方法であって、
 半導体チップにシート状樹脂組成物が貼り付けられたシート状樹脂組成物付きチップを準備する工程Aと、
 被着体を準備する工程Bと、
 前記被着体に、前記シート状樹脂組成物付きチップを、前記シート状樹脂組成物を貼り合わせ面にして貼り付ける工程Cと、
 前記工程Cの後に、前記シート状樹脂組成物を加熱して半硬化させる工程Dと、
 前記工程Dの後に、前記工程Dにおける加熱よりも高温で前記シート状樹脂組成物を加熱して硬化させる工程Eとを含むことを特徴とする。

[12]

 本発明に係る半導体装置の製造方法によれば、被着体に、シート状樹脂組成物付きチップを、シート状樹脂組成物を貼り合わせ面にして貼り付けた状態でシート状樹脂組成物を加熱して半硬化させる(工程D)。従って、シート状樹脂組成物は半硬化前よりも粘度が上昇する。その後、前記工程Dにおける加熱よりも高温で加熱し、前記シート状樹脂組成物を硬化させる(工程E)。前記工程Eの段階では、すでにシート状樹脂組成物は半硬化しているため、仮にシート状樹脂組成物と被着体との間にボイドが噛み込んでいたとしても、ボイドの膨張は抑制されている。従って、種々の不具合の原因となる大きなボイドの発生を抑制することができる。

[13]

 前記構成において、前記シート状樹脂組成物は、200℃で10秒間加熱した際の熱硬化率が10%以上であることが好ましい。

[14]

 前記シート状樹脂組成物の200℃で10秒間加熱した際の熱硬化率が10%以上であると、前記工程Dの後の前記シート状樹脂組成物は、ある程度粘度が上昇していることとなる。その結果、よりボイドの膨張を抑制することができる。

[15]

 前記熱硬化率は、加熱前の状態を0%、完全に熱硬化した状態を100%とし、示差走査熱量測定(DSC)により得られる反応熱から求めた値である。より詳しくは後に説明する。

[16]

 前記構成において、前記被着体は、前記シート状樹脂組成物が貼り合わせられる面側に、3μm以上100μm以下の凹凸を有していても構わない。

[17]

 前記被着体が3μm以上100μm以下の凹凸を有する場合、シート状樹脂組成物との間に気泡が噛み込み易い。しかしながら、上述の通り、前記工程Dの後は、前記シート状樹脂組成物の粘度は、上昇している。従って、気泡が噛み込み易い3μm以上100μm以下の凹凸を有する被着体を用いた場合であっても、ボイドの膨張が抑制されているため、種々の不具合の原因となる大きなボイドの発生を抑制することができる。

[18]

 前記構成において、前記半導体チップは、前記シート状樹脂組成物が貼り合わせられる面側に、3μm以上100μm以下の凹凸を有していても構わない。

[19]

 前記半導体チップが3μm以上100μm以下の凹凸を有する場合、シート状樹脂組成物との間に気泡が噛み込み易い。しかしながら、上述の通り、前記工程Dの後は、前記シート状樹脂組成物の粘度は、上昇している。従って、気泡が噛み込み易い3μm以上100μm以下の凹凸を有する半導体チップを用いた場合であっても、ボイドの膨張が抑制されているため、種々の不具合の原因となる大きなボイドの発生を抑制することができる。

[20]

 本発明によれば、シート状樹脂組成物と被着体との間にボイドが噛み込んだとしても、ボイドの膨張を抑制することが可能な半導体装置の製造方法を提供することが可能となる。

[21]

本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。シート状樹脂組成物付チップの準備方法の一例を説明するための断面模式図である。シート状樹脂組成物付チップの準備方法の一例を説明するための断面模式図である。シート状樹脂組成物付チップの準備方法の一例を説明するための断面模式図である。シート状樹脂組成物付チップの準備方法の一例を説明するための断面模式図である。シート状樹脂組成物付チップの準備方法の一例を説明するための断面模式図である。シート状樹脂組成物付チップの準備方法の一例を説明するための断面模式図である。シート状樹脂組成物付チップの準備方法の一例を説明するための断面模式図

[22]

 以下、本発明の実施形態について、図面を参照しつつ説明する。

[23]

 本発明に係る半導体装置の製造方法は、
 半導体チップにシート状樹脂組成物が貼り付けられたシート状樹脂組成物付きチップを準備する工程Aと、
 被着体を準備する工程Bと、
 前記被着体に、前記シート状樹脂組成物付きチップを、前記シート状樹脂組成物を貼り合わせ面にして貼り付ける工程Cと、
 前記工程Cの後に、前記シート状樹脂組成物を加熱して半硬化させる工程Dと、
 前記工程Dの後に、前記工程Dにおける加熱よりも高温で前記シート状樹脂組成物を加熱して硬化させる工程Eとを含む。

[24]

 以下では、本発明に係る一実施形態として、まず、半導体チップにバンプが形成されているとともに、被着体としての搭載用基板に電極が形成されている場合について説明する。
 すなわち、本実施形態に係る半導体装置の製造方法は、
 半導体チップのバンプ形成面にシート状樹脂組成物が貼り付けられたシート状樹脂組成物付きチップを準備する工程Aと、
 電極が形成された実装用基板を準備する工程Bと、
 前記実装用基板に、前記シート状樹脂組成物付きチップを、前記シート状樹脂組成物を貼り合わせ面にして貼り付けて、前記半導体チップに形成された前記バンプと前記実装用基板に形成された電極とを対向させる工程Cと、
 前記工程Cの後に、前記シート状樹脂組成物を加熱して半硬化させる工程Dと、
 前記工程Dの後に、前記工程Dにおける加熱よりも高温で加熱し、前記バンプと前記電極とを接合するとともに、前記シート状組成物を硬化させる工程Eとを少なくとも含む。

[25]

 [シート状樹脂組成物付きチップを準備する工程]
 図1~図4は、本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。
 本実施形態に係る半導体装置の製造方法においては、まず、図1に示すように、シート状樹脂組成物付きチップ40を準備する(工程A)。なお、シート状樹脂組成物付チップ40の具体的な準備方法については、後に図5~図11を参照しながら説明することとする。

[26]

 シート状樹脂組成物付きチップ40は、バンプ18が形成された半導体チップ22と、半導体チップ22のバンプ形成面22aに貼り付けられたシート状樹脂組成物10とを有する。シート状樹脂組成物付きチップ40では、バンプ18がシート状樹脂組成物10に埋め込まれるとともに、半導体チップ22のバンプ形成面22aがシート状樹脂組成物10に貼り付けられている。

[27]

 (シート状樹脂組成物)
 シート状樹脂組成物10は、半導体チップ22を実装用基板50(図2参照)に実装する際に、半導体チップ22と実装用基板50との間隙を封止する機能を有する。

[28]

 シート状樹脂組成物10は、200℃で10秒間加熱した後の熱硬化率が10%以上であることが好ましく、13%以上であることがより好ましい。シート状樹脂組成物10の200℃で10秒間加熱した際の熱硬化率が10%以上であると、前記工程Dの後のシート状樹脂組成物10は、ある程度粘度が上昇していることとなる。その結果、よりボイドの膨張を抑制することができる。

[29]

 熱硬化率は、示差走査熱量測定(DSC)を用い、発熱量を測定して求める。具体的には、まず、熱硬化させていないシート状樹脂組成物を作成し、-10℃から昇温速度10℃/分の条件で、350℃(熱硬化反応が完全に完了したと想定される温度)まで昇温した際の発熱量(未硬化サンプルの反応熱量)を測定する。また、熱硬化前のシート状樹脂組成物を、200℃で10秒間加熱したサンプルを作成する。
 次に、200℃で10秒間加熱したサンプルについて、-10℃から昇温速度10℃/分の条件で、350℃(熱硬化反応が完全に完了したと想定される温度)まで昇温した際の発熱量(200℃で10秒間加熱したサンプルの反応熱量)を測定する。その後、以下の式(3)により熱硬化率を得る。なお、発熱量は、示差走査熱量計にて測定される発熱ピークの立ち上がり温度と反応終了温度の2点を結んだ直線とピークで囲まれる面積を用いて求める。

[30]

 式(3):
熱硬化率=[{(未硬化サンプルの反応熱量)-(200℃で10秒間加熱したサンプルの反応熱量)}/(未硬化サンプルの反応熱量)]×100(%)

[31]

 シート状樹脂組成物10は、200℃未満における最低溶融粘度が100Pa・s~5000Pa・sの範囲内にあることが好ましく、300Pa・s~4000Pa・sの範囲内にあることがより好ましく、500Pa・s~2000Pa・sの範囲内にあることがさらに好ましい。シート状樹脂組成物10の200℃未満における最低溶融粘度が100Pa・s~5000Pa・sの範囲内にあると、前記工程Cにおいて、半導体チップ22に形成されたバンプ18と実装用基板50に形成された電極52とを容易にシート状樹脂組成物10に埋め込みながら、対向させることができる。

[32]

 シート状樹脂組成物10の200℃未満における最低溶融粘度とは、熱硬化前の200℃未満における最低溶融粘度をいう。

[33]

 シート状樹脂組成物10の200℃未満における最低溶融粘度は、シート状樹脂組成物10の構成材料の選択によりコントロールすることができる。特に、熱可塑性樹脂の選択によりコントロールすることができる。具体的に、熱可塑性樹脂として、例えば、低分子量のものを使用すると、200℃未満における最低溶融粘度を小さくすることができ、例えば、高分子量のものを使用すると、200℃未満における最低溶融粘度を大きくすることができる。

[34]

 シート状樹脂組成物10としては、熱可塑性樹脂と熱硬化性樹脂とを併用したものが挙げられる。また、熱硬化性樹脂単独でも使用可能である。

[35]

 前記熱可塑性樹脂としては、天然ゴム、ブチルゴム、イソプレンゴム、クロロプレンゴム、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、ポリブタジエン樹脂、ポリカーボネート樹脂、熱可塑性ポリイミド樹脂、6-ナイロンや6,6-ナイロン等のポリアミド樹脂、フェノキシ樹脂、アクリル樹脂、PETやPBT等の飽和ポリエステル樹脂、ポリアミドイミド樹脂、フッ素樹脂等が挙げられる。これらの熱可塑性樹脂は単独で、又は2種以上を併用して用いることができる。これらの熱可塑性樹脂のうち、イオン性不純物が少なく耐熱性が高く、半導体チップの信頼性を確保できるアクリル樹脂が特に好ましい。

[36]

 前記アクリル樹脂としては、特に限定されるものではなく、炭素数30以下、特に炭素数4~18の直鎖若しくは分岐のアルキル基を有するアクリル酸又はメタクリル酸のエステルの1種又は2種以上を成分とする重合体等が挙げられる。前記アルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、イソブチル基、アミル基、イソアミル基、へキシル基、へプチル基、シクロヘキシル基、2-エチルヘキシル基、オクチル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、ラウリル基、トリデシル基、テトラデシル基、ステアリル基、オクタデシル基、又はドデシル基等が挙げられる。

[37]

 また、前記重合体を形成する他のモノマーとしては、特に限定されるものではなく、例えばアクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマール酸若しくはクロトン酸等の様なカルボキシル基含有モノマー、無水マレイン酸若しくは無水イタコン酸等の様な酸無水物モノマー、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル若しくは(4-ヒドロキシメチルシクロヘキシル)-メチルアクリレート等の様なヒドロキシル基含有モノマー、スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート若しくは(メタ)アクリロイルオキシナフタレンスルホン酸等の様なスルホン酸基含有モノマー、又は2-ヒドロキシエチルアクリロイルホスフェート等の様な燐酸基含有モノマーが挙げられる。

[38]

 シート状樹脂組成物10全体に対する熱可塑性樹脂の含有量は、好ましくは3重量%以上であり、より好ましくは4重量%以上である。4重量%以上であると、良好な可とう性が得られる。一方、樹脂成分中の熱可塑性樹脂の含有量は、好ましくは15重量%以下であり、より好ましくは12重量%以下であり、さらに好ましくは8重量%以下である。8重量%以下であると、良好な熱的信頼性が得られる。

[39]

 前記熱可塑性樹脂の中でも、半硬化前のシート状樹脂組成物10の粘度を低粘度とするために、アクリル樹脂が好ましい。

[40]

 前記熱硬化性樹脂としては、フェノール樹脂、アミノ樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ポリウレタン樹脂、シリコーン樹脂、又は熱硬化性ポリイミド樹脂等が挙げられる。これらの樹脂は、単独で又は2種以上を併用して用いることができる。特に、半導体チップを腐食させるイオン性不純物等の含有が少ないエポキシ樹脂が好ましい。また、エポキシ樹脂の硬化剤としてはフェノール樹脂が好ましい。

[41]

 前記エポキシ樹脂は、接着剤組成物として一般に用いられるものであれば特に限定は無く、例えばビスフェノールA型、ビスフェノールF型、ビスフェノールS型、臭素化ビスフェノールA型、水添ビスフェノールA型、ビスフェノールAF型、ビフェニル型、ナフタレン型、フルオンレン型、フェノールノボラック型、オルソクレゾールノボラック型、トリスヒドロキシフェニルメタン型、テトラフェニロールエタン型等の二官能エポキシ樹脂や多官能エポキシ樹脂、又はヒダントイン型、トリスグリシジルイソシアヌレート型若しくはグリシジルアミン型等のエポキシ樹脂が用いられる。これらは単独で、又は2種以上を併用して用いることができる。これらのエポキシ樹脂のうちノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリスヒドロキシフェニルメタン型樹脂又はテトラフェニロールエタン型エポキシ樹脂が特に好ましい。これらのエポキシ樹脂は、硬化剤としてのフェノール樹脂との反応性に富み、耐熱性等に優れるからである。

[42]

 さらに、前記フェノール樹脂は、前記エポキシ樹脂の硬化剤として作用するものであり、例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、クレゾールノボラック樹脂、tert-ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂等のノボラック型フェノール樹脂、レゾール型フェノール樹脂、ポリパラオキシスチレン等のポリオキシスチレン等が挙げられる。これらは単独で、又は2種以上を併用して用いることができる。これらのフェノール樹脂のうちフェノールノボラック樹脂、フェノールアラルキル樹脂が特に好ましい。封止信頼性を向上させることができるからである。

[43]

 前記エポキシ樹脂とフェノール樹脂の配合割合は、例えば、前記エポキシ樹脂成分中のエポキシ基1当量当たりフェノール樹脂中の水酸基が0.5~2.0当量になるように配合することが好適である。より好適なのは、0.8~1.2当量である。すなわち、両者の配合割合が前記範囲を外れると、十分な硬化反応が進まず、エポキシ樹脂硬化物の特性が劣化し易くなるからである。

[44]

 シート状樹脂組成物10全体に対する熱硬化性樹脂の含有量は、10重量%以上であることが好ましく、12重量%以上であることがより好ましく、15重量%以上であることがさらに好ましい。10%以上であると、良好な可とう性が得られる。一方、樹脂成分中の熱硬化性樹脂の含有量は、30重量%以下であることが好ましく、25重量%以下であることがより好ましく、20重量%以下であることがさらに好ましい。20重量%以下であると、シートのタックが抑制され取扱い性が向上する。

[45]

 エポキシ樹脂とフェノール樹脂の熱硬化促進触媒としては、特に制限されず、公知の熱硬化促進触媒の中から適宜選択して用いることができる。熱硬化促進触媒は単独で又は2種以上を組み合わせて用いることができる。熱硬化促進触媒としては、例えば、アミン系硬化促進剤、リン系硬化促進剤、イミダゾール系硬化促進剤、ホウ素系硬化促進剤、リン-ホウ素系硬化促進剤などを用いることができる。

[46]

 前記熱硬化促進触媒の含有量は、熱硬化性樹脂100重量部に対して、0.7重量部以上であることが好ましく、2.4重量部以上であることがより好ましく、4.8重量部以上であることがさらに好ましい。4.8重量部以上であると、半硬化工程において容易にシート状樹脂組成物10を半硬化させることができる。また、熱硬化促進触媒の含有量は、好ましくは24重量部以下である。24重量部以下であると、熱硬化性樹脂の保存性を向上させることができる。

[47]

 また、シート状樹脂組成物10には、無機充填剤を適宜配合することができる。無機充填剤の配合は、導電性の付与や熱伝導性の向上、貯蔵弾性率の調節等を可能にする。

[48]

 前記無機充填剤としては、例えば、シリカ、クレー、石膏、炭酸カルシウム、硫酸バリウム、酸化アルミナ、酸化ベリリウム、炭化珪素、窒化珪素等のセラミック類、アルミニウム、銅、銀、金、ニッケル、クロム、鉛、錫、亜鉛、パラジウム、半田等の金属、又は合金類、その他カーボン等からなる種々の無機粉末が挙げられる。これらは、単独で又は2種以上を併用して用いることができる。なかでも、シリカ、特に溶融シリカが好適に用いられる。

[49]

 無機充填剤の平均粒径は、0.01~30μmの範囲内であることが好ましく、0.05~10μmの範囲内であることがより好ましい。なお、本発明においては、平均粒径が相互に異なる無機充填剤同士を組み合わせて使用してもよい。また、平均粒径は、光度式の粒度分布計(HORIBA製、装置名;LA-910)により求めた値である。

[50]

 前記無機充填剤の配合量は、有機樹脂成分100重量部に対し100~1400重量部に設定することが好ましい。特に好ましくは230~900重量部である。無機充填剤の配合量を100重量部以上にすると、耐熱性や強度が向上する。また、1400重量部以下とすることにより、流動性が確保できる。これにより、接着性や埋め込み性が低下することを防止できる。

[51]

 なお、シート状樹脂組成物10には、前記無機充填剤以外に、必要に応じて他の添加剤を適宜に配合することができる。他の添加剤としては、例えば難燃剤、シランカップリング剤、イオントラップ剤、カーボンブラック等の顔料等が挙げられる。前記難燃剤としては、例えば、三酸化アンチモン、五酸化アンチモン、臭素化エポキシ樹脂等が挙げられる。これらは、単独で、又は2種以上を併用して用いることができる。前記シランカップリング剤としては、例えば、β-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン等が挙げられる。これらの化合物は、単独で又は2種以上を併用して用いることができる。前記イオントラップ剤としては、例えばハイドロタルサイト類、水酸化ビスマス等が挙げられる。これらは、単独で又は2種以上を併用して用いることができる。また、実装時に半田の酸化膜を除去することを目的として、有機酸を添加することもできる。

[52]

 シート状樹脂組成物10の厚さ(複層の場合は、総厚)は特に限定されないものの、硬化後の樹脂の強度や充填性を考慮すると5μm以上500μm以下が好ましい。なお、シート状樹脂組成物10の厚さは、チップ22と実装用基板50との間隙の幅を考慮して適宜設定することができる。

[53]

 シート状樹脂組成物10は、例えば、次の通りにして作製される。まず、シート状樹脂組成物10の形成材料である樹脂組成物溶液を作製する。当該樹脂組成物溶液には、前述の通り、前記樹脂組成物やフィラー、その他各種の添加剤等が配合されている。

[54]

 次に、樹脂組成物溶液を基材セパレータ上に所定厚みとなる様に塗布して塗布膜を形成した後、該塗布膜を所定条件下で乾燥させ、シート状樹脂組成物10を形成する。塗布方法としては特に限定されず、例えば、ロール塗工、スクリーン塗工、グラビア塗工等が挙げられる。また、乾燥条件としては、例えば乾燥温度70~160℃、乾燥時間1~5分間の範囲内で行われる。

[55]

 半導体チップ22の厚さとしては、特に限定されないが、例えば、10~1000μmの範囲内で適宜設定することができる。

[56]

 半導体チップ22に形成されているバンプ18の高さとしては、特に限定されないが、3μm以上100μm以下のものを用いることができる。バンプ18の高さが3μm以上100μm以下の場合、すなわち、半導体チップ22が3μm以上100μm以下の凹凸を有する場合、シート状樹脂組成物10との間に気泡が噛み込み易い。しかしながら、前記工程Dの後は、シート状樹脂組成物10の粘度は、上昇している。従って、気泡が噛み込み易い3μm以上100μm以下の凹凸を有する半導体チップ22を用いた場合であっても、ボイドの膨張が抑制されているため、種々の不具合の原因となる大きなボイドの発生を抑制することができる。

[57]

 バンプ18の構成材料としては、特に限定されないが、ハンダが好ましく、Sn-Pb系、Pb-Sn-Sb系、Sn-Sb系、Sn-Pb-Bi系、Bi-Sn系、Sn-Cu系、Sn-Pb-Cu系、Sn-In系、Sn-Ag系、Sn-Pb-Ag系、Pb-Ag系のハンダを挙げることができる。

[58]

 [実装用基板を準備する工程]
 また、図2に示すように、表面50aに電極52が形成された実装用基板50を準備する(工程B)。

[59]

 実装用基板50としては、リードフレームや回路基板(配線回路基板など)等の各種基板を用いることができる。このような基板の材質としては、特に限定されるものではないが、セラミック基板や、プラスチック基板が挙げられる。プラスチック基板としては、例えば、エポキシ基板、ビスマレイミドトリアジン基板、ポリイミド基板等が挙げられる。
また、実装用基板50として半導体ウエハを用いることもできる。

[60]

 実装用基板50に形成されている電極52の高さとしては、特に限定されないが、3μm以上100μm以下のものを用いることができる。電極52の高さが3μm以上100μm以下の場合、すなわち、搭載用基板50が3μm以上100μm以下の凹凸を有する場合、シート状樹脂組成物10との間に気泡が噛み込み易い。しかしながら、前記工程Dの後は、シート状樹脂組成物10の粘度は、上昇している。従って、気泡が噛み込み易い3μm以上100μm以下の凹凸を有する搭載用基板50を用いた場合であっても、ボイドの膨張が抑制されているため、種々の不具合の原因となる大きなボイドの発生を抑制することができる。

[61]

 [半導体チップに形成されたバンプと実装用基板に形成された電極とを対向させる工程]
 前記工程A及び前記工程Bの後、図3に示すように、実装用基板50に、シート状樹脂組成物付きチップ40を、シート状樹脂組成物10を貼り合わせ面にして貼り付けて、半導体チップ22に形成されたバンプ18と実装用基板50に形成された電極52とを対向させる(工程C)。具体的には、まず、シート状樹脂組成物付きチップ40のシート状樹脂組成物10を実装用基板50に対向させて配置し、次に、フリップチップボンダーを用い、シート状樹脂組成物付きチップ40側から圧力を加える。これにより、バンプ18と電極52とは、シート状樹脂組成物10に埋め込まれながら、対向される。貼り合わせ時の温度は、100~200℃が好ましく、より好ましくは150~190℃である。ただし、ハンダの融点よりも低い温度であることが好ましい。また、貼り合わせ時の圧力は0.01~10MPaが好ましく、より好ましくは0.1~1MPaである。
 貼り合わせの温度が150℃以上であると、シート状樹脂組成物10の粘度が低下し、凹凸を空隙なく充填できる。また、貼り合わせの温度が、200℃以下であると、シート状樹脂組成物10の硬化反応を抑制したまま貼り合わせが可能となる。
 この際、シート状樹脂組成物10の200℃未満における最低溶融粘度が100Pa・s~5000Pa・sの範囲内にあると、半導体チップ22に形成されたバンプ18と実装用基板50に形成された電極52とを容易にシート状樹脂組成物10に埋め込みながら、対向させることができる。

[62]

 [シート状樹脂組成物を半硬化させる工程]
 前記工程Cの後、シート状樹脂組成物10を加熱して半硬化させる(工程D)。前記工程Dにおける加熱温度は、100~230℃であることが好ましく、150~210℃であることがより好ましい。前記工程Dにおける加熱温度は、ハンダの融点よりも低い温度であることが好ましい。また、加熱時間は、1~300秒の範囲内であることが好ましく、3~120秒の範囲内であることがより好ましい。
 この際、シート状樹脂組成物10の200℃で10秒間加熱した後の熱硬化率が10%以上であると、工程Dの後のシート状樹脂組成物10は、ある程度粘度が上昇していることとなる。その結果、よりボイドの膨張を抑制することができる。

[63]

 [バンプと電極とを接合するとともに、シート状組成物を硬化させる工程]
 前記工程Dの後、前記工程Dにおける加熱よりも高温で加熱し、図4に示すように、バンプ18と電極52とを接合するとともに、シート状組成物10を硬化させる(工程E)。図4では、バンプ18がハンダで構成され、バンプ18が溶融することによりバンプ18と電極52とが接合(電気的に接続)されている様子を示している。
 この際の加熱温度は、180~400℃であることが好ましく、200~300℃であることがより好ましい。また、加熱時間は、1~300秒の範囲内であることが好ましく、3~120秒の範囲内であることがより好ましい。

[64]

 以上により、半導体装置60が得られる。

[65]

 以上、本実施形態に係る半導体装置の製造方法によれば、搭載用基板50に、シート状樹脂組成物付きチップ40を、シート状樹脂組成物10を貼り合わせ面にして貼り付けた状態でシート状樹脂組成物10を加熱して半硬化させる(工程D)。従って、シート状樹脂組成物10は半硬化前よりも粘度が上昇する。その後、工程Dにおける加熱よりも高温で加熱し、シート状樹脂組成物10を硬化させる(工程E)。工程Eの段階では、すでにシート状樹脂組成物10は半硬化しているため、仮にシート状樹脂組成物10と搭載用基板50との間にボイドが噛み込んでいたとしても、ボイドの膨張は抑制されている。従って、種々の不具合の原因となる大きなボイドの発生を抑制することができる。

[66]

 次に、シート状樹脂組成物付チップの具体的な準備方法について、図5~図11を参照しながら説明する。
 本実施形態のシート状樹脂組成物は、裏面研削用テープ又はダイシングテープと一体化して使用できる。これにより、半導体装置を効率よく製造できる。図5~図11は、シート状樹脂組成物付チップの準備方法の一例を説明するための断面模式図である。

[67]

 [裏面研削用テープ一体型シート状樹脂組成物]
 本実施形態に係る裏面研削用テープ一体型シート状樹脂組成物は、裏面研削用テープと、前述のシート状樹脂組成物とを備える。

[68]

 図5は、裏面研削用テープ一体型シート状樹脂組成物100の断面模式図である。図5に示すように、裏面研削用テープ一体型シート状樹脂組成物100は、裏面研削用テープ12と、シート状樹脂組成物10とを備える。裏面研削用テープ12は、基材12a及び粘着剤層12bを備え、粘着剤層12bは基材12a上に設けられている。シート状樹脂組成物10は粘着剤層12b上に設けられている。
 なお、シート状樹脂組成物10は、図5に示したように裏面研削用テープ12の全面に積層されていなくてもよく、半導体ウェハ16(図6参照)との貼り合わせに十分なサイズで設けられていればよい。

[69]

 (裏面研削用テープ)
 裏面研削用テープ12は、基材12aと、基材12a上に積層された粘着剤層12bとを備えている。

[70]

 上記基材12aは裏面研削用テープ一体型シート状樹脂組成物100の強度母体となるものである。例えば、低密度ポリエチレン、直鎖状ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超低密度ポリエチレン、ランダム共重合ポリプロピレン、ブロック共重合ポリプロピレン、ホモポリプロレン、ポリブテン、ポリメチルペンテンなどのポリオレフィン、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル(ランダム、交互)共重合体、エチレン-ブテン共重合体、エチレン-ヘキセン共重合体、ポリウレタン、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル、ポリカーボネート、ポリイミド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、ポリアミド、全芳香族ポリアミド、ポリフェニルスルフイド、アラミド(紙)、ガラス、ガラスクロス、フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、セルロース系樹脂、シリコーン樹脂、金属(箔)、紙などが挙げられる。粘着剤層12bが紫外線硬化型である場合、基材12aは紫外線に対し透過性を有するものが好ましい。

[71]

 上記基材12aは、同種又は異種のものを適宜に選択して使用することができ、必要に応じて数種をブレンドしたものを用いることができる。基材12aの表面には、慣用の表面処理を施すことができる。基材12aには、帯電防止能を付与するため、上記の基材12a上に金属、合金、これらの酸化物などからなる厚さが30~500Å程度の導電性物質の蒸着層を設けることができる。基材12aは単層又は2種以上の複層でもよい。

[72]

 基材12aの厚さは適宜に決定でき、一般的には5μm以上200μm以下程度であり、好ましくは35μm以上120μm以下である。

[73]

 なお、基材12aには、各種添加剤(例えば、着色剤、充填剤、可塑剤、老化防止剤、酸化防止剤、界面活性剤、難燃剤など)が含まれていてもよい。

[74]

 粘着剤層12bの形成に用いる粘着剤は、半導体ウェハの裏面研削時に半導体ウェハを保持でき、裏面研削後に半導体ウェハから剥離できるものであれば特に制限されない。例えば、アクリル系粘着剤、ゴム系粘着剤などの一般的な感圧性接着剤を用いることができる。上記感圧性接着剤としては、半導体ウェハやガラスなどの汚染をきらう電子部品の超純水やアルコールなどの有機溶剤による清浄洗浄性などの点から、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤が好ましい。

[75]

 上記アクリル系ポリマーとしては、アクリル酸エステルを主モノマー成分として用いたものが挙げられる。上記アクリル酸エステルとしては、例えば、(メタ)アクリル酸アルキルエステル(例えば、メチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、s-ブチルエステル、t-ブチルエステル、ペンチルエステル、イソペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、2-エチルヘキシルエステル、イソオクチルエステル、ノニルエステル、デシルエステル、イソデシルエステル、ウンデシルエステル、ドデシルエステル、トリデシルエステル、テトラデシルエステル、ヘキサデシルエステル、オクタデシルエステル、エイコシルエステルなどのアルキル基の炭素数1~30、特に炭素数4~18の直鎖状又は分岐鎖状のアルキルエステルなど)及び(メタ)アクリル酸シクロアルキルエステル(例えば、シクロペンチルエステル、シクロヘキシルエステルなど)の1種又は2種以上を単量体成分として用いたアクリル系ポリマーなどが挙げられる。なお、(メタ)アクリル酸エステルとはアクリル酸エステル及び/又はメタクリル酸エステルをいい、本発明の(メタ)とは全て同様の意味である。

[76]

 上記アクリル系ポリマーは、凝集力、耐熱性などの改質を目的として、必要に応じ、上記(メタ)アクリル酸アルキルエステル又はシクロアルキルエステルと共重合可能な他のモノマー成分に対応する単位を含んでいてもよい。このようなモノマー成分として、例えば、アクリル酸、メタクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸などのカルボキシル基含有モノマー;無水マレイン酸、無水イタコン酸などの酸無水物モノマー;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、(4-ヒドロキシメチルシクロヘキシル)メチル(メタ)アクリレートなどのヒドロキシル基含有モノマー;スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸などのスルホン酸基含有モノマー;2-ヒドロキシエチルアクリロイルホスフェートなどのリン酸基含有モノマー;アクリルアミド、アクリロニトリルなどがあげられる。これら共重合可能なモノマー成分は、1種又は2種以上使用できる。これら共重合可能なモノマーの使用量は、全モノマー成分の40重量%以下が好ましい。

[77]

 さらに、上記アクリル系ポリマーは、架橋させるため、多官能性モノマーなども、必要に応じて共重合用モノマー成分として含むことができる。このような多官能性モノマーとして、例えば、ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレートなどがあげられる。これらの多官能性モノマーも1種又は2種以上用いることができる。多官能性モノマーの使用量は、粘着特性などの点から、全モノマー成分の30重量%以下が好ましい。

[78]

 上記アクリル系ポリマーは、単一モノマー又は2種以上のモノマー混合物を重合に付すことにより得られる。重合は、溶液重合、乳化重合、塊状重合、懸濁重合などの何れの方式で行うこともできる。清浄な被着体への汚染防止などの点から、低分子量物質の含有量が小さいのが好ましい。この点から、アクリル系ポリマーの数平均分子量は、好ましくは30万以上、さらに好ましくは40万~300万程度である。

[79]

 また、上記粘着剤には、ベースポリマーであるアクリル系ポリマーなどの数平均分子量を高めるため、外部架橋剤を適宜に採用することもできる。外部架橋方法の具体的手段としては、ポリイソシアネート化合物、エポキシ化合物、アジリジン化合物、メラミン系架橋剤などのいわゆる架橋剤を添加し反応させる方法があげられる。外部架橋剤を使用する場合、その使用量は、架橋すべきベースポリマーとのバランスにより、さらには、粘着剤としての使用用途によって適宜決定される。一般的には、上記ベースポリマー100重量部に対して、5重量部程度以下、さらには0.1~5重量部配合するのが好ましい。さらに、粘着剤には、必要により、上記成分のほかに、従来公知の各種の粘着付与剤、老化防止剤などの添加剤を用いてもよい。

[80]

 粘着剤層12bは放射線硬化型粘着剤により形成することができる。放射線硬化型粘着剤は、紫外線などの放射線の照射により架橋度を増大させてその粘着力を容易に低下させることができ、ピックアップを容易に行うことができる。放射線としては、X線、紫外線、電子線、α線、β線、中性子線などが挙げられる。

[81]

 放射線硬化型粘着剤は、炭素-炭素二重結合などの放射線硬化性の官能基を有し、かつ粘着性を示すものを特に制限なく使用することができる。放射線硬化型粘着剤としては、例えば、上記アクリル系粘着剤、ゴム系粘着剤などの一般的な感圧性粘着剤に、放射線硬化性のモノマー成分やオリゴマー成分を配合した添加型の放射線硬化性粘着剤を例示できる。

[82]

 配合する放射線硬化性のモノマー成分としては、例えば、ウレタンオリゴマー、ウレタン(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリストールテトラ(メタ)アクリレート、ジペンタエリストールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレートなどがあげられる。また放射線硬化性のオリゴマー成分はウレタン系、ポリエーテル系、ポリエステル系、ポリカーボネート系、ポリブタジエン系など種々のオリゴマーがあげられ、その重量平均分子量が100~30000程度の範囲のものが適当である。放射線硬化性のモノマー成分やオリゴマー成分の配合量は、上記粘着剤層の種類に応じて、粘着剤層の粘着力を低下できる量を、適宜に決定することができる。一般的には、粘着剤を構成するアクリル系ポリマーなどのベースポリマー100重量部に対して、例えば5~500重量部、好ましくは40~150重量部程度である。

[83]

 また、放射線硬化型粘着剤としては、上記説明した添加型の放射線硬化性粘着剤のほかに、ベースポリマーとして、炭素-炭素二重結合をポリマー側鎖または主鎖中もしくは主鎖末端に有するものを用いた内在型の放射線硬化性粘着剤があげられる。内在型の放射線硬化性粘着剤は、低分子成分であるオリゴマー成分などを含有する必要がなく、または多くは含まないため、経時的にオリゴマー成分などが粘着剤在中を移動することなく、安定した層構造の粘着剤層を形成することができるため好ましい。

[84]

 上記炭素-炭素二重結合を有するベースポリマーは、炭素-炭素二重結合を有し、かつ粘着性を有するものを特に制限なく使用できる。このようなベースポリマーとしては、アクリル系ポリマーを基本骨格とするものが好ましい。アクリル系ポリマーの基本骨格としては、上記例示したアクリル系ポリマーがあげられる。

[85]

 上記アクリル系ポリマーへの炭素-炭素二重結合の導入法は特に制限されず、様々な方法を採用できるが、炭素-炭素二重結合はポリマー側鎖に導入するのが分子設計が容易である。例えば、予め、アクリル系ポリマーに官能基を有するモノマーを共重合した後、この官能基と反応しうる官能基および炭素-炭素二重結合を有する化合物を、炭素-炭素二重結合の放射線硬化性を維持したまま縮合または付加反応させる方法があげられる。

[86]

 これら官能基の組合せの例としては、カルボン酸基とエポキシ基、カルボン酸基とアジリジル基、ヒドロキシル基とイソシアネート基などがあげられる。これら官能基の組合せのなかでも反応追跡の容易さから、ヒドロキシル基とイソシアネート基との組合せが好適である。また、これら官能基の組み合わせにより、上記炭素-炭素二重結合を有するアクリル系ポリマーを生成するような組合せであれば、官能基はアクリル系ポリマーと上記化合物のいずれの側にあってもよいが、上記の好ましい組み合わせでは、アクリル系ポリマーがヒドロキシル基を有し、上記化合物がイソシアネート基を有する場合が好適である。この場合、炭素-炭素二重結合を有するイソシアネート化合物としては、例えば、メタクリロイルイソシアネート、2-メタクリロイルオキシエチルイソシアネート、m-イソプロペニル-α,α-ジメチルベンジルイソシアネートなどがあげられる。また、アクリル系ポリマーとしては、上記例示のヒドロキシ基含有モノマーや2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングルコールモノビニルエーテルのエーテル系化合物などを共重合したものが用いられる。

[87]

 上記内在型の放射線硬化性粘着剤は、上記炭素-炭素二重結合を有するベースポリマー(特にアクリル系ポリマー)を単独で使用することができるが、特性を悪化させない程度に上記放射線硬化性のモノマー成分やオリゴマー成分を配合することもできる。放射線硬化性のオリゴマー成分などは、通常ベースポリマー100重量部に対して30重量部の範囲内であり、好ましくは0~10重量部の範囲である。

[88]

 上記放射線硬化型粘着剤には、紫外線などにより硬化させる場合には光重合開始剤を含有させることが好ましい。光重合開始剤としては、例えば、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、α-ヒドロキシ-α,α´-ジメチルアセトフェノン、2-メチル-2-ヒドロキシプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトンなどのα-ケトール系化合物;メトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフエノン、2,2-ジエトキシアセトフェノン、2-メチル-1-[4-(メチルチオ)-フェニル]-2-モルホリノプロパン-1などのアセトフェノン系化合物;ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、アニソインメチルエーテルなどのベンゾインエーテル系化合物;ベンジルジメチルケタールなどのケタール系化合物;2-ナフタレンスルホニルクロリドなどの芳香族スルホニルクロリド系化合物;1-フェノン-1,1―プロパンジオン-2-(o-エトキシカルボニル)オキシムなどの光活性オキシム系化合物;ベンゾフェノン、ベンゾイル安息香酸、3,3′-ジメチル-4-メトキシベンゾフェノンなどのベンゾフェノン系化合物;チオキサンソン、2-クロロチオキサンソン、2-メチルチオキサンソン、2,4-ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4-ジクロロチオキサンソン、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソンなどのチオキサンソン系化合物;カンファーキノン;ハロゲン化ケトン;アシルホスフィノキシド;アシルホスフォナートなどがあげられる。光重合開始剤の配合量は、粘着剤を構成するアクリル系ポリマーなどのベースポリマー100重量部に対して、例えば0.05~20重量部程度である。

[89]

 なお、放射線照射の際に、酸素による硬化阻害が起こる場合は、放射線硬化型の粘着剤層12bの表面よりなんらかの方法で酸素(空気)を遮断するのが望ましい。例えば、上記粘着剤層12bの表面をセパレータで被覆する方法や、窒素ガス雰囲気中で紫外線などの放射線の照射を行う方法などが挙げられる。

[90]

 なお、粘着剤層12bには、各種添加剤(例えば、着色剤、増粘剤、増量剤、充填剤、粘着付与剤、可塑剤、老化防止剤、酸化防止剤、界面活性剤、架橋剤など)が含まれていてもよい。

[91]

 粘着剤層12bの厚さは特に限定されないが、チップ切断面の欠け防止、シート状樹脂組成物10の固定保持の両立性などの観点から1~50μm程度であるのが好ましい。好ましくは2~30μm、さらには好ましくは5~25μmである。

[92]

 (裏面研削用テープ一体型シート状樹脂組成物の製造方法)
 裏面研削用テープ一体型シート状樹脂組成物100は、例えば裏面研削用テープ12及びシート状樹脂組成物10を別々に作製しておき、最後にこれらを貼り合わせることにより作成することができる。

[93]

 (シート状樹脂組成物付チップの準備方法)
 次に、シート状樹脂組成物付チップの準備方法について説明する。図6~図11は、裏面研削用テープ一体型シート状樹脂組成物100を用いるシート状樹脂組成物付チップ40準備方法の各工程を示す図である。
 具体的には、当該シート状樹脂組成物付チップの準備方法は、半導体ウェハ16のバンプ18が形成されたバンプ形成面22aと裏面研削用テープ一体型シート状樹脂組成物100のシート状樹脂組成物10とを貼り合わせる貼合せ工程、半導体ウェハ16の裏面16bを研削する研削工程、半導体ウェハ16の裏面16bにダイシングテープ11を貼りつけるウェハ固定工程、裏面研削用テープ12を剥離する剥離工程、半導体ウェハ16をダイシングしてシート状樹脂組成物付き半導体チップ40を形成するダイシング工程、及びシート状樹脂組成物付き半導体チップ40をダイシングテープ11から剥離するピックアップ工程を含む。

[94]

 <貼合せ工程>
 貼合せ工程では、半導体ウェハ16のバンプ18が形成されたバンプ形成面22aと裏面研削用テープ一体型シート状樹脂組成物100のシート状樹脂組成物10とを貼り合わせる(図6参照)。

[95]

 半導体ウェハ16のバンプ形成面22aには、複数のバンプ18が形成されている(図6参照)。バンプ18の高さは用途に応じて定められ、一般的には15~100μm程度である。もちろん、半導体ウェハ16における個々のバンプ18の高さは同一でも異なっていてもよい。

[96]

 半導体ウェハ16表面に形成されたバンプ18の高さX(μm)とシート状樹脂組成物10の厚さY(μm)とが、0.5≦Y/X≦2の関係を満たすことが好ましい。より好ましくは、0.5≦Y/X≦1.5であり、さらに好ましくは、0.8≦Y/X≦1.3である。

[97]

 バンプ18の高さX(μm)とシート状樹脂組成物10の厚さY(μm)とが上記関係を満たすことにより、半導体チップ22と実装用基板50との間の空間を十分に充填することができると共に、当該空間からのシート状樹脂組成物10の過剰のはみ出しを防止することができ、シート状樹脂組成物10による半導体チップ22の汚染などを防止することができる。なお、各バンプ18の高さが異なる場合は、最も高いバンプ18の高さを基準とする。

[98]

 まず、裏面研削用テープ一体型シート状樹脂組成物100のシート状樹脂組成物10上に任意に設けられたセパレータを適宜に剥離し、図6に示すように、半導体ウェハ16のバンプ18が形成されたバンプ形成面22aとシート状樹脂組成物10とを対向させ、シート状樹脂組成物10と半導体ウェハ16とを貼り合わせる(マウント)。

[99]

 貼り合わせの方法は特に限定されないが、圧着による方法が好ましい。圧着の圧力は、好ましくは0.1MPa以上、より好ましくは0.2MPa以上である。0.1MPa以上であると、半導体ウェハ16のバンプ形成面22aの凹凸を良好に埋め込むことができる。また、圧着の圧力の上限は特に限定されないが、好ましくは1MPa以下、より好ましくは0.5MPa以下である。

[100]

 貼り合わせの温度は、好ましくは40℃以上であり、より好ましくは60℃以上である。40℃以上であると、シート状樹脂組成物10の粘度が低下し、半導体ウェハ16の凹凸を空隙なく充填できる。また、貼り合わせの温度は、好ましくは100℃以下であり、より好ましくは80℃以下である。100℃以下であると、シート状樹脂組成物10の硬化反応を抑制したまま貼り合わせが可能となる。

[101]

 貼り合わせは、減圧下で行うことが好ましく、例えば、1000Pa以下、好ましくは500Pa以下である。下限は特に限定されず、例えば、1Pa以上である。

[102]

 <研削工程>
 研削工程では、半導体ウェハ16のバンプ形成面22aとは反対側の面(すなわち、裏面)16bを研削する(図7参照)。半導体ウェハ16の裏面研削に用いる薄型加工機としては特に限定されず、例えば研削機(バックグラインダー)、研磨パッドなどを例示できる。また、エッチングなどの化学的方法にて裏面研削を行ってもよい。裏面研削は、半導体ウェハ16が所望の厚さ(例えば、10~800μm)になるまで行われる。

[103]

 <ウェハ固定工程>
 研削工程後、半導体ウェハ16の裏面16bにダイシングテープ11を貼りつける(図8参照)。なお、ダイシングテープ11は、基材11a上に粘着剤層11bが積層された構造を有する。基材11a及び粘着剤層11bとしては、裏面研削用テープ12の基材12a及び粘着剤層12bの項で示した成分及び製法を用いて好適に作製することができる。

[104]

 <剥離工程>
 次いで、裏面研削用テープ12を剥離する(図9参照)。これにより、シート状樹脂組成物10が露出した状態となる。

[105]

 裏面研削用テープ12を剥離する際、粘着剤層12bが放射線硬化性を有する場合には、粘着剤層12bに放射線を照射して粘着剤層12bを硬化させることで、剥離を容易に行うことができる。放射線の照射量は、用いる放射線の種類や粘着剤層の硬化度などを考慮して適宜設定すればよい。

[106]

 <ダイシング工程>
 ダイシング工程では、図10に示すように半導体ウェハ16及びシート状樹脂組成物10をダイシングしてダイシングされたシート状樹脂組成物付き半導体チップ40を形成する。ダイシングは、半導体ウェハ16のシート状樹脂組成物10を貼り合わせたバンプ形成面22aから常法に従い行われる。例えば、ダイシングテープ11まで切込みを行うフルカットと呼ばれる切断方式などを採用できる。本工程で用いるダイシング装置としては特に限定されず、従来公知のものを用いることができる。

[107]

 なお、ダイシング工程に続いてダイシングテープ11のエキスパンドを行う場合、該エキスパンドは従来公知のエキスパンド装置を用いて行うことができる。

[108]

 <ピックアップ工程>
 図11に示すように、シート状樹脂組成物付き半導体チップ40をダイシングテープ11から剥離する(シート状樹脂組成物付き半導体チップ40をピックアップする)。ピックアップの方法としては特に限定されず、従来公知の種々の方法を採用できる。

[109]

 ここでピックアップは、ダイシングテープ11の粘着剤層11bが紫外線硬化型の場合、粘着剤層11bに紫外線を照射した後に行う。これにより、粘着剤層11bの半導体チップ22に対する粘着力が低下し、半導体チップ22の剥離が容易になる。

[110]

 以上により、シート状樹脂組成物付き半導体チップ40の準備が完了する。

[111]

 また、本発明に係るシート状樹脂組成物付き半導体チップの準備方法は、裏面研削用テープ一体型シート状樹脂組成物を用いる方法に限定されない。
 例えば、ダイシングテープ一体型シート状樹脂組成物を用いて準備してもよい。ダイシングテープ一体型シート状樹脂組成物は、ダイシングテープと、シート状樹脂組成物とを備える。ダイシングテープは、基材及び粘着剤層を備え、粘着剤層は基材上に設けられている。シート状樹脂組成物は粘着剤層上に設けられている。ダイシングテープは、上述した裏面研削用テープと同様の構成を採用することができる。
 具体的に、当該シート状樹脂組成物付チップの準備方法は、半導体ウェハのバンプが形成されたバンプ形成面とダイシングテープ一体型シート状樹脂組成物のシート状樹脂組成物とを貼り合わせる貼合せ工程、半導体ウェハをダイシングしてシート状樹脂組成物付き半導体チップを形成するダイシング工程、及びシート状樹脂組成物付き半導体チップをダイシングテープから剥離するピックアップ工程を含む。

[112]

 また、本発明に係るシート状樹脂組成物付き半導体チップの準備方法は、単体のシート状樹脂組成物を用いて準備してもよい。
 具体的に、単体のシート状樹脂組成物を用いたシート状樹脂組成物付チップの準備方法は、例えば、半導体ウェハのバンプが形成されたバンプ形成面とシート状樹脂組成物とを貼り合わせる貼合せ工程、シート状樹脂組成物の半導体ウエハ貼り合わせ面とは反対側の面に裏面研削用テープを貼り合わせる工程、半導体ウェハの裏面を研削する研削工程、半導体ウェハの裏面にダイシングテープを貼りつけるウェハ固定工程、裏面研削用テープを剥離する剥離工程、半導体ウェハをダイシングしてシート状樹脂組成物付き半導体チップを形成するダイシング工程、及びシート状樹脂組成物付き半導体チップをダイシングテープから剥離するピックアップ工程を含む。
また、単体のシート状樹脂組成物を用いたシート状樹脂組成物付チップの準備方法の他の例としては、当該シート状樹脂組成物付チップの準備方法は、半導体ウェハのバンプが形成されたバンプ形成面とシート状樹脂組成物とを貼り合わせる貼合せ工程、シート状樹脂組成物の半導体ウエハ貼り合わせ面とは反対側の面にダイシングテープを貼り合わせる工程、半導体ウェハをダイシングしてシート状樹脂組成物付き半導体チップを形成するダイシング工程、及びシート状樹脂組成物付き半導体チップをダイシングテープから剥離するピックアップ工程を含む。

[113]

 上述した実施形態では、半導体チップにバンプが形成されているとともに、被着体としての搭載用基板に電極が形成されている場合について説明した。しかしながら、本発明に係る半導体チップは、シート状樹脂組成物が貼り合わせられる面側に、バンプ等による凹凸(例えば、3μm以上の凹凸)が形成されていなくてもよい。また、本発明の被着体は、シート状樹脂組成物が貼り合わせられる面側に、電極等による凹凸(例えば、3μm以上の凹凸)が形成されていなくてもよい。3μm未満の凹凸がある場合や凹凸がない場合にもシート状樹脂組成物と被着体との間にボイド(例えば、微小なボイド)が噛み込む場合はある。しかしながら、このような場合であっても、工程D(シート状樹脂組成物を加熱して半硬化させる工程)と、工程E(前記工程Dの後に、前記工程Dにおける加熱よりも高温で前記シート状樹脂組成物を加熱して硬化させる工程)とを行なうため、ボイドの膨張は抑制されている。従って、このような場合においても種々の不具合の原因となる大きなボイドの発生を抑制することができる。
 半導体チップのシート状樹脂組成物が貼り合わせられる面側に凹凸が形成されておらず、被着体のシート状樹脂組成物が貼り合わせられる面側に凹凸が形成されていない場合の具体例としては、シート状樹脂組成物をダイボンドフィルムとして使用する例が挙げられる。
 すなわち、この場合の半導体装置の製造方法は、
 半導体チップの非回路形成面(回路形成面とは反対側の面)にダイボンドフィルムとしてのシート状樹脂組成物が貼り付けられたシート状樹脂組成物付きチップを準備する工程Aと、
 リードフレーム等の実装用基板を準備する工程Bと、
 前記実装用基板に、前記シート状樹脂組成物付きチップを、前記シート状樹脂組成物を貼り合わせ面にして貼り付ける工程Cと、
 前記工程Cの後に、前記シート状樹脂組成物を加熱して半硬化させる工程Dと、
 前記工程Dの後に、前記工程Dにおける加熱よりも高温で前記シート状組成物を加熱して硬化させる工程Eとを少なくとも含む。

[114]

 以下に、この発明の好適な実施例を例示的に詳しく説明する。但し、この実施例に記載されている材料や配合量などは、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。

[115]

 <シート状樹脂組成物の作製>
 以下の成分を表1に示す割合でメチルエチルケトンに溶解して、固形分濃度が25.4~60.6重量%となる接着剤組成物の溶液を調製した。
 アクリルポリマー:アクリル酸エチル-メチルメタクリレートを主成分とするアクリル酸エステル系ポリマー(商品名「パラクロンW-197CM」、根上工業株式会社製)
 エポキシ樹脂1:商品名「エピコート1004」、JER株式会社製
 エポキシ樹脂2:商品名「エピコート828」、JER株式会社製
 フェノール樹脂:商品名「ミレックスXLC-4L」、三井化学株式会社製
 無機充填剤:球状シリカ(商品名「SO-25R」、株式会社アドマテックス製)
 熱硬化促進触媒:イミダゾール触媒(商品名「2PHZ-PW」、四国化成株式会社製)

[116]

 この接着剤組成物の溶液を、剥離ライナ(セパレータ)としてシリコーン離型処理した厚さが50μmのポリエチレンテレフタレートフィルムからなる離型処理フィルム上に塗布した後、130℃で2分間乾燥させることにより、厚さ35μmのシート状樹脂組成物Aを作製した。

[117]

 [200℃未満における最低溶融粘度の測定]
 回転式粘度計HAAKE Roto Visco 1(サーモフィッシャーサイエンティフィック社製)を用いてシート状樹脂組成物Aを測定したときの80℃~200℃における溶融粘度の最低値を最低溶融粘度とした。測定条件は、昇温速度10℃/min、せん断速度5(1/s)とした。結果を表1に示す。

[118]

 (200℃で10秒間加熱した後の熱硬化率の測定)
 ティー・エイ・インスツルメント社製の示差走査熱量計、製品名「Q2000」を用いて、以下のようにして、熱硬化率を測定した。
 まず、熱硬化処理をしていないシート状樹脂組成物Aを-10℃から昇温速度10℃/分の条件で、350℃(熱硬化反応が完全に完了したと想定される温度)まで昇温した際の発熱量(未硬化サンプルの反応熱量)を測定した。
 また、シート状樹脂組成物Aを200℃で10秒間加熱したサンプルを準備し、-10℃から昇温速度10℃/分の条件で、350℃(熱硬化反応が完全に完了したと想定される温度)まで昇温した際の発熱量(200℃で10秒間加熱したサンプルの反応熱量)を測定した。その後、以下の式(3)により熱硬化率を得た。
 式(3):
熱硬化率=[{(未硬化サンプルの反応熱量)-(200℃で10秒間加熱したサンプルの反応熱量)}/(未硬化サンプルの反応熱量)]×100(%)
 なお、発熱量は、示差走査熱量計にて測定される発熱ピークの立ち上がり温度と反応終了温度の2点を結んだ直線とピークで囲まれる面積を用いて求める。
 結果を表1に示す。

[119]

TIFF00000001.tif45170

 

[120]

 (ボイド評価)
 (株)ウォルツ社のテストビークル(厚さ725μmのウエハに、高さ40μmのバンプが形成されたもの)に、厚さ40μmのシート状樹脂組成物Aを貼り付けた。貼付条件は、真空度:100Paの条件下において、温度:60℃、貼り付け圧力:0.5Mpaとした。これにより図1に示すような形態のサンプルAを得た。

[121]

 (実施例1)
 次に、このサンプルAに電極を有する実装用基板(電極の高さ:15μm)を貼り付けた。貼り付けには、東レエンジニアリング社のフリップチップボンダー(FC3000W)を用い、貼付条件は、荷重:0.5Mpaの条件で、200℃で10秒間保持した後、260℃で10秒保持した。その後、実装用基板面に対して平行に研削しバンプ近辺を観察した。

[122]

 (比較例1)
 実施例1と同様に、サンプルAに電極を有する実装用基板(電極の高さ:15μm)を貼り付けた。貼り付けには、東レエンジニアリング社のフリップチップボンダー(FC3000W)を用い、貼付条件は、荷重:0.5Mpaの条件で、260℃で10秒保持した。その後、実装用基板面に対して平行に研削しバンプ近辺を観察した。
 ボイドの発生が抑制されていることが確認できた場合を〇、ボイドの発生が抑制されていることが確認できない場合を×として評価した。結果を表2に示す。

[123]

TIFF00000002.tif18147

[124]

10 シート状樹脂組成物
18 バンプ
22 半導体チップ
22a バンプ形成面
40 シート状樹脂組成物付きチップ
50 実装用基板
52 電極
60 半導体装置
 



[1]

This semiconductor device manufacturing method includes: a step (A) for preparing a sheet-like resin composition-attached chip that has a sheet-like resin composition bonded to a semiconductor chip; a step (B) for preparing a body to which the chip is to be bonded; a step (C) for bonding, to the body, the sheet-like resin composition-attached chip by having the sheet-like resin composition as a bonding surface; a step (D) for semi-curing the sheet-like resin composition by heating the composition after the step (C); and a step (E) for curing the sheet-like resin composition by heating, after the step (D), the composition at a temperature that is higher than a heating temperature in the step (D).

[2]



 半導体チップにシート状樹脂組成物が貼り付けられたシート状樹脂組成物付きチップを準備する工程Aと、
 被着体を準備する工程Bと、
 前記被着体に、前記シート状樹脂組成物付きチップを、前記シート状樹脂組成物を貼り合わせ面にして貼り付ける工程Cと、
 前記工程Cの後に、前記シート状樹脂組成物を加熱して半硬化させる工程Dと、
 前記工程Dの後に、前記工程Dにおける加熱よりも高温で前記シート状樹脂組成物を加熱して硬化させる工程Eとを含むことを特徴とする半導体装置の製造方法。

 前記シート状樹脂組成物は、200℃で10秒間加熱した際の熱硬化率が10%以上であることを特徴とする請求項1に記載の半導体装置の製造方法。

 前記被着体は、前記シート状樹脂組成物が貼り合わせられる面側に、3μm以上100μm以下の凹凸を有することを特徴とする請求項1又は2に記載の半導体装置の製造方法。

 前記半導体チップは、前記シート状樹脂組成物が貼り合わせられる面側に、3μm以上100μm以下の凹凸を有することを特徴とする請求項1~3のいずれか1に記載の半導体装置の製造方法。



CPC - классификация

HH0H01H01LH01L2H01L21H01L21/H01L21/4H01L21/48H01L21/5H01L21/56H01L21/561H01L21/563H01L21/6H01L21/68H01L21/683H01L21/6836H01L22H01L222H01L2221H01L2221/H01L2221/6H01L2221/68H01L2221/683H01L2221/6832H01L2221/68327H01L2221/6834H01L2221/6837H01L2221/68377H01L2224H01L2224/H01L2224/1H01L2224/11H01L2224/110H01L2224/1101H01L2224/11019H01L2224/115H01L2224/1150H01L2224/11502H01L2224/1151H01L2224/11515H01L2224/1155H01L2224/13H01L2224/131H01L2224/1311H01L2224/13111H01L2224/13113H01L2224/13116H01L2224/16H01L2224/162H01L2224/1622H01L2224/16227H01L2224/2H01L2224/27H01L2224/270H01L2224/2700H01L2224/27003H01L2224/273H01L2224/2733H01L2224/27334H01L2224/29H01L2224/291H01L2224/2919H01L2224/292H01L2224/2929H01L2224/293H01L2224/2931H01L2224/29311H01L2224/29318H01L2224/2932H01L2224/29324H01L2224/2933H01L2224/29339H01L2224/2934H01L2224/29344H01L2224/29347H01L2224/2935H01L2224/29355H01L2224/2936H01L2224/29364H01L2224/2937H01L2224/29371H01L2224/2938H01L2224/29387H01L2224/294H01L2224/2949H01L2224/29499H01L2224/3H01L2224/32H01L2224/322H01L2224/3222H01L2224/32225H01L2224/3224H01L2224/32245H01L2224/7H01L2224/73H01L2224/731H01L2224/7310H01L2224/73104H01L2224/732H01L2224/7320H01L2224/73204H01L2224/8H01L2224/81H01L2224/811H01L2224/8119H01L2224/81193H01L2224/812H01L2224/8120H01L2224/81203H01L2224/818H01L2224/8181H01L2224/81815H01L2224/83H01L2224/831H01L2224/8319H01L2224/83191H01L2224/832H01L2224/8320H01L2224/83203H01L2224/833H01L2224/8336H01L2224/83365H01L2224/8338H01L2224/83385H01L2224/838H01L2224/8386H01L2224/83862H01L2224/9H01L2224/92H01L2224/921H01L2224/9211H01L2224/94H01L24H01L24/H01L24/1H01L24/11H01L24/13H01L24/2H01L24/27H01L24/29H01L24/8H01L24/81H01L24/83H01L24/9H01L24/91
Получить PDF