SEMICONDUCTOR DEVICE AND SEMICONDUCTOR DEVICE FABRICATION METHOD
This non-provisional application is based upon and claims the benefit of priority of the prior Japanese Patent Application No. 2015-141314, filed on Jul. 15, 2015, the entire contents of which are incorporated herein by reference. 1. Field of the Invention The embodiment discussed herein is related to a semiconductor device and a semiconductor device fabrication method. 2. Background of the Related Art Power semiconductor modules (semiconductor devices) include semiconductor elements, such as insulated gate bipolar transistors (IGBTs), power metal oxide semiconductor field effect transistors (MOSFETs), or free wheeling diodes (FWDs), and are widely used as power converters or the like. Semiconductor devices include a plurality of semiconductor units and increases current capacity. With such semiconductor units, a back electrode of a semiconductor element is joined to metal foil disposed over an insulating board with solder therebetween. In addition, with the semiconductor units, a conductive post soldered to a through hole made in a printed circuit board is joined to a front electrode of the semiconductor element with solder therebetween. These insulating board, semiconductor element, and printed circuit board are sealed by the use of resin to form each semiconductor unit. Furthermore, these semiconductor units are fixed onto a base plate with solder there between and are housed in a case. By doing so, a semiconductor device is formed. Please see, for example, Japanese Laid-open Patent Publication No. 2009-64852. In order to fix a semiconductor unit onto a base plate with solder there between, first a solder plate is disposed over the base plate. Furthermore, the semiconductor unit is disposed over the solder plate. All of them are then heated. By doing so, the solder plate is melted and the semiconductor unit is fixed onto the base plate by the use of solder. However, when such heating is performed, solder by which metal foil and a semiconductor element included in the semiconductor unit are joined together or solder by which the semiconductor element and a conductive post included in the semiconductor unit are joined together is remelted. Remelted solder reacts with an electrode of the semiconductor element to form an alloy layer. That is to say, an electrode of the semiconductor element is eroded by remelted solder and is consumed (solder erosion). As a result, a deterioration in the quality of the joining of the semiconductor element may lead to a deterioration in the characteristics of the semiconductor unit and therefore to a deterioration in the quality of a semiconductor device. According to an aspect, there is provided a semiconductor device including a plurality of semiconductor units each having a laminated substrate formed by laminating an insulating board and a circuit board and a semiconductor element joined to the circuit board by using a joining material which irreversibly makes phase transition into a solid-phase state, a base plate to which each of the plurality of semiconductor units is joined by using solder, and a connection unit which electrically connects the plurality of semiconductor units in parallel. The object and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the invention. An embodiment will now be described with reference to the accompanying drawings, wherein like reference numerals refer to like elements throughout. First a semiconductor unit according to an embodiment will be described by the use of A semiconductor unit 10 includes a laminated substrate 11, a semiconductor element 12, a printed circuit board 14, a plurality of control terminals 15 The laminated substrate 11 is formed by laminating a circuit board 11 An IGBT, a MOSFET, a FWD, or the like is properly used as the semiconductor element 12. In addition, a back electrode of the semiconductor element 12 is joined to the circuit board 11 The printed circuit board 14 includes a resin layer 14 The plurality of control terminals 15 The plurality of main terminals 15 The joining materials 13 Next, a semiconductor device in which the above semiconductor unit 10 is included in plurality will be described by the use of As illustrated in The base plate 21 is made of metal, such as copper or aluminum, having high thermal conductivity. The connection unit 23 includes a printed circuit board 23 A case 24 exposes a back of the base plate 21 and encloses the outside of each of the other components. Furthermore, the lid 25 covers an upper part of the connection unit 23 and each component is housed inside the case 24 and the lid 25. Each external connection terminal 23 A method for fabricating the semiconductor device 20 having the above structure will now be described by the use of A method for fabricating the semiconductor device 20 is roughly divided into a process for assembling the semiconductor unit 10 (steps S11 through S18) and a process for assembling the semiconductor device 20 by the use of the semiconductor unit 10 (steps S21 through S28). First a process for assembling the semiconductor unit 10 will