LEADFRAME LEADS HAVING FULLY PLATED END FACES
This Utility patent application is a continuation application of U.S. patent application Ser. No. 15/075,266 filed Mar. 21, 2016, which is incorporated herein by reference. A semiconductor device may include a leadframe having leads for electrically coupling the semiconductor device to a circuit board. The leads of the semiconductor device may be soldered to the circuit board. Automated optical inspection (AOI) may be used to inspect solder wetting between the leads of the semiconductor device and the circuit board. Some semiconductor devices, however, which have a leadless package (e.g., quad-flat no-lead (QFN) or dual-flat no-lead (DFN)) or a short lead package, may be unsuitable for AOI. For these and other reasons, there is a need for the present invention. One example of a semiconductor device includes a leadframe, a semiconductor die attached to the leadframe, and an encapsulation material encapsulating the semiconductor die and a portion of the leadframe. The leadframe includes a first main face and a second main face opposite to the first main face. The leadframe includes leads wherein each lead includes a fully plated end face extending between an unplated first sidewall and an unplated second sidewall opposite to the first sidewall. The end face and the first and second sidewalls of each lead are perpendicular to the first and second main faces. In the following Detailed Description, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific examples in which the disclosure may be practiced. In this regard, directional terminology, such as “top,” “bottom,” “front,” “back,” “leading,” “trailing,” etc., is used with reference to the orientation of the Figure(s) being described. Because components of examples can be positioned in a number of different orientations, the directional terminology is used for purposes of illustration and is in no way limiting. It is to be understood that other examples may be utilized and structural or logical changes may be made without departing from the scope of the present disclosure. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present disclosure is defined by the appended claims. It is to be understood that the features of the various examples described herein may be combined with each other, unless specifically noted otherwise. As used herein, the term “electrically coupled” is not meant to mean that the elements must be directly coupled together and intervening elements may be provided between the “electrically coupled” elements. For automated optical inspection (AOI) to determine whether solder wetting between a lead of a semiconductor device and a circuit board is acceptable, the solder should form a solder fillet extending up the end face of the lead. Semiconductor devices having a leadless package or a short lead package may not enable AOI since the end face of each lead of the package may not allow solder wetting. Accordingly, semiconductor devices as described herein include leads having a fully plated end face that enables solder wetting to provide a solder fillet. In this way, AOI may be used to inspect solder wetting between the semiconductor devices and a circuit board. Leadframe 101 includes a first main face 110 (i.e., top surface) and a second main face 112 (i.e., bottom surface) opposite to the first main face 110. Leadframe 101 may include copper, a copper alloy, a nickel-iron alloy, or another suitable metal. Leadframe 101 is plated with a material layer (e.g., tin, solder, solder alloy) to improve the solderability of leadframe 101 to a circuit board. Leadframe 101 includes a die pad 103, a plurality of leads 102, and tiebars 114. Each tiebar 114 connects die pad 103 of leadframe 101 to a frame of a leadframe strip prior to singulation to separate leadframe 101 from the leadframe strip. Each tiebar 114 includes an end face 116 extending between first main face 110 and second main face 112 of leadframe 101. Each end face 116 is unplated since each end face 116 is formed when leadframe 101 is singulated from a leadframe strip. Accordingly, each end face 116 exposes the metal of leadframe 101. The sidewalls of each tiebar 114 extending between end face 116 and encapsulation material 120 are plated since the sidewalls are not severed during singulation of leadframe 101 from a leadframe strip. As illustrated in First plated sidewall 108 Fully plated end face 104 extends between first main face 110 and second main face 112 and between first unplated sidewall 106 Each lead 202 includes a fully plated end face 204. In one example, each lead 202 is similar to lead 102 previously described and illustrated with reference to Once frame 530 and each leadframe 501 is formed, leadframe strip 500 is plated with a material (e.g., tin, solder, solder alloy) to improve the solderability of each leadframe 501 to a circuit board. In one example, leadframe strip 500 is plated (e.g., via an electroplating process) prior to attaching the semiconductor dies to each leadframe 501 and encapsulating each semiconductor die. In another example, leadframe strip 500 is plated (e.g., via an electroless plating process) after attaching the semiconductor dies to each leadframe 501 and encapsulating each semiconductor die. To singulate each leadframe 501 from leadframe strip 500, each lead 502 is severed as indicated by dashed lines 510 to provide unplated sidewalls of each lead 502. In this way, the end faces 504 of each lead are not severed and therefore remain fully plated after singulation of each leadframe 501 from leadframe strip 500. In addition, to singulate each leadframe 501 from leadframe strip 500, each tiebar 514 is severed as indicated by dashed lines 511 to provide unplated end faces of each tiebar 514. Each leadframe 501 may be singulated from leadframe strip 500 by cutting, stamping, punching, etching, or other suitable process. In one example, leadframe strip 500 is singulated to provide a plurality of leadframes, such as leadframe 600 illustrated in the following Each tiebar 614 includes an unplated end face 616. Each end face 616 is unplated since each end face 616 is formed when leadframe 600 is singulated from a leadframe strip. Accordingly, each end face 616 exposes the metal of leadframe 600. The sidewalls of each tiebar 614 extending between end face 616 and encapsulation material 608 are plated since the sidewalls are not severed during singulation of leadframe 600 from a leadframe strip. First unplated sidewall 606 First plated sidewall 608 Fully plated end face 604 of each lead 602 extends between first unplated sidewall 606 In one example, method 700 further includes forming the leadframe strip via stamping or etching. Method 700 may also include plating (e.g., via an electroplating process) the leadframe strip prior to attaching the semiconductor die. In another example, the leadframe