SEMICONDUCTOR DEVICES AND METHODS OF MANUFACTURING SEMICONDUCTOR DEVICES
Not applicable. The present disclosure relates, in general, to electronic devices, and more particularly, to semiconductor devices and methods for manufacturing semiconductor devices. Prior semiconductor packages and methods for forming semiconductor packages are inadequate, for example resulting in excess cost, decreased reliability, relatively low performance, or package sizes that are too large. Further limitations and disadvantages of conventional and traditional approaches will become apparent to one of skill in the art, through comparison of such approaches with the present disclosure and reference to the drawings. The following discussion provides various examples of semiconductor devices and methods of manufacturing semiconductor devices. Such examples are non-limiting, and the scope of the appended claims should not be limited to the particular examples disclosed. In the following discussion, the terms “example” and “e.g.” are non-limiting. The figures illustrate the general manner of construction, and descriptions and details of well-known features and techniques may be omitted to avoid unnecessarily obscuring the present disclosure. In addition, elements in the drawing figures are not necessarily drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help improve understanding of the examples discussed in the present disclosure. The same reference numerals in different figures denote the same elements. The term “or” means any one or more of the items in the list joined by “or”. As an example, “x or y” means any element of the three-element set {(x), (y), (x, y)}. As another example, “x, y, or z” means any element of the seven-element set {(x), (y), (z), (x, y), (x, z), (y, z), (x, y, z)}. The terms “comprises,” “comprising,” “includes,” “including” are “open ended” terms and specify the presence of stated features, but do not preclude the presence or addition of one or more other features. The terms “first,” “second,” etc. may be used herein to describe various elements, and these elements should not be limited by these terms. These terms are only used to distinguish one element from another. Thus, for example, a first element discussed in this disclosure could be termed a second element without departing from the teachings of the present disclosure. Unless specified otherwise, the term “coupled” may be used to describe two elements directly contacting each other or describe two elements indirectly connected by one or more other elements. For example, if element A is coupled to element B, then element A can be directly contacting element B or indirectly connected to element B by an intervening element C. Similarly, the terms “over” or “on” may be used to describe two elements directly contacting each other or describe two elements indirectly connected by one or more other elements. It is further understood that the examples illustrated and described hereinafter suitably may have examples and/or may be practiced in the absence of any element that is not specifically disclosed herein. The present description includes, among other features, a packaged electronic device structure and associated methods that comprise interconnects attached to an electronic device. The interconnects include a first region extending in an upward direction from the electronic device, and a second region connected to the first region. The second region extends from the first region in a lateral direction. In some examples, the electronic device and portions of the interconnects are covered with an encapsulant. In some examples other portions of the interconnects are exposed from the encapsulant. Among other things, the structure and method provide a more cost-effective redistribution pattern for the electronic device, which uses a simplified process flow, provides a better form factor redistribution, and provides a faster electrical path. More particularly, in one example, a packaged electronic device structure includes an electronic device having a device top surface, a device bottom surface opposite to the device top surface, and a device side surface extending between the device top surface and the device bottom surface. An interconnect is connected to the device top surface and includes a first region that extends from the device top surface in an upward direction, and a second region connected to the first region, wherein the second region extends from the first region in a lateral direction. An encapsulant covers the device top surface, the device side surface, and a periphery of the first region, wherein, a first portion of the second region is exposed from a first surface of the encapsulant, a second portion of the second region is exposed from a second surface of the encapsulant, and the encapsulant covers a third portion of the second region. In some examples, the electronic device comprises an active or passive device. In other examples, the electronic device comprises a semiconductor device. In some examples, the first region and the second region are integral structure provided as part of a subsequently singulated leadframe structure. In some examples, the second region lateral extends beyond a perimeter of the electronic device. In another example, a semiconductor device structure includes an electronic device having a device top surface, a device bottom surface opposite to the device top surface, device side surfaces extending between the device top surface and the device bottom surface, and pads disposed over the device top surface. Interconnects are connected to the pads, and the interconnects include first regions that each