be described. (Step S11) The laminated substrate 11 and the printed circuit board 14 are formed. With the laminated substrate 11, the metal board 11 With the printed circuit board 14, the circuit layers 14 (Step S12) A metal paste material is applied to a region (hereinafter referred to as the element mounting region) of the circuit board 11 The metal paste material is a solvent in which metal nanoparticles are dispersed. The metal nanoparticles are, for example, copper or silver nanoparticles. (Step S13) The laminated substrate 11 is heated (pre-baked) to evaporate the solvent from the metal paste material. The solvent evaporates by the pre-bake and a metal nanoparticle layer in which metal nanoparticles flocculate nanoporously is formed on the element mounting region of the laminated substrate 11. (Step S14) The semiconductor element 12 is disposed over the element mounting region on which the metal nanoparticle layer is formed. While heating is being performed at a temperature of about 250° C. higher than temperature at which the pre-bake is performed, the metal nanoparticle layer is pressed. By pressing the metal nanoparticle layer while performing heating in this way, metal nanoparticles flocculate, are sintered, and make phase transition to a solid-phase state, between the back of the semiconductor element 12 and the element mounting region of the laminated substrate 11. As a result of this sintering, the joining material 13 The semiconductor element 12 is fixed in this way to the laminated substrate 11. (Step S15) A metal paste material is applied to regions of the semiconductor element 12 where the conductive posts 14 (Step S16) The laminated substrate 11 is heated (pre-baked) to evaporate a solvent from the metal paste material. This is the same with step S13. As a result, a metal nanoparticle layer is formed on the semiconductor element 12. (Step S17) End portions of the conductive posts 14 By pressing the metal nanoparticle layer while performing heating in this way, metal nanoparticles flocculate, are sintered, and make phase transition to a solid-phase state, between the end portions of the conductive posts 14 As a result, the conductive posts 14 After that, the main terminals 15 Alternatively, the main terminals 15 (Step S18) A structure assembled in steps S11 through S17 is sealed by the use of the resin 16, such as epoxy resin, so that the control terminals 15 The process for assembling the semiconductor unit 10 has ended. Next, a process for assembling the semiconductor device 20 will be described. (Step S21) The solder 22 (Step S22) The semiconductor unit 10 fabricated in steps S11 through S18 is disposed in plurality on the solder 22 (Step S23) The connection unit 23 is attached to the plurality of semiconductor units 10 disposed. At this time the control terminals 15 (Step S24) The solder 22 (Step S25) The whole is heated to melt the solder 22 As a result, the semiconductor units 10 and the base plate 21 are joined together and the control terminals 15 When the whole is heated at the above temperature, the joining material 13 (Step S26) The case 24 is attached so as to enclose the base plate 21, the semiconductor units 10, and the connection unit 23. At this time, the external control terminals 23 (Step S27) Resin (or gel) is injected into inner space enclosed by the case 24 attached in step S26. By doing so, the base plate 21, the semiconductor units 10, and the connection unit 23 are sealed by the use of the resin 26. (Step S28) The lid 25 is attached to the connection unit 23 from above. At this time the external connection terminals 23 The process for assembling the semiconductor device 20 has ended. As has been described, each semiconductor element 12 in the semiconductor units 10 is joined by the use of a joining material which irreversibly makes phase transition into a solid-phase state. This prevents the erosion of an electrode of each semiconductor element 12. Therefore, a deterioration in the quality of the semiconductor device 20 is suppressed and the yield rate of the assembly of the semiconductor devices 20 is improved. Even if each semiconductor element 12 is joined by the use of high melting point solder (whose melting point is, for example, 400° C.), the erosion of an electrode caused by remelting is prevented. In this case, however, each semiconductor element 12 is joined at a temperature of 400° C. or higher. Therefore, when each semiconductor element 12 is joined by the use of high melting point solder, excessive thermal stress remains behind in the laminated substrate 11 or the printed circuit board 14 included in each semiconductor unit 10. In addition, the resin layer 14 In this embodiment, however, each semiconductor unit 10 is joined at a temperature of about 250° C. As a result, the above problems do not arise and the semiconductor unit 10 with high reliability is fabricated. The present invention is not limited to the above embodiment. For example, the present invention includes a structure in which the base plate 21 is not included and in which a laminated substrate 11 of each semiconductor unit 10 is exposed directly from a back of a semiconductor device. In this case, the erosion of an electrode of each semiconductor element 12 is also prevented when solder 22 Furthermore, a semiconductor device fabrication method used in this case differs from the semiconductor device fabrication method according to the above embodiment in that it does not include the above step S21 or S22. According to the disclosed technique, a deterioration in the quality of a semiconductor device is suppressed. All examples and conditional language provided herein are intended for the pedagogical purposes of aiding the reader in understanding the invention and the concepts contributed by the inventor to further the art, and are not to be construed as limitations to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a showing of the superiority and inferiority of the invention. Although one or more embodiments of the present invention have been described in detail, it should be understood that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention. A semiconductor device includes a plurality of semiconductor units each including a laminated substrate formed by laminating an insulating board and a circuit board and a semiconductor element joined to the circuit board using a joining material which irreversibly makes a phase transition into a solid-phase state. In addition, the semiconductor device may include a base plate to which each of the plurality of semiconductor units is joined using solder and a connection unit which electrically connects the plurality of semiconductor units in parallel. 1. A semiconductor device, comprising:
a plurality of semiconductor units each including:
a laminated substrate formed by laminating an insulating board and a circuit board; and a semiconductor element joined to the circuit board by using a joining material which irreversibly makes a phase transition into a solid-phase state; a base plate to which each of the plurality of semiconductor units is joined by using solder; and a connection unit which electrically connects the plurality of semiconductor units in parallel. 2. The semiconductor device according to 3. The semiconductor device according to 4. The semiconductor device according to 5. The semiconductor device according to a conductive post whose end portion is joined to a main electrode of the semiconductor element by using the joining material; and a printed circuit board disposed opposite the semiconductor element. 6. A semiconductor device, comprising:
a plurality of semiconductor units each semiconductor unit including:
a laminated substrate formed by laminating an insulating board and a circuit board; and a semiconductor element joined to the circuit board by using a joining material which irreversibly makes a phase transition into a solid-phase state; and a connection unit to which each semiconductor unit of the plurality of semiconductor units is joined by using solder and which electrically connects the plurality of semiconductor units in parallel. 7. A method of fabricating a semiconductor device, comprising:
providing a plurality of insulated boards, a plurality of circuit boards, and a plurality of semiconductor elements; forming a plurality of laminated substrates, each laminated substrate of the plurality of laminated substrates being formed by laminating one insulated board of the plurality of insulated boards and one circuit board of the plurality of circuit boards; forming a plurality of semiconductor units, each semiconductor unit being formed by joining one semiconductor element of the plurality of semiconductor elements to one circuit board of one laminated substrate using a joining material which irreversibly makes a phase transition into a solid-phase state; joining each semiconductor unit of the plurality of semiconductor units to a metal base using solder; and electrically connecting the plurality of semiconductor units in parallel using a connection unit. 8. The method of fabricating a semiconductor device according to 9. A method of fabricating a semiconductor device, comprising:
providing a plurality of insulated boards, a plurality of circuit boards, and a plurality of semiconductor elements; forming a plurality of laminated substrates, each laminated substrate of the plurality of laminated substrates being formed by laminating one insulated board of the plurality of insulated boards and one circuit board of the plurality of circuit boards; forming a plurality of semiconductor units, each semiconductor unit being formed by joining one semiconductor element of the plurality of semiconductor elements to one circuit board of one laminated substrate using a joining material which irreversibly makes a phase transition into a solid-phase state; and joining each semiconductor unit of the plurality of semiconductor units to a connection unit using solder to electrically connect the plurality of semiconductor units in parallel using the connection unit.CROSS-REFERENCE TO RELATED APPLICATION
BACKGROUND OF THE INVENTION
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF DRAWINGS
DETAILED DESCRIPTION OF THE INVENTION



