Processing Materials
PROCESSING MATERIALS This application claims priority from the following provisional applications: USSN 61/774,684, filed March 8, 2013; USSN 61/774,773, filed March 8, 2013; USSN 61/774,731, filed March 8, 2013; USSN 61/774,735, filed March 8, 2013; USSN 61/774,740, filed March 8, 2013; USSN 61/774,744, filed March 8, 2013; USSN 61/774,746, filed March 8, 2013; USSN 61/774,750, filed March 8, 2013; USSN 61/774,752, filed March 8, 2013; USSN 61/774,754, filed March 8, 2013; USSN 61/774,775, filed March 8, 2013; USSN 61/774,780, filed March 8, 2013; USSN 61/774,761, filed March 8, 2013; USSN 61/774,723, filed March 8, 2013; and USSN 61/793,336, filed March 15, 2013. The full disclosure of each of these provisional applications is incorporated by reference herein. Many potential lignocellulosic feedstocks are available today, including agricultural residues, woody biomass, municipal waste, oilseeds/cakes and seaweed, to name a few. At present, these materials are often under-utilized, being used, for example, as animal feed, biocompost materials, burned in a co-generation facility or even landfilled. Lignocellulosic biomass includes crystalline cellulose fibrils embedded in a hemicellulose matrix, surrounded by lignin. This produces a compact matrix that is difficult to access by enzymes and other chemical, biochemical and/or biological processes. Cellulosic biomass materials Generally the inventions relate to methods, equipment and systems for processing materials, such as biomass. For example, processes are disclosed herein for saccharifying or liquifying a biomass material, In one aspect the invention relates to a method of handling materials, Optionally, the method includes treating the biomass with accelerated electrons to reduce its recalcitrance, for example, wherein the electrons have an energy between about 0.3 MeV and about 5 MeV, such as between about 0.5 MeV and about 3.5 MeV, or between about 0.8 MeV and about 2 MeV. Optionally, prior to conveying In some implementation the interior portions along which the biomass is conveyed, such as screw shaft, flighting and/or housing, are cooled. For example, the interior portions are cooled using a chilled liquid, such as water or glycol water mixtures. Optionally, the chilled water is chilled utilizing a cooling tower and/or geothermal cooling. In some other implementations, the conveyer has a biomass inlet and a biomass discharge and the difference in temperature between the biomass at the inlet and the discharge is less than about 110 ° C In other implementations, the method further includes comminuting the biomass material while conveying the biomass material Optionally an additive is combined with the biomass material prior to, during or after conveying the treated biomass material, for example, the additive can include, water, an acid, such as sulfuric or hydrochloric or phosphoric acid, a base, a metal, a resin, an inorganic material, and mixtures of these. In another aspect the invention relates to a method of processing a material, Optionally cooling reduces the temperature of the material by between about 1 °C and about 110 °C Optionally the screw conveyors described in the methods and systems herein can include two or more screws. In some implementations of the inventions described herein, the material includes biomass material such as cellulosic and/or lignocellulosic material. For example, the biomass can be selected from the group consisting of wood, particle board, sawdust, agricultural waste, sewage, silage, grasses, rice hulls, bagasse, cotton, jute, hemp, flax, bamboo, sisal, abaca, straw, com cobs, corn stover, switchgrass, alfalfa, hay, coconut hair, seaweed, algae and mixtures of these. Implementations of the invention can optionally include one or more of the following summarized features. In some implementations, the selected features can be applied or utilized in any order while in other implementations a specific selected sequence is applied or utilized. Individual features can be applied or utilized more than once in any sequence and even continuously. In addition, an entire sequence, or a portion of a sequence, of applied or utilized features can be applied or utilized once, repeatedly or continuously in any order. In some optional implementations, the features can be applied or utilized with different, or where applicable the same, set or varied, quantitative or qualitative parameters as determined by a person skilled in the art. For example, parameters of the features such as size, individual dimensions Features, for example, include: a method of handling and/or processing material; conveying recalcitrance-reduced material along interior portions of a screw conveyor; delivering a material to a feed inlet of a screw conveyor; discharging a material through an outlet of the screw conveyor; treating a material with accelerated electrons to reduce its recalcitrance; treating a material with accelerated electrons having an energy between about 0.3 MeV and about 5 MeV; treating a material with accelerated electrons having an energy between about 0.5 MeV and about 3.5 MeV; treating a material with accelerated electrons having an energy between about 0.8 MeV and about 2 MeV; irradiating a material with dose between about 0.5 Mrad and about 20 Mrad and then conveying the material; irradiating a material with dose between about 1 Mrad and about 15 Mrad and then conveying the material; irradiating a material with dose between about 5 Mrad and about 15 Mrad and the conveying the material; conveying a material with a screw conveyor wherein interior portions of a screw conveyor along which material is conveyed are cooled; conveying a material with a screw conveyor wherein the screw shaft of the screw conveyor is cooled; conveying a material with a screw conveyor wherein the flighting of the screw conveyor is cooled; conveying a material with a screw conveyor wherein the housing of the screw conveyor is cooled; conveying a material with a screw conveyor wherein interior portions of the screw are cooled using a chilled liquid; conveying a material with a screw conveyor wherein the interior portions of a screw conveyor are cooled using water; conveying a material with a screw conveyor wherein interior portions of the screw conveyor are cooled using a glycol water mixture; cooling of chilled water used for cooling a screw conveying material is chilled utilizing a cooling tower and/or geothermal cooling; a conveyer having a material inlet and a material discharge and the difference in temperature between the material at the inlet and the discharge is less than about 110°C; a conveyer having a material inlet and a material discharge and the difference in temperature between the material at the inlet and the discharge is less than about 75°C; a conveyer having a material inlet and a material discharge and the difference in temperature between the material at the inlet and the discharge is less than about 50°C; a conveyer having a material inlet and a material discharge and the difference in temperature between the material at the inlet and the discharge is less than about 25°C; comminuting a material while conveying the material; shredding a material while conveying the material; shearing a material while conveying the material; water is combined with a material prior to conveying the material; water is combined with a material after conveying the material; water is combined with a material during conveying the material; an acid is combined with a material prior to conveying the material; an acid is combined with a material after conveying the material; an acid is combined with a material while conveying the material; a base is combined with a material prior to conveying the material; a base is combined with a material after conveying the material; a base is combined with a material during conveying the material; a metal is combined with a material prior to conveying the material; a metal is combined with a material after conveying the material; a metal is combined with a material during conveying the material; a resin is combined with a material prior to conveying the material; a resin is combined with a material after conveying the material; a resin is combined with a material while conveying the material; an inorganic material is combined with a material prior to conveying the material; an inorganic material is combined with a material after conveying the material; an inorganic material is combined with a material during conveying the material; sulfuric acid is combined with a material prior to conveying the material; sulfuric acid is combined with a material after conveying the material; sulfuric acid is combined with a material during conveying the material; hydrochloric acid is combined with a material prior to conveying the material; hydrochloric acid is combined with a material after conveying the material; hydrochloric acid is combined with a material while conveying the material; phosphoric acid is combined with a material prior to conveying the material; phosphoric acid is combined with a material after conveying the material; phosphoric acid is combined with a material while conveying the material; a material is provided to a first treatment cell equipped with a first electron beam device; irradiating a material in a first treatment cell with an electron beam using a first electron beam device; conveying a material with a screw conveyor from a first treatment cell; conveying a material to a second treatment cell equipped with a second electron beam device and irradiating the material with a second electron beam; cooling a material using a screw conveyor by between about 1 °C and 110°C; cooling a material using a screw conveyor by between about 10°C and about 75 °C; cooling a material using the screw conveyor by between about 10°C and about 50°C; delivering a total dose of irradiation between about 1 and 200 Mrad to a material; delivering a total dose of irradiation between about 10 Mrad and about 50 Mrad to a material is; delivering a total dose of irradiation between about 20 Mrad and about 40 Mrad to a material; irradiating a material wherein the temperature of the material during the irradiation does not exceed about 200°C; irradiating a material wherein the temperature of the material during the irradiation does not exceed about 180°C; irradiating a material wherein the temperature of the material during the irradiation does not exceed about 160°C; irradiating a material wherein the temperature of the material during the irradiation does not exceed about 150°C; irradiating a material wherein the temperature of the material during the irradiation does not exceed about 140°C; irradiating a material wherein the temperature of the material during the irradiation does not exceed about 130°C; irradiating a material wherein the temperature of the material during the irradiation does not exceed about 120°C; irradiating a material wherein the temperature of the material during the irradiation does not exceed about 110°C; irradiating a material wherein the temperature of the material during irradiation increases by between about 10°C and about 250°C; irradiating a material wherein the temperature of the material during irradiation increases by between about 10 °C and about 150°C; irradiating a material wherein the temperature of the material during irradiation increases by between about 50°C and about 150°C; irradiating a material wherein the temperature of the material during irradiation increases by between about 75°C and about 150°C; processing a biomass material; processing a lignocellulosic material; processing wood; processing particle board; processing sawdust; processing agricultural waste; processing sewage; processing silage; processing grasses; processing rice hulls; processing bagasse; processing cotton; processing jute; processing hemp; processing flax; processing bamboo; processing sisal; processing abaca; processing straw; processing com cobs; processing corn stover; processing switchgrass; processing alfalfa; processing hay; processing coconut hair; processing seaweed; processing algae; conveying a material using two or more screw conveyors. All publications, patent applications, patents, and other references mentioned herein or attached hereto are incorporated by reference in their entirety for all that they contain. FIG. 1A is a diagrammatic view showing an example of a cooling system according to one embodiment. FIG. IB is a detailed view of a portion of the cooling system. FIG. 2Α is an enlarged cross sectional view of a portion of the cooling system shown in FIG. 1. FIG. 2Β is an enlarged cross sectional view of another possible embodiment of a portion of the cooling system. Using the methods described herein, many materials such as biomass Cooling biomass materials that have been treated, Cooling materials after any such treatment or process described herein can enhance processing rates and reduce losses, Cooled biomass, at a temperature of about 73°F, exits the ash cooler 16 through a biomass outlet 19 while the cooling water, which has now returned to an elevated temperature, exits through a water outlet tube 22. The temperature difference between the inlet and outlet of the cooler can be less than about 110 deg. C FIG. IB is a detailed front view of a bag filter in fluid communication with a closed loop air conveyor and ash cooler 16. Biomass is conveyed in a gas Referring to FIG. 2Α which is a side cross-sectional view of a cooling conveyor, cooling water flows through a casing 23, which includes an inner shell 25 and an outer shell 27 that define a space there between for fluid flow. Hot biomass In 16, the biomass particles are subjected to continuous movement by the helices of the screw 25 and are constantly changing location. This causes them, as they move through the conveyor, to come into frequent and repeated contact with the internal surfaces of the conveyor that are cooled because they are in thermal communication with the cooling water, In some embodiments the ash cooler includes more than one screw. For example, FIG 2Β is a top cross-sectional view of a cooling screw conveyor with two screws. The screw conveyors can intermesh as shown. The dual screw conveyor has similar components as the single screw conveyor but has a larger internal volume containing the two screws. Hot biomass enters The conveyors 1500HV0.05/1000 HV 0.05), Chromium Nitride (CrN: 1750 HV 0.05), Diamond-Like Carbon (DLC: >2000 HV 0.05), Titanium Aluminum Nitride (TiAIN: 3300 HV 0.05 and TiAINx: 3400 HV 0.05), Titanium Chromium Nitride (TiCrN: 2100 HV 0.05). In some embodiments, a coating process known as TDX is used which is a process is ideally suited for sever applications. The TDX coating is applied in a molten salt bath resulting in a very uniform and smooth layer of carbides. The TDX carbides are metallurgically bonded to the tooling resulting in extremely high adhesion strength and peel resistance. The hardness values of TDX coatings are about 4200 Vickers. For example, some optional coatings can be provided by Tool Dynamics Inc (Columbus, IN) such as TDX Supreme I, TDX Supreme II and TDX Supreme III. Coatings can be applied by methods such as physical vapor deposition (PVD), Thermal spray, HVOF (a high velocity, low temperature coating process), plasma spray, Arc spray and electroplating. The coatings can provide protection for various kinds of wear, for example, impact wear, abrasion, erosion, compression, cavitation, galling, corrosion and oxidation. Conveyors that can be used for the methods herein described ( The cooling water can be replaced by other cooling fluids, for example, an oil and/or an alcohol (e.g., ethanol, butanol and/or glycol). Mixtures of water and alcohols can also be utilized, e.g., water with ethanol, water with glycol. For example, water glycol mixtures with between about 5% and 80% glycol can be used (e.g., between 5 and 20%, between about 10 and 50%, between about 10 and 30%, between about 40 and 60%). Other additives can be added, for example bactericides, bacteriostatic agents and or anti-corrosion agents. In some implementations, an additive is combined with the treated biomass material either prior to, during or after, conveying the treated material. For example, the additive may be an additive selected from the group consisting of water, an acid, a base, a metal, a resin, an inorganic material, and a mixture of these. In some implementations, the biomass and or other material may be comminuted The ash cooler can also be utilized for heating the biomass or any material conveyed therein. For example, by flowing a heating fluid In some embodiments, the cooling fluid from the screw cooler is coupled to a head exchanger that transfers energy to other processes, such as, a saccharification process. In such an emobodiment, the heating due to processing of biomass is transferred to a saccharification step, Some more details and reiterations of processes for treating a feedstock that can be utilized, for example, with the embodiments already discussed above, or in other embodiments, are described in the following disclosures. In particular, the cooling systems discussed herein can be utilized, for example, in processes that include the feedstock treatment and processing steps described in the following sections. Processes for conversion of a feedstock to sugars and other products, in which the conveying methods discuss above may be used, can include, for example, optionally physically pre-treating the feedstock, The feedstock can be treated with radiation to modify its structure to reduce its recalcitrance. Such treatment can, for example, reduce the average molecular weight of the feedstock, change the crystalline structure of the feedstock, and/or increase the surface area and/or porosity of the feedstock. Radiation can be by, for example electron beam, ion beam, 100 nm to 28 nm ultraviolet (UV) light, gamma or X-ray radiation. Radiation treatments and systems for treatments are discussed in U.S. No. Patent 8,142,620 and U.S. Patent Application Series No. 12/417,731, the entire disclosures of which are incorporated herein by reference. Each form of radiation ionizes the biomass via particular interactions, as determined by the energy of the radiation. Heavy charged particles primarily ionize matter via Coulomb scattering; furthermore, these interactions produce energetic electrons that may further ionize matter. Alpha particles are identical to the nucleus of a helium atom and are produced by the alpha decay of various radioactive nuclei, such as isotopes of bismuth, polonium, astatine, radon, francium, radium, several actinides, such as actinium, thorium, uranium, neptunium, curium, californium, americium, and plutonium. Electrons interact via Coulomb scattering and bremsstrahlung radiation produced by changes in the velocity of electrons. When particles are utilized, they can be neutral (uncharged), positively charged or negatively charged. When charged, the charged particles can bear a single positive or negative charge, or multiple charges, In instances in which chain scission is desired to change the molecular structure of the carbohydrate containing material, positively charged particles may be desirable, in part, due to their acidic nature. When particles are utilized, the particles can have the mass of a resting electron, or greater, Gamma radiation has the advantage of a significant penetration depth into a variety of material in the sample. In embodiments in which the irradiating is performed with electromagnetic radiation, the electromagnetic radiation can have, Electron bombardment may be performed using an electron beam device that has a nominal energy of less than 10 MeV, The electron beam may have a relatively high total beam power (the combined beam power of all accelerating heads, or, if multiple accelerators are used, of all accelerators and all heads), This high total beam power is usually achieved by utilizing multiple accelerating heads. For example, the electron beam device may include two, four, or more accelerating heads. The use of multiple heads, each of which has a relatively low beam power, prevents excessive temperature rise in the material, thereby preventing burning of the material, and also increases the uniformity of the dose through the thickness of the layer of material. It is generally preferred that the bed of biomass material has a relatively uniform thickness. In some embodiments the thickness is less than about 1 inch It is desirable to treat the material as quickly as possible. In general, it is preferred that treatment be performed at a dose rate of greater than about 0.25 Mrad per second, In some embodiments, electron bombardment is performed until the material receives a total dose of at least 0.1 Mrad, 0.25 Mrad, 1 Mrad, 5 Mrad, Cooling methods, systems and equipment can be used before, during, after and in between radiations, for example utilizing a cooling screw conveyor and/or a cooled vibratory conveyor. Using multiple heads as discussed above, the material can be treated in multiple passes, for example, two passes at 10 to 20 Mrad/pass, In some embodiments, electrons are accelerated to, for example, a speed of greater than 75 percent of the speed of light, In some embodiments, any processing described herein occurs on lignocellulosic material that remains dry as acquired or that has been dried, In some embodiments, two or more ionizing sources can be used, such as two or more electron sources. For example, samples can be treated, in any order, with a beam of electrons, followed by gamma radiation and UV light having wavelengths from about 100 nm to about 280 nm. In some embodiments, samples are treated with three ionizing radiation sources, such as a beam of electrons, gamma radiation, and energetic UV light. The biomass is conveyed through the treatment zone where it can be bombarded with electrons. It may be advantageous to repeat the treatment to more thoroughly reduce the recalcitrance of the biomass and/or further modify the biomass. In particular, the process parameters can be adjusted after a first The effectiveness in changing the molecular/supermolecular structure and/or reducing the recalcitrance of the carbohydrate-containing biomass depends on the electron energy used and the dose applied, while exposure time depends on the power and dose. In some embodiments, the dose rate and total dose are adjusted so as not to destroy In some embodiments, the treatment (with any electron source or a combination of sources) is performed until the material receives a dose of at least about 0.05 Mrad, In some embodiments, relatively low doses of radiation are utilized, It also can be desirable to irradiate from multiple directions, simultaneously or sequentially, in order to achieve a desired degree of penetration of radiation into the material. For example, depending on the density and moisture content of the material, such as wood, and the type of radiation source used Irradiation from multiple directions can be particularly useful with electron beam radiation, which irradiates faster than gamma radiation but typically does not achieve as great a penetration depth. As previously discussed, the invention can include processing the material in a vault and/or bunker that is constructed using radiation opaque materials. In some implementations, the radiation opaque materials are selected to be capable of shielding the components from X-rays with high energy (short wavelength), which can penetrate many materials. One important factor in designing a radiation shielding enclosure is the attenuation length of the materials used, which will determine the required thickness for a particular material, blend of materials, or layered structure. The attenuation length is the penetration distance at which the radiation is reduced to approximately 1/e (e = Eulers number) times that of the incident radiation. Although virtually all materials are radiation opaque if thick enough, materials containing a high compositional percentage In some cases, the radiation opaque material may be a layered material, for example having a layer of a higher Ζ value material, to provide good shielding, and a layer of a lower Ζ value material to provide other properties A radiation opaque material can reduce the radiation passing through a structure The type of radiation determines the kinds of radiation sources used as well as the radiation devices and associated equipment. The methods, systems and equipment described herein, for example, for treating materials with radiation, can utilized sources as described herein as well as any other useful source. Sources of gamma rays include radioactive nuclei, such as isotopes of cobalt, calcium, technetium, chromium, gallium, indium, iodine, iron, krypton, samarium, selenium, sodium, thallium, and xenon. Sources of X-rays include electron beam collision with metal targets, such as tungsten or molybdenum or alloys, or compact light sources, such as those produced commercially by Lyncean. Alpha particles are identical to the nucleus of a helium atom and are produced by the alpha decay of various radioactive nuclei, such as isotopes of bismuth, polonium, astatine, radon, francium, radium, several actinides, such as actinium, thorium, uranium, neptunium, curium, californium, americium, and plutonium. Sources for ultraviolet radiation include deuterium or cadmium lamps. Sources for infrared radiation include sapphire, zinc, or selenide window ceramic lamps. Sources for microwaves include klystrons, Slevin type RF sources, or atom beam sources that employ hydrogen, oxygen, or nitrogen gases. Accelerators used to accelerate the particles (e.g., electrons or ions) can be DC (e.g., electrostatic DC or electrodynamic DC), RF linear, magnetic induction linear or continuous wave. For example, various irradiating devices may be used in the methods disclosed herein, including field ionization sources, electrostatic ion separators, field ionization generators, thermionic emission sources, microwave discharge ion sources, recirculating or static accelerators, dynamic linear accelerators, van de Graaff accelerators, Cockroft Walton accelerators (e.g., PELLETRON® accelerators), LINACS, Dynamitrons (e.g., DYNAMITRON® accelerators), cyclotrons, synchrotrons, betatrons, transformer-type accelerators, microtrons, plasma generators, cascade accelerators, and folded tandem accelerators. For example, cyclotron type accelerators are available from IBA, Belgium, such as the RHODOTRON™ system, while DC type accelerators are available from RDI, now IBA Industrial, such as the DYNAMITRON®. Other suitable accelerator systems include, for example: DC insulated core transformer (ICT) type systems, available from Nissin High Voltage, Japan; S-band LINACs, available from L3-PSD (USA), Linac Systems (France), Mevex (Canada), and Mitsubishi Heavy Industries (Japan); L-band LINACs, available from Iotron Industries (Canada); and ILU-based accelerators, available from Budker Laboratories (Russia). Ions and ion accelerators are discussed in Introductory Nuclear Physics, Kenneth S. Krane, John Wiley & Sons, Inc. (1988), Krsto Prelec, FIZIKA Β 6 (1997) 4, 177-206, Chu, William Τ., “Overview of Light-Ion Beam Therapy”, Columbus-Ohio, ICRU-IAEA Meeting, 18-20 March 2006, Iwata, Υ. et al., “Alternating-Phase-Focused IH-DTL for Heavy-Ion Medical Accelerators”, Proceedings of EPAC 2006, Edinburgh, Scotland, , and Leitner, C.M. et al., “Status of the Superconducting ECR Ion Source Venus”, Proceedings of EPAC 2000, Vienna, Austria. Some particle accelerators and their uses are disclosed, for example, in U.S. Pat. No. 7,931,784 to Medoff, the complete disclosure of which is incorporated herein by reference. Electrons may be produced by radioactive nuclei that undergo beta decay, such as isotopes of iodine, cesium, technetium, and iridium. Alternatively, an electron gun can be used as an electron source via thermionic emission and accelerated through an accelerating potential. An electron gun generates electrons, which are then accelerated through a large potential 1 million, greater than about 2 million, greater than about 5 million, greater than about 6 million, greater than about 7 million, greater than about 8 million, greater than about 9 million, or even greater than 10 million volts) and then scanned magnetically in the x-y plane, where the electrons are initially accelerated in the ζ direction down the accelerator tube and extracted through a foil window. Scanning the electron beams is useful for increasing the irradiation surface when irradiating materials, Various other irradiating devices may be used in the methods disclosed herein, including field ionization sources, electrostatic ion separators, field ionization generators, thermionic emission sources, microwave discharge ion sources, recirculating or static accelerators, dynamic linear accelerators, van de Graaff accelerators, and folded tandem accelerators. Such devices are disclosed, for example, in U.S. Pat. No. 7,931,784 to Medoff, the complete disclosure of which is incorporated herein by reference. A beam of electrons can be used as the radiation source. A beam of electrons has the advantages of high dose rates Electrons can also be more efficient at causing changes in the molecular structure of carbohydrate-containing materials, for example, by the mechanism of chain scission. In addition, electrons having energies of 0.5-10 MeV can penetrate low density materials, such as the biomass materials described herein, Electron beam irradiation devices may be procured commercially or built. For example, elements or components such inductors, capacitors, casings, power sources, cables, wiring, voltage control systems, current control elements, insulating material, microcontrollers and cooling equipment can be purchased and assembled into a device. Optionally, a commercial device can be modified and/or adapted. For example, devices and components can be purchased from any of the commercial sources described herein including Ion Beam Applications (Fouvain-la-Neuve, Belgium), Wasik Associates Inc. (Dracut, ΜΑ), NHV Corporation (Japan), the Titan Corporation (San Diego, CA), Vivirad High Voltage Corp (Billerica, ΜΑ) and/or Budker Faboratories (Russia). Typical electron energies can be 0.5 MeV, 1 MeV, 2 MeV, 4.5 MeV, 7.5 MeV, or 10 MeV. Typical electron beam irradiation device power can be 1 kW, 5 kW, 10 kW, 20 kW, 50 kW, 60 kW, 70 kW, 80 kW, 90 kW, 100 kW, 125 kW, 150 kW, 175 kW, 200 kW, 250 kW, 300 kW, 350 kW, 400 kW, 450 kW, 500 kW, 600 kW, 700 kW, 800 kW, 900 kW or even 1000 kW. Accelerators that can be used include NHV irradiators medium energy series EPS-500 The electron beam irradiation device can produce either a fixed beam or a scanning beam. A scanning beam may be advantageous with large scan sweep length and high scan speeds, as this would effectively replace a large, fixed beam width. Further, available sweep widths of 0.5 m, 1 m, 2 m or more are available. The scanning beam is preferred in most embodiments described herein because of the larger scan width and reduced possibility of local heating and failure of the windows. The extraction system for an electron accelerator can include two window foils. The cooling gas in the two foil window extraction system can be a purge gas or a mixture, for example, air, or a pure gas. In one embodiment, the gas is an inert gas such as nitrogen, argon, helium and/or carbon dioxide. It is preferred to use a gas rather than a liquid since energy losses to the electron beam are minimized. Mixtures of pure gas can also be used, either pre-mixed or mixed in line prior to impinging on the windows or in the space between the windows. The cooling gas can be cooled, for example, by using a heat exchange system Several processes can occur in biomass when electrons from an electron beam interact with matter in inelastic collisions. For example, ionization of the material, chain scission of polymers in the material, cross linking of polymers in the material, oxidation of the material, generation of X-rays (“Bremsstrahlung”) and vibrational excitation of molecules The adiabatic temperature rise (AT) from adsorption of ionizing radiation is given by the equation: AT = D/Cp: where D is the average dose in kGy, Cp is the heat capacity in J/g °C, and AT is the change in temperature in °C. A typical dry biomass material will have a heat capacity close to 2. Wet biomass will have a higher heat capacity dependent on the amount of water since the heat capacity of water is very high (4.19 J/g °C). Metals have much lower heat capacities, for example, 304 stainless steel has a heat capacity of 0.5 J/g °C. The temperature change due to the instant adsorption of radiation in a biomass and stainless steel for various doses of radiation is shown in Table 1. At the higher temperatures biomass will decompose causing extreme deviation from the estimated changes in temperature. High temperatures can destroy and or modify the biopolymers in biomass so that the polymers ( It has been found that irradiation above about 10 Mrad is desirable for the processes described herein 0.1 Wm_1K1), heat dissipation is slow, unlike, for example, metals (greater than about 10 Wnr'K-1) which can dissipate energy quickly as long as there is a heat sink to transfer the energy to. In some embodiments, the systems and methods include a beam stop The beam stop can be made of a metal including, but not limited to, stainless steel, lead, iron, molybdenum, silver, gold, titanium, aluminum, tin, or alloys of these, or laminates (layered materials) made with such metals The beam stop can be cooled, for example, with a cooling fluid such as an aqueous solution or a gas. The beam stop can be partially or completely hollow, for example with cavities. Interior spaces of the beam stop can be used for cooling fluids and gases. The beam stop can be of any shape, including flat, curved, round, oval, square, rectangular, beveled and wedged shapes. The beam stop can have perforations so as to allow some electrons through, thus controlling The embodiments disclosed herein can also include a beam dump when utilizing a radiation treatment. A beam dump’s purpose is to safely absorb a beam of charged particles. Like a beam stop, a beam dump can be used to block the beam of charged particles. However, a beam dump is much more robust than a beam stop, and is intended to block the full power of the electron beam for an extended period of time. They are often used to block the beam as the accelerator is powering up. Beam dumps are also designed to accommodate the heat generated by such beams, and are usually made from materials such as copper, aluminum, carbon, beryllium, tungsten, or mercury. Beam dumps can be cooled, for example, using a cooling fluid that can be in thermal contact with the beam dump. Lignocellulosic materials include, but are not limited to, wood, particle board, forestry wastes In some cases, the lignocellulosic material includes corncobs. Ground or hammermilled corncobs can be spread in a layer of relatively uniform thickness for irradiation, and after irradiation are easy to disperse in the medium for further processing. To facilitate harvest and collection, in some cases the entire corn plant is used, including the com stalk, corn kernels, and in some cases even the root system of the plant. Advantageously, no additional nutrients (other than a nitrogen source, Corncobs, before and after comminution, are also easier to convey and disperse, and have a lesser tendency to form explosive mixtures in air than other cellulosic or lignocellulosic materials such as hay and grasses. Cellulosic materials include, for example, paper, paper products, paper waste, paper pulp, pigmented papers, loaded papers, coated papers, filled papers, magazines, printed matter 13/396,365 (“Magazine Feedstocks” by Medoff Cellulosic materials can also include lignocellulosic materials which have been partially or fully de-lignified. In some instances other biomass materials can be utilized, for example starchy materials. Starchy materials include starch itself, Blends of any two or more starchy materials are also starchy materials. Mixtures of starchy, cellulosic and or lignocellulosic materials can also be used. For example, a biomass can be an entire plant, a part of a plant or different parts of a plant, Microbial materials that can be used as feedstock can include, but are not limited to, any naturally occurring or genetically modified microorganism or organism that contains or is capable of providing a source of carbohydrates In other embodiments, the biomass materials, such as cellulosic, starchy and lignocellulosic feedstock materials, can be obtained from transgenic microorganisms and plants that have been modified with respect to a wild type variety. Such modifications may be, for example, through the iterative steps of selection and breeding to obtain desired traits in a plant. Furthermore, the plants can have had genetic material removed, modified, silenced and/or added with respect to the wild type variety. For example, genetically modified plants can be produced by recombinant DNA methods, where genetic modifications include introducing or modifying specific genes from parental varieties, or, for example, by using transgenic breeding wherein a specific gene or genes are introduced to a plant from a different species of plant and/or bacteria. Another way to create genetic variation is through mutation breeding wherein new alleles are artificially created from endogenous genes. The artificial genes can be created by a variety of ways including treating the plant or seeds with, for example, chemical mutagens Any of the methods described herein can be practiced with mixtures of any biomass materials described herein. Other materials For example polyethylene neoprene), poly(cis-1,4-isoprene) Composites of polymers, for example with glass, metals, biomass Other materials that can be treated by using the methods, systems and equipment disclosed herein are ceramic materials, minerals, metals, inorganic compounds. For example, silicon and germanium crystals, silicon nitrides, metal oxides, semiconductors, insulators, cements and or conductors. In addition, manufactured multipart or shaped materials The biomass can be in a dry form, for example, with less than about 35% moisture content The processes disclosed herein can utilize low bulk density materials, for example cellulosic or lignocellulosic feedstocks that have been physically pretreated to have a bulk density of less than about 0.75 g/cm3, In some cases, the pre-treatment processing includes screening of the biomass material. Screening can be through a mesh or perforated plate with a desired opening size, for example, less than about 6.35 mm (1/4 inch, 0.25 inch), Screening of material can also be by a manual method, for example by an operator or mechanoid Optional pre-treatment processing can include heating the material. For example, a portion of a conveyor conveying the biomass or other material can be sent through a heated zone. The heated zone can be created, for example, by IR radiation, microwaves, combustion Optionally, pre-treatment processing can include cooling the material. Cooling material is described in U.S. Pat. No. 7,900,857 published March 8, 2011, the disclosure of which in incorporated herein by reference. For example, cooling can be by supplying a cooling fluid, for example water Another optional pre-treatment processing method can include adding a material to the biomass or other feedstocks. The additional material can be added by, for example, by showering, sprinkling and/or pouring the material onto the biomass as it is conveyed. Materials that can be added include, for example, metals, ceramics and/or ions as described in U.S. Pat. Αρρ. Pub. 2010/0105119 Α1 (filed October 26, 2009) and U.S. Pat. Αρρ. Pub. 2010/0159569 Α1 (filed December 16, 2009), the entire disclosures of which are incorporated herein by reference. Optional materials that can be added include acids and bases. Other materials that can be added are oxidants Biomass can be delivered to conveyor In some embodiments the material is delivered to the conveyor using an enclosed material distribution system to help maintain a low oxygen atmosphere and/or control dust and fines. Lofted or air suspended biomass fines and dust are undesirable because these can form an explosion hazard or damage the window foils of an electron gun (if such a device is used for treating the material). The material can be leveled to form a uniform thickness between about 0.0312 and 5 inches After the biomass material has been conveyed through the radiation zone, optional post-treatment processing can be done. The optional post-treatment processing can, for example, be a process described with respect to the pre-irradiation processing. For example, the biomass can be screened, heated, cooled, and/or combined with additives. Uniquely to post-irradiation, quenching of the radicals can occur, for example, quenching of radicals by the addition of fluids or gases Quenching of biomass that has been irradiated is described in U.S. Pat. No. 8,083,906 published Dec. 27, 2011, the entire disclosure of which is incorporate herein by reference. If desired, one or more mechanical treatments can be used in addition to irradiation to further reduce the recalcitrance of the carbohydrate-containing material. These processes can be applied before, during and or after irradiation. In some cases, the mechanical treatment may include an initial preparation of the feedstock as received, Alternatively, or in addition, the feedstock material can be treated with another treatment, for example chemical treatments, such as with an acid (HC1, H2SO4, Η3ΡΟ4), a base In addition to size reduction, which can be performed initially and/or later in processing, mechanical treatment can also be advantageous for “opening up,” “stressing,” breaking or shattering the carbohydrate-containing materials, making the cellulose of the materials more susceptible to chain scission and/or disruption of crystalline structure during the physical treatment. Methods of mechanically treating the carbohydrate-containing material include, for example, milling or grinding. Milling may be performed using, for example, a hammer mill, ball mill, colloid mill, conical or cone mill, disk mill, edge mill, Wiley mill, grist mill or other mill. Grinding may be performed using, for example, a cutting/impact type grinder. Some exemplary grinders include stone grinders, pin grinders, coffee grinders, and burr grinders. Grinding or milling may be provided, for example, by a reciprocating pin or other element, as is the case in a pin mill. Other mechanical treatment methods include mechanical ripping or tearing, other methods that apply pressure to the fibers, and air attrition milling. Suitable mechanical treatments further include any other technique that continues the disruption of the internal structure of the material that was initiated by the previous processing steps. Mechanical feed preparation systems can be configured to produce streams with specific characteristics such as, for example, specific maximum sizes, specific length-towidth, or specific surface areas ratios. Physical preparation can increase the rate of reactions, improve the movement of material on a conveyor, improve the irradiation profile of the material, improve the radiation uniformity of the material, or reduce the processing time required by opening up the materials and making them more accessible to processes and/or reagents, such as reagents in a solution. The bulk density of feedstocks can be controlled The material can be densified, for example from less than about 0.2 g/cc to more than about 0.9 g/cc Pat. No. 7,932,065 to Medoff and International Publication No. WO 2008/073186 (which was filed October 26, 2007, was published in English, and which designated the United States), the full disclosures of which are incorporated herein by reference. Densified materials can be processed by any of the methods described herein, or any material processed by any of the methods described herein can be subsequently densified. In some embodiments, the material to be processed is in the form of a fibrous material that includes fibers provided by shearing a fiber source. For example, the shearing can be performed with a rotary knife cutter. For example, a fiber source, In some embodiments, the shearing of the fiber source and the passing of the resulting first fibrous material through a first screen are performed concurrently. The shearing and the passing can also be performed in a batch-type process. For example, a rotary knife cutter can be used to concurrently shear the fiber source and screen the first fibrous material. A rotary knife cutter includes a hopper that can be loaded with a shredded fiber source prepared by shredding a fiber source. In some implementations, the feedstock is physically treated prior to saccharification and/or fermentation. Physical treatment processes can include one or more of any of those described herein, such as mechanical treatment, chemical treatment, irradiation, sonication, oxidation, pyrolysis or steam explosion. Treatment methods can be used in combinations of two, three, four, or even all of these technologies (in any order). When more than one treatment method is used, the methods can be applied at the same time or at different times. Other processes that change a molecular structure of a biomass feedstock may also be used, alone or in combination with the processes disclosed herein. Mechanical treatments that may be used, and the characteristics of the mechanically treated carbohydrate-containing materials, are described in further detail in U.S. Pat. Αρρ. Pub. 2012/0100577 Al, filed October 18, 2011, the full disclosure of which is hereby incorporated herein by reference. If desired, one or more sonication, pyrolysis, oxidative, or steam explosion processes can be used instead of or in addition to irradiation to reduce or further reduce the recalcitrance of the carbohydrate-containing material. For example, these processes can be applied before, during and or after irradiation. These processes are described in detail in U.S. Pat. No. 7,932,065 to Medoff, the full disclosure of which is incorporated herein by reference. Using the processes described herein, the biomass material can be converted to one or more products, such as energy, fuels, foods and materials. For example, intermediates and products such as organic acids, salts of organic acids, anhydrides, esters of organic acids and fuels, Specific examples of products include, but are not limited to, hydrogen, sugars Any combination of the above products with each other, and/or of the above products with other products, which other products may be made by the processes described herein or otherwise, may be packaged together and sold as products. The products may be combined, Any of the products or combinations of products described herein may be sanitized or sterilized prior to selling the products, The processes described herein can produce various by-product streams useful for generating steam and electricity to be used in other parts of the plant (co-generation) or sold on the open market. For example, steam generated from burning by-product streams can be used in a distillation process. As another example, electricity generated from burning by-product streams can be used to power electron beam generators used in pretreatment. The by-products used to generate steam and electricity are derived from a number of sources throughout the process. For example, anaerobic digestion of wastewater can produce a biogas high in methane and a small amount of waste biomass (sludge). As another example, post-saccharification and/or post-distillate solids Other intermediates and products, including food and pharmaceutical products, are described in U.S. Pat. Αρρ. Pub. 2010/0124583 Al, published May 20, 2010, to Medoff, the full disclosure of which is hereby incorporated by reference herein. The spent biomass When used as a binder, the lignin or a lignosulfonate can, When used as a dispersant, the lignin or lignosulfonates can be used, When used as an emulsifier, the lignin or lignosulfonates can be used, When used as a sequestrant, the lignin or lignosulfonates can be used, For energy production lignin generally has a higher energy content than holocellulose (cellulose and hemicellulose) since it contains more carbon than homocellulose. For example, dry lignin can have an energy content of between about 11,000 and 12,500 BTU per pound, compared to 7,000 an 8,000 BTU per pound of holocellulose. As such, lignin can be densified and converted into briquettes and pellets for burning. For example, the lignin can be converted into pellets by any method described herein. For a slower burning pellet or briquette, the lignin can be crosslinked, such as applying a radiation dose of between about 0.5 Mrad and 5 Mrad. Crosslinking can make a slower burning form factor. The form factor, such as a pellet or briquette, can be converted to a “synthetic coal” or charcoal by pyrolyzing in the absence of air, In order to convert the feedstock to a form that can be readily processed the glucan- or xylan-containing cellulose in the feedstock can be hydrolyzed to low molecular weight carbohydrates, such as sugars, by a saccharifying agent, The feedstock can be hydrolyzed using an enzyme, Alternatively, the enzymes can be supplied by organisms that break down biomass, such as the cellulose and/or the lignin portions of the biomass, contain or manufacture various cellulolytic enzymes (cellulases), ligninases or various small molecule biomass-degrading metabolites. These enzymes may be a complex of enzymes that act synergistically to degrade crystalline cellulose or the lignin portions of biomass. Examples of cellulolytic enzymes include: endoglucanases, cellobiohydrolases, and cellobiases (beta-glucosidases). During saccharification a cellulosic substrate can be initially hydrolyzed by endoglucanases at random locations producing oligomeric intermediates. These intermediates are then substrates for exo-splitting glucanases such as cellobiohydrolase to produce cellobiose from the ends of the cellulose polymer. Cellobiose is a watersoluble 1,4-linked dimer of glucose. Finally, cellobiase cleaves cellobiose to yield glucose. The efficiency Therefore, the treated biomass materials can be saccharified, by combining the material and a cellulase enzyme in a fluid medium, The saccharification process can be partially or completely performed in a tank It is generally preferred that the tank contents be mixed during saccharification, The addition of surfactants can enhance the rate of saccharification. Examples of surfactants include non-ionic surfactants, such as a Tween® 20 or Tween® 80 polyethylene glycol surfactants, ionic surfactants, or amphoteric surfactants. It is generally preferred that the concentration of the sugar solution resulting from saccharification be relatively high, Alternatively, sugar solutions of lower concentrations may be used, in which case it may be desirable to add an antimicrobial additive, A relatively high concentration solution can be obtained by limiting the amount of water added to the carbohydrate-containing material with the enzyme. The concentration can be controlled, Suitable cellulolytic enzymes include cellulases from species in the genera In addition to or in combination to enzymes, acids, bases and other chemicals These can be used in any combination or sequence In the processes described herein, for example after saccharification, sugars The processes described herein can include hydrogenation. For example, glucose and xylose can be hydrogenated to sorbitol and xylitol respectively. Hydrogenation can be accomplished by use of a catalyst Yeast and In some embodiments, In some embodiments, all or a portion of the fermentation process can be interrupted before the low molecular weight sugar is completely converted to a product Nutrients for the microorganisms may be added during saccharification and/or fermentation, for example the food-based nutrient packages described in U.S. Pat. Αρρ. Pub. 2012/0052536, filed July 15, 2011, the complete disclosure of which is incorporated herein by reference. “Fermentation” includes the methods and products that are disclosed in application Nos. PCT/US2012/71093 published June 27, 2013, PCT/US2012/71907 published June 27, 2012, and PCT/US2012/71083 published June 27, 2012 the contents of which are incorporated by reference herein in their entirety. Mobile fermenters can be utilized, as described in International Αρρ. No. PCT/US2007/074028 (which was filed July 20, 2007, was published in English as WO 2008/011598 and designated the United States) and has a US issued Patent No. 8,318,453, the contents of which are incorporated herein in its entirety. Similarly, the saccharification equipment can be mobile. Further, saccharification and/or fermentation may be performed in part or entirely during transit. The microorganism(s) used in fermentation can be naturally-occurring microorganisms and/or engineered microorganisms. For example, the microorganism can be a bacterium (including, but not limited to, Suitable fermenting microorganisms have the ability to convert carbohydrates, such as glucose, fructose, xylose, arabinose, mannose, galactose, oligosaccharides or polysaccharides into fermentation products. Fermenting microorganisms include strains of the genus Additional microorganisms include the Lactobacillus group. Examples include Several organisms, such as bacteria, yeasts and fungi, can be utilized to ferment biomass derived products such as sugars and alcohols to succinic acid and similar products. For example, organisms can be selected from; Many such microbial strains are publicly available, either commercially or through depositories such as the ATCC (American Type Culture Collection, Manassas, Virginia, USA), the NRRL (Agricultural Research Service Culture Collection, Peoria, Illinois, USA), or the DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany), to name a few. Commercially available yeasts include, for example, RED STAR®/Lesaffre Ethanol Red (available from Red Star/Lesaffre, USA), FALI® (available from Fleischmann’s Yeast, a division of Bums Philip Food Inc., USA), SUPERSTART® (available from Alltech, now Falemand), GERT STRAND® (available from Gert Strand ΑΒ, Sweden) and FERMOL® (available from DSM Specialties). After fermentation, the resulting fluids can be distilled using, for example, a “beer column” to separate ethanol and other alcohols from the majority of water and residual solids. The vapor exiting the beer column can be, In other embodiments utilizing the methods and systems described herein, hydrocarbon-containing materials can be processed. Any process described herein can be used to treat any hydrocarbon-containing material herein described. “Hydrocarbon-containing materials,” as used herein, is meant to include oil sands, oil shale, tar sands, coal dust, coal slurry, bitumen, various types of coal, and other naturally-occurring and synthetic materials that include both hydrocarbon components and solid matter. The solid matter can include rock, sand, clay, stone, silt, drilling slurry, or other solid organic and/or inorganic matter. The term can also include waste products such as drilling waste and by-products, refining waste and by-products, or other waste products containing hydrocarbon components, such as asphalt shingling and covering, asphalt pavement, etc. In yet other embodiments utilizing the methods and systems described herein, wood and wood containing produces can be processed. For example, lumber products can be processed, e.g. boards, sheets, laminates, beams, particle boards, composites, rough cut wood, soft wood and hard wood. In addition, cut trees, bushes, wood chips, saw dust, roots, bark, stumps, decomposed wood and other wood containing biomass material can be processed. Various conveying systems can be used to convey the biomass material, for example, as discussed, to a vault, and under an electron beam in a vault. Exemplary conveyors are belt conveyors, pneumatic conveyors, screw conveyors, carts, trains, trains or carts on rails, elevators, front loaders, backhoes, cranes, various scrapers and shovels, trucks, and throwing devices can be used. For example, vibratory conveyors can be used in various processes described herein. Vibratory conveyors are described in PCT/US2013/64289 filed October 10, 2013 the full disclosure of which is incorporated by reference herein. Vibratory conveyors are particularly useful for spreading the material and producing a uniform layer on the conveyor trough surface. For example the initial feedstock can form a pile of material that can be at least four feet high (e.g., at least about 3 feet, at least about 2 feet, at least about 1 foot, at least about 6 inches, at least about 5 inches, at least about, 4 inches, at least about 3 inches, at least about 2 inches, at least about 1 inch, at least about The initial drop area of the biomass by the spreader (e.g., broadcast spreader, drop spreader, conveyor, or cross cut vibratory conveyor) can span the entire width of the first vibratory conveyor, or it can span part of this width. Once dropped onto the conveyor, the material is spread even more uniformly by the vibrations of the conveyor so that, preferably, the entire width of the conveyor is covered with a uniform layer of biomass. In some embodiments combinations of spreaders can be used. Some methods of spreading a feed stock are described in U.S. Patent No. 7,153,533, filed July 23, 2002 and published December 26, 2006, the entire disclosure of which is incorporated herein by reference. Generally, it is preferred to convey the material as quickly as possible through an electron beam to maximize throughput. For example, the material can be conveyed at rates of at least 1 ft/min, e.g., at least 2 ft/min, at least 3 ft/min, at least 4 ft/min, at least 5 ft/min, at least 10 ft/min, at least 15 ft/min, at least 20 ft/min, at least 25 ft/min, at least 30 ft/min, at least 40 ft/min, at least 50 ft/min, at least 60 ft/min, at least 70 ft/min, at least 80 ft/min, at least 90 ft/min. The rate of conveying is related to the beam current and targeted irradiation dose, for example, for a The rate at which material can be conveyed depends on the shape and mass of the material being conveyed, and the desired amount. Flowing materials e.g., particulate materials, are particularly amenable to conveying with vibratory conveyors. Conveying speeds can, for example be, at least 100 lb/hr (e.g., at least 500 lb/hr, at least 1000 lb/hr, at least 2000 lb/hr, at least 3000 lb/hr, at least 4000 lb/hr, at least 5000 lb/hr, at least 10,000 lb/hr, at least 15, 000 lb/hr, or even at least 25,000 lb/hr). Some typical conveying speeds can be between about 1000 and 10,000 lb/hr, (e.g., between about 1000 lb/hr and 8000 lb/hr, between about 2000 and 7000 lb/hr, between about 2000 and 6000 lb/hr, between about 2000 and 50001b/hr, between about 2000 and 4500 lb/hr, between about 1500 and 5000 lb/hr, between about 3000 and 7000 lb/hr, between about 3000 and 6000 lb/hr, between about 4000 and 6000 lb/hr and between about 4000 and 5000 lb/hr). Typical conveying speeds depend on the density of the material. For example, for a biomass with a density of about 35 lb/ft3, and a conveying speed of about 5000 lb/hr, the material is conveyed at a rate of about 143 ft3/hr, if the material is 14” thick and is in a trough 5.5 ft wide, the material is conveyed at a rate of about 1250 ft/hr (about 21 ft/min). Rates of conveying the material can therefore vary greatly. Preferably, for example, a The vibratory conveyors described can include screens used for sieving and sorting materials. Port openings on the side or bottom of the troughs can be used for sorting, selecting or removing specific materials, for example, by size or shape. Some conveyors have counterbalances to reduce the dynamic forces on the support structure. Some vibratory conveyors are configured as spiral elevators, are designed to curve around surfaces and/or are designed to drop material from one conveyor to another (e.g., in a step, cascade or as a series of steps or a stair). Along with conveying materials conveyors can be used, by themselves or coupled with other equipment or systems, for screening, separating, sorting, classifying, distributing, sizing, inspection, picking, metal removing, freezing, blending, mixing, orienting, heating, cooking, drying, dewatering, cleaning, washing, leaching, quenching, coating, de-dusting and/or feeding. The conveyors can also include covers (e.g., dust-tight covers), side discharge gates, bottom discharge gates, special liners (e.g., anti-stick, stainless steel, rubber, custom steal, and or grooved), divided troughs, quench pools, screens, perforated plates, detectors (e.g., metal detectors), high temperature designs, food grade designs, heaters, dryers and or coolers. In addition, the trough can be of various shapes, for example, flat bottomed, vee shaped bottom, flanged at the top, curved bottom, flat with ridges in any direction, tubular, half pipe, covered or any combinations of these. In particular, the conveyors can be coupled with an irradiation systems and/or equipment. The conveyors (e.g., vibratory conveyor) can be made of corrosion resistant materials. The conveyors can utilize structural materials that include stainless steel (e.g., 304, 316 stainless steel, HASTELLOY® ALLOYS and INCONEL® Alloys). Lor example, HASTELLOY® Corrosion-Resistant alloys from Hynes (Kokomo, Indiana, USA) such as HASTELLOY® B-3® ALLOY, HASTELLOY® HYBRID-BC1® ALLOY, HASTELLOY® C-4 ALLOY, HASTELLOY® C-22® ALLOY, HASTELLOY® C-22HS® ALLOY, HASTELLOY® C-276 ALLOY, HASTELLOY® C-2000® ALLOY, HASTELLOY® G-30® ALLOY, HASTELLOY® G-35® ALLOY, HASTELLOY® Ν ALLOY and HASTELLOY® ULTIMET® alloy. The vibratory conveyors can include non-stick release coatings, for example, TULLLON™ (Dupont, Delaware, USA). The vibratory conveyors can also include corrosion resistant coatings. Lor example, coatings that can be supplied from Metal Coatings Corp (Houston, Texas, USA) and others such as Fluoropolymer, XYLAN®, Molybdenum Disulfide, Epoxy Phenolic, Phosphate- ferrous metal coating, Polyurethane- high gloss topcoat for epoxy, inorganic zinc, Poly Tetrafluoro ethylene, PPS/RYTON®, fluorinated ethylene propylene, PVDF/DYKOR®, ECTFE/HALAR® and Ceramic Epoxy Coating. The coatings can improve resistance to process gases (e.g., ozone), chemical corrosion, pitting corrosion, galling corrosion and oxidation. Optionally, in addition to the conveying systems described herein, one or more other conveying systems can be enclosed. When using an enclosure, the enclosed conveyor can also be purged with an inert gas so as to maintain an atmosphere at a reduced oxygen level. Keeping oxygen levels low avoids the formation of ozone which in some instances is undesirable due to its reactive and toxic nature. For example, the oxygen can be less than about 20% Purging can be done with an inert gas including, but not limited to, nitrogen, argon, helium or carbon dioxide. This can be supplied, for example, from a boil off of a liquid source The enclosed conveyor can also be purged with a reactive gas that can react with the biomass. This can be done before, during or after the irradiation process. The reactive gas can be, but is not limited to, nitrous oxide, ammonia, oxygen, ozone, hydrocarbons, aromatic compounds, amides, peroxides, azides, halides, oxyhalides, phosphides, phosphines, arsines, sulfides, thiols, boranes and/or hydrides. The reactive gas can be activated in the enclosure, Purging gases supplied to an enclosed conveyor can also be cooled, for example below about 25°C, below about 0°C, below about -40°C, below about -80°C, below about -120°C. For example, the gas can be boiled off from a compressed gas such as liquid nitrogen or sublimed from solid carbon dioxide. As an alternative example, the gas can be cooled by a chiller or part of or the entire conveyor can be cooled. Any material, processes or processed materials discussed herein can be used to make products and/or intermediates such as composites, fillers, binders, plastic additives, adsorbents and controlled release agents. The methods can include densification, for example, by applying pressure and heat to the materials. For example, composites can be made by combining fibrous materials with a resin or polymer. For example, radiation cross-linkable resin, In some instances the biomass material is treated at a first level to reduce recalcitrance, Any of the products and/or intermediates described herein, for example, produced by the processes, systems and/or equipment described herein, can be combined with flavors, fragrances, colorants and/or mixtures of these. For example, any one or more of (optionally along with flavors, fragrances and/or colorants) sugars, organic acids, fuels, polyols, such as sugar alcohols, biomass, fibers and composites can be combined with Flavors, fragrances and colorants can be added in any amount, such as between about 0.001 wt.% to about 30 wt.%, In one embodiment the flavors, fragrances and colorants can be added to the biomass immediately after the biomass is irradiated such that the reactive sites created by the irradiation may react with reactive compatible sites of the flavors, fragrances, and colorants. The flavors, fragrances and colorants can be natural and/or synthetic materials. These materials can be one or more of a compound, a composition or mixtures of these Alternatively, or additionally these flavors, fragrances and colorants can be harvested from a whole organism The compounds can be derived by a chemical reaction, for example, the combination of a sugar The flavor, fragrance, antioxidant and/or colorant can be an intermediate and or product produced by the methods, equipment or systems described herein, for example and ester and a lignin derived product. Some examples of flavor, fragrances or colorants are polyphenols. Polyphenols are pigments responsible for the red, purple and blue colorants of many fruits, vegetables, cereal grains, and flowers. Polyphenols also can have antioxidant properties and often have a bitter taste. The antioxidant properties make these important preservatives. On class of polyphenols are the flavonoids, such as Anthocyanidines, flavanonols, flavan-3-ols, s, flavanones and flavanonols. Other phenolic compounds that can be used include phenolic acids and their esters, such as chlorogenic acid and polymeric tannins. Among the colorants inorganic compounds, minerals or organic compounds can be used, for example titanium dioxide, zinc oxide, aluminum oxide, cadmium yellow Some flavors and fragrances that can be utilized include ACALEA TBHQ, ACET C-6, ALLYL AMYL GLYCOLATE, ALPHA TERPINEOL, AMBRETTOLIDE, AMBRINOL 95, ANDRANE, APHERMATE, APPLELIDE, BACDANOL®, BERGAMAL, BETA IONONE EPOXIDE, BETA NAPHTHYL ISO-BUTYL ETHER, BICYCLONONALACTONE, BORNAFIX®, CANTHOXAL, CASHMERAN®, CASHMERAN® VELVET, CASSIFFIX®, CEDRAFIX, CEDRAMBER®, CEDRYL ACETATE, CELESTOLIDE, CINNAMALVA, CITRAL DIMETHYL ACETATE, CITROLATE™, CITRONELLOL 700, CITRONELLOL 950, CITRONELLOL COEUR, CITRONELLYL ACETATE, CITRONELLYL ACETATE PURE, CITRONELLYL FORMATE, CLARYCET, CLONAL, CONIFERAN, CONIFERAN PURE, CORTEX ALDEHYDE 50% PEOMOSA, CYCLABUTE, CYCLACET®, CYCLAPROP®, CYCLEMAX™, CYCLOHEXYL ETHYL ACETATE, DAMASCOL, DELTA DAMASCONE, DIHYDRO CYCLACET, DIHYDRO MYRCENOL, DIHYDRO TERPINEOL, DIHYDRO TERPINYL ACETATE, DIMETHYL CYCLORMOL, DIMETHYL OCTANOL PQ, DIMYRCETOL, DIOLA, DIPENTENE, DULCINYL® RECRYSTALLIZED, ETHYL-3-PHENYL GLYCIDATE, FLEURAMONE, FLEURANIL, FLORAL SUPER, FLORALOZONE, FLORIFFOL, FRAISTONE, FRUCTONE, GALAXOLIDE® 50, GALAXOLIDE® 50 ΒΒ, GALAXOLIDE® 50 IPM, GALAXOLIDE® UNDILUTED, GALBASCONE, GERALDEHYDE, GERANIOL 5020, GERANIOL 600 TYPE, GERANIOL 950, GERANIOL 980 (PURE), GERANIOL CFT COEUR, GERANIOL COEUR, GERANYL ACETATE COEUR, GERANYL ACETATE, PURE, GERANYL FORMATE, GRIS ALVA, GUAIYL ACETATE, HELIONAL™, HERB AC, HERBALIME™, HEXADECANOLIDE, HEXALON, HEXENYL SALICYLATE CIS 3-, HYACINTH BODY, HYACINTH BODY NO. 3, HYDRATROPIC ALDEHYDE.DMA, HYDROXYOL, INDOLAROME, INTRELEVEN ALDEHYDE, INTRELEVEN ALDEHYDE SPECIAL, IONONE ALPHA, IONONE BETA, ISO CYCLO CITRAL, ISO CYCLO GERANIOL, ISO Ε SUPER®, ISOBUTYL QUINOLINE, JASMAL, JESSEMAL®, KHARISMAL®, KHARISMAL® SUPER, KHUSINIL, KOAVONE®, KOHINOOL®, LIFFAROME™, LIMOXAL, LINDENOL™, LYRAL®, LYRAME SUPER, MANDARIN ALD 10% TRI ΕΤΗ, CITR, MARITIMA, MCK CHINESE, MEIJIFF™, MELAFLEUR, MELOZONE, METHYL ANTHRANILATE, METHYL IONONE ALPHA EXTRA, METHYL IONONE GAMMA A, METHYL IONONE GAMMA COEUR, METHYL IONONE GAMMA PURE, METHYL LAVENDER KETONE, ΜΟΝΤΑVERDI®, MUGUESIA, MUGUET ALDEHYDE 50, MUSK Ζ4, MYRAC ALDEHYDE, MYRCENYL ACETATE, NECTARATE™, NEROL 900, NERYL ACETATE, OCIMENE, OCTACETAL, ORANGE FLOWER ETHER, ORIVONE, ORRINIFF 25%, OXASPIRANE, OZOFLEUR, PAMPLEFLEUR®, PEOMOSA, PHENOXANOL®, PICONIA, PRECYCLEMONE Β, PRENYL ACETATE, PRISMANTOL, RESEDA BODY, ROSALVA, ROSAMUSK, SANJINOL, SANTALIFF™, SYVERTAL, TERPINEOL,TERPINOLENE 20, TERPINOLENE 90 PQ, TERPINOLENE RECT., TERPINYL ACETATE, TERPINYL ACETATE JAX, TETRAHYDRO, MUGUOL®, TETRAHYDRO MYRCENOL, TETRAMERAN, TIMBERSILK™, TOBACAROL, TRIMOFIX® O ΤΤ, TRIPLAL®, TRISAMBER®, VANORIS, VERDOX™, VERDOX™ HC, VERTENEX®, VERTENEX® HC, VERTOFIX® COEUR, VERTOLIFF, VERTOLIFF ISO, VIOLIFF, VIVALDIE, ZENOLIDE, ABS INDIA 75 PCT MIGLYOL, ABS MOROCCO 50 PCT DPG, ABS MOROCCO 50 PCT TEC, ABSOLUTE FRENCH, ABSOLUTE INDIA, ABSOLUTE MD 50 PCT ΒΒ, ABSOLUTE MOROCCO, CONCENTRATE PG, TINCTURE 20 PCT, AMBERGRIS, AMBRETTE ABSOLUTE, AMBRETTE SEED OIL, ARMOISE OIL 70 PCT THUYONE, BASIL ABSOLUTE GRAND VERT, BASIL GRAND VERT ABS MD, BASIL OIL GRAND VERT, BASIL OIL VERVEINA, BASIL OIL VIETNAM, BAY OIL TERPENELESS, BEESWAX ABS Ν G, BEESWAX ABSOLUTE, BENZOIN RESINOID SIAM, BENZOIN RESINOID SIAM 50 PCT DPG, BENZOIN RESINOID SIAM 50 PCT PG, BENZOIN RESINOID SIAM 70.5 PCT TEC, BLACKCURRANT BUD ABS 65 PCT PG, BLACKCURRANT BUD ABS MD 37 PCT TEC, BLACKCURRANT BUD ABS MIGLYOL, BLACKCURRANT BUD ABSOLUTE BURGUNDY, BOIS DE ROSE OIL, BRAN ABSOLUTE, BRAN RESINOID, BROOM ABSOLUTE ITALY, CARDAMOM GUATEMALA C02 EXTRACT, CARDAMOM OIL GUATEMALA, CARDAMOM OIL INDIA, CARROT HEART, CASSIE ABSOLUTE EGYPT, CASSIE ABSOLUTE MD 50 PCT IPM, CASTOREUM ABS 90 PCT TEC, CASTOREUM ABS C 50 PCT MIGLYOL, CASTOREUM ABSOLUTE, CASTOREUM RESINOID, CASTOREUM RESINOID 50 PCT DPG, CEDROL CEDRENE, CEDRUS ATLANTICA OIL REDIST, CHAMOMILE OIL ROMAN, CHAMOMILE OIL WILD, CHAMOMILE OIL WILD LOW LIMONENE, CINNAMON BARK OIL CEYLAN, CISTE ABSOLUTE, CISTE ABSOLUTE COLORLESS, CITRONELLA OIL ASIA IRON FREE, CIVET ABS 75 PCT PG, CIVET ABSOLUTE, CIVET TINCTURE 10 PCT, CLARY SAGE ABS FRENCH DECOL, CLARY SAGE ABSOLUTE FRENCH, CLARY SAGE C’LESS 50 PCT PG, CLARY SAGE OIL FRENCH, COPAIBA BALSAM, COPAIBA BALSAM OIL, CORIANDER SEED OIL, CYPRESS OIL, CYPRESS OIL ORGANIC, DAVANA OIL, GALBANOL, GALBANUM ABSOLUTE COLORLESS, GALBANUM OIL, GALBANUM RESINOID, GALBANUM RESINOID 50 PCT DPG, GALBANUM RESINOID HERCOLYN ΒΗΤ, GALBANUM RESINOID TEC ΒΗΤ, GENTIANE ABSOLUTE MD 20 PCT ΒΒ, GENTIANE CONCRETE, GERANIUM ABS EGYPT MD, GERANIUM ABSOLUTE EGYPT, GERANIUM OIL CHINA, GERANIUM OIL EGYPT, GINGER OIL 624, GINGER OIL RECTIFIED SOLUBLE, GUAIACWOOD HEART, HAY ABS MD 50 PCT ΒΒ, HAY ABSOLUTE, HAY ABSOLUTE MD 50 PCT TEC, HEALINGWOOD, HYSSOP OIL ORGANIC, IMMORTELLE ABS YUGO MD 50 PCT TEC, IMMORTELLE ABSOLUTE SPAIN, IMMORTELLE ABSOLUTE YUGO, JASMIN ABS INDIA MD, JASMIN ABSOLUTE EGYPT, JASMIN ABSOLUTE INDIA, ASMIN ABSOLUTE MOROCCO, JASMIN ABSOLUTE SAMBAC, JONQUILLE ABS MD 20 PCT ΒΒ, JONQUILLE ABSOLUTE France, JUNIPER BERRY OIL FLG, JUNIPER BERRY OIL RECTIFIED SOLUBLE, LABDANUM RESINOID 50 PCT TEC, LABDANUM RESINOID ΒΒ, LABDANUM RESINOID MD, LABDANUM RESINOID MD 50 PCT ΒΒ, LAVANDIN ABSOLUTE Η, LAVANDIN ABSOLUTE MD, LAVANDIN OIL ABRIAL ORGANIC, LAVANDIN OIL GROSSO ORGANIC, LAVANDIN OIL SUPER, LAVENDER ABSOLUTE Η, LAVENDER ABSOLUTE MD, LAVENDER OIL COUMARIN FREE, LAVENDER OIL COUMARIN FREE ORGANIC, LAVENDER OIL MAILLETTE ORGANIC, LAVENDER OIL ΜΤ, MACE ABSOLUTE ΒΒ, MAGNOLIA FLOWER OIL LOW METHYL EUGENOL, MAGNOLIA FLOWER OIL, MAGNOLIA FLOWER OIL MD, MAGNOLIA LEAF OIL, MANDARIN OIL MD, MANDARIN OIL MD ΒΗΤ, MATE ABSOLUTE ΒΒ, MOSS TREE ABSOLUTE MD TEX IFRA 43, MOSS-OAK ABS MD TEC IFRA 43, MOSS-OAK ABSOLUTE IFRA 43, MOSS-TREE ABSOLUTE MD IPM IFRA 43, MYRRH RESINOID ΒΒ, MYRRH RESINOID MD, MYRRH RESINOID TEC, MYRTLE OIL IRON FREE, MYRTLE OIL TUNISIA RECTIFIED, NARCISSE ABS MD 20 PCT ΒΒ, NARCISSE ABSOLUTE FRENCH, NEROLI OIL TUNISIA, NUTMEG OIL TERPENELESS, OEILLET ABSOLUTE, OLIBANUM RESINOID, OLIBANUM RESINOID ΒΒ, OLIBANUM RESINOID DPG, OLIBANUM RESINOID EXTRA 50 PCT DPG, OLIBANUM RESINOID MD, OLIBANUM RESINOID MD 50 PCT DPG, OLIBANUM RESINOID TEC, ΟΡΟΡΟΝΑΧ RESINOID TEC, ORANGE BIGARADE OIL MD ΒΗΤ, ORANGE BIGARADE OIL MD SCFC, ORANGE FLOWER ABSOLUTE TUNISIA, ORANGE FLOWER WATER ABSOLUTE TUNISIA, ORANGE LEAF ABSOLUTE, ORANGE LEAF WATER ABSOLUTE TUNISIA, ORRIS ABSOLUTE ITALY, ORRIS CONCRETE 15 PCT IRONE, ORRIS CONCRETE 8 PCT IRONE, ORRIS NATURAL 15 PCT IRONE 4095C, ORRIS NATURAL 8 PCT IRONE 2942C, ORRIS RESINOID, OSMANTHUS ABSOLUTE, OSMANTHUS ABSOLUTE MD 50 PCT ΒΒ, PATCHOULI HEART №3, PATCHOULI OIL INDONESIA, PATCHOULI OIL INDONESIA IRON FREE, PATCHOULI OIL INDONESIA MD, PATCHOULI OIL REDIST, PENNYROYAL HEART, PEPPERMINT ABSOLUTE MD, PETITGRAIN BIGARADE OIL TUNISIA, PETITGRAIN CITRONNIER OIL, PETITGRAIN OIL PARAGUAY TERPENELESS, PETITGRAIN OIL TERPENELESS STAB, PIMENTO BERRY OIL, PIMENTO LEAF OIL, RHODINOL EX GERANIUM CHINA, ROSE ABS BULGARIAN LOW METHYL EUGENOL, ROSE ABS MOROCCO LOW METHYL EUGENOL, ROSE ABS TURKISH LOW METHYL EUGENOL, ROSE ABSOLUTE, ROSE ABSOLUTE BULGARIAN, ROSE ABSOLUTE DAMASCENA, ROSE ABSOLUTE MD, ROSE ABSOLUTE MOROCCO, ROSE ABSOLUTE TURKISH, ROSE OIL BULGARIAN, ROSE OIL DAMASCENA LOW METHYL EUGENOL, ROSE OIL TURKISH, ROSEMARY OIL CAMPHOR ORGANIC, ROSEMARY OIL TUNISIA, SANDALWOOD OIL INDIA, SANDALWOOD OIL INDIA RECTIFIED, SANTALOL, SCHINUS MOLLE OIL, ST JOHN BREAD TINCTURE 10 PCT, STYRAX RESINOID, STYRAX RESINOID, TAGETE OIL, TEA TREE HEART, TONKA BEAN ABS 50 PCT SOLVENTS, TONKA BEAN ABSOLUTE, TUBEROSE ABSOLUTE INDIA, VETIVER HEART EXTRA, VETIVER OIL HAITI, VETIVER OIL HAITI MD, VETIVER OIL JAVA, VETIVER OIL JAVA MD, VIOLET LEAF ABSOLUTE EGYPT, VIOLET LEAF ABSOLUTE EGYPT DECOL, VIOLET LEAF ABSOLUTE FRENCH, VIOLET LEAF ABSOLUTE MD 50 PCT ΒΒ, WORMWOOD OIL TERPENELESS, YLANG EXTRA OIL, YLANG III OIL and combinations of these. The colorants can be among those listed in the Color Index International by the Society of Dyers and Colourists. Colorants include dyes and pigments and include those commonly used for coloring textiles, paints, inks and inkjet inks. Some colorants that can be utilized include carotenoids, arylide yellows, diarylide yellows, B-naphthols, naphthols, benzimidazolones, disazo condensation pigments, pyrazolones, nickel azo yellow, phthalocyanines, quinacridones, perylenes and perinones, isoindolinone and isoindoline pigments, triarylcarbonium pigments, diketopyrrolo-pyrrole pigments, thioindigoids. Cartenoids include, for example, alpha-carotene, beta-carotene, gammacarotene, lycopene, lutein and astaxanthin, Annatto extract, Dehydrated beets (beet powder), Canthaxanthin, Caramel, P-Apo-8'-carotenal, Cochineal extract, Carmine, Sodium copper chlorophyllin, toasted partially defatted cooked cottonseed flour, Ferrous gluconate, Ferrous lactate, Grape color extract, Grape skin extract (enocianina), Carrot oil, Paprika, Paprika oleoresin, Mica-based pearlescent pigments, Riboflavin, Saffron, Titanium dioxide, Tomato lycopene extract; tomato lycopene concentrate, Turmeric, Turmeric oleoresin, FD&C Blue No. 1, FD&C Blue No. 2, FD&C Green No. 3, Orange Β, Citrus Red No. 2, FD&C Red No. 3, FD&C Red No. 40, FD&C Yellow No. 5, FD&C Yellow No. 6, Alumina (dried aluminum hydroxide), Calcium carbonate, Potassium sodium copper chlorophyllin (chlorophyllin-copper complex), Dihydroxyacetone, Bismuth oxychloride, Ferric ammonium ferrocyanide, Ferric ferrocyanide, Chromium hydroxide green, Chromium oxide greens, Guanine, Pyrophyllite, Talc, Aluminum powder, Bronze powder, Copper powder, Zinc oxide, D&C Blue No. 4, D&C Green No. 5, D&C Green No. 6, D&C Green No. 8, D&C Orange No. 4, D&C Orange No. 5, D&C Orange No. 10, D&C Orange No. 11, FD&C Red No. 4, D&C Red No. 6, D&C Red No. 7, D&C Red No. 17, D&C Red No. 21, D&C Red No. 22, D&C Red No. 27, D&C Red No. 28, D&C Red No. 30, D&C Red No. 31, D&C Red No. 33, D&C Red No. 34, D&C Red No. 36, D&C Red No. 39, D&C Violet No. 2, D&C Yellow No. 7, Ext. D&C Yellow No. 7, D&C Yellow No. 8, D&C Yellow No. 10, D&C Yellow No. 11, D&C Black No. 2, D&C Black No. 3 (3), D&C Brown No. 1, Ext. D&C, Chromium-cobalt-aluminum oxide, Ferric ammonium citrate, Pyrogallol, Logwood extract, 1,4-Bis[(2-hydroxy-ethyl)amino]-9,10-anthracenedione bis(2-propenoic)ester copolymers, 1,4-Bis [(2-methylphenyl)amino] -9,10-anthracenedione, 1,4-Bis[4- (2-methacryloxyethyl) phenylamino] anthraquinone copolymers, Carbazole violet, Chlorophyllin-copper complex, Chromium-cobalt-aluminum oxide,, C.I. Vat Orange 1, 2-[[2,5-Diethoxy- 4-[(4-methylphenyl)thiol] phenyl ]azo] -1,3,5-benzenetriol, 16,23-Dihydrodinaphtho [2,3-a:2',3'-i] naphth [2',3':6,7] indolo [2,3-c] carbazole- 5,10,15,17,22,24-hexone, N,N'-(9,10-Dihydro- 9,10-dioxo- 1,5-anthracenediyl) bisbenzamide, 7,16-Dichloro- 6,15-dihydro-5,9,14,18-anthrazinetetrone, 16,17-Dimethoxydinaphtho (l,2,3-cd:3',2',l'-lm) perylene-5,10-dione, Poly(hydroxyethyl methacrylate) -dye copolymers(3), Reactive Black 5, Reactive Blue 21, Reactive Orange 78, Reactive Yellow 15, Reactive Blue No. 19, Reactive Blue No. 4, C.I. Reactive Red 11, C.I. Reactive Yellow 86, C.I. Reactive Blue 163, C.I. Reactive Red 180, 4-[(2,4-dimethylphenyl)azo]- 2,4-dihydro- 5-methyl-2-phenyl- 3H-pyrazol-3-one (solvent Yellow 18), 6-Ethoxy-2- (6-ethoxy-3-oxobenzo[b] thien-2(3H)- ylidene) benzo[b]thiophen- 3(2Η)-οη℮, Phthalocyanine green, Vinyl alcohol/methyl methacrylate-dye reaction products, C.F Reactive Red 180, C.F Reactive Black 5, C.F Reactive Orange 78, C.F Reactive Yellow 15, C.F Reactive Blue 21, Disodium 1 -amino-4- [[4- [(2-bromo-1 -oxoallyl)amino] -2-sulphonatophenyl]amino] -9,10-dihydro-9,10-dioxoanthracene-2-sulphonate (Reactive Blue 69), D&C Blue No. 9, [Phthalocyaninato(2-)] copper and mixtures of these. Other than in the examples herein, or unless otherwise expressly specified, all of the numerical ranges, amounts, values and percentages, such as those for amounts of materials, elemental contents, times and temperatures of reaction, ratios of amounts, and others, in the following portion of the specification and attached claims may be read as if prefaced by the word “about” even though the term “about” may not expressly appear with the value, amount, or range. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains error necessarily resulting from the standard deviation found in its underlying respective testing measurements. Furthermore, when numerical ranges are set forth herein, these ranges are inclusive of the recited range end points (i.e., end points may be used). When percentages by weight are used herein, the numerical values reported are relative to the total weight. Also, it should be understood that any numerical range recited herein is intended to include all sub-ranges subsumed therein. For example, a range of “1 to 10” is intended to include all sub-ranges between (and including) the recited minimum value of 1 and the recited maximum value of 10, that is, having a minimum value equal to or greater than 1 and a maximum value of equal to or less than 10. The terms “one,” “a,” or “an” as used herein are intended to include “at least one” or “one or more,” unless otherwise indicated. Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material. While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that 5 various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims. Biomass feedstocks (e.g., plant biomass, animal biomass, and municipal waste biomass) are processed to produce useful products, such as fuels. For example, novel systems, methods and equipment for conveying and/or cooling treated biomass are described. Many potential 5 lignocellulosic feedstocks are available today, including agriculture residues, woody biomass, municipal waste, oilseeds/cakes and seaweed, to name a few. At present, these materials are often under-utilized, being used, for example, as animal feed, biocompost materials, burned in a co-generation facility or even landfilled. 1. A method of handling material, such as biomass, the method comprising; conveying recalcitrance-reduced biomass along interior portions of a screw conveyor. 2. The method of claim 1, further comprising delivering the biomass to a feed inlet of the screw conveyor. 3. The method of claim 1 or 2, further comprising discharging the biomass through an outlet of the screw conveyor. 4. The method of any one of claims 1-3, wherein the biomass has been treated by accelerated electrons to reduce its recalcitrance. 5. The method of claim 4, wherein the electrons have an energy between about 0.3 MeV and about 5 MeV. 6. The method of claim 4, wherein the electrons have an energy between about 0.5 MeV and about 3.5 MeV. 7. The method of claim 4, wherein the electrons have an energy between about 0.8 MeV and about 2 MeV. 8. The method of any one of claims 4-7, wherein prior to conveying, the biomass received a dose between about 0.5 Mrad and about 50 Mrad. 9. The method of any one of claims 4-7, wherein prior to conveying, the biomass receives a dose between about 1 Mrad and about 20 Mrad. 10. The method of any one of claims 4-7, wherein prior to conveying, the biomass receives a dose of between about 5 Mrad and about 15 Mrad. 11. The method any one of the above claims, wherein interior portions along which the biomass is conveyed, such as screw shaft, flighting and/or housing, are cooled. 12. The method of claim 11, wherein at least some of the interior portions are cooled using a chilled liquid, such as water or glycol water mixtures. 13. The method of claim 12, wherein the chilled water is chilled utilizing a cooling tower and/or geothermal cooling. 14. The method of any one of the previous claims, wherein the conveyer has a biomass inlet and a biomass discharge and wherein a difference in temperature between the biomass at the inlet and the discharge is less than about 110 °C. 15. The method of any one of the previous claims, wherein the conveyer has a biomass inlet and a biomass discharge and wherein a difference in temperature between the biomass at the inlet and the discharge is less than about 75 °C. 16. The method of any one of the previous claims, wherein the conveyer has a biomass inlet and a biomass discharge and wherein a difference in temperature between the biomass at the inlet and the discharge is less than about 50 °C. 17. The method of any one of the previous claims, wherein the conveyer has a biomass inlet and a biomass discharge and wherein a difference in temperature between the biomass at the inlet and the discharge is less than about 25 °C. 18. The method of any one of the previous claims, further comprising comminuting the biomass material while conveying the biomass material. 19. The method of claim 18, wherein comminuting comprises shredding. 20. The method of claim 18, wherein comminuting comprises shearing. 21. The method of any one of the previous claims, wherein an additive is combined with the biomass material prior to, during and/or after conveying the treated biomass material. 22. The method of claim 21, wherein the additive is selected from the group consisting of, water, an acid, a base, a metal, a resin, an inorganic material, and mixtures thereof. 23. The method of claim 22, wherein the acid is sulfuric acid, hydrochloric acid or phosphoric acid. 24. A method of processing a material, the method comprising; providing a material to a first treatment cell equipped with a first electron beam device, irradiating the material with electron beams using the first electron beam device, and cooling and conveying the material with a screw conveyor from the first treatment cell. 25. The method of claim 24, further comprising conveying the material to a second treatment cell equipped with an second electron beam device and irradiating the material with an electron beam using the second electron beam device. 26. The method of claim 24 or 25, wherein the screw conveyor comprises interior portions such as screw shaft, flighting and/or housing that is cooled. 27. The method of claim 26, wherein the interior portions are cooled using a chilled liquid, such as water or glycol water mixtures. 28. The method of any one of claims 24-27, wherein the cooling reduces the temperature of the material by between about 1°C and 110 °C. 29. The method of any one of claims 24-27, wherein the cooling reduces the temperature of the material by between about 10°C and about 75 °C. 30. The method of any one of claims 24-27, wherein the cooling reduces the temperature of the material by between about 10°C and about 50 °C. 31. The method of any one of claims 24- 30, wherein a total dose delivered is between about 1 and 200 Mrad. 32. The method of any one of claims 24 -30, wherein a total dose delivered is between about 10 Mrad and about 50 Mrad. 33. The method of any one of claims 24 -30, wherein a total dose delivered is between about 20 Mrad and about 40 Mrad. 34. The method of any one of claims 24 - 33, wherein the temperature of the material during the irradiation does not exceed about 200 °C. 35. The method of any one of claims 24 through 33, wherein the temperature of the material during the irradiation does not exceed about 180 °C. 36. The method of any one of claims 24 through 33, wherein the temperature of the material during the irradiation does not exceed about 160 °C. 37. The method of any one of claims 24 through 33, wherein the temperature of the material during the irradiation does not exceed about 150 °C. 38. The method of any one of claims 24 through 33, wherein the temperature of the material during the irradiation does not exceed about 140 °C. 39. The method of any one of claims 24 through 33, wherein the temperature of the material during the irradiation does not exceed about 130 °C. 40. The method of any one of claims 24 through 33, wherein the temperature of the material during the irradiation does not exceed about 120 °C. 41. The method of any one of claims 24 through 33, wherein the temperature of the material during the irradiation does not exceed about 110 °C. 42. The method of any one of claims 24-41, wherein the temperature of the material during irradiation increases by between about 10 °C and about 250 °C. 43. The method of any one of claims 24-41, wherein the temperature of the material during irradiation increases by between about 10 °C and about 150 °C 44. The method of any one of claims 24-41, wherein the temperature of the material during irradiation increases by between about 50 °C and about 150 °C. 45. The method of any one of claims 24-41, wherein the temperature of the material during irradiation increases by between about 75 °C and about 150 °C. 46. The method of any one of claims 24 through 45, wherein the material comprises a biomass. 47. The method of claim 46, wherein the biomass comprises a lignocellulosic material. 48. The method of claim 46, wherein the biomass is selected from the group consisting of wood, particle board, sawdust, agricultural waste, sewage, silage, grasses, rice hulls, bagasse, cotton, jute, hemp, flax, bamboo, sisal, abaca, straw, com cobs, corn stover, switchgrass, alfalfa, hay, coconut hair, seaweed, algae, and mixtures thereof. 49. The method of any one of the previous claims, wherein the screw conveyor comprises two or more screws.CROSS REFERENCE TO RELATED APPLICATIONS
BACKGROUND
SUMMARY
DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION
SYSTEMS FOR TREATING A FEEDSTOCK
RADIATION TREATMENT
RADIATION OPAQUE MATERIALS
RADIATION SOURCES
ELECTRON GUNS - WINDOWS
HEATING AND THROUGHPUT DURING RADIATION TREATMENT
Dose (Mrad) Estimated Biomass AT (°C) Steel AT (°C) 10 50 200 50 250 (Decomposition) 1000 100 500 (Decomposition) 2000 150 750 (Decomposition) 3000 200 1000 (Decomposition) 4000 ELECTRON GUNS - BEAM STOPS
BEAM DUMPS
BIOMASS MATERIALS
OTHER MATERIALS
BIOMASS MATERIAL PREPARATION - MECHANICAL TREATMENTS
SONICATION. PYROLYSIS. OXIDATION. STEAM EXPLOSION
INTERMEDIATES AND PRODUCTS
LIGNIN DERIVED PRODUCTS
SACCHARIFICATION
SACCHARIFYING AGENTS
SUGARS
HYDROGENATION AND OTHER CHEMICAL TRANSFORMATIONS
FERMENTATION
FERMENTATION AGENTS
DISTILLATION
HYDROCARBON-CONTAINING MATERIALS
CONVEYING SYSTEMS
OTHER EMBODIMENTS
FLAVORS, FRAGRANCES AND COLORANTS