extend from a respective pad in in an upward direction, and second regions each connected to a respective first region, wherein each second region extends from the respective first region in a lateral direction. The interconnects comprise a redistribution pattern on the pads. In a further example, a method for making a semiconductor device includes providing a substrate comprising a plurality of electronic devices formed as part of the substrate. The method includes attaching interconnects to pads on the electronic devices, wherein each interconnect spans between neighboring electronic devices, wherein each interconnect has first regions coupled to respective pads of the respective neighboring electronic devices and extending in an upward direction, and a second region structure connecting the first regions to each other in a lateral direction. The method includes singulating the substrate and the plurality of interconnects to separate each second region structure into second regions and the substrate into individual electronic devices. Other examples are included in the present disclosure. Such examples may be found in the figures, in the claims, and/or in the description of the present disclosure. Referring to Electronic device 110 can be a semiconductor die, a semiconductor component, an optical device, a sensor device, or other active or passive devices as known to one of ordinary skill in the art. Electronic device 110, can comprise a device top surface 110 Pad 111 can include a plurality of pads on first surface 110 Dielectric 112 can be provided to cover the periphery of pad 111 on first surface 110 Electronic device 110 can be electrically connected external to semiconductor device 100 through various interconnects 120 coupled to pad 111. Interconnects 120 can comprise or be referred to as leads or as a redistribution structure or pattern. In some examples, interconnects 120 can be part of a leadframe. Interconnects 120 can comprise, for example, copper, gold, silver, or aluminum. Each of interconnects 120 can comprise a first region 121 connected to pad 111 and a second region 122 extending from first region 121. First region 121 can be electrically coupled to pad 111 and can protrude from pad 111 in a first direction, such as vertically or upward. In addition, in an example implementation of the present disclosure, first region 121 can extend in the first direction substantially perpendicular to pad 111. Second region 122 can extend from first region 121 in a second direction, such as horizontally or laterally. The second direction can be different from first direction in which first region 121 extends. In one example, second region 122 can extend in a direction substantially perpendicular to first region 121. Interconnects 120 can be configured to further extend past a footprint or area of electronic device 110 by an extending length of second region 122. Accordingly, interconnects 120 can function to perform redistribution on pad 111 of electronic device 110. Interconnects 120 can be directly connected to pad 111 of electronic device 110, shortening electrical paths. Through interconnects 120, an electrical pattern can be formed at or to any location without being limited to the location of pad 111 of electronic device 110. Encapsulant 130 can be provided to fill gaps between electronic device 110 and interconnects 120. Encapsulant 130 made of a non-conductive material can maintain interconnects 120 insulated from one another. In addition, encapsulant 130 can encapsulate side surfaces 110 First surface 130 Referring to Referring to Referring to Referring to Referring to Referring to According to the present manufacturing method, electrical connections of electronic devices 110 can be performed through interconnects 120, thereby rapidly establishing electrical paths and simplifying the overall process for manufacturing semiconductor device 100. Referring to Electronic device 110 can comprise a first surface 110 Pad 111 can include a plurality of pads on first surface 110 Pad 111 can be exposed, as shown in the drawings. When pad 111 is made of materials such as copper or silver, a plating for preventing oxidation can be further provided on portions of pad 111 intended to be electrically connected to interconnects 120. Plating can be provided using, for example, nickel, zinc or tin. If pad 111 is instead made of material such as aluminum, an oxide film is naturally formed by anodizing remaining portions of pad 111, other than portions electrically connected to interconnects 120, thereby performing an insulating function. Dielectric 112 can be provided to cover the periphery of pad 111 on first surface 110 Interconnects 120 can be coupled to pad 111 of electronic device 110. Interconnects 120 can comprise or be referred to as leads or as a redistribution structure or pattern. In some examples, interconnects 120 can be part of a leadframe. Interconnects 120 can comprise, for example, copper, gold, silver, or aluminum. Each of interconnects 120 can comprise a first region 121 connected to pad 111 and a second region 122 extending from first region 121. First region 121 can be electrically coupled to pad 111 and can protrude from pad 111 in a first direction. In addition, in an example implementation of the present disclosure, first region 121 can extend in the first direction substantially perpendicular to pad 111. Second region 122 can extend from first region 121 in a second direction. The second direction can be different from first direction in which first region 121 extends. In one example, second region 122 can extend in a direction substantially perpendicular to first region 121. Interconnects 120 can be configured to further extend past a footprint or area of electronic device 110 by an extending length of second region 122. Accordingly, interconnects 120 can function to perform redistribution on pad 111 of electronic device 110. Referring to Referring to Interconnects 120 can comprise a plurality of first regions 121 coupled to the respective pads 111 in a first direction and second regions 122 connecting first regions 121 to each other in a second direction. First regions 121 and second regions 122 of interconnects 120 can be integrally formed. In addition, interconnects 120 can be prefabricated structures to be coupled to pads 111. In some examples, interconnects 120 can be formed as or from a leadframe. Interconnects 120 can be made of copper, gold, silver or aluminum. Referring to As shown in From all of the foregoing, one skilled in the art can determine that according to another example, a method for making a semiconductor device comprises providing a substrate comprising a plurality of electronic devices formed as part of the substrate. The method includes forming grooves extending partially inward from a first surface of the substrate between the plurality of electronic devices. The method includes coupling interconnects to pads on the electronic devices, wherein each interconnect spans across one of the grooves between neighboring electronic devices, wherein each interconnect comprises first regions coupled to respective pads of the respective neighboring electronic devices in an upward direction, and a second region structure connecting the first regions to each other in a lateral direction. The method includes providing an encapsulant on the first surface of the substrate and within the grooves so that the encapsulant fills portions between each of the interconnects and fills portions between each of the interconnects and the first surface of the substrate. The method includes removing a portion of the substrate from a second surface of the substrate opposite to the first surface to expose the encapsulant from the second surface. The method includes singulating the substrate and the interconnects through portions of the grooves to separate the interconnects and the substrate into individual electronic devices. In a further example, portions of the encapsulant remain on side surfaces of the electronic devices after the step of singulating. In a still further example, coupling interconnects comprises coupling the interconnects provided as a lead frame. In another example, providing the encapsulant comprises covering first sides of the second regions with the encapsulant while leaving second sides of the second regions exposed from the encapsulant. In summary, a structures and methods have been described that relate to an electronic device having an interconnect structure. In some examples, the interconnect structure includes a plurality of interconnects each having a first region that extends in an first or upward direction from a surface of the electronic device, and a second region connected to the first region that extends in a second or lateral direction from the first region. In some examples, the interconnects are provided as part of a lead frame that can be attached to a substrate containing a plurality of electronic devices as part of a method of manufacture. In some examples, singulation can be used to separate the interconnects and the substrate at the same time to provide the electronic devices. The interconnects can be part of a redistribution pattern or structure for the electronic device that provides a better form factor. Among other things, the structure and method provide a more cost-effective redistribution pattern for the electronic device, which uses a simplified process flow and provides an efficient electrical path. The present disclosure includes reference to certain examples, however, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the disclosure. In addition, modifications may be made to the disclosed examples without departing from the scope of the present disclosure. Therefore, it is intended that the present disclosure not be limited to the examples disclosed, but that the disclosure will include all examples falling within the scope of the appended claims. In one example, a semiconductor device structure relates to an electronic device, which includes a device top surface, a device bottom surface opposite to the device top surface, device side surfaces extending between the device top surface and the device bottom surface, and pads disposed over the device top surface. Interconnects are connected to the pads, and the interconnects first regions that each extend from a respective pad in in an upward direction, and second regions each connected to a respective first region, wherein each second region extends from the respective first region in a lateral direction. The interconnects comprise a redistribution pattern on the pads. Other examples and related methods are also disclosed herein. 1. A semiconductor device, comprising:
an electronic device comprising:
a device top surface; a device bottom surface opposite to the device top surface; and a device side surface extending between the device top surface and the device bottom surface; an interconnect directly attached at the device top surface comprising:
a first region that extends from the device top surface in an upward direction; and a second region coupled to the first region, wherein the second region extends from the first region in a lateral direction; and an encapsulant that covers the device top surface, the device side surface, and a periphery of the first region, wherein:
a first portion of the second region is exposed from a first surface of the encapsulant; a second portion of the second region is exposed from a second surface of the encapsulant; and the encapsulant covers a third portion of the second region. 2. The semiconductor device of the interconnect comprises a severed leadframe lead; the lateral direction is substantially parallel to the device top surface; and the second portion extends to overlap the device side surface so as to extend outside a perimeter of the electronic device. 3. The semiconductor device of the first portion is directly connected to a pad of the electronic device; and the upward direction is substantially perpendicular to the device top surface. 4. The semiconductor device of the device bottom surface is exposed from a third surface of the encapsulant; and the third surface is opposite to the first surface. 5. The semiconductor device of the first surface comprises a top surface of the encapsulant; and the top surface is substantially coplanar with the first portion of the second region. 6. The semiconductor device of the second portion of the second region comprises an end portion; the second surface comprises a side surface of the encapsulant; and the side surface is substantially coplanar with the end portion. 7. A semiconductor device, comprising:
an electronic device comprising:
a device top surface; a device bottom surface opposite to the device top surface; a device side surface extending between the device top surface and the device bottom surface; and pads disposed over the device top surface; and interconnects coupled to the pads, the interconnects comprising:
prefabricated structures; first regions that each extend from a respective pad in in an upward direction; and second regions each coupled to a respective first region, wherein each second region extends from the respective first region in a lateral direction, and wherein the interconnects comprise a redistribution pattern on the pads. 8. The semiconductor device of an encapsulant that covers the device top surface, the device side surface, and a periphery of the first regions, wherein: first portions of the second regions are exposed from a first surface of the encapsulant; second portions of the second regions are exposed from a second surface of the encapsulant; and third portions of the second regions are covered by the encapsulant. 9. The semiconductor device of the device bottom surface is exposed from a third surface the encapsulant; and the third surface is opposite to the first surface. 10. The semiconductor device of the first surface comprises a top surface of the encapsulant; and the top surface is substantially coplanar with the first portions of the second regions. 11. The semiconductor device of the second portions of the second regions comprise end portions; the second surface comprises a side surface of the encapsulant; and the side surface is substantially coplanar with the end portions. 12. The semiconductor device of the lateral direction is substantially parallel to the device top surface; and the second portions extend to overlap the device side surface so as to extend outside a perimeter of the electronic device. 13. The semiconductor device of the upward direction is substantially perpendicular to the device top surface. 14. The semiconductor device of the prefabricated structures comprise detached leadframe structures; and each second portion is integral with the respective first portion. 15. A method for making a semiconductor device, comprising:
providing a substrate comprising a plurality of electronic devices formed as part of the substrate; attaching leadframe interconnects to pads on the electronic devices, wherein each interconnect spans between neighboring electronic devices, wherein each leadframe interconnect comprises:
first regions coupled to respective pads of the respective neighboring electronic devices and extending in an upward direction, and a second region structure connecting the first regions to each other in a lateral direction; and singulating the substrate and the leadframe interconnects to separate each second region structure into second regions and the substrate into individual electronic devices. 16. The method of forming grooves extending partially inward from a first surface of the substrate between the plurality of electronic devices; providing an encapsulant on the first surface of the substrate and within the grooves so that the encapsulant fills portions between each of the leadframe interconnects and fills portions between each of the leadframe interconnects and the first surface of the substrate; and removing a portion of the substrate from a second surface of the substrate opposite to the first surface to expose the encapsulant from the second surface. 17. The method of forming the grooves occurs before coupling the leadframe interconnects; and singulating occurs after removing the portion of the substrate. 18. The method of portions of the encapsulant remain on side surfaces of the electronic devices after the step of singulating. 19. The method of providing the encapsulant comprises covering first sides of each second region structure with the encapsulant while leaving second sides of each second region structure exposed from the encapsulant. 20. The method of singulating comprises singulating the leadframe interconnects so that the second regions extends to laterally overlap side surfaces of the electronic devices so as to extend outside a perimeter of the electronic devices.CROSS-REFERENCE TO RELATED APPLICATIONS
TECHNICAL FIELD
BACKGROUND
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION OF THE DRAWINGS