strip may be plated (e.g., via an electroless plating process) after attaching the semiconductor die. Attaching the semiconductor die to the leadframe may include electrically coupling the semiconductor die to a die pad of the leadframe. Method 700 may also include soldering each lead of the leadframe to a circuit board and inspecting solder wetting between each lead of the leadframe and the circuit board via an automated optical inspection process. Although specific examples have been illustrated and described herein, a variety of alternate and/or equivalent implementations may be substituted for the specific examples shown and described without departing from the scope of the present disclosure. This application is intended to cover any adaptations or variations of the specific examples discussed herein. Therefore, it is intended that this disclosure be limited only by the claims and the equivalents thereof. A semiconductor device includes a leadframe, a semiconductor die attached to the leadframe, and an encapsulation material encapsulating the semiconductor die and a portion of the leadframe. The leadframe includes a first main face and a second main face opposite to the first main face. The leadframe includes leads wherein each lead includes a fully plated end face extending between an unplated first sidewall and an unplated second sidewall opposite to the first sidewall. The end face and the first and second sidewalls of each lead are perpendicular to the first and second main faces. 1. A method for fabricating a semiconductor device, the method comprising:
attaching a semiconductor die to a leadframe of a leadframe strip, the leadframe comprising a plurality of leads wherein an end face of each lead is fully plated; encapsulating the semiconductor die and a portion of the leadframe with an encapsulation material; and singulating the leadframe from the leadframe strip by severing the leadframe strip to form a first unplated sidewall and a second unplated sidewall of each lead such that the fully plated end face of each lead extends between the first and second unplated sidewalls of each lead and such that a first plated sidewall of each lead extends from the first unplated sidewall of each lead to the encapsulation material and a second plated sidewall of each lead extends from the second unplated sidewall of each lead to the encapsulation material, wherein the first plated sidewall of each lead is nonplanar and the second plated sidewall of each lead is nonplanar. 2. The method of 3. The method of wherein each lead, on a second side of the lead opposite to the first side of the lead, includes only the second unplated sidewall and the second plated sidewall. 4. The method of forming the leadframe strip via stamping. 5. The method of forming the leadframe strip via etching. 6. The method of plating the leadframe strip prior to attaching the semiconductor die. 7. The method of plating the leadframe strip after attaching the semiconductor die. 8. The method of 9. The method of soldering each lead of the leadframe to a circuit board; and inspecting solder wetting between each lead of the leadframe and the circuit board via an automated optical inspection process. 10. A method for fabricating a semiconductor device, the method comprising:
attaching a semiconductor die to a leadframe of a leadframe strip, the leadframe comprising a plurality of leads; encapsulating the semiconductor die and a portion of the leadframe with an encapsulation material; plating the leadframe strip; and singulating the leadframe from the leadframe strip by severing the leadframe strip to form an end face of each lead that is fully plated, a first unplated sidewall and a second unplated sidewall of each lead such that the fully plated end face of each lead extends between the first and second unplated sidewalls of each lead, a first plated sidewall of each lead extending between the first unplated sidewall of each lead and the encapsulation material, and a second plated sidewall of each lead extending between the second unplated sidewall of each lead and the encapsulation material, wherein the first plated sidewall of each lead is nonplanar and the second plated sidewall of each lead is nonplanar. 11. The method of 12. The method of wherein each lead, on a second side of the lead opposite to the first side of the lead, includes only the second unplated sidewall and the second plated sidewall. 13. The method of forming the leadframe strip via stamping. 14. The method of forming the leadframe strip via etching. 15. The method of 16. The method of soldering each lead of the leadframe to a circuit board; and inspecting solder wetting between each lead of the leadframe and the circuit board via an automated optical inspection process. 17. A method for fabricating a semiconductor device, the method comprising:
attaching a semiconductor die to a leadframe of a leadframe strip, the leadframe comprising a first main face disposed entirely in a first plane and a second main face opposite to the first main face disposed entirely in a second plane, the leadframe comprising leads wherein each lead comprises a fully plated planar end face; encapsulating the semiconductor die and a portion of the leadframe with an encapsulation material; and singulating the leadframe from the leadframe strip by severing the leadframe strip to form, for each lead, an unplated first sidewall on a first side of the lead, an unplated second sidewall on a second side of the lead that is opposite to the unplated first sidewall of the lead, a plated first sidewall on the first side of the lead that is between the unplated first sidewall and the encapsulation material, and a plated second sidewall on the second side of the lead that is between the unplated second sidewall and the encapsulation material, wherein for each lead, the fully plated planar end face extends between the unplated first sidewall and the unplated second sidewall and the unplated first sidewall and the unplated second sidewall are perpendicular to the first and second main faces, wherein each lead, on the first side of the lead, includes only the unplated first sidewall and the plated first sidewall, wherein each lead, on the second side of the lead, includes only the unplated second sidewall and the plated second sidewall, wherein for each lead, the plated first sidewall is nonplanar with the unplated first sidewall, and wherein for each lead, the plated second sidewall is nonplanar with the unplated second sidewall. 18. The method of 19. The method of 20. The method of soldering each lead of the leadframe to a circuit board; and inspecting solder wetting between each lead of the leadframe and the circuit board via an automated optical inspection process.CROSS REFERENCE TO RELATED APPLICATION
BACKGROUND
SUMMARY
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION




